1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // ConstStructBuilder 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class ConstExprEmitter; 39 class ConstStructBuilder { 40 CodeGenModule &CGM; 41 ConstantEmitter &Emitter; 42 43 bool Packed; 44 CharUnits NextFieldOffsetInChars; 45 CharUnits LLVMStructAlignment; 46 SmallVector<llvm::Constant *, 32> Elements; 47 public: 48 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 49 ConstExprEmitter *ExprEmitter, 50 llvm::Constant *Base, 51 InitListExpr *Updater, 52 QualType ValTy); 53 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 54 InitListExpr *ILE, QualType StructTy); 55 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 56 const APValue &Value, QualType ValTy); 57 58 private: 59 ConstStructBuilder(ConstantEmitter &emitter) 60 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 61 NextFieldOffsetInChars(CharUnits::Zero()), 62 LLVMStructAlignment(CharUnits::One()) { } 63 64 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 65 llvm::Constant *InitExpr); 66 67 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 68 69 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 70 llvm::ConstantInt *InitExpr); 71 72 void AppendPadding(CharUnits PadSize); 73 74 void AppendTailPadding(CharUnits RecordSize); 75 76 void ConvertStructToPacked(); 77 78 bool Build(InitListExpr *ILE); 79 bool Build(ConstExprEmitter *Emitter, llvm::Constant *Base, 80 InitListExpr *Updater); 81 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 82 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 83 llvm::Constant *Finalize(QualType Ty); 84 85 CharUnits getAlignment(const llvm::Constant *C) const { 86 if (Packed) return CharUnits::One(); 87 return CharUnits::fromQuantity( 88 CGM.getDataLayout().getABITypeAlignment(C->getType())); 89 } 90 91 CharUnits getSizeInChars(const llvm::Constant *C) const { 92 return CharUnits::fromQuantity( 93 CGM.getDataLayout().getTypeAllocSize(C->getType())); 94 } 95 }; 96 97 void ConstStructBuilder:: 98 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 99 llvm::Constant *InitCst) { 100 const ASTContext &Context = CGM.getContext(); 101 102 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 103 104 AppendBytes(FieldOffsetInChars, InitCst); 105 } 106 107 void ConstStructBuilder:: 108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 109 110 assert(NextFieldOffsetInChars <= FieldOffsetInChars 111 && "Field offset mismatch!"); 112 113 CharUnits FieldAlignment = getAlignment(InitCst); 114 115 // Round up the field offset to the alignment of the field type. 116 CharUnits AlignedNextFieldOffsetInChars = 117 NextFieldOffsetInChars.alignTo(FieldAlignment); 118 119 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 120 // We need to append padding. 121 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 122 123 assert(NextFieldOffsetInChars == FieldOffsetInChars && 124 "Did not add enough padding!"); 125 126 AlignedNextFieldOffsetInChars = 127 NextFieldOffsetInChars.alignTo(FieldAlignment); 128 } 129 130 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 131 assert(!Packed && "Alignment is wrong even with a packed struct!"); 132 133 // Convert the struct to a packed struct. 134 ConvertStructToPacked(); 135 136 // After we pack the struct, we may need to insert padding. 137 if (NextFieldOffsetInChars < FieldOffsetInChars) { 138 // We need to append padding. 139 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 140 141 assert(NextFieldOffsetInChars == FieldOffsetInChars && 142 "Did not add enough padding!"); 143 } 144 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 145 } 146 147 // Add the field. 148 Elements.push_back(InitCst); 149 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 150 getSizeInChars(InitCst); 151 152 if (Packed) 153 assert(LLVMStructAlignment == CharUnits::One() && 154 "Packed struct not byte-aligned!"); 155 else 156 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 157 } 158 159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 160 uint64_t FieldOffset, 161 llvm::ConstantInt *CI) { 162 const ASTContext &Context = CGM.getContext(); 163 const uint64_t CharWidth = Context.getCharWidth(); 164 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 165 if (FieldOffset > NextFieldOffsetInBits) { 166 // We need to add padding. 167 CharUnits PadSize = Context.toCharUnitsFromBits( 168 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 169 Context.getTargetInfo().getCharAlign())); 170 171 AppendPadding(PadSize); 172 } 173 174 uint64_t FieldSize = Field->getBitWidthValue(Context); 175 176 llvm::APInt FieldValue = CI->getValue(); 177 178 // Promote the size of FieldValue if necessary 179 // FIXME: This should never occur, but currently it can because initializer 180 // constants are cast to bool, and because clang is not enforcing bitfield 181 // width limits. 182 if (FieldSize > FieldValue.getBitWidth()) 183 FieldValue = FieldValue.zext(FieldSize); 184 185 // Truncate the size of FieldValue to the bit field size. 186 if (FieldSize < FieldValue.getBitWidth()) 187 FieldValue = FieldValue.trunc(FieldSize); 188 189 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 190 if (FieldOffset < NextFieldOffsetInBits) { 191 // Either part of the field or the entire field can go into the previous 192 // byte. 193 assert(!Elements.empty() && "Elements can't be empty!"); 194 195 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 196 197 bool FitsCompletelyInPreviousByte = 198 BitsInPreviousByte >= FieldValue.getBitWidth(); 199 200 llvm::APInt Tmp = FieldValue; 201 202 if (!FitsCompletelyInPreviousByte) { 203 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 204 205 if (CGM.getDataLayout().isBigEndian()) { 206 Tmp.lshrInPlace(NewFieldWidth); 207 Tmp = Tmp.trunc(BitsInPreviousByte); 208 209 // We want the remaining high bits. 210 FieldValue = FieldValue.trunc(NewFieldWidth); 211 } else { 212 Tmp = Tmp.trunc(BitsInPreviousByte); 213 214 // We want the remaining low bits. 215 FieldValue.lshrInPlace(BitsInPreviousByte); 216 FieldValue = FieldValue.trunc(NewFieldWidth); 217 } 218 } 219 220 Tmp = Tmp.zext(CharWidth); 221 if (CGM.getDataLayout().isBigEndian()) { 222 if (FitsCompletelyInPreviousByte) 223 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 224 } else { 225 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 226 } 227 228 // 'or' in the bits that go into the previous byte. 229 llvm::Value *LastElt = Elements.back(); 230 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 231 Tmp |= Val->getValue(); 232 else { 233 assert(isa<llvm::UndefValue>(LastElt)); 234 // If there is an undef field that we're adding to, it can either be a 235 // scalar undef (in which case, we just replace it with our field) or it 236 // is an array. If it is an array, we have to pull one byte off the 237 // array so that the other undef bytes stay around. 238 if (!isa<llvm::IntegerType>(LastElt->getType())) { 239 // The undef padding will be a multibyte array, create a new smaller 240 // padding and then an hole for our i8 to get plopped into. 241 assert(isa<llvm::ArrayType>(LastElt->getType()) && 242 "Expected array padding of undefs"); 243 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 244 assert(AT->getElementType()->isIntegerTy(CharWidth) && 245 AT->getNumElements() != 0 && 246 "Expected non-empty array padding of undefs"); 247 248 // Remove the padding array. 249 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 250 Elements.pop_back(); 251 252 // Add the padding back in two chunks. 253 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 254 AppendPadding(CharUnits::One()); 255 assert(isa<llvm::UndefValue>(Elements.back()) && 256 Elements.back()->getType()->isIntegerTy(CharWidth) && 257 "Padding addition didn't work right"); 258 } 259 } 260 261 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 262 263 if (FitsCompletelyInPreviousByte) 264 return; 265 } 266 267 while (FieldValue.getBitWidth() > CharWidth) { 268 llvm::APInt Tmp; 269 270 if (CGM.getDataLayout().isBigEndian()) { 271 // We want the high bits. 272 Tmp = 273 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 274 } else { 275 // We want the low bits. 276 Tmp = FieldValue.trunc(CharWidth); 277 278 FieldValue.lshrInPlace(CharWidth); 279 } 280 281 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 282 ++NextFieldOffsetInChars; 283 284 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 285 } 286 287 assert(FieldValue.getBitWidth() > 0 && 288 "Should have at least one bit left!"); 289 assert(FieldValue.getBitWidth() <= CharWidth && 290 "Should not have more than a byte left!"); 291 292 if (FieldValue.getBitWidth() < CharWidth) { 293 if (CGM.getDataLayout().isBigEndian()) { 294 unsigned BitWidth = FieldValue.getBitWidth(); 295 296 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 297 } else 298 FieldValue = FieldValue.zext(CharWidth); 299 } 300 301 // Append the last element. 