1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34 
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39 
40   bool Packed;
41   CharUnits NextFieldOffsetInChars;
42   CharUnits LLVMStructAlignment;
43   std::vector<llvm::Constant *> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47 
48 private:
49   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
50     : CGM(CGM), CGF(CGF), Packed(false),
51     NextFieldOffsetInChars(CharUnits::Zero()),
52     LLVMStructAlignment(CharUnits::One()) { }
53 
54   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
55                    llvm::Constant *InitExpr);
56 
57   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
58                       llvm::ConstantInt *InitExpr);
59 
60   void AppendPadding(CharUnits PadSize);
61 
62   void AppendTailPadding(CharUnits RecordSize);
63 
64   void ConvertStructToPacked();
65 
66   bool Build(InitListExpr *ILE);
67 
68   CharUnits getAlignment(const llvm::Constant *C) const {
69     if (Packed)  return CharUnits::One();
70     return CharUnits::fromQuantity(
71         CGM.getTargetData().getABITypeAlignment(C->getType()));
72   }
73 
74   CharUnits getSizeInChars(const llvm::Constant *C) const {
75     return CharUnits::fromQuantity(
76         CGM.getTargetData().getTypeAllocSize(C->getType()));
77   }
78 };
79 
80 bool ConstStructBuilder::
81 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
82             llvm::Constant *InitCst) {
83 
84   const ASTContext &Context = CGM.getContext();
85 
86   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
87 
88   assert(NextFieldOffsetInChars <= FieldOffsetInChars
89          && "Field offset mismatch!");
90 
91   CharUnits FieldAlignment = getAlignment(InitCst);
92 
93   // Round up the field offset to the alignment of the field type.
94   CharUnits AlignedNextFieldOffsetInChars =
95     NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
96 
97   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
98     assert(!Packed && "Alignment is wrong even with a packed struct!");
99 
100     // Convert the struct to a packed struct.
101     ConvertStructToPacked();
102 
103     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
104   }
105 
106   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
107     // We need to append padding.
108     AppendPadding(
109         FieldOffsetInChars - NextFieldOffsetInChars);
110 
111     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
112            "Did not add enough padding!");
113 
114     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
115   }
116 
117   // Add the field.
118   Elements.push_back(InitCst);
119   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
120                            getSizeInChars(InitCst);
121 
122   if (Packed)
123     assert(LLVMStructAlignment == CharUnits::One() &&
124            "Packed struct not byte-aligned!");
125   else
126     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
127 
128   return true;
129 }
130 
131 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
132                                         uint64_t FieldOffset,
133                                         llvm::ConstantInt *CI) {
134   const ASTContext &Context = CGM.getContext();
135   const uint64_t CharWidth = Context.getCharWidth();
136   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
137   if (FieldOffset > NextFieldOffsetInBits) {
138     // We need to add padding.
139     CharUnits PadSize = Context.toCharUnitsFromBits(
140       llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
141                                Context.getTargetInfo().getCharAlign()));
142 
143     AppendPadding(PadSize);
144   }
145 
146   uint64_t FieldSize = Field->getBitWidthValue(Context);
147 
148   llvm::APInt FieldValue = CI->getValue();
149 
150   // Promote the size of FieldValue if necessary
151   // FIXME: This should never occur, but currently it can because initializer
152   // constants are cast to bool, and because clang is not enforcing bitfield
153   // width limits.
154   if (FieldSize > FieldValue.getBitWidth())
155     FieldValue = FieldValue.zext(FieldSize);
156 
157   // Truncate the size of FieldValue to the bit field size.
158   if (FieldSize < FieldValue.getBitWidth())
159     FieldValue = FieldValue.trunc(FieldSize);
160 
161   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
162   if (FieldOffset < NextFieldOffsetInBits) {
163     // Either part of the field or the entire field can go into the previous
164     // byte.
165     assert(!Elements.empty() && "Elements can't be empty!");
166 
167     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
168 
169     bool FitsCompletelyInPreviousByte =
170       BitsInPreviousByte >= FieldValue.getBitWidth();
171 
172     llvm::APInt Tmp = FieldValue;
173 
174     if (!FitsCompletelyInPreviousByte) {
175       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
176 
177       if (CGM.getTargetData().isBigEndian()) {
178         Tmp = Tmp.lshr(NewFieldWidth);
179         Tmp = Tmp.trunc(BitsInPreviousByte);
180 
181         // We want the remaining high bits.
182         FieldValue = FieldValue.trunc(NewFieldWidth);
183       } else {
184         Tmp = Tmp.trunc(BitsInPreviousByte);
185 
186         // We want the remaining low bits.
187         FieldValue = FieldValue.lshr(BitsInPreviousByte);
188         FieldValue = FieldValue.trunc(NewFieldWidth);
189       }
190     }
191 
192     Tmp = Tmp.zext(CharWidth);
193     if (CGM.getTargetData().isBigEndian()) {
194       if (FitsCompletelyInPreviousByte)
195         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
196     } else {
197       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
198     }
199 
200     // 'or' in the bits that go into the previous byte.
201     llvm::Value *LastElt = Elements.back();
202     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
203       Tmp |= Val->getValue();
204     else {
205       assert(isa<llvm::UndefValue>(LastElt));
206       // If there is an undef field that we're adding to, it can either be a
207       // scalar undef (in which case, we just replace it with our field) or it
208       // is an array.  If it is an array, we have to pull one byte off the
209       // array so that the other undef bytes stay around.
