1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCXXABI.h" 17 #include "CGObjCRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "clang/AST/APValue.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/Builtins.h" 24 #include "llvm/Constants.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // ConstStructBuilder 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class ConstStructBuilder { 37 CodeGenModule &CGM; 38 CodeGenFunction *CGF; 39 40 bool Packed; 41 CharUnits NextFieldOffsetInChars; 42 CharUnits LLVMStructAlignment; 43 SmallVector<llvm::Constant *, 32> Elements; 44 public: 45 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 46 InitListExpr *ILE); 47 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 48 const APValue &Value, QualType ValTy); 49 50 private: 51 ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) 52 : CGM(CGM), CGF(CGF), Packed(false), 53 NextFieldOffsetInChars(CharUnits::Zero()), 54 LLVMStructAlignment(CharUnits::One()) { } 55 56 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 57 llvm::Constant *InitExpr); 58 59 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 60 llvm::ConstantInt *InitExpr); 61 62 void AppendPadding(CharUnits PadSize); 63 64 void AppendTailPadding(CharUnits RecordSize); 65 66 void ConvertStructToPacked(); 67 68 bool Build(InitListExpr *ILE); 69 void Build(const APValue &Val, QualType ValTy); 70 llvm::Constant *Finalize(QualType Ty); 71 72 CharUnits getAlignment(const llvm::Constant *C) const { 73 if (Packed) return CharUnits::One(); 74 return CharUnits::fromQuantity( 75 CGM.getTargetData().getABITypeAlignment(C->getType())); 76 } 77 78 CharUnits getSizeInChars(const llvm::Constant *C) const { 79 return CharUnits::fromQuantity( 80 CGM.getTargetData().getTypeAllocSize(C->getType())); 81 } 82 }; 83 84 void ConstStructBuilder:: 85 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 86 llvm::Constant *InitCst) { 87 88 const ASTContext &Context = CGM.getContext(); 89 90 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 91 92 assert(NextFieldOffsetInChars <= FieldOffsetInChars 93 && "Field offset mismatch!"); 94 95 CharUnits FieldAlignment = getAlignment(InitCst); 96 97 // Round up the field offset to the alignment of the field type. 98 CharUnits AlignedNextFieldOffsetInChars = 99 NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment); 100 101 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 102 assert(!Packed && "Alignment is wrong even with a packed struct!"); 103 104 // Convert the struct to a packed struct. 105 ConvertStructToPacked(); 106 107 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 108 } 109 110 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 111 // We need to append padding. 112 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 113 114 assert(NextFieldOffsetInChars == FieldOffsetInChars && 115 "Did not add enough padding!"); 116 117 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 118 } 119 120 // Add the field. 121 Elements.push_back(InitCst); 122 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 123 getSizeInChars(InitCst); 124 125 if (Packed) 126 assert(LLVMStructAlignment == CharUnits::One() && 127 "Packed struct not byte-aligned!"); 128 else 129 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 130 } 131 132 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 133 uint64_t FieldOffset, 134 llvm::ConstantInt *CI) { 135 const ASTContext &Context = CGM.getContext(); 136 const uint64_t CharWidth = Context.getCharWidth(); 137 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 138 if (FieldOffset > NextFieldOffsetInBits) { 139 // We need to add padding. 140 CharUnits PadSize = Context.toCharUnitsFromBits( 141 llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits, 142 Context.getTargetInfo().getCharAlign())); 143 144 AppendPadding(PadSize); 145 } 146 147 uint64_t FieldSize = Field->getBitWidthValue(Context); 148 149 llvm::APInt FieldValue = CI->getValue(); 150 151 // Promote the size of FieldValue if necessary 152 // FIXME: This should never occur, but currently it can because initializer 153 // constants are cast to bool, and because clang is not enforcing bitfield 154 // width limits. 