302 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 303 FieldValue)); 304 ++NextFieldOffsetInChars; 305 } 306 307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 308 if (PadSize.isZero()) 309 return; 310 311 llvm::Type *Ty = CGM.Int8Ty; 312 if (PadSize > CharUnits::One()) 313 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 314 315 llvm::Constant *C = llvm::UndefValue::get(Ty); 316 Elements.push_back(C); 317 assert(getAlignment(C) == CharUnits::One() && 318 "Padding must have 1 byte alignment!"); 319 320 NextFieldOffsetInChars += getSizeInChars(C); 321 } 322 323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 324 assert(NextFieldOffsetInChars <= RecordSize && 325 "Size mismatch!"); 326 327 AppendPadding(RecordSize - NextFieldOffsetInChars); 328 } 329 330 void ConstStructBuilder::ConvertStructToPacked() { 331 SmallVector<llvm::Constant *, 16> PackedElements; 332 CharUnits ElementOffsetInChars = CharUnits::Zero(); 333 334 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 335 llvm::Constant *C = Elements[i]; 336 337 CharUnits ElementAlign = CharUnits::fromQuantity( 338 CGM.getDataLayout().getABITypeAlignment(C->getType())); 339 CharUnits AlignedElementOffsetInChars = 340 ElementOffsetInChars.alignTo(ElementAlign); 341 342 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 343 // We need some padding. 344 CharUnits NumChars = 345 AlignedElementOffsetInChars - ElementOffsetInChars; 346 347 llvm::Type *Ty = CGM.Int8Ty; 348 if (NumChars > CharUnits::One()) 349 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 350 351 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 352 PackedElements.push_back(Padding); 353 ElementOffsetInChars += getSizeInChars(Padding); 354 } 355 356 PackedElements.push_back(C); 357 ElementOffsetInChars += getSizeInChars(C); 358 } 359 360 assert(ElementOffsetInChars == NextFieldOffsetInChars && 361 "Packing the struct changed its size!"); 362 363 Elements.swap(PackedElements); 364 LLVMStructAlignment = CharUnits::One(); 365 Packed = true; 366 } 367 368 bool ConstStructBuilder::Build(InitListExpr *ILE) { 369 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 370 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 371 372 unsigned FieldNo = 0; 373 unsigned ElementNo = 0; 374 375 // Bail out if we have base classes. We could support these, but they only 376 // arise in C++1z where we will have already constant folded most interesting 377 // cases. FIXME: There are still a few more cases we can handle this way. 378 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 379 if (CXXRD->getNumBases()) 380 return false; 381 382 for (RecordDecl::field_iterator Field = RD->field_begin(), 383 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 384 // If this is a union, skip all the fields that aren't being initialized. 385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 386 continue; 387 388 // Don't emit anonymous bitfields, they just affect layout. 389 if (Field->isUnnamedBitfield()) 390 continue; 391 392 // Get the initializer. A struct can include fields without initializers, 393 // we just use explicit null values for them. 394 llvm::Constant *EltInit; 395 if (ElementNo < ILE->getNumInits()) 396 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 397 Field->getType()); 398 else 399 EltInit = Emitter.emitNullForMemory(Field->getType()); 400 401 if (!EltInit) 402 return false; 403 404 if (!Field->isBitField()) { 405 // Handle non-bitfield members. 406 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 407 } else { 408 // Otherwise we have a bitfield. 409 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 410 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 411 } else { 412 // We are trying to initialize a bitfield with a non-trivial constant, 413 // this must require run-time code. 414 return false; 415 } 416 } 417 } 418 419 return true; 420 } 421 422 namespace { 423 struct BaseInfo { 424 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 425 : Decl(Decl), Offset(Offset), Index(Index) { 426 } 427 428 const CXXRecordDecl *Decl; 429 CharUnits Offset; 430 unsigned Index; 431 432 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 433 }; 434 } 435 436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 437 bool IsPrimaryBase, 438 const CXXRecordDecl *VTableClass, 439 CharUnits Offset) { 440 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 441 442 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 443 // Add a vtable pointer, if we need one and it hasn't already been added. 444 if (CD->isDynamicClass() && !IsPrimaryBase) { 445 llvm::Constant *VTableAddressPoint = 446 CGM.getCXXABI().getVTableAddressPointForConstExpr( 447 BaseSubobject(CD, Offset), VTableClass); 448 AppendBytes(Offset, VTableAddressPoint); 449 } 450 451 // Accumulate and sort bases, in order to visit them in address order, which 452 // may not be the same as declaration order. 453 SmallVector<BaseInfo, 8> Bases; 454 Bases.reserve(CD->getNumBases()); 455 unsigned BaseNo = 0; 456 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 457 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 458 assert(!Base->isVirtual() && "should not have virtual bases here"); 459 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 460 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 461 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 462 } 463 std::stable_sort(Bases.begin(), Bases.end()); 464 465 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 466 BaseInfo &Base = Bases[I]; 467 468 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 469 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 470 VTableClass, Offset + Base.Offset); 471 } 472 } 473 474 unsigned FieldNo = 0; 475 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 476 477 for (RecordDecl::field_iterator Field = RD->field_begin(), 478 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 479 // If this is a union, skip all the fields that aren't being initialized. 480 if (RD->isUnion() && Val.getUnionField() != *Field) 481 continue; 482 483 // Don't emit anonymous bitfields, they just affect layout. 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // Emit the value of the initializer. 488 const APValue &FieldValue = 489 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 490 llvm::Constant *EltInit = 491 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 492 if (!EltInit) 493 return false; 494 495 if (!Field->isBitField()) { 496 // Handle non-bitfield members. 497 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 498 } else { 499 // Otherwise we have a bitfield. 500 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 501 cast<llvm::ConstantInt>(EltInit)); 502 } 503 } 504 505 return true; 506 } 507 508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 509 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 510 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 511 512 CharUnits LayoutSizeInChars = Layout.getSize(); 513 514 if (NextFieldOffsetInChars > LayoutSizeInChars) { 515 // If the struct is bigger than the size of the record type, 516 // we must have a flexible array member at the end. 517 assert(RD->hasFlexibleArrayMember() && 518 "Must have flexible array member if struct is bigger than type!"); 519 520 // No tail padding is necessary. 521 } else { 522 // Append tail padding if necessary. 523 CharUnits LLVMSizeInChars = 524 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 525 526 if (LLVMSizeInChars != LayoutSizeInChars) 527 AppendTailPadding(LayoutSizeInChars); 528 529 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 530 531 // Check if we need to convert the struct to a packed struct. 532 if (NextFieldOffsetInChars <= LayoutSizeInChars && 533 LLVMSizeInChars > LayoutSizeInChars) { 534 assert(!Packed && "Size mismatch!"); 535 536 ConvertStructToPacked(); 537 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 538 "Converting to packed did not help!"); 539 } 540 541 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 542 543 assert(LayoutSizeInChars == LLVMSizeInChars && 544 "Tail padding mismatch!"); 545 } 546 547 // Pick the type to use. If the type is layout identical to the ConvertType 548 // type then use it, otherwise use whatever the builder produced for us. 549 llvm::StructType *STy = 550 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 551 Elements, Packed); 552 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 553 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 554 if (ValSTy->isLayoutIdentical(STy)) 555 STy = ValSTy; 556 } 557 558 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 559 560 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 561 getSizeInChars(Result) && 562 "Size mismatch!"); 563 564 return Result; 565 } 566 567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 568 ConstExprEmitter *ExprEmitter, 569 llvm::Constant *Base, 570 InitListExpr *Updater, 571 QualType ValTy) { 572 ConstStructBuilder Builder(Emitter); 573 if (!Builder.Build(ExprEmitter, Base, Updater)) 574 return nullptr; 575 return