210       if (!isa<llvm::IntegerType>(LastElt->getType())) {
211         // The undef padding will be a multibyte array, create a new smaller
212         // padding and then an hole for our i8 to get plopped into.
213         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
214                "Expected array padding of undefs");
215         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
216         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
217                AT->getNumElements() != 0 &&
218                "Expected non-empty array padding of undefs");
219 
220         // Remove the padding array.
221         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
222         Elements.pop_back();
223 
224         // Add the padding back in two chunks.
225         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
226         AppendPadding(CharUnits::One());
227         assert(isa<llvm::UndefValue>(Elements.back()) &&
228                Elements.back()->getType()->isIntegerTy(CharWidth) &&
229                "Padding addition didn't work right");
230       }
231     }
232 
233     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
234 
235     if (FitsCompletelyInPreviousByte)
236       return;
237   }
238 
239   while (FieldValue.getBitWidth() > CharWidth) {
240     llvm::APInt Tmp;
241 
242     if (CGM.getTargetData().isBigEndian()) {
243       // We want the high bits.
244       Tmp =
245         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
246     } else {
247       // We want the low bits.
248       Tmp = FieldValue.trunc(CharWidth);
249 
250       FieldValue = FieldValue.lshr(CharWidth);
251     }
252 
253     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
254     ++NextFieldOffsetInChars;
255 
256     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
257   }
258 
259   assert(FieldValue.getBitWidth() > 0 &&
260          "Should have at least one bit left!");
261   assert(FieldValue.getBitWidth() <= CharWidth &&
262          "Should not have more than a byte left!");
263 
264   if (FieldValue.getBitWidth() < CharWidth) {
265     if (CGM.getTargetData().isBigEndian()) {
266       unsigned BitWidth = FieldValue.getBitWidth();
267 
268       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
269     } else
270       FieldValue = FieldValue.zext(CharWidth);
271   }
272 
273   // Append the last element.
274   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
275                                             FieldValue));
276   ++NextFieldOffsetInChars;
277 }
278 
279 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
280   if (PadSize.isZero())
281     return;
282 
283   llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext());
284   if (PadSize > CharUnits::One())
285     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
286 
287   llvm::Constant *C = llvm::UndefValue::get(Ty);
288   Elements.push_back(C);
289   assert(getAlignment(C) == CharUnits::One() &&
290          "Padding must have 1 byte alignment!");
291 
292   NextFieldOffsetInChars += getSizeInChars(C);
293 }
294 
295 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
296   assert(NextFieldOffsetInChars <= RecordSize &&
297          "Size mismatch!");
298 
299   AppendPadding(RecordSize - NextFieldOffsetInChars);
300 }
301 
302 void ConstStructBuilder::ConvertStructToPacked() {
303   std::vector<llvm::Constant *> PackedElements;
304   CharUnits ElementOffsetInChars = CharUnits::Zero();
305 
306   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
307     llvm::Constant *C = Elements[i];
308 
309     CharUnits ElementAlign = CharUnits::fromQuantity(
310       CGM.getTargetData().getABITypeAlignment(C->getType()));
311     CharUnits AlignedElementOffsetInChars =
312       ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
313 
314     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
315       // We need some padding.
316       CharUnits NumChars =
317         AlignedElementOffsetInChars - ElementOffsetInChars;
318 
319       llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext());
320       if (NumChars > CharUnits::One())
321         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
322 
323       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
324       PackedElements.push_back(Padding);
325       ElementOffsetInChars += getSizeInChars(Padding);
326     }
327 
328     PackedElements.push_back(C);
329     ElementOffsetInChars += getSizeInChars(C);
330   }
331 
332   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
333          "Packing the struct changed its size!");
334 
335   Elements = PackedElements;
336   LLVMStructAlignment = CharUnits::One();
337   Packed = true;
338 }
339 
340 bool ConstStructBuilder::Build(InitListExpr *ILE) {
341   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
342   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
343 
344   unsigned FieldNo = 0;
345   unsigned ElementNo = 0;
346   const FieldDecl *LastFD = 0;
347   bool IsMsStruct = RD->hasAttr<MsStructAttr>();
348 
349   for (RecordDecl::field_iterator Field = RD->field_begin(),
350        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
351     if (IsMsStruct) {
352       // Zero-length bitfields following non-bitfield members are
353       // ignored:
354       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
355         --FieldNo;
356         continue;
357       }
358       LastFD = (*Field);
359     }
360 
361     // If this is a union, skip all the fields that aren't being initialized.
362     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
363       continue;
364 
365     // Don't emit anonymous bitfields, they just affect layout.
366     if (Field->isUnnamedBitfield()) {
367       LastFD = (*Field);
368       continue;
369     }
370 
371     // Get the initializer.  A struct can include fields without initializers,
372     // we just use explicit null values for them.
373     llvm::Constant *EltInit;
374     if (ElementNo < ILE->getNumInits())
375       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
376                                      Field->getType(), CGF);
377     else
378       EltInit = CGM.EmitNullConstant(Field->getType());
379 
380     if (!EltInit)
381       return false;
382 
383     if (!Field->isBitField()) {
384       // Handle non-bitfield members.
385       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit))
386         return false;
387     } else {
388       // Otherwise we have a bitfield.
389       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
390                      cast<llvm::ConstantInt>(EltInit));
391     }
392   }
393 
394   CharUnits LayoutSizeInChars = Layout.getSize();
395 
396   if (NextFieldOffsetInChars > LayoutSizeInChars) {
397     // If the struct is bigger than the size of the record type,
398     // we must have a flexible array member at the end.
