1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                            ConstantAggregateBuilder
37 //===----------------------------------------------------------------------===//
38 
39 namespace {
40 class ConstExprEmitter;
41 
42 struct ConstantAggregateBuilderUtils {
43   CodeGenModule &CGM;
44 
45   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
46 
47   CharUnits getAlignment(const llvm::Constant *C) const {
48     return CharUnits::fromQuantity(
49         CGM.getDataLayout().getABITypeAlignment(C->getType()));
50   }
51 
52   CharUnits getSize(llvm::Type *Ty) const {
53     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
54   }
55 
56   CharUnits getSize(const llvm::Constant *C) const {
57     return getSize(C->getType());
58   }
59 
60   llvm::Constant *getPadding(CharUnits PadSize) const {
61     llvm::Type *Ty = CGM.CharTy;
62     if (PadSize > CharUnits::One())
63       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
64     return llvm::UndefValue::get(Ty);
65   }
66 
67   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
68     llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
69     return llvm::ConstantAggregateZero::get(Ty);
70   }
71 };
72 
73 /// Incremental builder for an llvm::Constant* holding a struct or array
74 /// constant.
75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
76   /// The elements of the constant. These two arrays must have the same size;
77   /// Offsets[i] describes the offset of Elems[i] within the constant. The
78   /// elements are kept in increasing offset order, and we ensure that there
79   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
80   ///
81   /// This may contain explicit padding elements (in order to create a
82   /// natural layout), but need not. Gaps between elements are implicitly
83   /// considered to be filled with undef.
84   llvm::SmallVector<llvm::Constant*, 32> Elems;
85   llvm::SmallVector<CharUnits, 32> Offsets;
86 
87   /// The size of the constant (the maximum end offset of any added element).
88   /// May be larger than the end of Elems.back() if we split the last element
89   /// and removed some trailing undefs.
90   CharUnits Size = CharUnits::Zero();
91 
92   /// This is true only if laying out Elems in order as the elements of a
93   /// non-packed LLVM struct will give the correct layout.
94   bool NaturalLayout = true;
95 
96   bool split(size_t Index, CharUnits Hint);
97   Optional<size_t> splitAt(CharUnits Pos);
98 
99   static llvm::Constant *buildFrom(CodeGenModule &CGM,
100                                    ArrayRef<llvm::Constant *> Elems,
101                                    ArrayRef<CharUnits> Offsets,
102                                    CharUnits StartOffset, CharUnits Size,
103                                    bool NaturalLayout, llvm::Type *DesiredTy,
104                                    bool AllowOversized);
105 
106 public:
107   ConstantAggregateBuilder(CodeGenModule &CGM)
108       : ConstantAggregateBuilderUtils(CGM) {}
109 
110   /// Update or overwrite the value starting at \p Offset with \c C.
111   ///
112   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
113   ///        a constant that has already been added. This flag is only used to
114   ///        detect bugs.
115   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
116 
117   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
118   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
119 
120   /// Attempt to condense the value starting at \p Offset to a constant of type
121   /// \p DesiredTy.
122   void condense(CharUnits Offset, llvm::Type *DesiredTy);
123 
124   /// Produce a constant representing the entire accumulated value, ideally of
125   /// the specified type. If \p AllowOversized, the constant might be larger
126   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
127   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
128   /// even if we can't represent it as that type.
129   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
130     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
131                      NaturalLayout, DesiredTy, AllowOversized);
132   }
133 };
134 
135 template<typename Container, typename Range = std::initializer_list<
136                                  typename Container::value_type>>
137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
138   assert(BeginOff <= EndOff && "invalid replacement range");
139   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
140 }
141 
142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
143                           bool AllowOverwrite) {
144   // Common case: appending to a layout.
145   if (Offset >= Size) {
146     CharUnits Align = getAlignment(C);
147     CharUnits AlignedSize = Size.alignTo(Align);
148     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
149       NaturalLayout = false;
150     else if (AlignedSize < Offset) {
151       Elems.push_back(getPadding(Offset - Size));
152       Offsets.push_back(Size);
153     }
154     Elems.push_back(C);
155     Offsets.push_back(Offset);
156     Size = Offset + getSize(C);
157     return true;
158   }
159 
160   // Uncommon case: constant overlaps what we've already created.
161   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
162   if (!FirstElemToReplace)
163     return false;
164 
165   CharUnits CSize = getSize(C);
166   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
167   if (!LastElemToReplace)
168     return false;
169 
170   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
171          "unexpectedly overwriting field");
172 
173   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
174   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
175   Size = std::max(Size, Offset + CSize);
176   NaturalLayout = false;
177   return true;
178 }
179 
180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
181                               bool AllowOverwrite) {
182   const ASTContext &Context = CGM.getContext();
183   const uint64_t CharWidth = CGM.getContext().getCharWidth();
184 
185   // Offset of where we want the first bit to go within the bits of the
186   // current char.
187   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
188 
189   // We split bit-fields up into individual bytes. Walk over the bytes and
190   // update them.
191   for (CharUnits OffsetInChars =
192            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
193        /**/; ++OffsetInChars) {
194     // Number of bits we want to fill in this char.
195     unsigned WantedBits =
196         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
197 
198     // Get a char containing the bits we want in the right places. The other
199     // bits have unspecified values.
200     llvm::APInt BitsThisChar = Bits;
201     if (BitsThisChar.getBitWidth() < CharWidth)
202       BitsThisChar = BitsThisChar.zext(CharWidth);
203     if (CGM.getDataLayout().isBigEndian()) {
204       // Figure out how much to shift by. We may need to left-shift if we have
205       // less than one byte of Bits left.
206       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
207       if (Shift > 0)
208         BitsThisChar.lshrInPlace(Shift);
209       else if (Shift < 0)
210         BitsThisChar = BitsThisChar.shl(-Shift);
211     } else {
212       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
213     }
214     if (BitsThisChar.getBitWidth() > CharWidth)
215       BitsThisChar = BitsThisChar.trunc(CharWidth);
216 
217     if (WantedBits == CharWidth) {
218       // Got a full byte: just add it directly.
219       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
220           OffsetInChars, AllowOverwrite);
221     } else {
222       // Partial byte: update the existing integer if there is one. If we
223       // can't split out a 1-CharUnit range to update, then we can't add
224       // these bits and fail the entire constant emission.
225       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
226       if (!FirstElemToUpdate)
227         return false;
228       llvm::Optional<size_t> LastElemToUpdate =
229           splitAt(OffsetInChars + CharUnits::One());
230       if (!LastElemToUpdate)
231         return false;
232       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
233              "should have at most one element covering one byte");
234 
235       // Figure out which bits we want and discard the rest.
236       llvm::APInt UpdateMask(CharWidth, 0);
237       if (CGM.getDataLayout().isBigEndian())
238         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
239                            CharWidth - OffsetWithinChar);
240       else
241         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
242       BitsThisChar &= UpdateMask;
243 
244       if (*FirstElemToUpdate == *LastElemToUpdate ||
245           Elems[*FirstElemToUpdate]->isNullValue() ||
246           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
247         // All existing bits are either zero or undef.
248         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
249             OffsetInChars, /*AllowOverwrite*/ true);
250       } else {
251         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
252         // In order to perform a partial update, we need the existing bitwise
253         // value, which we can only extract for a constant int.
254         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
255         if (!CI)
256           return false;
257         // Because this is a 1-CharUnit range, the constant occupying it must
258         // be exactly one CharUnit wide.
259         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
260         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
261                "unexpectedly overwriting bitfield");
262         BitsThisChar |= (CI->getValue() & ~UpdateMask);
263         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
264       }
265     }
266 
267     // Stop if we've added all the bits.
268     if (WantedBits == Bits.getBitWidth())
269       break;
270 
271     // Remove the consumed bits from Bits.
272     if (!CGM.getDataLayout().isBigEndian())
273       Bits.lshrInPlace(WantedBits);
274     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
275 
276     // The remanining bits go at the start of the following bytes.
277     OffsetWithinChar = 0;
278   }
279 
280   return true;
281 }
282 
283 /// Returns a position within Elems and Offsets such that all elements
284 /// before the returned index end before Pos and all elements at or after
285 /// the returned index begin at or after Pos. Splits elements as necessary
286 /// to ensure this. Returns None if we find something we can't split.
287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
288   if (Pos >= Size)
289     return Offsets.size();
290 
291   while (true) {
292     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
293     if (FirstAfterPos == Offsets.begin())
294       return 0;
295 
296     // If we already have an element starting at Pos, we're done.
297     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
298     if (Offsets[LastAtOrBeforePosIndex] == Pos)
299       return LastAtOrBeforePosIndex;
300 
301     // We found an element starting before Pos. Check for overlap.
302     if (Offsets[LastAtOrBeforePosIndex] +
303         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
304       return LastAtOrBeforePosIndex + 1;
305 
306     // Try to decompose it into smaller constants.