155 if (FieldSize > FieldValue.getBitWidth()) 156 FieldValue = FieldValue.zext(FieldSize); 157 158 // Truncate the size of FieldValue to the bit field size. 159 if (FieldSize < FieldValue.getBitWidth()) 160 FieldValue = FieldValue.trunc(FieldSize); 161 162 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 163 if (FieldOffset < NextFieldOffsetInBits) { 164 // Either part of the field or the entire field can go into the previous 165 // byte. 166 assert(!Elements.empty() && "Elements can't be empty!"); 167 168 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 169 170 bool FitsCompletelyInPreviousByte = 171 BitsInPreviousByte >= FieldValue.getBitWidth(); 172 173 llvm::APInt Tmp = FieldValue; 174 175 if (!FitsCompletelyInPreviousByte) { 176 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 177 178 if (CGM.getTargetData().isBigEndian()) { 179 Tmp = Tmp.lshr(NewFieldWidth); 180 Tmp = Tmp.trunc(BitsInPreviousByte); 181 182 // We want the remaining high bits. 183 FieldValue = FieldValue.trunc(NewFieldWidth); 184 } else { 185 Tmp = Tmp.trunc(BitsInPreviousByte); 186 187 // We want the remaining low bits. 188 FieldValue = FieldValue.lshr(BitsInPreviousByte); 189 FieldValue = FieldValue.trunc(NewFieldWidth); 190 } 191 } 192 193 Tmp = Tmp.zext(CharWidth); 194 if (CGM.getTargetData().isBigEndian()) { 195 if (FitsCompletelyInPreviousByte) 196 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 197 } else { 198 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 199 } 200 201 // 'or' in the bits that go into the previous byte. 202 llvm::Value *LastElt = Elements.back(); 203 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 204 Tmp |= Val->getValue(); 205 else { 206 assert(isa<llvm::UndefValue>(LastElt)); 207 // If there is an undef field that we're adding to, it can either be a 208 // scalar undef (in which case, we just replace it with our field) or it 209 // is an array. If it is an array, we have to pull one byte off the 210 // array so that the other undef bytes stay around. 211 if (!isa<llvm::IntegerType>(LastElt->getType())) { 212 // The undef padding will be a multibyte array, create a new smaller 213 // padding and then an hole for our i8 to get plopped into. 214 assert(isa<llvm::ArrayType>(LastElt->getType()) && 215 "Expected array padding of undefs"); 216 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 217 assert(AT->getElementType()->isIntegerTy(CharWidth) && 218 AT->getNumElements() != 0 && 219 "Expected non-empty array padding of undefs"); 220 221 // Remove the padding array. 222 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 223 Elements.pop_back(); 224 225 // Add the padding back in two chunks. 226 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 227 AppendPadding(CharUnits::One()); 228 assert(isa<llvm::UndefValue>(Elements.back()) && 229 Elements.back()->getType()->isIntegerTy(CharWidth) && 230 "Padding addition didn't work right"); 231 } 232 } 233 234 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 235 236 if (FitsCompletelyInPreviousByte) 237 return; 238 } 239 240 while (FieldValue.getBitWidth() > CharWidth) { 241 llvm::APInt Tmp; 242 243 if (CGM.getTargetData().isBigEndian()) { 244 // We want the high bits. 245 Tmp = 246 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 247 } else { 248 // We want the low bits. 249 Tmp = FieldValue.trunc(CharWidth); 250 251 FieldValue = FieldValue.lshr(CharWidth); 252 } 253 254 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 255 ++NextFieldOffsetInChars; 256 257 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 258 } 259 260 assert(FieldValue.getBitWidth() > 0 && 261 "Should have at least one bit left!"); 262 assert(FieldValue.getBitWidth() <= CharWidth && 263 "Should not have more than a byte left!"); 264 265 if (FieldValue.getBitWidth() < CharWidth) { 266 if (CGM.getTargetData().isBigEndian()) { 267 unsigned BitWidth = FieldValue.getBitWidth(); 268 269 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 270 } else 271 FieldValue = FieldValue.zext(CharWidth); 272 } 273 274 // Append the last element. 