399     assert(RD->hasFlexibleArrayMember() &&
400            "Must have flexible array member if struct is bigger than type!");
401 
402     // No tail padding is necessary.
403     return true;
404   }
405 
406   CharUnits LLVMSizeInChars =
407     NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
408 
409   // Check if we need to convert the struct to a packed struct.
410   if (NextFieldOffsetInChars <= LayoutSizeInChars &&
411       LLVMSizeInChars > LayoutSizeInChars) {
412     assert(!Packed && "Size mismatch!");
413 
414     ConvertStructToPacked();
415     assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
416            "Converting to packed did not help!");
417   }
418 
419   // Append tail padding if necessary.
420   AppendTailPadding(LayoutSizeInChars);
421 
422   assert(LayoutSizeInChars == NextFieldOffsetInChars &&
423          "Tail padding mismatch!");
424 
425   return true;
426 }
427 
428 llvm::Constant *ConstStructBuilder::
429   BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE) {
430   ConstStructBuilder Builder(CGM, CGF);
431 
432   if (!Builder.Build(ILE))
433     return 0;
434 
435   // Pick the type to use.  If the type is layout identical to the ConvertType
436   // type then use it, otherwise use whatever the builder produced for us.
437   llvm::StructType *STy =
438       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
439                                                Builder.Elements,Builder.Packed);
440   llvm::Type *ILETy = CGM.getTypes().ConvertType(ILE->getType());
441   if (llvm::StructType *ILESTy = dyn_cast<llvm::StructType>(ILETy)) {
442     if (ILESTy->isLayoutIdentical(STy))
443       STy = ILESTy;
444   }
445 
446   llvm::Constant *Result =
447     llvm::ConstantStruct::get(STy, Builder.Elements);
448 
449   assert(Builder.NextFieldOffsetInChars.RoundUpToAlignment(
450            Builder.getAlignment(Result)) ==
451          Builder.getSizeInChars(Result) && "Size mismatch!");
452 
453   return Result;
454 }
455 
456 
457 //===----------------------------------------------------------------------===//
458 //                             ConstExprEmitter
459 //===----------------------------------------------------------------------===//
460 
461 class ConstExprEmitter :
462   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
463   CodeGenModule &CGM;
464   CodeGenFunction *CGF;
465   llvm::LLVMContext &VMContext;
466 public:
467   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
468     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
469   }
470 
471   //===--------------------------------------------------------------------===//
472   //                            Visitor Methods
473   //===--------------------------------------------------------------------===//
474 
475   llvm::Constant *VisitStmt(Stmt *S) {
476     return 0;
477   }
478 
479   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
480     return Visit(PE->getSubExpr());
481   }
482 
483   llvm::Constant *
484   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
485     return Visit(PE->getReplacement());
486   }
487 
488   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
489     return Visit(GE->getResultExpr());
490   }
491 
492   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
493     return Visit(E->getInitializer());
494   }
495 
496   llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) {
497     if (E->getType()->isMemberPointerType())
498       return CGM.getMemberPointerConstant(E);
499 
500     return 0;
501   }
502 
503   llvm::Constant *VisitBinSub(BinaryOperator *E) {
504     // This must be a pointer/pointer subtraction.  This only happens for
505     // address of label.
506     if (!isa<AddrLabelExpr>(E->getLHS()->IgnoreParenNoopCasts(CGM.getContext())) ||
507        !isa<AddrLabelExpr>(E->getRHS()->IgnoreParenNoopCasts(CGM.getContext())))
508       return 0;
509 
510     llvm::Constant *LHS = CGM.EmitConstantExpr(E->getLHS(),
511                                                E->getLHS()->getType(), CGF);
512     llvm::Constant *RHS = CGM.EmitConstantExpr(E->getRHS(),
513                                                E->getRHS()->getType(), CGF);
514 
515     llvm::Type *ResultType = ConvertType(E->getType());
516     LHS = llvm::ConstantExpr::getPtrToInt(LHS, ResultType);
517     RHS = llvm::ConstantExpr::getPtrToInt(RHS, ResultType);
518 
519     // No need to divide by element size, since addr of label is always void*,
520     // which has size 1 in GNUish.
521     return llvm::ConstantExpr::getSub(LHS, RHS);
522   }
523 
524   llvm::Constant *VisitCastExpr(CastExpr* E) {
525     Expr *subExpr = E->getSubExpr();
526     llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
527     if (!C) return 0;
528 
529     llvm::Type *destType = ConvertType(E->getType());
530 
531     switch (E->getCastKind()) {
532     case CK_ToUnion: {
533       // GCC cast to union extension
534       assert(E->getType()->isUnionType() &&
535              "Destination type is not union type!");
536 
537       // Build a struct with the union sub-element as the first member,
538       // and padded to the appropriate size
539       std::vector<llvm::Constant*> Elts;
540       std::vector<llvm::Type*> Types;
541       Elts.push_back(C);
542       Types.push_back(C->getType());
543       unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
544       unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType);
545 
546       assert(CurSize <= TotalSize && "Union size mismatch!");
547       if (unsigned NumPadBytes = TotalSize - CurSize) {
548         llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext);
549         if (NumPadBytes > 1)
550           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
551 
552         Elts.push_back(llvm::UndefValue::get(Ty));
553         Types.push_back(Ty);
554       }
555 
556       llvm::StructType* STy =
557         llvm::StructType::get(C->getType()->getContext(), Types, false);
558       return llvm::ConstantStruct::get(STy, Elts);
559     }
560     case CK_NullToMemberPointer: {
561       const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
562       return CGM.getCXXABI().EmitNullMemberPointer(MPT);
563     }
564 
565     case CK_DerivedToBaseMemberPointer:
566     case CK_BaseToDerivedMemberPointer:
567       return CGM.getCXXABI().EmitMemberPointerConversion(C, E);
568 
569     case CK_LValueToRValue:
570     case CK_NoOp:
571       return C;
572 
573     case CK_CPointerToObjCPointerCast:
574     case CK_BlockPointerToObjCPointerCast:
575     case CK_AnyPointerToBlockPointerCast:
576     case CK_BitCast:
577       if (C->getType() == destType) return C;
578       return llvm::ConstantExpr::getBitCast(C, destType);
579 
580     case CK_Dependent: llvm_unreachable("saw dependent cast!");
581 
582     // These will never be supported.