307     if (!split(LastAtOrBeforePosIndex, Pos))
308       return None;
309   }
310 }
311 
312 /// Split the constant at index Index, if possible. Return true if we did.
313 /// Hint indicates the location at which we'd like to split, but may be
314 /// ignored.
315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
316   NaturalLayout = false;
317   llvm::Constant *C = Elems[Index];
318   CharUnits Offset = Offsets[Index];
319 
320   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
321     // Expand the sequence into its contained elements.
322     // FIXME: This assumes vector elements are byte-sized.
323     replace(Elems, Index, Index + 1,
324             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
325                             [&](unsigned Op) { return CA->getOperand(Op); }));
326     if (isa<llvm::ArrayType>(CA->getType()) ||
327         isa<llvm::VectorType>(CA->getType())) {
328       // Array or vector.
329       llvm::Type *ElemTy =
330           llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
331       CharUnits ElemSize = getSize(ElemTy);
332       replace(
333           Offsets, Index, Index + 1,
334           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
335                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
336     } else {
337       // Must be a struct.
338       auto *ST = cast<llvm::StructType>(CA->getType());
339       const llvm::StructLayout *Layout =
340           CGM.getDataLayout().getStructLayout(ST);
341       replace(Offsets, Index, Index + 1,
342               llvm::map_range(
343                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
344                     return Offset + CharUnits::fromQuantity(
345                                         Layout->getElementOffset(Op));
346                   }));
347     }
348     return true;
349   }
350 
351   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
352     // Expand the sequence into its contained elements.
353     // FIXME: This assumes vector elements are byte-sized.
354     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
355     CharUnits ElemSize = getSize(CDS->getElementType());
356     replace(Elems, Index, Index + 1,
357             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
358                             [&](unsigned Elem) {
359                               return CDS->getElementAsConstant(Elem);
360                             }));
361     replace(Offsets, Index, Index + 1,
362             llvm::map_range(
363                 llvm::seq(0u, CDS->getNumElements()),
364                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
365     return true;
366   }
367 
368   if (isa<llvm::ConstantAggregateZero>(C)) {
369     // Split into two zeros at the hinted offset.
370     CharUnits ElemSize = getSize(C);
371     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
372     replace(Elems, Index, Index + 1,
373             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
374     replace(Offsets, Index, Index + 1, {Offset, Hint});
375     return true;
376   }
377 
378   if (isa<llvm::UndefValue>(C)) {
379     // Drop undef; it doesn't contribute to the final layout.
380     replace(Elems, Index, Index + 1, {});
381     replace(Offsets, Index, Index + 1, {});
382     return true;
383   }
384 
385   // FIXME: We could split a ConstantInt if the need ever arose.
386   // We don't need to do this to handle bit-fields because we always eagerly
387   // split them into 1-byte chunks.
388 
389   return false;
390 }
391 
392 static llvm::Constant *
393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
394                   llvm::Type *CommonElementType, unsigned ArrayBound,
395                   SmallVectorImpl<llvm::Constant *> &Elements,
396                   llvm::Constant *Filler);
397 
398 llvm::Constant *ConstantAggregateBuilder::buildFrom(
399     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
400     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
401     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
402   ConstantAggregateBuilderUtils Utils(CGM);
403 
404   if (Elems.empty())
405     return llvm::UndefValue::get(DesiredTy);
406 
407   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
408 
409   // If we want an array type, see if all the elements are the same type and
410   // appropriately spaced.
411   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
412     assert(!AllowOversized && "oversized array emission not supported");
413 
414     bool CanEmitArray = true;
415     llvm::Type *CommonType = Elems[0]->getType();
416     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
417     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
418     SmallVector<llvm::Constant*, 32> ArrayElements;
419     for (size_t I = 0; I != Elems.size(); ++I) {
420       // Skip zeroes; we'll use a zero value as our array filler.
421       if (Elems[I]->isNullValue())
422         continue;
423 
424       // All remaining elements must be the same type.
425       if (Elems[I]->getType() != CommonType ||
426           Offset(I) % ElemSize != 0) {
427         CanEmitArray = false;
428         break;
429       }
430       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
431       ArrayElements.back() = Elems[I];
432     }
433 
434     if (CanEmitArray) {
435       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
436                                ArrayElements, Filler);
437     }
438 
439     // Can't emit as an array, carry on to emit as a struct.
440   }
441 
442   // The size of the constant we plan to generate.  This is usually just
443   // the size of the initialized type, but in AllowOversized mode (i.e.
444   // flexible array init), it can be larger.
445   CharUnits DesiredSize = Utils.getSize(DesiredTy);
446   if (Size > DesiredSize) {
447     assert(AllowOversized && "Elems are oversized");
448     DesiredSize = Size;
449   }
450 
451   // The natural alignment of an unpacked LLVM struct with the given elements.
452   CharUnits Align = CharUnits::One();
453   for (llvm::Constant *C : Elems)
454     Align = std::max(Align, Utils.getAlignment(C));
455 
456   // The natural size of an unpacked LLVM struct with the given elements.
457   CharUnits AlignedSize = Size.alignTo(Align);
458 
459   bool Packed = false;
460   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
461   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
462   if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
463     // The natural layout would be too big; force use of a packed layout.
464     NaturalLayout = false;
465     Packed = true;
466   } else if (DesiredSize > AlignedSize) {
467     // The natural layout would be too small. Add padding to fix it. (This
468     // is ignored if we choose a packed layout.)
469     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
470     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
471     UnpackedElems = UnpackedElemStorage;
472   }
473 
474   // If we don't have a natural layout, insert padding as necessary.
475   // As we go, double-check to see if we can actually just emit Elems
476   // as a non-packed struct and do so opportunistically if possible.
477   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
478   if (!NaturalLayout) {
479     CharUnits SizeSoFar = CharUnits::Zero();
480     for (size_t I = 0; I != Elems.size(); ++I) {
481       CharUnits Align = Utils.getAlignment(Elems[I]);
482       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
483       CharUnits DesiredOffset = Offset(I);
484       assert(DesiredOffset >= SizeSoFar && "elements out of order");
485 
486       if (DesiredOffset != NaturalOffset)
487         Packed = true;
488       if (DesiredOffset != SizeSoFar)
489         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
490       PackedElems.push_back(Elems[I]);
491       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
492     }
493     // If we're using the packed layout, pad it out to the desired size if
494     // necessary.
495     if (Packed) {
496       assert(SizeSoFar <= DesiredSize &&
497              "requested size is too small for contents");
498       if (SizeSoFar < DesiredSize)
499         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
500     }
501   }
502 
503   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
504       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
505 
506   // Pick the type to use.  If the type is layout identical to the desired
507   // type then use it, otherwise use whatever the builder produced for us.
508   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
509     if (DesiredSTy->isLayoutIdentical(STy))
510       STy = DesiredSTy;
511   }
512 
513   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
514 }
515 
516 void ConstantAggregateBuilder::condense(CharUnits Offset,
517                                         llvm::Type *DesiredTy) {
518   CharUnits Size = getSize(DesiredTy);
519 
520   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
521   if (!FirstElemToReplace)
522     return;
523   size_t First = *FirstElemToReplace;
524 
525   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
526   if (!LastElemToReplace)
527     return;
528   size_t Last = *LastElemToReplace;
529 
530   size_t Length = Last - First;
531   if (Length == 0)
532     return;
533 
534   if (Length == 1 && Offsets[First] == Offset &&
535       getSize(Elems[First]) == Size) {
536     // Re-wrap single element structs if necessary. Otherwise, leave any single
537     // element constant of the right size alone even if it has the wrong type.
538     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
539     if (STy && STy->getNumElements() == 1 &&
540         STy->getElementType(0) == Elems[First]->getType())
541       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
542     return;
543   }
544 
545   llvm::Constant *Replacement = buildFrom(
546       CGM, makeArrayRef(Elems).slice(First, Length),
547       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
548       /*known to have natural layout=*/false, DesiredTy, false);
549   replace(Elems, First, Last, {Replacement});
550   replace(Offsets, First, Last, {Offset});
551 }
552 
553 //===----------------------------------------------------------------------===//
554 //                            ConstStructBuilder
555 //===----------------------------------------------------------------------===//
556 
557 class ConstStructBuilder {
558   CodeGenModule &CGM;
559   ConstantEmitter &Emitter;
560   ConstantAggregateBuilder &Builder;
561   CharUnits StartOffset;
562 
563 public:
564   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
565                                      InitListExpr *ILE, QualType StructTy);
566   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567                                      const APValue &Value, QualType ValTy);
568   static bool UpdateStruct(ConstantEmitter &Emitter,
569                            ConstantAggregateBuilder &Const, CharUnits Offset,
570                            InitListExpr *Updater);
571 
572 private:
573   ConstStructBuilder(ConstantEmitter &Emitter,
574                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
575       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
576         StartOffset(StartOffset) {}
577 
578   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
579                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
580 
581   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
582                    bool AllowOverwrite = false);
583 
584   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
585                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
586 
587   bool Build(InitListExpr *ILE, bool AllowOverwrite);
588   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
589              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
590   llvm::Constant *Finalize(QualType Ty);
591 };
592 
593 bool ConstStructBuilder::AppendField(
594     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
595     bool AllowOverwrite) {
596   const ASTContext &Context = CGM.getContext();
597 
598   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
599 
600   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
601 }
602 
603 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
604                                      llvm::Constant *InitCst,
605                                      bool AllowOverwrite) {
606   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
607 }
608 
609 bool ConstStructBuilder::AppendBitField(
610     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
611     bool AllowOverwrite) {
612   const CGRecordLayout &RL =
613       CGM.getTypes().getCGRecordLayout(Field->getParent());
614   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
615   llvm::APInt FieldValue = CI->getValue();
616 
617   // Promote the size of FieldValue if necessary
618   // FIXME: This should never occur, but currently it can because initializer
619   // constants are cast to bool, and because clang is not enforcing bitfield
620   // width limits.