Builder.Finalize(ValTy); 576 } 577 578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 579 InitListExpr *ILE, 580 QualType ValTy) { 581 ConstStructBuilder Builder(Emitter); 582 583 if (!Builder.Build(ILE)) 584 return nullptr; 585 586 return Builder.Finalize(ValTy); 587 } 588 589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 590 const APValue &Val, 591 QualType ValTy) { 592 ConstStructBuilder Builder(Emitter); 593 594 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 595 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 596 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 597 return nullptr; 598 599 return Builder.Finalize(ValTy); 600 } 601 602 603 //===----------------------------------------------------------------------===// 604 // ConstExprEmitter 605 //===----------------------------------------------------------------------===// 606 607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 608 CodeGenFunction *CGF, 609 const CompoundLiteralExpr *E) { 610 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 611 if (llvm::GlobalVariable *Addr = 612 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 613 return ConstantAddress(Addr, Align); 614 615 LangAS addressSpace = E->getType().getAddressSpace(); 616 617 ConstantEmitter emitter(CGM, CGF); 618 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 619 addressSpace, E->getType()); 620 if (!C) { 621 assert(!E->isFileScope() && 622 "file-scope compound literal did not have constant initializer!"); 623 return ConstantAddress::invalid(); 624 } 625 626 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 627 CGM.isTypeConstant(E->getType(), true), 628 llvm::GlobalValue::InternalLinkage, 629 C, ".compoundliteral", nullptr, 630 llvm::GlobalVariable::NotThreadLocal, 631 CGM.getContext().getTargetAddressSpace(addressSpace)); 632 emitter.finalize(GV); 633 GV->setAlignment(Align.getQuantity()); 634 CGM.setAddrOfConstantCompoundLiteral(E, GV); 635 return ConstantAddress(GV, Align); 636 } 637 638 static llvm::Constant * 639 EmitArrayConstant(CodeGenModule &CGM, const ConstantArrayType *DestType, 640 llvm::Type *CommonElementType, unsigned ArrayBound, 641 SmallVectorImpl<llvm::Constant *> &Elements, 642 llvm::Constant *Filler) { 643 // Figure out how long the initial prefix of non-zero elements is. 644 unsigned NonzeroLength = ArrayBound; 645 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 646 NonzeroLength = Elements.size(); 647 if (NonzeroLength == Elements.size()) { 648 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 649 --NonzeroLength; 650 } 651 652 if (NonzeroLength == 0) { 653 return llvm::ConstantAggregateZero::get( 654 CGM.getTypes().ConvertType(QualType(DestType, 0))); 655 } 656 657 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 658 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 659 if (TrailingZeroes >= 8) { 660 assert(Elements.size() >= NonzeroLength && 661 "missing initializer for non-zero element"); 662 663 // If all the elements had the same type up to the trailing zeroes, emit a 664 // struct of two arrays (the nonzero data and the zeroinitializer). 665 if (CommonElementType && NonzeroLength >= 8) { 666 llvm::Constant *Initial = llvm::ConstantArray::get( 667 llvm::ArrayType::get(CommonElementType, NonzeroLength), 668 makeArrayRef(Elements).take_front(NonzeroLength)); 669 Elements.resize(2); 670 Elements[0] = Initial; 671 } else { 672 Elements.resize(NonzeroLength + 1); 673 } 674 675 auto *FillerType = 676 CommonElementType 677 ? CommonElementType 678 : CGM.getTypes().ConvertType(DestType->getElementType()); 679 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 680 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 681 CommonElementType = nullptr; 682 } else if (Elements.size() != ArrayBound) { 683 // Otherwise pad to the right size with the filler if necessary. 684 Elements.resize(ArrayBound, Filler); 685 if (Filler->getType() != CommonElementType) 686 CommonElementType = nullptr; 687 } 688 689 // If all elements have the same type, just emit an array constant. 690 if (CommonElementType) 691 return llvm::ConstantArray::get( 692 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 693 694 // We have mixed types. Use a packed struct. 695 llvm::SmallVector<llvm::Type *, 16> Types; 696 Types.reserve(Elements.size()); 697 for (llvm::Constant *Elt : Elements) 698 Types.push_back(Elt->getType()); 699 llvm::StructType *SType = 700 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 701 return llvm::ConstantStruct::get(SType, Elements); 702 } 703 704 /// This class only needs to handle two cases: 705 /// 1) Literals (this is used by APValue emission to emit literals). 706 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 707 /// constant fold these types). 708 class ConstExprEmitter : 709 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 710 CodeGenModule &CGM; 711 ConstantEmitter &Emitter; 712 llvm::LLVMContext &VMContext; 713 public: 714 ConstExprEmitter(ConstantEmitter &emitter) 715 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 716 } 717 718 //===--------------------------------------------------------------------===// 719 // Visitor Methods 720 //===--------------------------------------------------------------------===// 721 722 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 723 return nullptr; 724 } 725 726 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 727 return Visit(PE->getSubExpr(), T); 728 } 729 730 llvm::Constant * 731 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 732 QualType T) { 733 return Visit(PE->getReplacement(), T); 734 } 735 736 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 737 QualType T) { 738 return Visit(GE->getResultExpr(), T); 739 } 740 741 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 742 return Visit(CE->getChosenSubExpr(), T); 743 } 744 745 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 746 return Visit(E->getInitializer(), T); 747 } 748 749 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 750 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 751 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 752 Expr *subExpr = E->getSubExpr(); 753 754 switch (E->getCastKind()) { 755 case CK_ToUnion: { 756 // GCC cast to union extension 757 assert(E->getType()->isUnionType() && 758 "Destination type is not union type!"); 759 760 auto field = E->getTargetUnionField(); 761 762 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 763 if (!C) return nullptr; 764 765 auto destTy = ConvertType(destType); 766 if (C->getType() == destTy) return C; 767 768 // Build a struct with the union sub-element as the first member, 769 // and padded to the appropriate size. 770 SmallVector<llvm::Constant*, 2> Elts; 771 SmallVector<llvm::Type*, 2> Types; 772 Elts.push_back(C); 773 Types.push_back(C->getType()); 774 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 775 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 776 777 assert(CurSize <= TotalSize && "Union size mismatch!"); 778 if (unsigned NumPadBytes = TotalSize - CurSize) { 779 llvm::Type *Ty = CGM.Int8Ty; 780 if (NumPadBytes > 1) 781 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 782 783 Elts.push_back(llvm::UndefValue::get(Ty)); 784 Types.push_back(Ty); 785 } 786 787 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 788 return llvm::ConstantStruct::get(STy, Elts); 789 } 790 791 case CK_AddressSpaceConversion: { 792 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 793 if (!C) return nullptr; 794 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 795 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 796 llvm::Type *destTy = ConvertType(E->getType()); 797 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 798 destAS, destTy); 799 } 800 801 case CK_LValueToRValue: 802 case CK_AtomicToNonAtomic: 803 case CK_NonAtomicToAtomic: 804 case CK_NoOp: 805 case CK_ConstructorConversion: 806 return Visit(subExpr, destType); 807 808 case CK_IntToOCLSampler: 809 llvm_unreachable("global sampler variables are not generated"); 810 811 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 812 813 case CK_BuiltinFnToFnPtr: 814 llvm_unreachable("builtin functions are handled elsewhere"); 815 816 case CK_ReinterpretMemberPointer: 817 case CK_DerivedToBaseMemberPointer: 818 case CK_BaseToDerivedMemberPointer: { 819 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 820 if (!C) return nullptr; 821 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 822 } 823 824 // These will never be supported. 825 case CK_ObjCObjectLValueCast: 826 case CK_ARCProduceObject: 827 case CK_ARCConsumeObject: 828 case CK_ARCReclaimReturnedObject: 829 case CK_ARCExtendBlockObject: 830 case CK_CopyAndAutoreleaseBlockObject: 831 return nullptr; 832 833 // These don't need to be handled here because Evaluate knows how to 834 // evaluate them in the cases where they can be folded. 