583     case CK_ObjCObjectLValueCast:
584     case CK_ToVoid:
585     case CK_Dynamic:
586     case CK_ARCProduceObject:
587     case CK_ARCConsumeObject:
588     case CK_ARCReclaimReturnedObject:
589     case CK_ARCExtendBlockObject:
590     case CK_LValueBitCast:
591       return 0;
592 
593     // These might need to be supported for constexpr.
594     case CK_UserDefinedConversion:
595     case CK_ConstructorConversion:
596       return 0;
597 
598     // These should eventually be supported.
599     case CK_ArrayToPointerDecay:
600     case CK_FunctionToPointerDecay:
601     case CK_BaseToDerived:
602     case CK_DerivedToBase:
603     case CK_UncheckedDerivedToBase:
604     case CK_MemberPointerToBoolean:
605     case CK_VectorSplat:
606     case CK_FloatingRealToComplex:
607     case CK_FloatingComplexToReal:
608     case CK_FloatingComplexToBoolean:
609     case CK_FloatingComplexCast:
610     case CK_FloatingComplexToIntegralComplex:
611     case CK_IntegralRealToComplex:
612     case CK_IntegralComplexToReal:
613     case CK_IntegralComplexToBoolean:
614     case CK_IntegralComplexCast:
615     case CK_IntegralComplexToFloatingComplex:
616       return 0;
617 
618     case CK_PointerToIntegral:
619       if (!E->getType()->isBooleanType())
620         return llvm::ConstantExpr::getPtrToInt(C, destType);
621       // fallthrough
622 
623     case CK_PointerToBoolean:
624       return llvm::ConstantExpr::getICmp(llvm::CmpInst::ICMP_EQ, C,
625         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(C->getType())));
626 
627     case CK_NullToPointer:
628       return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destType));
629 
630     case CK_IntegralCast: {
631       bool isSigned = subExpr->getType()->isSignedIntegerOrEnumerationType();
632       return llvm::ConstantExpr::getIntegerCast(C, destType, isSigned);
633     }
634 
635     case CK_IntegralToPointer: {
636       bool isSigned = subExpr->getType()->isSignedIntegerOrEnumerationType();
637       C = llvm::ConstantExpr::getIntegerCast(C, CGM.IntPtrTy, isSigned);
638       return llvm::ConstantExpr::getIntToPtr(C, destType);
639     }
640 
641     case CK_IntegralToBoolean:
642       return llvm::ConstantExpr::getICmp(llvm::CmpInst::ICMP_EQ, C,
643                              llvm::Constant::getNullValue(C->getType()));
644 
645     case CK_IntegralToFloating:
646       if (subExpr->getType()->isSignedIntegerOrEnumerationType())
647         return llvm::ConstantExpr::getSIToFP(C, destType);
648       else
649         return llvm::ConstantExpr::getUIToFP(C, destType);
650 
651     case CK_FloatingToIntegral:
652       if (E->getType()->isSignedIntegerOrEnumerationType())
653         return llvm::ConstantExpr::getFPToSI(C, destType);
654       else
655         return llvm::ConstantExpr::getFPToUI(C, destType);
656 
657     case CK_FloatingToBoolean:
658       return llvm::ConstantExpr::getFCmp(llvm::CmpInst::FCMP_UNE, C,
659                              llvm::Constant::getNullValue(C->getType()));
660 
661     case CK_FloatingCast:
662       return llvm::ConstantExpr::getFPCast(C, destType);
663     }
664     llvm_unreachable("Invalid CastKind");
665   }
666 
667   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
668     return Visit(DAE->getExpr());
669   }
670 
671   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
672     return Visit(E->GetTemporaryExpr());
673   }
674 
675   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
676     unsigned NumInitElements = ILE->getNumInits();
677     if (NumInitElements == 1 && ILE->getType() == ILE->getInit(0)->getType() &&
678         (isa<StringLiteral>(ILE->getInit(0)) ||
679          isa<ObjCEncodeExpr>(ILE->getInit(0))))
680       return Visit(ILE->getInit(0));
681 
682     std::vector<llvm::Constant*> Elts;
683     llvm::ArrayType *AType =
684         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
685     llvm::Type *ElemTy = AType->getElementType();
686     unsigned NumElements = AType->getNumElements();
687 
688     // Initialising an array requires us to automatically
689     // initialise any elements that have not been initialised explicitly
690     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
691 
692     // Copy initializer elements.
693     unsigned i = 0;
694     bool RewriteType = false;
695     for (; i < NumInitableElts; ++i) {
696       Expr *Init = ILE->getInit(i);
697       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
698       if (!C)
699         return 0;
700       RewriteType |= (C->getType() != ElemTy);
701       Elts.push_back(C);
702     }
703 
704     // Initialize remaining array elements.