621   if (Info.Size > FieldValue.getBitWidth())
622     FieldValue = FieldValue.zext(Info.Size);
623 
624   // Truncate the size of FieldValue to the bit field size.
625   if (Info.Size < FieldValue.getBitWidth())
626     FieldValue = FieldValue.trunc(Info.Size);
627 
628   return Builder.addBits(FieldValue,
629                          CGM.getContext().toBits(StartOffset) + FieldOffset,
630                          AllowOverwrite);
631 }
632 
633 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
634                                       ConstantAggregateBuilder &Const,
635                                       CharUnits Offset, QualType Type,
636                                       InitListExpr *Updater) {
637   if (Type->isRecordType())
638     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
639 
640   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
641   if (!CAT)
642     return false;
643   QualType ElemType = CAT->getElementType();
644   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
645   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
646 
647   llvm::Constant *FillC = nullptr;
648   if (Expr *Filler = Updater->getArrayFiller()) {
649     if (!isa<NoInitExpr>(Filler)) {
650       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
651       if (!FillC)
652         return false;
653     }
654   }
655 
656   unsigned NumElementsToUpdate =
657       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
658   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
659     Expr *Init = nullptr;
660     if (I < Updater->getNumInits())
661       Init = Updater->getInit(I);
662 
663     if (!Init && FillC) {
664       if (!Const.add(FillC, Offset, true))
665         return false;
666     } else if (!Init || isa<NoInitExpr>(Init)) {
667       continue;
668     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
669       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
670                                      ChildILE))
671         return false;
672       // Attempt to reduce the array element to a single constant if necessary.
673       Const.condense(Offset, ElemTy);
674     } else {
675       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
676       if (!Const.add(Val, Offset, true))
677         return false;
678     }
679   }
680 
681   return true;
682 }
683 
684 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
685   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
686   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
687 
688   unsigned FieldNo = -1;
689   unsigned ElementNo = 0;
690 
691   // Bail out if we have base classes. We could support these, but they only
692   // arise in C++1z where we will have already constant folded most interesting
693   // cases. FIXME: There are still a few more cases we can handle this way.
694   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
695     if (CXXRD->getNumBases())
696       return false;
697 
698   for (FieldDecl *Field : RD->fields()) {
699     ++FieldNo;
700 
701     // If this is a union, skip all the fields that aren't being initialized.
702     if (RD->isUnion() &&
703         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
704       continue;
705 
706     // Don't emit anonymous bitfields or zero-sized fields.
707     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
708       continue;
709 
710     // Get the initializer.  A struct can include fields without initializers,
711     // we just use explicit null values for them.
712     Expr *Init = nullptr;
713     if (ElementNo < ILE->getNumInits())
714       Init = ILE->getInit(ElementNo++);
715     if (Init && isa<NoInitExpr>(Init))
716       continue;
717 
718     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
719     // represents additional overwriting of our current constant value, and not
720     // a new constant to emit independently.
721     if (AllowOverwrite &&
722         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
723       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
724         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
725             Layout.getFieldOffset(FieldNo));
726         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
727                                        Field->getType(), SubILE))
728           return false;
729         // If we split apart the field's value, try to collapse it down to a
730         // single value now.
731         Builder.condense(StartOffset + Offset,
732                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
733         continue;
734       }
735     }
736 
737     llvm::Constant *EltInit =
738         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
739              : Emitter.emitNullForMemory(Field->getType());
740     if (!EltInit)
741       return false;
742 
743     if (!Field->isBitField()) {
744       // Handle non-bitfield members.
745       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
746                        AllowOverwrite))
747         return false;
748       // After emitting a non-empty field with [[no_unique_address]], we may
749       // need to overwrite its tail padding.
750       if (Field->hasAttr<NoUniqueAddressAttr>())
751         AllowOverwrite = true;
752     } else {
753       // Otherwise we have a bitfield.
754       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
755         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
756                             AllowOverwrite))
757           return false;
758       } else {
759         // We are trying to initialize a bitfield with a non-trivial constant,
760         // this must require run-time code.
761         return false;
762       }
763     }
764   }
765 
766   return true;
767 }
768 
769 namespace {
770 struct BaseInfo {
771   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
772     : Decl(Decl), Offset(Offset), Index(Index) {
773   }
774 
775   const CXXRecordDecl *Decl;
776   CharUnits Offset;
777   unsigned Index;
778 
779   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
780 };
781 }
782 
783 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
784                                bool IsPrimaryBase,
785                                const CXXRecordDecl *VTableClass,
786                                CharUnits Offset) {
787   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
788 
789   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
790     // Add a vtable pointer, if we need one and it hasn't already been added.
791     if (Layout.hasOwnVFPtr()) {
792       llvm::Constant *VTableAddressPoint =
793           CGM.getCXXABI().getVTableAddressPointForConstExpr(
794               BaseSubobject(CD, Offset), VTableClass);
795       if (!AppendBytes(Offset, VTableAddressPoint))
796         return false;
797     }
798 
799     // Accumulate and sort bases, in order to visit them in address order, which
800     // may not be the same as declaration order.
801     SmallVector<BaseInfo, 8> Bases;
802     Bases.reserve(CD->getNumBases());
803     unsigned BaseNo = 0;
804     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
805          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
806       assert(!Base->isVirtual() && "should not have virtual bases here");
807       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
808       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
809       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
810     }
811     llvm::stable_sort(Bases);
812 
813     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
814       BaseInfo &Base = Bases[I];
815 
816       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
817       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
818             VTableClass, Offset + Base.Offset);
819     }
820   }
821 
822   unsigned FieldNo = 0;
823   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
824 
825   bool AllowOverwrite = false;
826   for (RecordDecl::field_iterator Field = RD->field_begin(),
827        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
828     // If this is a union, skip all the fields that aren't being initialized.
829     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
830       continue;
831 
832     // Don't emit anonymous bitfields or zero-sized fields.
833     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
834       continue;
835 
836     // Emit the value of the initializer.
837     const APValue &FieldValue =
838       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
839     llvm::Constant *EltInit =
840       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
841     if (!EltInit)
842       return false;
843 
844     if (!Field->isBitField()) {
845       // Handle non-bitfield members.
846       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
847                        EltInit, AllowOverwrite))
848         return false;
849       // After emitting a non-empty field with [[no_unique_address]], we may
850       // need to overwrite its tail padding.
851       if (Field->hasAttr<NoUniqueAddressAttr>())
852         AllowOverwrite = true;
853     } else {
854       // Otherwise we have a bitfield.