835 case CK_BitCast: 836 case CK_ToVoid: 837 case CK_Dynamic: 838 case CK_LValueBitCast: 839 case CK_NullToMemberPointer: 840 case CK_UserDefinedConversion: 841 case CK_CPointerToObjCPointerCast: 842 case CK_BlockPointerToObjCPointerCast: 843 case CK_AnyPointerToBlockPointerCast: 844 case CK_ArrayToPointerDecay: 845 case CK_FunctionToPointerDecay: 846 case CK_BaseToDerived: 847 case CK_DerivedToBase: 848 case CK_UncheckedDerivedToBase: 849 case CK_MemberPointerToBoolean: 850 case CK_VectorSplat: 851 case CK_FloatingRealToComplex: 852 case CK_FloatingComplexToReal: 853 case CK_FloatingComplexToBoolean: 854 case CK_FloatingComplexCast: 855 case CK_FloatingComplexToIntegralComplex: 856 case CK_IntegralRealToComplex: 857 case CK_IntegralComplexToReal: 858 case CK_IntegralComplexToBoolean: 859 case CK_IntegralComplexCast: 860 case CK_IntegralComplexToFloatingComplex: 861 case CK_PointerToIntegral: 862 case CK_PointerToBoolean: 863 case CK_NullToPointer: 864 case CK_IntegralCast: 865 case CK_BooleanToSignedIntegral: 866 case CK_IntegralToPointer: 867 case CK_IntegralToBoolean: 868 case CK_IntegralToFloating: 869 case CK_FloatingToIntegral: 870 case CK_FloatingToBoolean: 871 case CK_FloatingCast: 872 case CK_FixedPointCast: 873 case CK_FixedPointToBoolean: 874 case CK_ZeroToOCLOpaqueType: 875 return nullptr; 876 } 877 llvm_unreachable("Invalid CastKind"); 878 } 879 880 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 881 return Visit(DAE->getExpr(), T); 882 } 883 884 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 885 // No need for a DefaultInitExprScope: we don't handle 'this' in a 886 // constant expression. 887 return Visit(DIE->getExpr(), T); 888 } 889 890 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 891 if (!E->cleanupsHaveSideEffects()) 892 return Visit(E->getSubExpr(), T); 893 return nullptr; 894 } 895 896 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 897 QualType T) { 898 return Visit(E->GetTemporaryExpr(), T); 899 } 900 901 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 902 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 903 assert(CAT && "can't emit array init for non-constant-bound array"); 904 unsigned NumInitElements = ILE->getNumInits(); 905 unsigned NumElements = CAT->getSize().getZExtValue(); 906 907 // Initialising an array requires us to automatically 908 // initialise any elements that have not been initialised explicitly 909 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 910 911 QualType EltType = CAT->getElementType(); 912 913 // Initialize remaining array elements. 914 llvm::Constant *fillC = nullptr; 915 if (Expr *filler = ILE->getArrayFiller()) { 916 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 917 if (!fillC) 918 return nullptr; 919 } 920 921 // Copy initializer elements. 922 SmallVector<llvm::Constant*, 16> Elts; 923 if (fillC && fillC->isNullValue()) 924 Elts.reserve(NumInitableElts + 1); 925 else 926 Elts.reserve(NumElements); 927 928 llvm::Type *CommonElementType = nullptr; 929 for (unsigned i = 0; i < NumInitableElts; ++i) { 930 Expr *Init = ILE->getInit(i); 931 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 932 if (!C) 933 return nullptr; 934 if (i == 0) 935 CommonElementType = C->getType(); 936 else if (C->getType() != CommonElementType) 937 CommonElementType = nullptr; 938 Elts.push_back(C); 939 } 940 941 return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts, 942 fillC); 943 } 944 945 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 946 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 947 } 948 949 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 950 QualType T) { 951 return CGM.EmitNullConstant(T); 952 } 953 954 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 955 if (ILE->isTransparent()) 956 return Visit(ILE->getInit(0), T); 957 958 if (ILE->getType()->isArrayType()) 959 return EmitArrayInitialization(ILE, T); 960 961 if (ILE->getType()->isRecordType()) 962 return EmitRecordInitialization(ILE, T); 963 964 return nullptr; 965 } 966 967 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 968 InitListExpr *Updater, 969 QualType destType) { 970 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 971 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 972 llvm::Type *ElemType = AType->getElementType(); 973 974 unsigned NumInitElements = Updater->getNumInits(); 975 unsigned NumElements = AType->getNumElements(); 976 977 std::vector<llvm::Constant *> Elts; 978 Elts.reserve(NumElements); 979 980 QualType destElemType = destAT->getElementType(); 981 982 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 983 for (unsigned i = 0; i != NumElements; ++i) 984 Elts.push_back(DataArray->getElementAsConstant(i)); 985 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 986 for (unsigned i = 0; i != NumElements; ++i) 987 Elts.push_back(Array->getOperand(i)); 988 else 989 return nullptr; // FIXME: other array types not implemented 990 991 llvm::Constant *fillC = nullptr; 992 if (Expr *filler = Updater->getArrayFiller()) 993 if (!isa<NoInitExpr>(filler)) 994 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 995 bool RewriteType = (fillC && fillC->getType() != ElemType); 996 997 for (unsigned i = 0; i != NumElements; ++i) { 998 Expr *Init = nullptr; 999 if (i < NumInitElements) 1000 Init = Updater->getInit(i); 1001 1002 if (!Init && fillC) 1003 Elts[i] = fillC; 1004 else if (!Init || isa<NoInitExpr>(Init)) 1005 ; // Do nothing. 1006 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1007 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 1008 else 1009 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 1010 1011 if (!Elts[i]) 1012 return nullptr; 1013 RewriteType |= (Elts[i]->getType() != ElemType); 1014 } 1015 1016 if (RewriteType) { 1017 std::vector<llvm::Type *> Types; 1018 Types.reserve(NumElements); 1019 for (unsigned i = 0; i != NumElements; ++i) 1020 Types.push_back(Elts[i]->getType()); 1021 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 1022 Types, true); 1023 return llvm::ConstantStruct::get(SType, Elts); 1024 } 1025 1026 return llvm::ConstantArray::get(AType, Elts); 1027 } 1028 1029 if (destType->isRecordType()) 1030 return ConstStructBuilder::BuildStruct(Emitter, this, Base, Updater, 1031 destType); 1032 1033 return nullptr; 1034 } 1035 1036 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1037 QualType destType) { 1038 auto C = Visit(E->getBase(), destType); 1039 if (!C) return nullptr; 1040 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 1041 } 1042 1043 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1044 if (!E->getConstructor()->isTrivial()) 1045 return nullptr; 1046 1047 // FIXME: We should not have to call getBaseElementType here. 1048 const RecordType *RT = 1049 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 1050 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1051 1052 // If the class doesn't have a trivial destructor, we can't emit it as a 1053 // constant expr. 1054 if (!RD->hasTrivialDestructor()) 1055 return nullptr; 1056 1057 // Only copy and default constructors can be trivial. 1058 1059 1060 if (E->getNumArgs()) { 1061 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1062 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1063 "trivial ctor has argument but isn't a copy/move ctor"); 1064 1065 Expr *Arg = E->getArg(0); 1066 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1067 "argument to copy ctor is of wrong type"); 1068 1069 return Visit(Arg, Ty); 1070 } 1071 1072 return CGM.EmitNullConstant(Ty); 1073 } 1074 1075 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1076 return CGM.GetConstantArrayFromStringLiteral(E); 1077 } 1078 1079 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1080 // This must be an @encode initializing an array in a static initializer. 1081 // Don't emit it as the address of the string, emit the string data itself 1082 // as an inline array. 1083 std::string Str; 1084 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1085 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1086 1087 // Resize the string to the right size, adding zeros at the end, or 1088 // truncating as needed. 1089 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1090 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1091 } 1092 1093 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1094 return Visit(E->getSubExpr(), T); 1095 } 1096 1097 // Utility methods 1098 llvm::Type *ConvertType(QualType T) { 1099 return CGM.getTypes().ConvertType(T); 1100 } 1101 }; 1102 1103 } // end anonymous namespace. 1104 1105 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1106 llvm::Constant *Base, 1107 InitListExpr *Updater) { 1108 assert(Base && "base expression should not be empty"); 1109 1110 QualType ExprType = Updater->getType(); 1111 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1112 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1113 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1114 cast<llvm::StructType>(Base->getType())); 1115 unsigned FieldNo = -1; 1116 unsigned ElementNo = 0; 1117 1118 // Bail out if we have base classes. We could support these, but they only 1119 // arise in C++1z where we will have already constant folded most interesting 1120 // cases. FIXME: There are still a few more cases we can handle this way. 1121 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1122 if (CXXRD->getNumBases()) 1123 return false; 1124 1125 for (FieldDecl *Field : RD->fields()) { 1126 ++FieldNo; 1127 1128 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1129 continue; 1130 1131 // Skip anonymous bitfields. 