705     // FIXME: This doesn't handle member pointers correctly!
706     llvm::Constant *fillC;
707     if (Expr *filler = ILE->getArrayFiller())
708       fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
709     else
710       fillC = llvm::Constant::getNullValue(ElemTy);
711     if (!fillC)
712       return 0;
713     RewriteType |= (fillC->getType() != ElemTy);
714     for (; i < NumElements; ++i)
715       Elts.push_back(fillC);
716 
717     if (RewriteType) {
718       // FIXME: Try to avoid packing the array
719       std::vector<llvm::Type*> Types;
720       for (unsigned i = 0; i < Elts.size(); ++i)
721         Types.push_back(Elts[i]->getType());
722       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
723                                                             Types, true);
724       return llvm::ConstantStruct::get(SType, Elts);
725     }
726 
727     return llvm::ConstantArray::get(AType, Elts);
728   }
729 
730   llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
731     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
732   }
733 
734   llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
735     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
736   }
737 
738   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
739     return CGM.EmitNullConstant(E->getType());
740   }
741 
742   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
743     if (ILE->getType()->isAnyComplexType() && ILE->getNumInits() == 2) {
744       // Complex type with element initializers
745       Expr *Real = ILE->getInit(0);
746       Expr *Imag = ILE->getInit(1);
747       llvm::Constant *Complex[2];
748       Complex[0] = CGM.EmitConstantExpr(Real, Real->getType(), CGF);
749       if (!Complex[0])
750         return 0;
751       Complex[1] = CGM.EmitConstantExpr(Imag, Imag->getType(), CGF);
752       if (!Complex[1])
753         return 0;
754       llvm::StructType *STy =
755           cast<llvm::StructType>(ConvertType(ILE->getType()));
756       return llvm::ConstantStruct::get(STy, Complex);
757     }
758 
759     if (ILE->getType()->isScalarType()) {
760       // We have a scalar in braces. Just use the first element.
761       if (ILE->getNumInits() > 0) {
762         Expr *Init = ILE->getInit(0);
763         return CGM.EmitConstantExpr(Init, Init->getType(), CGF);
764       }
765       return CGM.EmitNullConstant(ILE->getType());
766     }
767 
768     if (ILE->getType()->isArrayType())
769       return EmitArrayInitialization(ILE);
770 
771     if (ILE->getType()->isRecordType())
772       return EmitStructInitialization(ILE);
773 
774     if (ILE->getType()->isUnionType())
775       return EmitUnionInitialization(ILE);
776 
777     // If ILE was a constant vector, we would have handled it already.
778     if (ILE->getType()->isVectorType())
779       return 0;
780 
781     llvm_unreachable("Unable to handle InitListExpr");
782   }
783 
784   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
785     if (!E->getConstructor()->isTrivial())
786       return 0;
787 
788     QualType Ty = E->getType();
789 
790     // FIXME: We should not have to call getBaseElementType here.
791     const RecordType *RT =
792       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
793     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
794 
795     // If the class doesn't have a trivial destructor, we can't emit it as a
796     // constant expr.
797     if (!RD->hasTrivialDestructor())
798       return 0;
799 
800     // Only copy and default constructors can be trivial.
801 
802 
803     if (E->getNumArgs()) {
804       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
805       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
806              "trivial ctor has argument but isn't a copy/move ctor");
807 
808       Expr *Arg = E->getArg(0);
809       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
810              "argument to copy ctor is of wrong type");
811 
812       return Visit(Arg);
813     }
814 
815     return CGM.EmitNullConstant(Ty);
816   }
817 
818   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
819     return CGM.GetConstantArrayFromStringLiteral(E);
820   }
821 
822   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
823     // This must be an @encode initializing an array in a static initializer.
824     // Don't emit it as the address of the string, emit the string data itself
825     // as an inline array.
826     std::string Str;
827     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
828     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
829 
830     // Resize the string to the right size, adding zeros at the end, or
831     // truncating as needed.
832     Str.resize(CAT->getSize().getZExtValue(), '\0');
833     return llvm::ConstantArray::get(VMContext, Str, false);
834   }
835 
836   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
837     return Visit(E->getSubExpr());
838   }
839 
840   // Utility methods
841   llvm::Type *ConvertType(QualType T) {
842     return CGM.getTypes().ConvertType(T);
843   }
844 
845 public:
846   llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
847     if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
848       if (Decl->hasAttr<WeakRefAttr>())
849         return CGM.GetWeakRefReference(Decl);
850       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
851         return CGM.GetAddrOfFunction(FD);
852       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
853         // We can never refer to a variable with local storage.
854         if (!VD->hasLocalStorage()) {
855           if (VD->isFileVarDecl() || VD->hasExternalStorage())
856             return CGM.GetAddrOfGlobalVar(VD);
857           else if (VD->isLocalVarDecl()) {
858             assert(CGF && "Can't access static local vars without CGF");
859             return CGF->GetAddrOfStaticLocalVar(VD);
860           }
861         }
862       }
863       return 0;
864     }
865 
866     Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
867     switch (E->getStmtClass()) {
868     default: break;
869     case Expr::CompoundLiteralExprClass: {
870       // Note that due to the nature of compound literals, this is guaranteed
871       // to be the only use of the variable, so we just generate it here.
872       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
873       llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
874                                                CLE->getType(), CGF);
875       // FIXME: "Leaked" on failure.