855       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
856                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
857         return false;
858     }
859   }
860 
861   return true;
862 }
863 
864 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
865   Type = Type.getNonReferenceType();
866   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
867   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
868   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
869 }
870 
871 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
872                                                 InitListExpr *ILE,
873                                                 QualType ValTy) {
874   ConstantAggregateBuilder Const(Emitter.CGM);
875   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
876 
877   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
878     return nullptr;
879 
880   return Builder.Finalize(ValTy);
881 }
882 
883 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
884                                                 const APValue &Val,
885                                                 QualType ValTy) {
886   ConstantAggregateBuilder Const(Emitter.CGM);
887   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
888 
889   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
890   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
891   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
892     return nullptr;
893 
894   return Builder.Finalize(ValTy);
895 }
896 
897 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
898                                       ConstantAggregateBuilder &Const,
899                                       CharUnits Offset, InitListExpr *Updater) {
900   return ConstStructBuilder(Emitter, Const, Offset)
901       .Build(Updater, /*AllowOverwrite*/ true);
902 }
903 
904 //===----------------------------------------------------------------------===//
905 //                             ConstExprEmitter
906 //===----------------------------------------------------------------------===//
907 
908 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
909                                                     CodeGenFunction *CGF,
910                                               const CompoundLiteralExpr *E) {
911   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
912   if (llvm::GlobalVariable *Addr =
913           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
914     return ConstantAddress(Addr, Addr->getValueType(), Align);
915 
916   LangAS addressSpace = E->getType().getAddressSpace();
917 
918   ConstantEmitter emitter(CGM, CGF);
919   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
920                                                     addressSpace, E->getType());
921   if (!C) {
922     assert(!E->isFileScope() &&
923            "file-scope compound literal did not have constant initializer!");
924     return ConstantAddress::invalid();
925   }
926 
927   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
928                                      CGM.isTypeConstant(E->getType(), true),
929                                      llvm::GlobalValue::InternalLinkage,
930                                      C, ".compoundliteral", nullptr,
931                                      llvm::GlobalVariable::NotThreadLocal,
932                     CGM.getContext().getTargetAddressSpace(addressSpace));
933   emitter.finalize(GV);
934   GV->setAlignment(Align.getAsAlign());
935   CGM.setAddrOfConstantCompoundLiteral(E, GV);
936   return ConstantAddress(GV, GV->getValueType(), Align);
937 }
938 
939 static llvm::Constant *
940 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
941                   llvm::Type *CommonElementType, unsigned ArrayBound,
942                   SmallVectorImpl<llvm::Constant *> &Elements,
943                   llvm::Constant *Filler) {
944   // Figure out how long the initial prefix of non-zero elements is.
945   unsigned NonzeroLength = ArrayBound;
946   if (Elements.size() < NonzeroLength && Filler->isNullValue())
947     NonzeroLength = Elements.size();
948   if (NonzeroLength == Elements.size()) {
949     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
950       --NonzeroLength;
951   }
952 
953   if (NonzeroLength == 0)
954     return llvm::ConstantAggregateZero::get(DesiredType);
955 
956   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
957   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
958   if (TrailingZeroes >= 8) {
959     assert(Elements.size() >= NonzeroLength &&
960            "missing initializer for non-zero element");
961 
962     // If all the elements had the same type up to the trailing zeroes, emit a
963     // struct of two arrays (the nonzero data and the zeroinitializer).
964     if (CommonElementType && NonzeroLength >= 8) {
965       llvm::Constant *Initial = llvm::ConstantArray::get(
966           llvm::ArrayType::get(CommonElementType, NonzeroLength),
967           makeArrayRef(Elements).take_front(NonzeroLength));
968       Elements.resize(2);
969       Elements[0] = Initial;
970     } else {
971       Elements.resize(NonzeroLength + 1);
972     }
973 
974     auto *FillerType =
975         CommonElementType ? CommonElementType : DesiredType->getElementType();
976     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
977     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
978     CommonElementType = nullptr;
979   } else if (Elements.size() != ArrayBound) {
980     // Otherwise pad to the right size with the filler if necessary.
981     Elements.resize(ArrayBound, Filler);
982     if (Filler->getType() != CommonElementType)
983       CommonElementType = nullptr;
984   }
985 
986   // If all elements have the same type, just emit an array constant.
987   if (CommonElementType)
988     return llvm::ConstantArray::get(
989         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
990 
991   // We have mixed types. Use a packed struct.
992   llvm::SmallVector<llvm::Type *, 16> Types;
993   Types.reserve(Elements.size());
994   for (llvm::Constant *Elt : Elements)
995     Types.push_back(Elt->getType());
996   llvm::StructType *SType =
997       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
998   return llvm::ConstantStruct::get(SType, Elements);
999 }
1000 
1001 // This class only needs to handle arrays, structs and unions. Outside C++11
1002 // mode, we don't currently constant fold those types.  All other types are
1003 // handled by constant folding.
1004 //
1005 // Constant folding is currently missing support for a few features supported
1006 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1007 class ConstExprEmitter :
1008   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
1009   CodeGenModule &CGM;
1010   ConstantEmitter &Emitter;
1011   llvm::LLVMContext &VMContext;
1012 public:
1013   ConstExprEmitter(ConstantEmitter &emitter)
1014     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1015   }
1016 
1017   //===--------------------------------------------------------------------===//
1018   //                            Visitor Methods
1019   //===--------------------------------------------------------------------===//
1020 
1021   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1022     return nullptr;
1023   }
1024 
1025   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1026     if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1027       return Result;
1028     return Visit(CE->getSubExpr(), T);
1029   }
1030 
1031   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1032     return Visit(PE->getSubExpr(), T);
1033   }
1034 
1035   llvm::Constant *
1036   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1037                                     QualType T) {
1038     return Visit(PE->getReplacement(), T);
1039   }
1040 
1041   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1042                                             QualType T) {
1043     return Visit(GE->getResultExpr(), T);
1044   }
1045 
1046   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1047     return Visit(CE->getChosenSubExpr(), T);
1048   }
1049 
1050   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1051     return Visit(E->getInitializer(), T);
1052   }
1053 
1054   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1055     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1056       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1057     Expr *subExpr = E->getSubExpr();
1058 
1059     switch (E->getCastKind()) {
1060     case CK_ToUnion: {
1061       // GCC cast to union extension
1062       assert(E->getType()->isUnionType() &&
1063              "Destination type is not union type!");
1064 
1065       auto field = E->getTargetUnionField();
1066 
1067       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1068       if (!C) return nullptr;
1069 
1070       auto destTy = ConvertType(destType);
1071       if (C->getType() == destTy) return C;
1072 
1073       // Build a struct with the union sub-element as the first member,
1074       // and padded to the appropriate size.
1075       SmallVector<llvm::Constant*, 2> Elts;
1076       SmallVector<llvm::Type*, 2> Types;
1077       Elts.push_back(C);
1078       Types.push_back(C->getType());
1079       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1080       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1081 
1082       assert(CurSize <= TotalSize && "Union size mismatch!");
1083       if (unsigned NumPadBytes = TotalSize - CurSize) {
1084         llvm::Type *Ty = CGM.CharTy;
1085         if (NumPadBytes > 1)
1086           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1087 
1088         Elts.push_back(llvm::UndefValue::get(Ty));
1089         Types.push_back(Ty);
1090       }
1091 
1092       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1093       return llvm::ConstantStruct::get(STy, Elts);
1094     }
1095 
1096     case CK_AddressSpaceConversion: {
1097       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1098       if (!C) return nullptr;
1099       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1100       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1101       llvm::Type *destTy = ConvertType(E->getType());
1102       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1103                                                              destAS, destTy);
1104     }
1105 
1106     case CK_LValueToRValue: {
1107       // We don't really support doing lvalue-to-rvalue conversions here; any
1108       // interesting conversions should be done in Evaluate().  But as a
1109       // special case, allow compound literals to support the gcc extension
1110       // allowing "struct x {int x;} x = (struct x) {};".
1111       if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1112         return Visit(E->getInitializer(), destType);
1113       return nullptr;
1114     }
1115 
1116     case CK_AtomicToNonAtomic:
1117     case CK_NonAtomicToAtomic:
1118     case CK_NoOp:
1119     case CK_ConstructorConversion:
1120       return Visit(subExpr, destType);
1121 
1122     case CK_IntToOCLSampler:
1123       llvm_unreachable("global sampler variables are not generated");
1124 
1125     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1126 
1127     case CK_BuiltinFnToFnPtr:
1128       llvm_unreachable("builtin functions are handled elsewhere");
1129 
1130     case CK_ReinterpretMemberPointer:
1131     case CK_DerivedToBaseMemberPointer:
1132     case CK_BaseToDerivedMemberPointer: {
1133       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1134       if (!C) return nullptr;
1135       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1136     }
1137 
1138     // These will never be supported.
1139     case CK_ObjCObjectLValueCast:
1140     case CK_ARCProduceObject:
1141     case CK_ARCConsumeObject:
1142     case CK_ARCReclaimReturnedObject:
1143     case CK_ARCExtendBlockObject:
1144     case CK_CopyAndAutoreleaseBlockObject:
1145       return nullptr;
1146 
1147     // These don't need to be handled here because Evaluate knows how to
1148     // evaluate them in the cases where they can be folded.