1132 if (Field->isUnnamedBitfield()) 1133 continue; 1134 1135 llvm::Constant *EltInit = Base->getAggregateElement(ElementNo); 1136 1137 // Bail out if the type of the ConstantStruct does not have the same layout 1138 // as the type of the InitListExpr. 1139 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1140 Layout.getFieldOffset(ElementNo) != 1141 BaseLayout->getElementOffsetInBits(ElementNo)) 1142 return false; 1143 1144 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1145 // we use values from the base expression. 1146 Expr *Init = nullptr; 1147 if (ElementNo < Updater->getNumInits()) 1148 Init = Updater->getInit(ElementNo); 1149 1150 if (!Init || isa<NoInitExpr>(Init)) 1151 ; // Do nothing. 1152 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1153 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1154 Field->getType()); 1155 else 1156 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1157 1158 ++ElementNo; 1159 1160 if (!EltInit) 1161 return false; 1162 1163 if (!Field->isBitField()) 1164 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1165 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1166 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1167 else 1168 // Initializing a bitfield with a non-trivial constant? 1169 return false; 1170 } 1171 1172 return true; 1173 } 1174 1175 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1176 AbstractState saved) { 1177 Abstract = saved.OldValue; 1178 1179 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1180 "created a placeholder while doing an abstract emission?"); 1181 1182 // No validation necessary for now. 1183 // No cleanup to do for now. 1184 return C; 1185 } 1186 1187 llvm::Constant * 1188 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1189 auto state = pushAbstract(); 1190 auto C = tryEmitPrivateForVarInit(D); 1191 return validateAndPopAbstract(C, state); 1192 } 1193 1194 llvm::Constant * 1195 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1196 auto state = pushAbstract(); 1197 auto C = tryEmitPrivate(E, destType); 1198 return validateAndPopAbstract(C, state); 1199 } 1200 1201 llvm::Constant * 1202 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1203 auto state = pushAbstract(); 1204 auto C = tryEmitPrivate(value, destType); 1205 return validateAndPopAbstract(C, state); 1206 } 1207 1208 llvm::Constant * 1209 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1210 auto state = pushAbstract(); 1211 auto C = tryEmitPrivate(E, destType); 1212 C = validateAndPopAbstract(C, state); 1213 if (!C) { 1214 CGM.Error(E->getExprLoc(), 1215 "internal error: could not emit constant value \"abstractly\""); 1216 C = CGM.EmitNullConstant(destType); 1217 } 1218 return C; 1219 } 1220 1221 llvm::Constant * 1222 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1223 QualType destType) { 1224 auto state = pushAbstract(); 1225 auto C = tryEmitPrivate(value, destType); 1226 C = validateAndPopAbstract(C, state); 1227 if (!C) { 1228 CGM.Error(loc, 1229 "internal error: could not emit constant value \"abstractly\""); 1230 C = CGM.EmitNullConstant(destType); 1231 } 1232 return C; 1233 } 1234 1235 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1236 initializeNonAbstract(D.getType().getAddressSpace()); 1237 return markIfFailed(tryEmitPrivateForVarInit(D)); 1238 } 1239 1240 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1241 LangAS destAddrSpace, 1242 QualType destType) { 1243 initializeNonAbstract(destAddrSpace); 1244 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1245 } 1246 1247 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1248 LangAS destAddrSpace, 1249 QualType destType) { 1250 initializeNonAbstract(destAddrSpace); 1251 auto C = tryEmitPrivateForMemory(value, destType); 1252 assert(C && "couldn't emit constant value non-abstractly?"); 1253 return C; 1254 } 1255 1256 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1257 assert(!Abstract && "cannot get current address for abstract constant"); 1258 1259 1260 1261 // Make an obviously ill-formed global that should blow up compilation 1262 // if it survives. 1263 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1264 llvm::GlobalValue::PrivateLinkage, 1265 /*init*/ nullptr, 1266 /*name*/ "", 1267 /*before*/ nullptr, 1268 llvm::GlobalVariable::NotThreadLocal, 1269 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1270 1271 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1272 1273 return global; 1274 } 1275 1276 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1277 llvm::GlobalValue *placeholder) { 1278 assert(!PlaceholderAddresses.empty()); 1279 assert(PlaceholderAddresses.back().first == nullptr); 1280 assert(PlaceholderAddresses.back().second == placeholder); 1281 PlaceholderAddresses.back().first = signal; 1282 } 1283 1284 namespace { 1285 struct ReplacePlaceholders { 1286 CodeGenModule &CGM; 1287 1288 /// The base address of the global. 1289 llvm::Constant *Base; 1290 llvm::Type *BaseValueTy = nullptr; 1291 1292 /// The placeholder addresses that were registered during emission. 1293 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1294 1295 /// The locations of the placeholder signals. 1296 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1297 1298 /// The current index stack. We use a simple unsigned stack because 1299 /// we assume that placeholders will be relatively sparse in the 1300 /// initializer, but we cache the index values we find just in case. 1301 llvm::SmallVector<unsigned, 8> Indices; 1302 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1303 1304 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1305 ArrayRef<std::pair<llvm::Constant*, 1306 llvm::GlobalVariable*>> addresses) 1307 : CGM(CGM), Base(base), 1308 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1309 } 1310 1311 void replaceInInitializer(llvm::Constant *init) { 1312 // Remember the type of the top-most initializer. 1313 BaseValueTy = init->getType(); 1314 1315 // Initialize the stack. 1316 Indices.push_back(0); 1317 IndexValues.push_back(nullptr); 1318 1319 // Recurse into the initializer. 1320 findLocations(init); 1321 1322 // Check invariants. 1323 assert(IndexValues.size() == Indices.size() && "mismatch"); 1324 assert(Indices.size() == 1 && "didn't pop all indices"); 1325 1326 // Do the replacement; this basically invalidates 'init'. 1327 assert(Locations.size() == PlaceholderAddresses.size() && 1328 "missed a placeholder?"); 1329 1330 // We're iterating over a hashtable, so this would be a source of 1331 // non-determinism in compiler output *except* that we're just 1332 // messing around with llvm::Constant structures, which never itself 1333 // does anything that should be visible in compiler output. 1334 for (auto &entry : Locations) { 1335 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1336 entry.first->replaceAllUsesWith(entry.second); 1337 entry.first->eraseFromParent(); 1338 } 1339 } 1340 1341 private: 1342 void findLocations(llvm::Constant *init) { 1343 // Recurse into aggregates. 1344 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1345 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1346 Indices.push_back(i); 1347 IndexValues.push_back(nullptr); 1348 1349 findLocations(agg->getOperand(i)); 1350 1351 IndexValues.pop_back(); 1352 Indices.pop_back(); 1353 } 1354 return; 1355 } 1356 1357 // Otherwise, check for registered constants. 1358 while (true) { 1359 auto it = PlaceholderAddresses.find(init); 1360 if (it != PlaceholderAddresses.end()) { 1361 setLocation(it->second); 1362 break; 1363 } 1364 1365 // Look through bitcasts or other expressions. 1366 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1367 init = expr->getOperand(0); 1368 } else { 1369 break; 1370 } 1371 } 1372 } 1373 1374 void setLocation(llvm::GlobalVariable *placeholder) { 1375 assert(Locations.find(placeholder) == Locations.end() && 1376 "already found location for placeholder!"); 1377 1378 // Lazily fill in IndexValues with the values from Indices. 1379 // We do this in reverse because we should always have a strict 1380 // prefix of indices from the start. 1381 assert(Indices.size() == IndexValues.size()); 1382 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1383 if (IndexValues[i]) { 1384 #ifndef NDEBUG 1385 for (size_t j = 0; j != i + 1; ++j) { 1386 assert(IndexValues[j] && 1387 isa<llvm::ConstantInt>(IndexValues[j]) && 1388 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1389 == Indices[j]); 1390 } 1391 #endif 1392 break; 1393 } 1394 1395 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1396 } 1397 1398 // Form a GEP and then bitcast to the placeholder type so that the 1399 // replacement will succeed. 