275 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 276 FieldValue)); 277 ++NextFieldOffsetInChars; 278 } 279 280 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 281 if (PadSize.isZero()) 282 return; 283 284 llvm::Type *Ty = CGM.Int8Ty; 285 if (PadSize > CharUnits::One()) 286 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 287 288 llvm::Constant *C = llvm::UndefValue::get(Ty); 289 Elements.push_back(C); 290 assert(getAlignment(C) == CharUnits::One() && 291 "Padding must have 1 byte alignment!"); 292 293 NextFieldOffsetInChars += getSizeInChars(C); 294 } 295 296 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 297 assert(NextFieldOffsetInChars <= RecordSize && 298 "Size mismatch!"); 299 300 AppendPadding(RecordSize - NextFieldOffsetInChars); 301 } 302 303 void ConstStructBuilder::ConvertStructToPacked() { 304 SmallVector<llvm::Constant *, 16> PackedElements; 305 CharUnits ElementOffsetInChars = CharUnits::Zero(); 306 307 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 308 llvm::Constant *C = Elements[i]; 309 310 CharUnits ElementAlign = CharUnits::fromQuantity( 311 CGM.getTargetData().getABITypeAlignment(C->getType())); 312 CharUnits AlignedElementOffsetInChars = 313 ElementOffsetInChars.RoundUpToAlignment(ElementAlign); 314 315 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 316 // We need some padding. 317 CharUnits NumChars = 318 AlignedElementOffsetInChars - ElementOffsetInChars; 319 320 llvm::Type *Ty = CGM.Int8Ty; 321 if (NumChars > CharUnits::One()) 322 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 323 324 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 325 PackedElements.push_back(Padding); 326 ElementOffsetInChars += getSizeInChars(Padding); 327 } 328 329 PackedElements.push_back(C); 330 ElementOffsetInChars += getSizeInChars(C); 331 } 332 333 assert(ElementOffsetInChars == NextFieldOffsetInChars && 334 "Packing the struct changed its size!"); 335 336 Elements.swap(PackedElements); 337 LLVMStructAlignment = CharUnits::One(); 338 Packed = true; 339 } 340 341 bool ConstStructBuilder::Build(InitListExpr *ILE) { 342 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 343 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 344 345 unsigned FieldNo = 0; 346 unsigned ElementNo = 0; 347 const FieldDecl *LastFD = 0; 348 bool IsMsStruct = RD->hasAttr<MsStructAttr>(); 349 350 for (RecordDecl::field_iterator Field = RD->field_begin(), 351 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 352 if (IsMsStruct) { 353 // Zero-length bitfields following non-bitfield members are 354 // ignored: 355 if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) { 356 --FieldNo; 357 continue; 358 } 359 LastFD = (*Field); 360 } 361 362 // If this is a union, skip all the fields that aren't being initialized. 363 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 364 continue; 365 366 // Don't emit anonymous bitfields, they just affect layout. 367 if (Field->isUnnamedBitfield()) { 368 LastFD = (*Field); 369 continue; 370 } 371 372 // Get the initializer. A struct can include fields without initializers, 373 // we just use explicit null values for them. 374 llvm::Constant *EltInit; 375 if (ElementNo < ILE->getNumInits()) 376 EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++), 377 Field->getType(), CGF); 378 else 379 EltInit = CGM.EmitNullConstant(Field->getType()); 380 381 if (!EltInit) 382 return false; 383 384 if (!Field->isBitField()) { 385 // Handle non-bitfield members. 386 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 387 } else { 388 // Otherwise we have a bitfield. 389 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), 390 cast<llvm::ConstantInt>(EltInit)); 391 } 392 } 393 394 return true; 395 } 396 397 void ConstStructBuilder::Build(const APValue &Val, QualType ValTy) { 398 RecordDecl *RD = ValTy->getAs<RecordType>()->getDecl(); 399 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 400 401 if (CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 402 unsigned BaseNo = 0; 403 for (CXXRecordDecl::base_class_iterator Base = CD->bases_begin(), 404 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 405 // Build the base class subobject at the appropriately-offset location 406 // within this object. 