1149     case CK_BitCast:
1150     case CK_ToVoid:
1151     case CK_Dynamic:
1152     case CK_LValueBitCast:
1153     case CK_LValueToRValueBitCast:
1154     case CK_NullToMemberPointer:
1155     case CK_UserDefinedConversion:
1156     case CK_CPointerToObjCPointerCast:
1157     case CK_BlockPointerToObjCPointerCast:
1158     case CK_AnyPointerToBlockPointerCast:
1159     case CK_ArrayToPointerDecay:
1160     case CK_FunctionToPointerDecay:
1161     case CK_BaseToDerived:
1162     case CK_DerivedToBase:
1163     case CK_UncheckedDerivedToBase:
1164     case CK_MemberPointerToBoolean:
1165     case CK_VectorSplat:
1166     case CK_FloatingRealToComplex:
1167     case CK_FloatingComplexToReal:
1168     case CK_FloatingComplexToBoolean:
1169     case CK_FloatingComplexCast:
1170     case CK_FloatingComplexToIntegralComplex:
1171     case CK_IntegralRealToComplex:
1172     case CK_IntegralComplexToReal:
1173     case CK_IntegralComplexToBoolean:
1174     case CK_IntegralComplexCast:
1175     case CK_IntegralComplexToFloatingComplex:
1176     case CK_PointerToIntegral:
1177     case CK_PointerToBoolean:
1178     case CK_NullToPointer:
1179     case CK_IntegralCast:
1180     case CK_BooleanToSignedIntegral:
1181     case CK_IntegralToPointer:
1182     case CK_IntegralToBoolean:
1183     case CK_IntegralToFloating:
1184     case CK_FloatingToIntegral:
1185     case CK_FloatingToBoolean:
1186     case CK_FloatingCast:
1187     case CK_FloatingToFixedPoint:
1188     case CK_FixedPointToFloating:
1189     case CK_FixedPointCast:
1190     case CK_FixedPointToBoolean:
1191     case CK_FixedPointToIntegral:
1192     case CK_IntegralToFixedPoint:
1193     case CK_ZeroToOCLOpaqueType:
1194     case CK_MatrixCast:
1195       return nullptr;
1196     }
1197     llvm_unreachable("Invalid CastKind");
1198   }
1199 
1200   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1201     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1202     // constant expression.
1203     return Visit(DIE->getExpr(), T);
1204   }
1205 
1206   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1207     return Visit(E->getSubExpr(), T);
1208   }
1209 
1210   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1211                                                 QualType T) {
1212     return Visit(E->getSubExpr(), T);
1213   }
1214 
1215   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1216     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1217     assert(CAT && "can't emit array init for non-constant-bound array");
1218     unsigned NumInitElements = ILE->getNumInits();
1219     unsigned NumElements = CAT->getSize().getZExtValue();
1220 
1221     // Initialising an array requires us to automatically
1222     // initialise any elements that have not been initialised explicitly
1223     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1224 
1225     QualType EltType = CAT->getElementType();
1226 
1227     // Initialize remaining array elements.
1228     llvm::Constant *fillC = nullptr;
1229     if (Expr *filler = ILE->getArrayFiller()) {
1230       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1231       if (!fillC)
1232         return nullptr;
1233     }
1234 
1235     // Copy initializer elements.
1236     SmallVector<llvm::Constant*, 16> Elts;
1237     if (fillC && fillC->isNullValue())
1238       Elts.reserve(NumInitableElts + 1);
1239     else
1240       Elts.reserve(NumElements);
1241 
1242     llvm::Type *CommonElementType = nullptr;
1243     for (unsigned i = 0; i < NumInitableElts; ++i) {
1244       Expr *Init = ILE->getInit(i);
1245       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1246       if (!C)
1247         return nullptr;
1248       if (i == 0)
1249         CommonElementType = C->getType();
1250       else if (C->getType() != CommonElementType)
1251         CommonElementType = nullptr;
1252       Elts.push_back(C);
1253     }
1254 
1255     llvm::ArrayType *Desired =
1256         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1257     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1258                              fillC);
1259   }
1260 
1261   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1262     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1263   }
1264 
1265   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1266                                              QualType T) {
1267     return CGM.EmitNullConstant(T);
1268   }
1269 
1270   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1271     if (ILE->isTransparent())
1272       return Visit(ILE->getInit(0), T);
1273 
1274     if (ILE->getType()->isArrayType())
1275       return EmitArrayInitialization(ILE, T);
1276 
1277     if (ILE->getType()->isRecordType())
1278       return EmitRecordInitialization(ILE, T);
1279 
1280     return nullptr;
1281   }
1282 
1283   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1284                                                 QualType destType) {
1285     auto C = Visit(E->getBase(), destType);
1286     if (!C)
1287       return nullptr;
1288 
1289     ConstantAggregateBuilder Const(CGM);
1290     Const.add(C, CharUnits::Zero(), false);
1291 
1292     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1293                                    E->getUpdater()))
1294       return nullptr;
1295 
1296     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1297     bool HasFlexibleArray = false;
1298     if (auto *RT = destType->getAs<RecordType>())
1299       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1300     return Const.build(ValTy, HasFlexibleArray);
1301   }
1302 
1303   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1304     if (!E->getConstructor()->isTrivial())
1305       return nullptr;
1306 
1307     // Only default and copy/move constructors can be trivial.
1308     if (E->getNumArgs()) {
1309       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1310       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1311              "trivial ctor has argument but isn't a copy/move ctor");
1312 
1313       Expr *Arg = E->getArg(0);
1314       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1315              "argument to copy ctor is of wrong type");
1316 
1317       return Visit(Arg, Ty);
1318     }
1319 
1320     return CGM.EmitNullConstant(Ty);
1321   }
1322 
1323   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1324     // This is a string literal initializing an array in an initializer.
1325     return CGM.GetConstantArrayFromStringLiteral(E);
1326   }
1327 
1328   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1329     // This must be an @encode initializing an array in a static initializer.
1330     // Don't emit it as the address of the string, emit the string data itself
1331     // as an inline array.
1332     std::string Str;
1333     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1334     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1335 
1336     // Resize the string to the right size, adding zeros at the end, or
1337     // truncating as needed.
1338     Str.resize(CAT->getSize().getZExtValue(), '\0');
1339     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1340   }
1341 
1342   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1343     return Visit(E->getSubExpr(), T);
1344   }
1345 
1346   // Utility methods
1347   llvm::Type *ConvertType(QualType T) {
1348     return CGM.getTypes().ConvertType(T);
1349   }
1350 };
1351 
1352 }  // end anonymous namespace.
1353 
1354 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1355                                                         AbstractState saved) {
1356   Abstract = saved.OldValue;
1357 
1358   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1359          "created a placeholder while doing an abstract emission?");
1360 
1361   // No validation necessary for now.
1362   // No cleanup to do for now.
1363   return C;
1364 }
1365 
1366 llvm::Constant *
1367 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1368   auto state = pushAbstract();
1369   auto C = tryEmitPrivateForVarInit(D);
1370   return validateAndPopAbstract(C, state);
1371 }
1372 
1373 llvm::Constant *
1374 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1375   auto state = pushAbstract();
1376   auto C = tryEmitPrivate(E, destType);
1377   return validateAndPopAbstract(C, state);
1378 }
1379 
1380 llvm::Constant *
1381 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1382   auto state = pushAbstract();
1383   auto C = tryEmitPrivate(value, destType);
1384   return validateAndPopAbstract(C, state);
1385 }
1386 
1387 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1388   if (!CE->hasAPValueResult())
1389     return nullptr;
1390   const Expr *Inner = CE->getSubExpr()->IgnoreImplicit();
1391   QualType RetType;
1392   if (auto *Call = dyn_cast<CallExpr>(Inner))
1393     RetType = Call->getCallReturnType(CGM.getContext());
1394   else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner))
1395     RetType = Ctor->getType();
1396   llvm::Constant *Res =
1397       emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1398   return Res;
1399 }
1400 
1401 llvm::Constant *
1402 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1403   auto state = pushAbstract();
1404   auto C = tryEmitPrivate(E, destType);
1405   C = validateAndPopAbstract(C, state);
1406   if (!C) {
1407     CGM.Error(E->getExprLoc(),
1408               "internal error: could not emit constant value \"abstractly\"");
1409     C = CGM.EmitNullConstant(destType);
1410   }
1411   return C;
1412 }
1413 
1414 llvm::Constant *
1415 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1416                               QualType destType) {
1417   auto state = pushAbstract();
1418   auto C = tryEmitPrivate(value, destType);
1419   C = validateAndPopAbstract(C, state);
1420   if (!C) {
1421     CGM.Error(loc,
1422               "internal error: could not emit constant value \"abstractly\"");
1423     C = CGM.EmitNullConstant(destType);
1424   }
1425   return C;
1426 }
1427 
1428 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1429   initializeNonAbstract(D.getType().getAddressSpace());
1430   return markIfFailed(tryEmitPrivateForVarInit(D));
1431 }
1432 
1433 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1434                                                        LangAS destAddrSpace,
1435                                                        QualType destType) {
1436   initializeNonAbstract(destAddrSpace);
1437   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1438 }
1439 
1440 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1441                                                     LangAS destAddrSpace,
1442                                                     QualType destType) {
1443   initializeNonAbstract(destAddrSpace);
1444   auto C = tryEmitPrivateForMemory(value, destType);
1445   assert(C && "couldn't emit constant value non-abstractly?");
1446   return C;
1447 }
1448 
1449 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1450   assert(!Abstract && "cannot get current address for abstract constant");
1451 
1452 
1453 
1454   // Make an obviously ill-formed global that should blow up compilation
1455   // if it survives.