1400 llvm::Constant *location = 1401 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1402 Base, IndexValues); 1403 location = llvm::ConstantExpr::getBitCast(location, 1404 placeholder->getType()); 1405 1406 Locations.insert({placeholder, location}); 1407 } 1408 }; 1409 } 1410 1411 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1412 assert(InitializedNonAbstract && 1413 "finalizing emitter that was used for abstract emission?"); 1414 assert(!Finalized && "finalizing emitter multiple times"); 1415 assert(global->getInitializer()); 1416 1417 // Note that we might also be Failed. 1418 Finalized = true; 1419 1420 if (!PlaceholderAddresses.empty()) { 1421 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1422 .replaceInInitializer(global->getInitializer()); 1423 PlaceholderAddresses.clear(); // satisfy 1424 } 1425 } 1426 1427 ConstantEmitter::~ConstantEmitter() { 1428 assert((!InitializedNonAbstract || Finalized || Failed) && 1429 "not finalized after being initialized for non-abstract emission"); 1430 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1431 } 1432 1433 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1434 if (auto AT = type->getAs<AtomicType>()) { 1435 return CGM.getContext().getQualifiedType(AT->getValueType(), 1436 type.getQualifiers()); 1437 } 1438 return type; 1439 } 1440 1441 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1442 // Make a quick check if variable can be default NULL initialized 1443 // and avoid going through rest of code which may do, for c++11, 1444 // initialization of memory to all NULLs. 1445 if (!D.hasLocalStorage()) { 1446 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1447 if (Ty->isRecordType()) 1448 if (const CXXConstructExpr *E = 1449 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1450 const CXXConstructorDecl *CD = E->getConstructor(); 1451 if (CD->isTrivial() && CD->isDefaultConstructor()) 1452 return CGM.EmitNullConstant(D.getType()); 1453 } 1454 } 1455 1456 QualType destType = D.getType(); 1457 1458 // Try to emit the initializer. Note that this can allow some things that 1459 // are not allowed by tryEmitPrivateForMemory alone. 1460 if (auto value = D.evaluateValue()) { 1461 return tryEmitPrivateForMemory(*value, destType); 1462 } 1463 1464 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1465 // reference is a constant expression, and the reference binds to a temporary, 1466 // then constant initialization is performed. ConstExprEmitter will 1467 // incorrectly emit a prvalue constant in this case, and the calling code 1468 // interprets that as the (pointer) value of the reference, rather than the 1469 // desired value of the referee. 1470 if (destType->isReferenceType()) 1471 return nullptr; 1472 1473 const Expr *E = D.getInit(); 1474 assert(E && "No initializer to emit"); 1475 1476 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1477 auto C = 1478 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1479 return (C ? emitForMemory(C, destType) : nullptr); 1480 } 1481 1482 llvm::Constant * 1483 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1484 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1485 auto C = tryEmitAbstract(E, nonMemoryDestType); 1486 return (C ? emitForMemory(C, destType) : nullptr); 1487 } 1488 1489 llvm::Constant * 1490 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1491 QualType destType) { 1492 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1493 auto C = tryEmitAbstract(value, nonMemoryDestType); 1494 return (C ? emitForMemory(C, destType) : nullptr); 1495 } 1496 1497 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1498 QualType destType) { 1499 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1500 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1501 return (C ? emitForMemory(C, destType) : nullptr); 1502 } 1503 1504 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1505 QualType destType) { 1506 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1507 auto C = tryEmitPrivate(value, nonMemoryDestType); 1508 return (C ? emitForMemory(C, destType) : nullptr); 1509 } 1510 1511 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1512 llvm::Constant *C, 1513 QualType destType) { 1514 // For an _Atomic-qualified constant, we may need to add tail padding. 1515 if (auto AT = destType->getAs<AtomicType>()) { 1516 QualType destValueType = AT->getValueType(); 1517 C = emitForMemory(CGM, C, destValueType); 1518 1519 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1520 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1521 if (innerSize == outerSize) 1522 return C; 1523 1524 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1525 llvm::Constant *elts[] = { 1526 C, 1527 llvm::ConstantAggregateZero::get( 1528 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1529 }; 1530 return llvm::ConstantStruct::getAnon(elts); 1531 } 1532 1533 // Zero-extend bool. 1534 if (C->getType()->isIntegerTy(1)) { 1535 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1536 return llvm::ConstantExpr::getZExt(C, boolTy); 1537 } 1538 1539 return C; 1540 } 1541 1542 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1543 QualType destType) { 1544 Expr::EvalResult Result; 1545 1546 bool Success = false; 1547 1548 if (destType->isReferenceType()) 1549 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1550 else 1551 Success = E->EvaluateAsRValue(Result, CGM.getContext()); 1552 1553 llvm::Constant *C; 1554 if (Success && !Result.HasSideEffects) 1555 C = tryEmitPrivate(Result.Val, destType); 1556 else 1557 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1558 1559 return C; 1560 } 1561 1562 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1563 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1564 } 1565 1566 namespace { 1567 /// A struct which can be used to peephole certain kinds of finalization 1568 /// that normally happen during l-value emission. 1569 struct ConstantLValue { 1570 llvm::Constant *Value; 1571 bool HasOffsetApplied; 1572 1573 /*implicit*/ ConstantLValue(llvm::Constant *value, 1574 bool hasOffsetApplied = false) 1575 : Value(value), HasOffsetApplied(false) {} 1576 1577 /*implicit*/ ConstantLValue(ConstantAddress address) 1578 : ConstantLValue(address.getPointer()) {} 1579 }; 1580 1581 /// A helper class for emitting constant l-values. 1582 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1583 ConstantLValue> { 1584 CodeGenModule &CGM; 1585 ConstantEmitter &Emitter; 1586 const APValue &Value; 1587 QualType DestType; 1588 1589 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1590 friend StmtVisitorBase; 1591 1592 public: 1593 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1594 QualType destType) 1595 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1596 1597 llvm::Constant *tryEmit(); 1598 1599 private: 1600 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1601 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1602 1603 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1604 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1605 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1606 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1607 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1608 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1609 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1610 ConstantLValue VisitCallExpr(const CallExpr *E); 1611 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1612 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1613 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1614 ConstantLValue VisitMaterializeTemporaryExpr( 1615 const MaterializeTemporaryExpr *E); 1616 1617 bool hasNonZeroOffset() const { 1618 return !Value.getLValueOffset().isZero(); 1619 } 1620 1621 /// Return the value offset. 1622 llvm::Constant *getOffset() { 1623 return llvm::ConstantInt::get(CGM.Int64Ty, 1624 Value.getLValueOffset().getQuantity()); 1625 } 1626 1627 /// Apply the value offset to the given constant. 1628 llvm::Constant *applyOffset(llvm::Constant *C) { 1629 if (!hasNonZeroOffset()) 1630 return C; 1631 1632 llvm::Type *origPtrTy = C->getType(); 1633 unsigned AS = origPtrTy->getPointerAddressSpace(); 1634 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1635 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1636 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1637 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1638 return C; 1639 } 1640 }; 1641 1642 } 1643 1644 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1645 const APValue::LValueBase &base = Value.getLValueBase(); 1646 1647 // Certain special array initializers are represented in APValue 1648 // as l-values referring to the base expression which generates the 1649 // array. This happens with e.g. string literals. These should 1650 // probably just get their own representation kind in APValue. 