407 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 408 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 409 NextFieldOffsetInChars -= BaseOffset; 410 411 Build(Val.getStructBase(BaseNo), Base->getType()); 412 413 NextFieldOffsetInChars += BaseOffset; 414 } 415 } 416 417 unsigned FieldNo = 0; 418 const FieldDecl *LastFD = 0; 419 bool IsMsStruct = RD->hasAttr<MsStructAttr>(); 420 421 for (RecordDecl::field_iterator Field = RD->field_begin(), 422 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 423 if (IsMsStruct) { 424 // Zero-length bitfields following non-bitfield members are 425 // ignored: 426 if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) { 427 --FieldNo; 428 continue; 429 } 430 LastFD = (*Field); 431 } 432 433 // If this is a union, skip all the fields that aren't being initialized. 434 if (RD->isUnion() && Val.getUnionField() != *Field) 435 continue; 436 437 // Don't emit anonymous bitfields, they just affect layout. 438 if (Field->isUnnamedBitfield()) { 439 LastFD = (*Field); 440 continue; 441 } 442 443 // Emit the value of the initializer. 444 const APValue &FieldValue = 445 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 446 llvm::Constant *EltInit = 447 CGM.EmitConstantValue(FieldValue, Field->getType(), CGF); 448 assert(EltInit && "EmitConstantValue can't fail"); 449 450 if (!Field->isBitField()) { 451 // Handle non-bitfield members. 452 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 453 } else { 454 // Otherwise we have a bitfield. 455 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), 456 cast<llvm::ConstantInt>(EltInit)); 457 } 458 } 459 } 460 461 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 462 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 463 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 464 465 CharUnits LayoutSizeInChars = Layout.getSize(); 466 467 if (NextFieldOffsetInChars > LayoutSizeInChars) { 468 // If the struct is bigger than the size of the record type, 469 // we must have a flexible array member at the end. 470 assert(RD->hasFlexibleArrayMember() && 471 "Must have flexible array member if struct is bigger than type!"); 472 473 // No tail padding is necessary. 474 } else { 475 // Append tail padding if necessary. 476 AppendTailPadding(LayoutSizeInChars); 477 478 CharUnits LLVMSizeInChars = 479 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 480 481 // Check if we need to convert the struct to a packed struct. 482 if (NextFieldOffsetInChars <= LayoutSizeInChars && 483 LLVMSizeInChars > LayoutSizeInChars) { 484 assert(!Packed && "Size mismatch!"); 485 486 ConvertStructToPacked(); 487 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 488 "Converting to packed did not help!"); 489 } 490 491 assert(LayoutSizeInChars == NextFieldOffsetInChars && 492 "Tail padding mismatch!"); 493 } 494 495 // Pick the type to use. If the type is layout identical to the ConvertType 496 // type then use it, otherwise use whatever the builder produced for us. 497 llvm::StructType *STy = 498 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 499 Elements, Packed); 500 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 501 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 502 if (ValSTy->isLayoutIdentical(STy)) 503 STy = ValSTy; 504 } 505 506 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 507 508 assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) == 509 getSizeInChars(Result) && "Size mismatch!"); 510 511 return Result; 512 } 513 514 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 515 CodeGenFunction *CGF, 516 InitListExpr *ILE) { 517 ConstStructBuilder Builder(CGM, CGF); 518 519 if (!Builder.Build(ILE)) 520 return 0; 521 522 return Builder.Finalize(ILE->getType()); 523 } 524 525 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 526 CodeGenFunction *CGF, 527 const APValue &Val, 528 QualType ValTy) { 529 ConstStructBuilder Builder(CGM, CGF); 530 Builder.Build(Val, ValTy); 531 return Builder.Finalize(ValTy); 532 } 533 534 535 //===----------------------------------------------------------------------===// 536 // ConstExprEmitter 537 //===----------------------------------------------------------------------===// 538 539 /// This class only needs to handle two cases: 540 /// 1) Literals (this is used by APValue emission to emit literals). 541 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 542 /// constant fold these types). 