1456   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1457                                          llvm::GlobalValue::PrivateLinkage,
1458                                          /*init*/ nullptr,
1459                                          /*name*/ "",
1460                                          /*before*/ nullptr,
1461                                          llvm::GlobalVariable::NotThreadLocal,
1462                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1463 
1464   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1465 
1466   return global;
1467 }
1468 
1469 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1470                                            llvm::GlobalValue *placeholder) {
1471   assert(!PlaceholderAddresses.empty());
1472   assert(PlaceholderAddresses.back().first == nullptr);
1473   assert(PlaceholderAddresses.back().second == placeholder);
1474   PlaceholderAddresses.back().first = signal;
1475 }
1476 
1477 namespace {
1478   struct ReplacePlaceholders {
1479     CodeGenModule &CGM;
1480 
1481     /// The base address of the global.
1482     llvm::Constant *Base;
1483     llvm::Type *BaseValueTy = nullptr;
1484 
1485     /// The placeholder addresses that were registered during emission.
1486     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1487 
1488     /// The locations of the placeholder signals.
1489     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1490 
1491     /// The current index stack.  We use a simple unsigned stack because
1492     /// we assume that placeholders will be relatively sparse in the
1493     /// initializer, but we cache the index values we find just in case.
1494     llvm::SmallVector<unsigned, 8> Indices;
1495     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1496 
1497     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1498                         ArrayRef<std::pair<llvm::Constant*,
1499                                            llvm::GlobalVariable*>> addresses)
1500         : CGM(CGM), Base(base),
1501           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1502     }
1503 
1504     void replaceInInitializer(llvm::Constant *init) {
1505       // Remember the type of the top-most initializer.
1506       BaseValueTy = init->getType();
1507 
1508       // Initialize the stack.
1509       Indices.push_back(0);
1510       IndexValues.push_back(nullptr);
1511 
1512       // Recurse into the initializer.
1513       findLocations(init);
1514 
1515       // Check invariants.
1516       assert(IndexValues.size() == Indices.size() && "mismatch");
1517       assert(Indices.size() == 1 && "didn't pop all indices");
1518 
1519       // Do the replacement; this basically invalidates 'init'.
1520       assert(Locations.size() == PlaceholderAddresses.size() &&
1521              "missed a placeholder?");
1522 
1523       // We're iterating over a hashtable, so this would be a source of
1524       // non-determinism in compiler output *except* that we're just
1525       // messing around with llvm::Constant structures, which never itself
1526       // does anything that should be visible in compiler output.
1527       for (auto &entry : Locations) {
1528         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1529         entry.first->replaceAllUsesWith(entry.second);
1530         entry.first->eraseFromParent();
1531       }
1532     }
1533 
1534   private:
1535     void findLocations(llvm::Constant *init) {
1536       // Recurse into aggregates.
1537       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1538         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1539           Indices.push_back(i);
1540           IndexValues.push_back(nullptr);
1541 
1542           findLocations(agg->getOperand(i));
1543 
1544           IndexValues.pop_back();
1545           Indices.pop_back();
1546         }
1547         return;
1548       }
1549 
1550       // Otherwise, check for registered constants.
1551       while (true) {
1552         auto it = PlaceholderAddresses.find(init);
1553         if (it != PlaceholderAddresses.end()) {
1554           setLocation(it->second);
1555           break;
1556         }
1557 
1558         // Look through bitcasts or other expressions.
1559         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1560           init = expr->getOperand(0);
1561         } else {
1562           break;
1563         }
1564       }
1565     }
1566 
1567     void setLocation(llvm::GlobalVariable *placeholder) {
1568       assert(Locations.find(placeholder) == Locations.end() &&
1569              "already found location for placeholder!");
1570 
1571       // Lazily fill in IndexValues with the values from Indices.
1572       // We do this in reverse because we should always have a strict
1573       // prefix of indices from the start.
1574       assert(Indices.size() == IndexValues.size());
1575       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1576         if (IndexValues[i]) {
1577 #ifndef NDEBUG
1578           for (size_t j = 0; j != i + 1; ++j) {
1579             assert(IndexValues[j] &&
1580                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1581                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1582                      == Indices[j]);
1583           }
1584 #endif
1585           break;
1586         }
1587 
1588         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1589       }
1590 
1591       // Form a GEP and then bitcast to the placeholder type so that the
1592       // replacement will succeed.
1593       llvm::Constant *location =
1594         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1595                                                      Base, IndexValues);
1596       location = llvm::ConstantExpr::getBitCast(location,
1597                                                 placeholder->getType());
1598 
1599       Locations.insert({placeholder, location});
1600     }
1601   };
1602 }
1603 
1604 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1605   assert(InitializedNonAbstract &&
1606          "finalizing emitter that was used for abstract emission?");
1607   assert(!Finalized && "finalizing emitter multiple times");
1608   assert(global->getInitializer());
1609 
1610   // Note that we might also be Failed.
1611   Finalized = true;
1612 
1613   if (!PlaceholderAddresses.empty()) {
1614     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1615       .replaceInInitializer(global->getInitializer());
1616     PlaceholderAddresses.clear(); // satisfy
1617   }
1618 }
1619 
1620 ConstantEmitter::~ConstantEmitter() {
1621   assert((!InitializedNonAbstract || Finalized || Failed) &&
1622          "not finalized after being initialized for non-abstract emission");
1623   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1624 }
1625 
1626 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1627   if (auto AT = type->getAs<AtomicType>()) {
1628     return CGM.getContext().getQualifiedType(AT->getValueType(),
1629                                              type.getQualifiers());
1630   }
1631   return type;
1632 }
1633 
1634 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1635   // Make a quick check if variable can be default NULL initialized
1636   // and avoid going through rest of code which may do, for c++11,
1637   // initialization of memory to all NULLs.
1638   if (!D.hasLocalStorage()) {
1639     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1640     if (Ty->isRecordType())
1641       if (const CXXConstructExpr *E =
1642           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1643         const CXXConstructorDecl *CD = E->getConstructor();
1644         if (CD->isTrivial() && CD->isDefaultConstructor())
1645           return CGM.EmitNullConstant(D.getType());
1646       }
1647   }
1648   InConstantContext = D.hasConstantInitialization();
1649 
1650   QualType destType = D.getType();
1651 
1652   // Try to emit the initializer.  Note that this can allow some things that
1653   // are not allowed by tryEmitPrivateForMemory alone.
1654   if (auto value = D.evaluateValue()) {
1655     return tryEmitPrivateForMemory(*value, destType);
1656   }
1657 
1658   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1659   // reference is a constant expression, and the reference binds to a temporary,
1660   // then constant initialization is performed. ConstExprEmitter will
1661   // incorrectly emit a prvalue constant in this case, and the calling code
1662   // interprets that as the (pointer) value of the reference, rather than the
1663   // desired value of the referee.
1664   if (destType->isReferenceType())
1665     return nullptr;
1666 
1667   const Expr *E = D.getInit();
1668   assert(E && "No initializer to emit");
1669 
1670   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1671   auto C =
1672     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1673   return (C ? emitForMemory(C, destType) : nullptr);
1674 }
1675 
1676 llvm::Constant *
1677 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1678   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1679   auto C = tryEmitAbstract(E, nonMemoryDestType);
1680   return (C ? emitForMemory(C, destType) : nullptr);
1681 }
1682 
1683 llvm::Constant *
1684 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1685                                           QualType destType) {
1686   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1687   auto C = tryEmitAbstract(value, nonMemoryDestType);
1688   return (C ? emitForMemory(C, destType) : nullptr);
1689 }
1690 
1691 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1692                                                          QualType destType) {
1693   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1694   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1695   return (C ? emitForMemory(C, destType) : nullptr);
1696 }
1697 
1698 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1699                                                          QualType destType) {
1700   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1701   auto C = tryEmitPrivate(value, nonMemoryDestType);
1702   return (C ? emitForMemory(C, destType) : nullptr);
1703 }
1704 
1705 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1706                                                llvm::Constant *C,
1707                                                QualType destType) {
1708   // For an _Atomic-qualified constant, we may need to add tail padding.
1709   if (auto AT = destType->getAs<AtomicType>()) {
1710     QualType destValueType = AT->getValueType();
1711     C = emitForMemory(CGM, C, destValueType);
1712 
1713     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1714     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1715     if (innerSize == outerSize)
1716       return C;
1717 
1718     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1719     llvm::Constant *elts[] = {
1720       C,
1721       llvm::ConstantAggregateZero::get(
1722           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1723     };
1724     return llvm::ConstantStruct::getAnon(elts);
1725   }
1726 
1727   // Zero-extend bool.