1651 if (DestType->isArrayType()) { 1652 assert(!hasNonZeroOffset() && "offset on array initializer"); 1653 auto expr = const_cast<Expr*>(base.get<const Expr*>()); 1654 return ConstExprEmitter(Emitter).Visit(expr, DestType); 1655 } 1656 1657 // Otherwise, the destination type should be a pointer or reference 1658 // type, but it might also be a cast thereof. 1659 // 1660 // FIXME: the chain of casts required should be reflected in the APValue. 1661 // We need this in order to correctly handle things like a ptrtoint of a 1662 // non-zero null pointer and addrspace casts that aren't trivially 1663 // represented in LLVM IR. 1664 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1665 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1666 1667 // If there's no base at all, this is a null or absolute pointer, 1668 // possibly cast back to an integer type. 1669 if (!base) { 1670 return tryEmitAbsolute(destTy); 1671 } 1672 1673 // Otherwise, try to emit the base. 1674 ConstantLValue result = tryEmitBase(base); 1675 1676 // If that failed, we're done. 1677 llvm::Constant *value = result.Value; 1678 if (!value) return nullptr; 1679 1680 // Apply the offset if necessary and not already done. 1681 if (!result.HasOffsetApplied) { 1682 value = applyOffset(value); 1683 } 1684 1685 // Convert to the appropriate type; this could be an lvalue for 1686 // an integer. FIXME: performAddrSpaceCast 1687 if (isa<llvm::PointerType>(destTy)) 1688 return llvm::ConstantExpr::getPointerCast(value, destTy); 1689 1690 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1691 } 1692 1693 /// Try to emit an absolute l-value, such as a null pointer or an integer 1694 /// bitcast to pointer type. 1695 llvm::Constant * 1696 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1697 auto offset = getOffset(); 1698 1699 // If we're producing a pointer, this is easy. 1700 if (auto destPtrTy = cast<llvm::PointerType>(destTy)) { 1701 if (Value.isNullPointer()) { 1702 // FIXME: integer offsets from non-zero null pointers. 1703 return CGM.getNullPointer(destPtrTy, DestType); 1704 } 1705 1706 // Convert the integer to a pointer-sized integer before converting it 1707 // to a pointer. 1708 // FIXME: signedness depends on the original integer type. 1709 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1710 llvm::Constant *C = offset; 1711 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1712 /*isSigned*/ false); 1713 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1714 return C; 1715 } 1716 1717 // Otherwise, we're basically returning an integer constant. 1718 1719 // FIXME: this does the wrong thing with ptrtoint of a null pointer, 1720 // but since we don't know the original pointer type, there's not much 1721 // we can do about it. 1722 1723 auto C = getOffset(); 1724 C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false); 1725 return C; 1726 } 1727 1728 ConstantLValue 1729 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1730 // Handle values. 1731 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1732 if (D->hasAttr<WeakRefAttr>()) 1733 return CGM.GetWeakRefReference(D).getPointer(); 1734 1735 if (auto FD = dyn_cast<FunctionDecl>(D)) 1736 return CGM.GetAddrOfFunction(FD); 1737 1738 if (auto VD = dyn_cast<VarDecl>(D)) { 1739 // We can never refer to a variable with local storage. 1740 if (!VD->hasLocalStorage()) { 1741 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1742 return CGM.GetAddrOfGlobalVar(VD); 1743 1744 if (VD->isLocalVarDecl()) { 1745 return CGM.getOrCreateStaticVarDecl( 1746 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1747 } 1748 } 1749 } 1750 1751 return nullptr; 1752 } 1753 1754 // Otherwise, it must be an expression. 1755 return Visit(base.get<const Expr*>()); 1756 } 1757 1758 ConstantLValue 1759 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1760 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1761 } 1762 1763 ConstantLValue 1764 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1765 return CGM.GetAddrOfConstantStringFromLiteral(E); 1766 } 1767 1768 ConstantLValue 1769 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1770 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1771 } 1772 1773 ConstantLValue 1774 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1775 auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); 1776 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType())); 1777 } 1778 1779 ConstantLValue 1780 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1781 if (auto CGF = Emitter.CGF) { 1782 LValue Res = CGF->EmitPredefinedLValue(E); 1783 return cast<ConstantAddress>(Res.getAddress()); 1784 } 1785 1786 auto kind = E->getIdentKind(); 1787 if (kind == PredefinedExpr::PrettyFunction) { 1788 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1789 } 1790 1791 return CGM.GetAddrOfConstantCString("", ".tmp"); 1792 } 1793 1794 ConstantLValue 1795 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1796 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1797 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1798 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1799 CGM.getTypes().ConvertType(E->getType())); 1800 return Ptr; 1801 } 1802 1803 ConstantLValue 1804 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1805 unsigned builtin = E->getBuiltinCallee(); 1806 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1807 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1808 return nullptr; 1809 1810 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1811 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1812 return CGM.getObjCRuntime().GenerateConstantString(literal); 1813 } else { 1814 // FIXME: need to deal with UCN conversion issues. 1815 return CGM.GetAddrOfConstantCFString(literal); 1816 } 1817 } 1818 1819 ConstantLValue 1820 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1821 StringRef functionName; 1822 if (auto CGF = Emitter.CGF) 1823 functionName = CGF->CurFn->getName(); 1824 else 1825 functionName = "global"; 1826 1827 return CGM.GetAddrOfGlobalBlock(E, functionName); 1828 } 1829 1830 ConstantLValue 1831 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1832 QualType T; 1833 if (E->isTypeOperand()) 1834 T = E->getTypeOperand(CGM.getContext()); 1835 else 1836 T = E->getExprOperand()->getType(); 1837 return CGM.GetAddrOfRTTIDescriptor(T); 1838 } 1839 1840 ConstantLValue 1841 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1842 return CGM.GetAddrOfUuidDescriptor(E); 1843 } 1844 1845 ConstantLValue 1846 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1847 const MaterializeTemporaryExpr *E) { 1848 assert(E->getStorageDuration() == SD_Static); 1849 SmallVector<const Expr *, 2> CommaLHSs; 1850 SmallVector<SubobjectAdjustment, 2> Adjustments; 1851 const Expr *Inner = E->GetTemporaryExpr() 1852 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1853 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1854 } 1855 1856 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1857 QualType DestType) { 1858 switch (Value.getKind()) { 1859 case APValue::Uninitialized: 1860 llvm_unreachable("Constant expressions should be initialized."); 1861 case APValue::LValue: 1862 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 1863 case APValue::Int: 1864 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1865 case APValue::ComplexInt: { 1866 llvm::Constant *Complex[2]; 1867 1868 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1869 Value.getComplexIntReal()); 1870 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1871 Value.getComplexIntImag()); 1872 1873 // FIXME: the target may want to specify that this is packed. 1874 llvm::StructType *STy = 1875 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1876 return llvm::ConstantStruct::get(STy, Complex); 1877 } 1878 case APValue::Float: { 1879 const llvm::APFloat &Init = Value.getFloat(); 1880 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1881 !CGM.getContext().getLangOpts().NativeHalfType && 1882 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1883 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1884 Init.bitcastToAPInt()); 1885 else 1886 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1887 } 1888 case APValue::ComplexFloat: { 1889 llvm::Constant *Complex[2]; 1890 1891 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1892 Value.getComplexFloatReal()); 1893 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1894 Value.getComplexFloatImag()); 1895 1896 // FIXME: the target may want to specify that this is packed. 