543 class ConstExprEmitter : 544 public StmtVisitor<ConstExprEmitter, llvm::Constant*> { 545 CodeGenModule &CGM; 546 CodeGenFunction *CGF; 547 llvm::LLVMContext &VMContext; 548 public: 549 ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) 550 : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { 551 } 552 553 //===--------------------------------------------------------------------===// 554 // Visitor Methods 555 //===--------------------------------------------------------------------===// 556 557 llvm::Constant *VisitStmt(Stmt *S) { 558 return 0; 559 } 560 561 llvm::Constant *VisitParenExpr(ParenExpr *PE) { 562 return Visit(PE->getSubExpr()); 563 } 564 565 llvm::Constant * 566 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 567 return Visit(PE->getReplacement()); 568 } 569 570 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 571 return Visit(GE->getResultExpr()); 572 } 573 574 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 575 return Visit(E->getInitializer()); 576 } 577 578 llvm::Constant *VisitCastExpr(CastExpr* E) { 579 Expr *subExpr = E->getSubExpr(); 580 llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF); 581 if (!C) return 0; 582 583 llvm::Type *destType = ConvertType(E->getType()); 584 585 switch (E->getCastKind()) { 586 case CK_ToUnion: { 587 // GCC cast to union extension 588 assert(E->getType()->isUnionType() && 589 "Destination type is not union type!"); 590 591 // Build a struct with the union sub-element as the first member, 592 // and padded to the appropriate size 593 SmallVector<llvm::Constant*, 2> Elts; 594 SmallVector<llvm::Type*, 2> Types; 595 Elts.push_back(C); 596 Types.push_back(C->getType()); 597 unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); 598 unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType); 599 600 assert(CurSize <= TotalSize && "Union size mismatch!"); 601 if (unsigned NumPadBytes = TotalSize - CurSize) { 602 llvm::Type *Ty = CGM.Int8Ty; 603 if (NumPadBytes > 1) 604 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 605 606 Elts.push_back(llvm::UndefValue::get(Ty)); 607 Types.push_back(Ty); 608 } 609 610 llvm::StructType* STy = 611 llvm::StructType::get(C->getType()->getContext(), Types, false); 612 return llvm::ConstantStruct::get(STy, Elts); 613 } 614 615 case CK_LValueToRValue: 616 case CK_AtomicToNonAtomic: 617 case CK_NonAtomicToAtomic: 618 case CK_NoOp: 619 return C; 620 621 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 622 623 // These will never be supported. 624 case CK_ObjCObjectLValueCast: 625 case CK_ARCProduceObject: 626 case CK_ARCConsumeObject: 627 case CK_ARCReclaimReturnedObject: 628 case CK_ARCExtendBlockObject: 629 return 0; 630 631 // These don't need to be handled here because Evaluate knows how to 632 // evaluate them in the cases where they can be folded. 633 case CK_ToVoid: 634 case CK_Dynamic: 635 case CK_LValueBitCast: 636 case CK_NullToMemberPointer: 637 case CK_DerivedToBaseMemberPointer: 638 case CK_BaseToDerivedMemberPointer: 639 case CK_UserDefinedConversion: 640 case CK_ConstructorConversion: 641 case CK_CPointerToObjCPointerCast: 642 case CK_BlockPointerToObjCPointerCast: 643 case CK_AnyPointerToBlockPointerCast: 644 case CK_BitCast: 645 case CK_ArrayToPointerDecay: 646 case CK_FunctionToPointerDecay: 647 case CK_BaseToDerived: 648 case CK_DerivedToBase: 649 case CK_UncheckedDerivedToBase: 650 case CK_MemberPointerToBoolean: 651 case CK_VectorSplat: 652 case CK_FloatingRealToComplex: 653 case CK_FloatingComplexToReal: 654 case CK_FloatingComplexToBoolean: 655 case CK_FloatingComplexCast: 656 case CK_FloatingComplexToIntegralComplex: 657 case CK_IntegralRealToComplex: 658 case CK_IntegralComplexToReal: 659 case CK_IntegralComplexToBoolean: 660 case CK_IntegralComplexCast: 661 case CK_IntegralComplexToFloatingComplex: 662 case CK_PointerToIntegral: 663 case CK_PointerToBoolean: 664 case CK_NullToPointer: 665 case CK_IntegralCast: 666 case CK_IntegralToPointer: 667 case CK_IntegralToBoolean: 668 case CK_IntegralToFloating: 669 case CK_FloatingToIntegral: 670 case CK_FloatingToBoolean: 671 case CK_FloatingCast: 672 return 0; 673 } 674 llvm_unreachable("Invalid CastKind"); 675 } 676 677 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 678 return Visit(DAE->getExpr()); 679 } 680 681 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) { 682 return Visit(E->GetTemporaryExpr()); 683 } 684 685 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { 686 unsigned NumInitElements = ILE->getNumInits(); 687 if (NumInitElements == 1 && ILE->getType() == ILE->getInit(0)->getType() && 688 (isa<StringLiteral>(ILE->getInit(0)) || 689 isa<ObjCEncodeExpr>(ILE->getInit(0)))) 690 return Visit(ILE->getInit(0)); 691 692 llvm::ArrayType *AType = 693 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 694 llvm::Type *ElemTy = AType->getElementType(); 695 unsigned NumElements = AType->getNumElements(); 696 697 // Initialising an array requires us to automatically 698 // initialise any elements that have not been initialised explicitly 699 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 700 701 // Copy initializer elements. 702 std::vector<llvm::Constant*> Elts; 703 Elts.reserve(NumInitableElts + NumElements); 704 unsigned i = 0; 705 bool RewriteType = false; 706 for (; i < NumInitableElts; ++i) { 707 Expr *Init = ILE->getInit(i); 708 llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 709 if (!C) 710 return 0; 711 RewriteType |= (C->getType() != ElemTy); 712 Elts.push_back(C); 713 } 714 715 // Initialize remaining array elements. 716 // FIXME: This doesn't handle member pointers correctly! 717 llvm::Constant *fillC; 718 if (Expr *filler = ILE->getArrayFiller()) 719 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 720 else 721 fillC = llvm::Constant::getNullValue(ElemTy); 722 if (!fillC) 723 return 0; 724 RewriteType |= (fillC->getType() != ElemTy); 725 for (; i < NumElements; ++i) 726 Elts.push_back(fillC); 727 728 if (RewriteType) { 729 // FIXME: Try to avoid packing the array 730 std::vector<llvm::Type*> Types; 731 Types.reserve(NumInitableElts + NumElements); 732 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 733 Types.push_back(Elts[i]->getType()); 734 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 735 Types, true); 736 return llvm::ConstantStruct::get(SType, Elts); 737 } 738 739 return llvm::ConstantArray::get(AType, Elts); 740 } 741 742 llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { 743 return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); 744 } 745 746 llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { 747 return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); 748 } 749 750 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { 751 return CGM.EmitNullConstant(E->getType()); 752 } 753 754 llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { 755 if (ILE->getType()->isArrayType()) 756 return EmitArrayInitialization(ILE); 757 758 if (ILE->getType()->isRecordType()) 759 return EmitStructInitialization(ILE); 760 761 if (ILE->getType()->isUnionType()) 762 return EmitUnionInitialization(ILE); 763 764 return 0; 765 } 766 767 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) { 768 if (!E->getConstructor()->isTrivial()) 769 return 0; 770 771 QualType Ty = E->getType(); 772 773 // FIXME: We should not have to call getBaseElementType here. 774 const RecordType *RT = 775 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 776 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 777 778 // If the class doesn't have a trivial destructor, we can't emit it as a 779 // constant expr. 780 if (!RD->hasTrivialDestructor()) 781 return 0; 782 783 // Only copy and default constructors can be trivial. 784 785 786 if (E->getNumArgs()) { 787 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 788 assert(E->getConstructor()->isCopyOrMoveConstructor() && 789 "trivial ctor has argument but isn't a copy/move ctor"); 790 791 Expr *Arg = E->getArg(0); 792 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 793 "argument to copy ctor is of wrong type"); 794 795 return Visit(Arg); 796 } 797 798 return CGM.EmitNullConstant(Ty); 799 } 800 801 llvm::Constant *VisitStringLiteral(StringLiteral *E) { 802 return CGM.GetConstantArrayFromStringLiteral(E); 803 } 804 805 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { 806 // This must be an @encode initializing an array in a static initializer. 807 // Don't emit it as the address of the string, emit the string data itself 808 // as an inline array. 809 std::string Str; 810 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 811 const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType()); 812 813 // Resize the string to the right size, adding zeros at the end, or 814 // truncating as needed. 