1728   if (C->getType()->isIntegerTy(1)) {
1729     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1730     return llvm::ConstantExpr::getZExt(C, boolTy);
1731   }
1732 
1733   return C;
1734 }
1735 
1736 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1737                                                 QualType destType) {
1738   assert(!destType->isVoidType() && "can't emit a void constant");
1739 
1740   Expr::EvalResult Result;
1741 
1742   bool Success = false;
1743 
1744   if (destType->isReferenceType())
1745     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1746   else
1747     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1748 
1749   llvm::Constant *C;
1750   if (Success && !Result.HasSideEffects)
1751     C = tryEmitPrivate(Result.Val, destType);
1752   else
1753     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1754 
1755   return C;
1756 }
1757 
1758 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1759   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1760 }
1761 
1762 namespace {
1763 /// A struct which can be used to peephole certain kinds of finalization
1764 /// that normally happen during l-value emission.
1765 struct ConstantLValue {
1766   llvm::Constant *Value;
1767   bool HasOffsetApplied;
1768 
1769   /*implicit*/ ConstantLValue(llvm::Constant *value,
1770                               bool hasOffsetApplied = false)
1771     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1772 
1773   /*implicit*/ ConstantLValue(ConstantAddress address)
1774     : ConstantLValue(address.getPointer()) {}
1775 };
1776 
1777 /// A helper class for emitting constant l-values.
1778 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1779                                                       ConstantLValue> {
1780   CodeGenModule &CGM;
1781   ConstantEmitter &Emitter;
1782   const APValue &Value;
1783   QualType DestType;
1784 
1785   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1786   friend StmtVisitorBase;
1787 
1788 public:
1789   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1790                         QualType destType)
1791     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1792 
1793   llvm::Constant *tryEmit();
1794 
1795 private:
1796   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1797   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1798 
1799   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1800   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1801   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1802   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1803   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1804   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1805   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1806   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1807   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1808   ConstantLValue VisitCallExpr(const CallExpr *E);
1809   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1810   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1811   ConstantLValue VisitMaterializeTemporaryExpr(
1812                                          const MaterializeTemporaryExpr *E);
1813 
1814   bool hasNonZeroOffset() const {
1815     return !Value.getLValueOffset().isZero();
1816   }
1817 
1818   /// Return the value offset.
1819   llvm::Constant *getOffset() {
1820     return llvm::ConstantInt::get(CGM.Int64Ty,
1821                                   Value.getLValueOffset().getQuantity());
1822   }
1823 
1824   /// Apply the value offset to the given constant.
1825   llvm::Constant *applyOffset(llvm::Constant *C) {
1826     if (!hasNonZeroOffset())
1827       return C;
1828 
1829     llvm::Type *origPtrTy = C->getType();
1830     unsigned AS = origPtrTy->getPointerAddressSpace();
1831     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1832     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1833     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1834     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1835     return C;
1836   }
1837 };
1838 
1839 }
1840 
1841 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1842   const APValue::LValueBase &base = Value.getLValueBase();
1843 
1844   // The destination type should be a pointer or reference
1845   // type, but it might also be a cast thereof.
1846   //
1847   // FIXME: the chain of casts required should be reflected in the APValue.
1848   // We need this in order to correctly handle things like a ptrtoint of a
1849   // non-zero null pointer and addrspace casts that aren't trivially
1850   // represented in LLVM IR.
1851   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1852   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1853 
1854   // If there's no base at all, this is a null or absolute pointer,
1855   // possibly cast back to an integer type.
1856   if (!base) {
1857     return tryEmitAbsolute(destTy);
1858   }
1859 
1860   // Otherwise, try to emit the base.
1861   ConstantLValue result = tryEmitBase(base);
1862 
1863   // If that failed, we're done.
1864   llvm::Constant *value = result.Value;
1865   if (!value) return nullptr;
1866 
1867   // Apply the offset if necessary and not already done.
1868   if (!result.HasOffsetApplied) {
1869     value = applyOffset(value);
1870   }
1871 
1872   // Convert to the appropriate type; this could be an lvalue for
1873   // an integer.  FIXME: performAddrSpaceCast
1874   if (isa<llvm::PointerType>(destTy))
1875     return llvm::ConstantExpr::getPointerCast(value, destTy);
1876 
1877   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1878 }
1879 
1880 /// Try to emit an absolute l-value, such as a null pointer or an integer
1881 /// bitcast to pointer type.
1882 llvm::Constant *
1883 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1884   // If we're producing a pointer, this is easy.
1885   auto destPtrTy = cast<llvm::PointerType>(destTy);
1886   if (Value.isNullPointer()) {
1887     // FIXME: integer offsets from non-zero null pointers.
1888     return CGM.getNullPointer(destPtrTy, DestType);
1889   }
1890 
1891   // Convert the integer to a pointer-sized integer before converting it
1892   // to a pointer.
1893   // FIXME: signedness depends on the original integer type.
1894   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1895   llvm::Constant *C;
1896   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1897                                          /*isSigned*/ false);
1898   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1899   return C;
1900 }
1901 
1902 ConstantLValue
1903 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1904   // Handle values.
1905   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1906     // The constant always points to the canonical declaration. We want to look
1907     // at properties of the most recent declaration at the point of emission.
1908     D = cast<ValueDecl>(D->getMostRecentDecl());
1909 
1910     if (D->hasAttr<WeakRefAttr>())
1911       return CGM.GetWeakRefReference(D).getPointer();
1912 
1913     if (auto FD = dyn_cast<FunctionDecl>(D))
1914       return CGM.GetAddrOfFunction(FD);
1915 
1916     if (auto VD = dyn_cast<VarDecl>(D)) {
1917       // We can never refer to a variable with local storage.
1918       if (!VD->hasLocalStorage()) {
1919         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1920           return CGM.GetAddrOfGlobalVar(VD);
1921 
1922         if (VD->isLocalVarDecl()) {
1923           return CGM.getOrCreateStaticVarDecl(
1924               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1925         }
1926       }
1927     }
1928 
1929     if (auto *GD = dyn_cast<MSGuidDecl>(D))
1930       return CGM.GetAddrOfMSGuidDecl(GD);
1931 
1932     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
1933       return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1934 
1935     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1936       return CGM.GetAddrOfTemplateParamObject(TPO);
1937 
1938     return nullptr;
1939   }
1940 
1941   // Handle typeid(T).
1942   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1943     llvm::Type *StdTypeInfoPtrTy =
1944         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1945     llvm::Constant *TypeInfo =
1946         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1947     if (TypeInfo->getType() != StdTypeInfoPtrTy)
1948       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1949     return TypeInfo;
1950   }
1951 
1952   // Otherwise, it must be an expression.
1953   return Visit(base.get<const Expr*>());
1954 }
1955 
1956 ConstantLValue
1957 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1958   if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1959     return Result;
1960   return Visit(E->getSubExpr());
1961 }
1962 
1963 ConstantLValue
1964 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1965   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1966 }
1967 
1968 ConstantLValue
1969 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1970   return CGM.GetAddrOfConstantStringFromLiteral(E);
1971 }
1972 
1973 ConstantLValue
1974 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1975   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1976 }
1977 
1978 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1979                                                     QualType T,
1980                                                     CodeGenModule &CGM) {
1981   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1982   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1983 }
1984 
1985 ConstantLValue
1986 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1987   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1988 }
1989 
1990 ConstantLValue
1991 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1992   assert(E->isExpressibleAsConstantInitializer() &&
1993          "this boxed expression can't be emitted as a compile-time constant");
1994   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1995   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1996 }
1997 
1998 ConstantLValue
1999 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2000   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2001 }
2002 
2003 ConstantLValue
2004 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2005   assert(Emitter.CGF && "Invalid address of label expression outside function");
2006   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2007   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
2008                                    CGM.getTypes().ConvertType(E->getType()));
2009   return Ptr;
2010 }
2011 
2012 ConstantLValue
2013 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2014   unsigned builtin = E->getBuiltinCallee();
2015   if (builtin == Builtin::BI__builtin_function_start)
2016     return CGM.GetFunctionStart(
2017         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2018   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2019       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2020     return nullptr;
2021 
2022   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2023   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2024     return CGM.getObjCRuntime().GenerateConstantString(literal);
2025   } else {
2026     // FIXME: need to deal with UCN conversion issues.