876       if (C)
877         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
878                                      E->getType().isConstant(CGM.getContext()),
879                                      llvm::GlobalValue::InternalLinkage,
880                                      C, ".compoundliteral", 0, false,
881                           CGM.getContext().getTargetAddressSpace(E->getType()));
882       return C;
883     }
884     case Expr::StringLiteralClass:
885       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
886     case Expr::ObjCEncodeExprClass:
887       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
888     case Expr::ObjCStringLiteralClass: {
889       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
890       llvm::Constant *C =
891           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
892       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
893     }
894     case Expr::PredefinedExprClass: {
895       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
896       if (CGF) {
897         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
898         return cast<llvm::Constant>(Res.getAddress());
899       } else if (Type == PredefinedExpr::PrettyFunction) {
900         return CGM.GetAddrOfConstantCString("top level", ".tmp");
901       }
902 
903       return CGM.GetAddrOfConstantCString("", ".tmp");
904     }
905     case Expr::AddrLabelExprClass: {
906       assert(CGF && "Invalid address of label expression outside function.");
907       llvm::Constant *Ptr =
908         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
909       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
910     }
911     case Expr::CallExprClass: {
912       CallExpr* CE = cast<CallExpr>(E);
913       unsigned builtin = CE->isBuiltinCall();
914       if (builtin !=
915             Builtin::BI__builtin___CFStringMakeConstantString &&
916           builtin !=
917             Builtin::BI__builtin___NSStringMakeConstantString)
918         break;
919       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
920       const StringLiteral *Literal = cast<StringLiteral>(Arg);
921       if (builtin ==
922             Builtin::BI__builtin___NSStringMakeConstantString) {
923         return CGM.getObjCRuntime().GenerateConstantString(Literal);
924       }
925       // FIXME: need to deal with UCN conversion issues.
926       return CGM.GetAddrOfConstantCFString(Literal);
927     }
928     case Expr::BlockExprClass: {
929       std::string FunctionName;
930       if (CGF)
931         FunctionName = CGF->CurFn->getName();
932       else
933         FunctionName = "global";
934 
935       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
936     }
937     case Expr::CXXTypeidExprClass: {
938       CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
939       QualType T;
940       if (Typeid->isTypeOperand())
941         T = Typeid->getTypeOperand();
942       else
943         T = Typeid->getExprOperand()->getType();
944       return CGM.GetAddrOfRTTIDescriptor(T);
945     }
946     }
947 
948     return 0;
949   }
950 };
951 
952 }  // end anonymous namespace.
953 
954 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
955                                                 QualType DestType,
956                                                 CodeGenFunction *CGF) {
957   Expr::EvalResult Result;
958 
959   bool Success = false;
960 
961   if (DestType->isReferenceType())
962     Success = E->EvaluateAsLValue(Result, Context);
963   else
964     Success = E->EvaluateAsRValue(Result, Context);
965 
966   if (Success && !Result.HasSideEffects) {
967     switch (Result.Val.getKind()) {
968     case APValue::Uninitialized:
969       llvm_unreachable("Constant expressions should be initialized.");
970     case APValue::LValue: {
971       llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
972       llvm::Constant *Offset =
973         llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext),
974                                Result.Val.getLValueOffset().getQuantity());
975 
976       llvm::Constant *C;
977       if (APValue::LValueBase LVBase = Result.Val.getLValueBase()) {
978         C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
979 
980         // Apply offset if necessary.
981         if (!Offset->isNullValue()) {
982           llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext);
983           llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type);
984           Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
985           C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
986         }
987 
988         // Convert to the appropriate type; this could be an lvalue for
989         // an integer.
990         if (isa<llvm::PointerType>(DestTy))
991           return llvm::ConstantExpr::getBitCast(C, DestTy);
992 
993         return llvm::ConstantExpr::getPtrToInt(C, DestTy);
994       } else {
995         C = Offset;
996 
997         // Convert to the appropriate type; this could be an lvalue for
998         // an integer.
999         if (isa<llvm::PointerType>(DestTy))
1000           return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1001 
1002         // If the types don't match this should only be a truncate.
1003         if (C->getType() != DestTy)
1004           return llvm::ConstantExpr::getTrunc(C, DestTy);
1005 
1006         return C;
1007       }
1008     }
1009     case APValue::Int: {
1010       llvm::Constant *C = llvm::ConstantInt::get(VMContext,
1011                                                  Result.Val.getInt());
1012 
1013       if (C->getType()->isIntegerTy(1)) {
1014         llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1015         C = llvm::ConstantExpr::getZExt(C, BoolTy);
1016       }
1017       return C;
1018     }
1019     case APValue::ComplexInt: {
1020       llvm::Constant *Complex[2];
1021 
1022       Complex[0] = llvm::ConstantInt::get(VMContext,
1023                                           Result.Val.getComplexIntReal());
1024       Complex[1] = llvm::ConstantInt::get(VMContext,
1025                                           Result.Val.getComplexIntImag());
1026 
1027       // FIXME: the target may want to specify that this is packed.
1028       llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1029                                                     Complex[1]->getType(),
1030                                                     NULL);
1031       return llvm::ConstantStruct::get(STy, Complex);
1032     }
1033     case APValue::Float: {
1034       const llvm::APFloat &Init = Result.Val.getFloat();
1035       if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf)
1036         return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1037       else
1038         return llvm::ConstantFP::get(VMContext, Init);
1039     }
1040     case APValue::ComplexFloat: {
1041       llvm::Constant *Complex[2];
1042 
1043       Complex[0] = llvm::ConstantFP::get(VMContext,
1044                                          Result.Val.getComplexFloatReal());
1045       Complex[1] = llvm::ConstantFP::get(VMContext,
1046                                          Result.Val.getComplexFloatImag());
1047 
1048       // FIXME: the target may want to specify that this is packed.