815 Str.resize(CAT->getSize().getZExtValue(), '\0'); 816 return llvm::ConstantDataArray::getString(VMContext, Str, false); 817 } 818 819 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { 820 return Visit(E->getSubExpr()); 821 } 822 823 // Utility methods 824 llvm::Type *ConvertType(QualType T) { 825 return CGM.getTypes().ConvertType(T); 826 } 827 828 public: 829 llvm::Constant *EmitLValue(APValue::LValueBase LVBase) { 830 if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) { 831 if (Decl->hasAttr<WeakRefAttr>()) 832 return CGM.GetWeakRefReference(Decl); 833 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) 834 return CGM.GetAddrOfFunction(FD); 835 if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { 836 // We can never refer to a variable with local storage. 837 if (!VD->hasLocalStorage()) { 838 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 839 return CGM.GetAddrOfGlobalVar(VD); 840 else if (VD->isLocalVarDecl()) { 841 assert(CGF && "Can't access static local vars without CGF"); 842 return CGF->GetAddrOfStaticLocalVar(VD); 843 } 844 } 845 } 846 return 0; 847 } 848 849 Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>()); 850 switch (E->getStmtClass()) { 851 default: break; 852 case Expr::CompoundLiteralExprClass: { 853 // Note that due to the nature of compound literals, this is guaranteed 854 // to be the only use of the variable, so we just generate it here. 855 CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 856 llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(), 857 CLE->getType(), CGF); 858 // FIXME: "Leaked" on failure. 859 if (C) 860 C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 861 E->getType().isConstant(CGM.getContext()), 862 llvm::GlobalValue::InternalLinkage, 863 C, ".compoundliteral", 0, false, 864 CGM.getContext().getTargetAddressSpace(E->getType())); 865 return C; 866 } 867 case Expr::StringLiteralClass: 868 return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); 869 case Expr::ObjCEncodeExprClass: 870 return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); 871 case Expr::ObjCStringLiteralClass: { 872 ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); 873 llvm::Constant *C = 874 CGM.getObjCRuntime().GenerateConstantString(SL->getString()); 875 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 876 } 877 case Expr::PredefinedExprClass: { 878 unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); 879 if (CGF) { 880 LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E)); 881 return cast<llvm::Constant>(Res.getAddress()); 882 } else if (Type == PredefinedExpr::PrettyFunction) { 883 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 884 } 885 886 return CGM.GetAddrOfConstantCString("", ".tmp"); 887 } 888 case Expr::AddrLabelExprClass: { 889 assert(CGF && "Invalid address of label expression outside function."); 890 llvm::Constant *Ptr = 891 CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); 892 return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); 893 } 894 case Expr::CallExprClass: { 895 CallExpr* CE = cast<CallExpr>(E); 896 unsigned builtin = CE->isBuiltinCall(); 897 if (builtin != 898 Builtin::BI__builtin___CFStringMakeConstantString && 899 builtin != 900 Builtin::BI__builtin___NSStringMakeConstantString) 901 break; 902 const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); 903 const StringLiteral *Literal = cast<StringLiteral>(Arg); 904 if (builtin == 905 Builtin::BI__builtin___NSStringMakeConstantString) { 906 return CGM.getObjCRuntime().GenerateConstantString(Literal); 907 } 908 // FIXME: need to deal with UCN conversion issues. 909 return CGM.GetAddrOfConstantCFString(Literal); 910 } 911 case Expr::BlockExprClass: { 912 std::string FunctionName; 913 if (CGF) 914 FunctionName = CGF->CurFn->getName(); 915 else 916 FunctionName = "global"; 917 918 return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); 919 } 920 case Expr::CXXTypeidExprClass: { 921 CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E); 922 QualType T; 923 if (Typeid->isTypeOperand()) 924 T = Typeid->getTypeOperand(); 925 else 926 T = Typeid->getExprOperand()->getType(); 927 return CGM.GetAddrOfRTTIDescriptor(T); 928 } 929 } 930 931 return 0; 932 } 933 }; 934 935 } // end anonymous namespace. 