2027     return CGM.GetAddrOfConstantCFString(literal);
2028   }
2029 }
2030 
2031 ConstantLValue
2032 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2033   StringRef functionName;
2034   if (auto CGF = Emitter.CGF)
2035     functionName = CGF->CurFn->getName();
2036   else
2037     functionName = "global";
2038 
2039   return CGM.GetAddrOfGlobalBlock(E, functionName);
2040 }
2041 
2042 ConstantLValue
2043 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2044   QualType T;
2045   if (E->isTypeOperand())
2046     T = E->getTypeOperand(CGM.getContext());
2047   else
2048     T = E->getExprOperand()->getType();
2049   return CGM.GetAddrOfRTTIDescriptor(T);
2050 }
2051 
2052 ConstantLValue
2053 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2054                                             const MaterializeTemporaryExpr *E) {
2055   assert(E->getStorageDuration() == SD_Static);
2056   SmallVector<const Expr *, 2> CommaLHSs;
2057   SmallVector<SubobjectAdjustment, 2> Adjustments;
2058   const Expr *Inner =
2059       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2060   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2061 }
2062 
2063 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2064                                                 QualType DestType) {
2065   switch (Value.getKind()) {
2066   case APValue::None:
2067   case APValue::Indeterminate:
2068     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2069     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2070   case APValue::LValue:
2071     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2072   case APValue::Int:
2073     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2074   case APValue::FixedPoint:
2075     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2076                                   Value.getFixedPoint().getValue());
2077   case APValue::ComplexInt: {
2078     llvm::Constant *Complex[2];
2079 
2080     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2081                                         Value.getComplexIntReal());
2082     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2083                                         Value.getComplexIntImag());
2084 
2085     // FIXME: the target may want to specify that this is packed.
2086     llvm::StructType *STy =
2087         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2088     return llvm::ConstantStruct::get(STy, Complex);
2089   }
2090   case APValue::Float: {
2091     const llvm::APFloat &Init = Value.getFloat();
2092     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2093         !CGM.getContext().getLangOpts().NativeHalfType &&
2094         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2095       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2096                                     Init.bitcastToAPInt());
2097     else
2098       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2099   }
2100   case APValue::ComplexFloat: {
2101     llvm::Constant *Complex[2];
2102 
2103     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2104                                        Value.getComplexFloatReal());
2105     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2106                                        Value.getComplexFloatImag());
2107 
2108     // FIXME: the target may want to specify that this is packed.
2109     llvm::StructType *STy =
2110         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2111     return llvm::ConstantStruct::get(STy, Complex);
2112   }
2113   case APValue::Vector: {
2114     unsigned NumElts = Value.getVectorLength();
2115     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2116 
2117     for (unsigned I = 0; I != NumElts; ++I) {
2118       const APValue &Elt = Value.getVectorElt(I);
2119       if (Elt.isInt())
2120         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2121       else if (Elt.isFloat())
2122         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2123       else
2124         llvm_unreachable("unsupported vector element type");
2125     }
2126     return llvm::ConstantVector::get(Inits);
2127   }
2128   case APValue::AddrLabelDiff: {
2129     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2130     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2131     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2132     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2133     if (!LHS || !RHS) return nullptr;
2134 
2135     // Compute difference
2136     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2137     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2138     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2139     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2140 
2141     // LLVM is a bit sensitive about the exact format of the
2142     // address-of-label difference; make sure to truncate after
2143     // the subtraction.
2144     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2145   }
2146   case APValue::Struct:
2147   case APValue::Union:
2148     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2149   case APValue::Array: {
2150     const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2151     unsigned NumElements = Value.getArraySize();
2152     unsigned NumInitElts = Value.getArrayInitializedElts();
2153 
2154     // Emit array filler, if there is one.
2155     llvm::Constant *Filler = nullptr;
2156     if (Value.hasArrayFiller()) {
2157       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2158                                         ArrayTy->getElementType());
2159       if (!Filler)
2160         return nullptr;
2161     }
2162 
2163     // Emit initializer elements.
2164     SmallVector<llvm::Constant*, 16> Elts;
2165     if (Filler && Filler->isNullValue())
2166       Elts.reserve(NumInitElts + 1);
2167     else
2168       Elts.reserve(NumElements);
2169 
2170     llvm::Type *CommonElementType = nullptr;
2171     for (unsigned I = 0; I < NumInitElts; ++I) {
2172       llvm::Constant *C = tryEmitPrivateForMemory(
2173           Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2174       if (!C) return nullptr;
2175 
2176       if (I == 0)
2177         CommonElementType = C->getType();
2178       else if (C->getType() != CommonElementType)
2179         CommonElementType = nullptr;
2180       Elts.push_back(C);
2181     }
2182 
2183     llvm::ArrayType *Desired =
2184         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2185     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2186                              Filler);
2187   }
2188   case APValue::MemberPointer:
2189     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2190   }
2191   llvm_unreachable("Unknown APValue kind");
2192 }
2193 
2194 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2195     const CompoundLiteralExpr *E) {
2196   return EmittedCompoundLiterals.lookup(E);
2197 }
2198 
2199 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2200     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2201   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2202   (void)Ok;
2203   assert(Ok && "CLE has already been emitted!");
2204 }
2205 
2206 ConstantAddress
2207 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2208   assert(E->isFileScope() && "not a file-scope compound literal expr");
2209   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2210 }
2211 
2212 llvm::Constant *
2213 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2214   // Member pointer constants always have a very particular form.
2215   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2216   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2217 
2218   // A member function pointer.
2219   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2220     return getCXXABI().EmitMemberFunctionPointer(method);
2221 
2222   // Otherwise, a member data pointer.
2223   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2224   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2225   return getCXXABI().EmitMemberDataPointer(type, chars);
2226 }
2227 
2228 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2229                                                llvm::Type *baseType,
2230                                                const CXXRecordDecl *base);
2231 
2232 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2233                                         const RecordDecl *record,
2234                                         bool asCompleteObject) {
2235   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2236   llvm::StructType *structure =
2237     (asCompleteObject ? layout.getLLVMType()
2238                       : layout.getBaseSubobjectLLVMType());
2239 
2240   unsigned numElements = structure->getNumElements();
2241   std::vector<llvm::Constant *> elements(numElements);
2242 
2243   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2244   // Fill in all the bases.
2245   if (CXXR) {
2246     for (const auto &I : CXXR->bases()) {
2247       if (I.isVirtual()) {
2248         // Ignore virtual bases; if we're laying out for a complete
2249         // object, we'll lay these out later.
2250         continue;
2251       }
2252 
2253       const CXXRecordDecl *base =
2254         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2255 
2256       // Ignore empty bases.
2257       if (base->isEmpty() ||
2258           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2259               .isZero())
2260         continue;
2261 
2262       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2263       llvm::Type *baseType = structure->getElementType(fieldIndex);
2264       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2265     }
2266   }
2267 
2268   // Fill in all the fields.
2269   for (const auto *Field : record->fields()) {
2270     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2271     // will fill in later.)
2272     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2273       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2274       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2275     }
2276 
2277     // For unions, stop after the first named field.
2278     if (record->isUnion()) {
2279       if (Field->getIdentifier())
2280         break;
2281       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2282         if (FieldRD->findFirstNamedDataMember())
2283           break;
2284     }
2285   }
2286 
2287   // Fill in the virtual bases, if we're working with the complete object.
2288   if (CXXR && asCompleteObject) {
2289     for (const auto &I : CXXR->vbases()) {
2290       const CXXRecordDecl *base =
2291         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2292 
2293       // Ignore empty bases.
2294       if (base->isEmpty())
2295         continue;
2296 
2297       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2298 
2299       // We might have already laid this field out.
2300       if (elements[fieldIndex]) continue;
2301 
2302       llvm::Type *baseType = structure->getElementType(fieldIndex);
2303       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2304     }
2305   }
2306 
2307   // Now go through all other fields and zero them out.
2308   for (unsigned i = 0; i != numElements; ++i) {
2309     if (!elements[i])
2310       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2311   }
2312 
2313   return llvm::ConstantStruct::get(structure, elements);
2314 }
2315 
2316 /// Emit the null constant for a base subobject.
2317 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2318                                                llvm::Type *baseType,
2319                                                const CXXRecordDecl *base) {
2320   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2321 
2322   // Just zero out bases that don't have any pointer to data members.
2323   if (baseLayout.isZeroInitializableAsBase())
2324     return llvm::Constant::getNullValue(baseType);
2325 
2326   // Otherwise, we can just use its null constant.
2327   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2328 }
2329 
2330 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2331                                                    QualType T) {
2332   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2333 }
2334 
2335 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2336   if (T->getAs<PointerType>())
2337     return getNullPointer(
2338         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2339 
2340   if (getTypes().isZeroInitializable(T))
2341     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2342 
2343   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2344     llvm::ArrayType *ATy =
2345       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2346 
2347     QualType ElementTy = CAT->getElementType();
2348 
2349     llvm::Constant *Element =
2350       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2351     unsigned NumElements = CAT->getSize().getZExtValue();
2352     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2353     return llvm::ConstantArray::get(ATy, Array);
2354   }
2355 
2356   if (const RecordType *RT = T->getAs<RecordType>())
2357     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2358 
2359   assert(T->isMemberDataPointerType() &&
2360          "Should only see pointers to data members here!");
2361 
2362   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2363 }
2364 
2365 llvm::Constant *
2366 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2367   return ::EmitNullConstant(*this, Record, false);
2368 }
2369