1049       llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1050                                                     Complex[1]->getType(),
1051                                                     NULL);
1052       return llvm::ConstantStruct::get(STy, Complex);
1053     }
1054     case APValue::Vector: {
1055       SmallVector<llvm::Constant *, 4> Inits;
1056       unsigned NumElts = Result.Val.getVectorLength();
1057 
1058       if (Context.getLangOptions().AltiVec &&
1059           isa<CastExpr>(E) &&
1060           cast<CastExpr>(E)->getCastKind() == CK_VectorSplat) {
1061         // AltiVec vector initialization with a single literal
1062         APValue &Elt = Result.Val.getVectorElt(0);
1063 
1064         llvm::Constant* InitValue = Elt.isInt()
1065           ? cast<llvm::Constant>
1066               (llvm::ConstantInt::get(VMContext, Elt.getInt()))
1067           : cast<llvm::Constant>
1068               (llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1069 
1070         for (unsigned i = 0; i != NumElts; ++i)
1071           Inits.push_back(InitValue);
1072 
1073       } else {
1074         for (unsigned i = 0; i != NumElts; ++i) {
1075           APValue &Elt = Result.Val.getVectorElt(i);
1076           if (Elt.isInt())
1077             Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1078           else
1079             Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1080         }
1081       }
1082       return llvm::ConstantVector::get(Inits);
1083     }
1084     case APValue::Array:
1085     case APValue::Struct:
1086     case APValue::Union:
1087     case APValue::MemberPointer:
1088       break;
1089     }
1090   }
1091 
1092   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1093   if (C && C->getType()->isIntegerTy(1)) {
1094     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1095     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1096   }
1097   return C;
1098 }
1099 
1100 llvm::Constant *
1101 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1102   assert(E->isFileScope() && "not a file-scope compound literal expr");
1103   return ConstExprEmitter(*this, 0).EmitLValue(E);
1104 }
1105 
1106 static uint64_t getFieldOffset(ASTContext &C, const FieldDecl *field) {
1107   const ASTRecordLayout &layout = C.getASTRecordLayout(field->getParent());
1108   return layout.getFieldOffset(field->getFieldIndex());
1109 }
1110 
1111 llvm::Constant *
1112 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1113   // Member pointer constants always have a very particular form.
1114   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1115   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1116 
1117   // A member function pointer.
1118   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1119     return getCXXABI().EmitMemberPointer(method);
1120 
1121   // Otherwise, a member data pointer.
1122   uint64_t fieldOffset;
1123   if (const FieldDecl *field = dyn_cast<FieldDecl>(decl))
1124     fieldOffset = getFieldOffset(getContext(), field);
1125   else {
1126     const IndirectFieldDecl *ifield = cast<IndirectFieldDecl>(decl);
1127 
1128     fieldOffset = 0;
1129     for (IndirectFieldDecl::chain_iterator ci = ifield->chain_begin(),
1130            ce = ifield->chain_end(); ci != ce; ++ci)
1131       fieldOffset += getFieldOffset(getContext(), cast<FieldDecl>(*ci));
1132   }
1133 
1134   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1135   return getCXXABI().EmitMemberDataPointer(type, chars);
1136 }
1137 
1138 static void
1139 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1140                              std::vector<llvm::Constant *> &Elements,
1141                              uint64_t StartOffset) {
1142   assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1143          "StartOffset not byte aligned!");
1144 
1145   if (CGM.getTypes().isZeroInitializable(T))
1146     return;
1147 
1148   if (const ConstantArrayType *CAT =
1149         CGM.getContext().getAsConstantArrayType(T)) {
1150     QualType ElementTy = CAT->getElementType();
1151     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1152 
1153     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1154       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1155                                    StartOffset + I * ElementSize);
1156     }
1157   } else if (const RecordType *RT = T->getAs<RecordType>()) {
1158     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1159     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1160 
1161     // Go through all bases and fill in any null pointer to data members.
1162     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1163          E = RD->bases_end(); I != E; ++I) {
1164       if (I->isVirtual()) {
1165         // Ignore virtual bases.
1166         continue;
1167       }
1168 
1169       const CXXRecordDecl *BaseDecl =
1170       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1171 
1172       // Ignore empty bases.
1173       if (BaseDecl->isEmpty())
1174         continue;
1175 
1176       // Ignore bases that don't have any pointer to data members.
1177       if (CGM.getTypes().isZeroInitializable(BaseDecl))
1178         continue;
1179 
1180       uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl);
1181       FillInNullDataMemberPointers(CGM, I->getType(),
1182                                    Elements, StartOffset + BaseOffset);
1183     }
1184 
1185     // Visit all fields.
1186     unsigned FieldNo = 0;
1187     for (RecordDecl::field_iterator I = RD->field_begin(),
1188          E = RD->field_end(); I != E; ++I, ++FieldNo) {
1189       QualType FieldType = I->getType();
1190 
1191       if (CGM.getTypes().isZeroInitializable(FieldType))
1192         continue;
1193 
1194       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1195       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1196     }
1197   } else {
1198     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1199     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1200            "Should only see pointers to data members here!");
1201 
1202     CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1203     CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1204 
1205     // FIXME: hardcodes Itanium member pointer representation!