1897 llvm::StructType *STy = 1898 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1899 return llvm::ConstantStruct::get(STy, Complex); 1900 } 1901 case APValue::Vector: { 1902 unsigned NumElts = Value.getVectorLength(); 1903 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1904 1905 for (unsigned I = 0; I != NumElts; ++I) { 1906 const APValue &Elt = Value.getVectorElt(I); 1907 if (Elt.isInt()) 1908 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1909 else if (Elt.isFloat()) 1910 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1911 else 1912 llvm_unreachable("unsupported vector element type"); 1913 } 1914 return llvm::ConstantVector::get(Inits); 1915 } 1916 case APValue::AddrLabelDiff: { 1917 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1918 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1919 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1920 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1921 if (!LHS || !RHS) return nullptr; 1922 1923 // Compute difference 1924 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1925 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1926 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1927 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1928 1929 // LLVM is a bit sensitive about the exact format of the 1930 // address-of-label difference; make sure to truncate after 1931 // the subtraction. 1932 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1933 } 1934 case APValue::Struct: 1935 case APValue::Union: 1936 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1937 case APValue::Array: { 1938 const ConstantArrayType *CAT = 1939 CGM.getContext().getAsConstantArrayType(DestType); 1940 unsigned NumElements = Value.getArraySize(); 1941 unsigned NumInitElts = Value.getArrayInitializedElts(); 1942 1943 // Emit array filler, if there is one. 1944 llvm::Constant *Filler = nullptr; 1945 if (Value.hasArrayFiller()) { 1946 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1947 CAT->getElementType()); 1948 if (!Filler) 1949 return nullptr; 1950 } 1951 1952 // Emit initializer elements. 1953 SmallVector<llvm::Constant*, 16> Elts; 1954 if (Filler && Filler->isNullValue()) 1955 Elts.reserve(NumInitElts + 1); 1956 else 1957 Elts.reserve(NumElements); 1958 1959 llvm::Type *CommonElementType = nullptr; 1960 for (unsigned I = 0; I < NumInitElts; ++I) { 1961 llvm::Constant *C = tryEmitPrivateForMemory( 1962 Value.getArrayInitializedElt(I), CAT->getElementType()); 1963 if (!C) return nullptr; 1964 1965 if (I == 0) 1966 CommonElementType = C->getType(); 1967 else if (C->getType() != CommonElementType) 1968 CommonElementType = nullptr; 1969 Elts.push_back(C); 1970 } 1971 1972 // This means that the array type is probably "IncompleteType" or some 1973 // type that is not ConstantArray. 1974 if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) { 1975 const ArrayType *AT = CGM.getContext().getAsArrayType(DestType); 1976 CommonElementType = CGM.getTypes().ConvertType(AT->getElementType()); 1977 llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType, 1978 NumElements); 1979 return llvm::ConstantAggregateZero::get(AType); 1980 } 1981 1982 return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts, 1983 Filler); 1984 } 1985 case APValue::MemberPointer: 1986 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1987 } 1988 llvm_unreachable("Unknown APValue kind"); 1989 } 1990 1991 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1992 const CompoundLiteralExpr *E) { 1993 return EmittedCompoundLiterals.lookup(E); 1994 } 1995 1996 void CodeGenModule::setAddrOfConstantCompoundLiteral( 1997 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 1998 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 1999 (void)Ok; 2000 assert(Ok && "CLE has already been emitted!"); 2001 } 2002 2003 ConstantAddress 2004 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2005 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2006 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2007 } 2008 2009 llvm::Constant * 2010 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2011 // Member pointer constants always have a very particular form. 2012 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2013 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2014 2015 // A member function pointer. 2016 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2017 return getCXXABI().EmitMemberFunctionPointer(method); 2018 2019 // Otherwise, a member data pointer. 2020 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2021 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2022 return getCXXABI().EmitMemberDataPointer(type, chars); 2023 } 2024 2025 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2026 llvm::Type *baseType, 2027 const CXXRecordDecl *base); 2028 2029 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2030 const RecordDecl *record, 2031 bool asCompleteObject) { 2032 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2033 llvm::StructType *structure = 2034 (asCompleteObject ? layout.getLLVMType() 2035 : layout.getBaseSubobjectLLVMType()); 2036 2037 unsigned numElements = structure->getNumElements(); 2038 std::vector<llvm::Constant *> elements(numElements); 2039 2040 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2041 // Fill in all the bases. 2042 if (CXXR) { 2043 for (const auto &I : CXXR->bases()) { 2044 if (I.isVirtual()) { 2045 // Ignore virtual bases; if we're laying out for a complete 2046 // object, we'll lay these out later. 2047 continue; 2048 } 2049 2050 const CXXRecordDecl *base = 2051 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2052 2053 // Ignore empty bases. 2054 if (base->isEmpty() || 2055 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2056 .isZero()) 2057 continue; 2058 2059 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2060 llvm::Type *baseType = structure->getElementType(fieldIndex); 2061 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2062 } 2063 } 2064 2065 // Fill in all the fields. 2066 for (const auto *Field : record->fields()) { 2067 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2068 // will fill in later.) 2069 if (!Field->isBitField()) { 2070 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2071 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2072 } 2073 2074 // For unions, stop after the first named field. 2075 if (record->isUnion()) { 2076 if (Field->getIdentifier()) 2077 break; 2078 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2079 if (FieldRD->findFirstNamedDataMember()) 2080 break; 2081 } 2082 } 2083 2084 // Fill in the virtual bases, if we're working with the complete object. 2085 if (CXXR && asCompleteObject) { 2086 for (const auto &I : CXXR->vbases()) { 2087 const CXXRecordDecl *base = 2088 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2089 2090 // Ignore empty bases. 2091 if (base->isEmpty()) 2092 continue; 2093 2094 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2095 2096 // We might have already laid this field out. 2097 if (elements[fieldIndex]) continue; 2098 2099 llvm::Type *baseType = structure->getElementType(fieldIndex); 2100 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2101 } 2102 } 2103 2104 // Now go through all other fields and zero them out. 2105 for (unsigned i = 0; i != numElements; ++i) { 2106 if (!elements[i]) 2107 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2108 } 2109 2110 return llvm::ConstantStruct::get(structure, elements); 2111 } 2112 2113 /// Emit the null constant for a base subobject. 2114 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2115 llvm::Type *baseType, 2116 const CXXRecordDecl *base) { 2117 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2118 2119 // Just zero out bases that don't have any pointer to data members. 2120 if (baseLayout.isZeroInitializableAsBase()) 2121 return llvm::Constant::getNullValue(baseType); 2122 2123 // Otherwise, we can just use its null constant. 2124 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2125 } 2126 2127 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2128 QualType T) { 2129 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2130 } 2131 2132 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2133 if (T->getAs<PointerType>()) 2134 return getNullPointer( 2135 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2136 2137 if (getTypes().isZeroInitializable(T)) 2138 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2139 2140 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2141 llvm::ArrayType *ATy = 2142 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2143 2144 QualType ElementTy = CAT->getElementType(); 2145 2146 llvm::Constant *Element = 2147 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2148 unsigned NumElements = CAT->getSize().getZExtValue(); 2149 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2150 return llvm::ConstantArray::get(ATy, Array); 2151 } 2152 2153 if (const RecordType *RT = T->getAs<RecordType>()) 2154 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2155 2156 assert(T->isMemberDataPointerType() && 2157 "Should only see pointers to data members here!"); 2158 2159 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2160 } 2161 2162 llvm::Constant * 2163 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2164 return ::EmitNullConstant(*this, Record, false); 2165 } 2166