1206     llvm::Constant *NegativeOne =
1207       llvm::ConstantInt::get(llvm::Type::getInt8Ty(CGM.getLLVMContext()),
1208                              -1ULL, /*isSigned*/true);
1209 
1210     // Fill in the null data member pointer.
1211     for (CharUnits I = StartIndex; I != EndIndex; ++I)
1212       Elements[I.getQuantity()] = NegativeOne;
1213   }
1214 }
1215 
1216 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1217                                                llvm::Type *baseType,
1218                                                const CXXRecordDecl *base);
1219 
1220 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1221                                         const CXXRecordDecl *record,
1222                                         bool asCompleteObject) {
1223   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1224   llvm::StructType *structure =
1225     (asCompleteObject ? layout.getLLVMType()
1226                       : layout.getBaseSubobjectLLVMType());
1227 
1228   unsigned numElements = structure->getNumElements();
1229   std::vector<llvm::Constant *> elements(numElements);
1230 
1231   // Fill in all the bases.
1232   for (CXXRecordDecl::base_class_const_iterator
1233          I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1234     if (I->isVirtual()) {
1235       // Ignore virtual bases; if we're laying out for a complete
1236       // object, we'll lay these out later.
1237       continue;
1238     }
1239 
1240     const CXXRecordDecl *base =
1241       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1242 
1243     // Ignore empty bases.
1244     if (base->isEmpty())
1245       continue;
1246 
1247     unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1248     llvm::Type *baseType = structure->getElementType(fieldIndex);
1249     elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1250   }
1251 
1252   // Fill in all the fields.
1253   for (RecordDecl::field_iterator I = record->field_begin(),
1254          E = record->field_end(); I != E; ++I) {
1255     const FieldDecl *field = *I;
1256 
1257     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1258     // will fill in later.)
1259     if (!field->isBitField()) {
1260       unsigned fieldIndex = layout.getLLVMFieldNo(field);
1261       elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1262     }
1263 
1264     // For unions, stop after the first named field.
1265     if (record->isUnion() && field->getDeclName())
1266       break;
1267   }
1268 
1269   // Fill in the virtual bases, if we're working with the complete object.
1270   if (asCompleteObject) {
1271     for (CXXRecordDecl::base_class_const_iterator
1272            I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1273       const CXXRecordDecl *base =
1274         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1275 
1276       // Ignore empty bases.
1277       if (base->isEmpty())
1278         continue;
1279 
1280       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1281 
1282       // We might have already laid this field out.
1283       if (elements[fieldIndex]) continue;
1284 
1285       llvm::Type *baseType = structure->getElementType(fieldIndex);
1286       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1287     }
1288   }
1289 
1290   // Now go through all other fields and zero them out.
1291   for (unsigned i = 0; i != numElements; ++i) {
1292     if (!elements[i])
1293       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1294   }
1295 
1296   return llvm::ConstantStruct::get(structure, elements);
1297 }
1298 
1299 /// Emit the null constant for a base subobject.
1300 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1301                                                llvm::Type *baseType,
1302                                                const CXXRecordDecl *base) {
1303   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1304 
1305   // Just zero out bases that don't have any pointer to data members.
1306   if (baseLayout.isZeroInitializableAsBase())
1307     return llvm::Constant::getNullValue(baseType);
1308 
1309   // If the base type is a struct, we can just use its null constant.
1310   if (isa<llvm::StructType>(baseType)) {
1311     return EmitNullConstant(CGM, base, /*complete*/ false);
1312   }
1313 
1314   // Otherwise, some bases are represented as arrays of i8 if the size
1315   // of the base is smaller than its corresponding LLVM type.  Figure
1316   // out how many elements this base array has.
1317   llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1318   unsigned numBaseElements = baseArrayType->getNumElements();
1319 
1320   // Fill in null data member pointers.
1321   std::vector<llvm::Constant *> baseElements(numBaseElements);
1322   FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1323                                baseElements, 0);
1324 
1325   // Now go through all other elements and zero them out.
1326   if (numBaseElements) {
1327     llvm::Type *i8 = llvm::Type::getInt8Ty(CGM.getLLVMContext());
1328     llvm::Constant *i8_zero = llvm::Constant::getNullValue(i8);
1329     for (unsigned i = 0; i != numBaseElements; ++i) {
1330       if (!baseElements[i])
1331         baseElements[i] = i8_zero;
1332     }
1333   }
1334 
1335   return llvm::ConstantArray::get(baseArrayType, baseElements);
1336 }
1337 
1338 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1339   if (getTypes().isZeroInitializable(T))
1340     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1341 
1342   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1343 
1344     QualType ElementTy = CAT->getElementType();
1345 
1346     llvm::Constant *Element = EmitNullConstant(ElementTy);
1347     unsigned NumElements = CAT->getSize().getZExtValue();
1348     std::vector<llvm::Constant *> Array(NumElements);
1349     for (unsigned i = 0; i != NumElements; ++i)
1350       Array[i] = Element;
1351 
1352     llvm::ArrayType *ATy =
1353       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1354     return llvm::ConstantArray::get(ATy, Array);
1355   }
1356 
1357   if (const RecordType *RT = T->getAs<RecordType>()) {
1358     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1359     return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1360   }
1361 
1362   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1363   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1364          "Should only see pointers to data members here!");
1365 
1366   // Itanium C++ ABI 2.3:
1367   //   A NULL pointer is represented as -1.
1368   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1369 }
1370 
1371 llvm::Constant *
1372 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1373   return ::EmitNullConstant(*this, Record, false);
1374 }
1375