936 937 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D, 938 CodeGenFunction *CGF) { 939 if (const APValue *Value = D.evaluateValue()) 940 return EmitConstantValue(*Value, D.getType(), CGF); 941 942 const Expr *E = D.getInit(); 943 assert(E && "No initializer to emit"); 944 945 llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 946 if (C && C->getType()->isIntegerTy(1)) { 947 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 948 C = llvm::ConstantExpr::getZExt(C, BoolTy); 949 } 950 return C; 951 } 952 953 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, 954 QualType DestType, 955 CodeGenFunction *CGF) { 956 Expr::EvalResult Result; 957 958 bool Success = false; 959 960 if (DestType->isReferenceType()) 961 Success = E->EvaluateAsLValue(Result, Context); 962 else 963 Success = E->EvaluateAsRValue(Result, Context); 964 965 if (Success && !Result.HasSideEffects) 966 return EmitConstantValue(Result.Val, DestType, CGF); 967 968 llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 969 if (C && C->getType()->isIntegerTy(1)) { 970 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 971 C = llvm::ConstantExpr::getZExt(C, BoolTy); 972 } 973 return C; 974 } 975 976 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value, 977 QualType DestType, 978 CodeGenFunction *CGF) { 979 switch (Value.getKind()) { 980 case APValue::Uninitialized: 981 llvm_unreachable("Constant expressions should be initialized."); 982 case APValue::LValue: { 983 llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); 984 llvm::Constant *Offset = 985 llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity()); 986 987 llvm::Constant *C; 988 if (APValue::LValueBase LVBase = Value.getLValueBase()) { 989 // An array can be represented as an lvalue referring to the base. 990 if (isa<llvm::ArrayType>(DestTy)) { 991 assert(Offset->isNullValue() && "offset on array initializer"); 992 return ConstExprEmitter(*this, CGF).Visit( 993 const_cast<Expr*>(LVBase.get<const Expr*>())); 994 } 995 996 C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase); 997 998 // Apply offset if necessary. 999 if (!Offset->isNullValue()) { 1000 llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy); 1001 Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset); 1002 C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); 1003 } 1004 1005 // Convert to the appropriate type; this could be an lvalue for 1006 // an integer. 1007 if (isa<llvm::PointerType>(DestTy)) 1008 return llvm::ConstantExpr::getBitCast(C, DestTy); 1009 1010 return llvm::ConstantExpr::getPtrToInt(C, DestTy); 1011 } else { 1012 C = Offset; 1013 1014 // Convert to the appropriate type; this could be an lvalue for 1015 // an integer. 1016 if (isa<llvm::PointerType>(DestTy)) 1017 return llvm::ConstantExpr::getIntToPtr(C, DestTy); 1018 1019 // If the types don't match this should only be a truncate. 1020 if (C->getType() != DestTy) 1021 return llvm::ConstantExpr::getTrunc(C, DestTy); 1022 1023 return C; 1024 } 1025 } 1026 case APValue::Int: { 1027 llvm::Constant *C = llvm::ConstantInt::get(VMContext, 1028 Value.getInt()); 1029 1030 if (C->getType()->isIntegerTy(1)) { 1031 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType); 1032 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1033 } 1034 return C; 1035 } 1036 case APValue::ComplexInt: { 1037 llvm::Constant *Complex[2]; 1038 1039 Complex[0] = llvm::ConstantInt::get(VMContext, 1040 Value.getComplexIntReal()); 1041 Complex[1] = llvm::ConstantInt::get(VMContext, 1042 Value.getComplexIntImag()); 1043 1044 // FIXME: the target may want to specify that this is packed. 1045 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1046 Complex[1]->getType(), 1047 NULL); 1048 return llvm::ConstantStruct::get(STy, Complex); 1049 } 1050 case APValue::Float: { 1051 const llvm::APFloat &Init = Value.getFloat(); 1052 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf) 1053 return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt()); 1054 else 1055 return llvm::ConstantFP::get(VMContext, Init); 1056 } 1057 case APValue::ComplexFloat: { 1058 llvm::Constant *Complex[2]; 1059 1060 Complex[0] = llvm::ConstantFP::get(VMContext, 1061 Value.getComplexFloatReal()); 1062 Complex[1] = llvm::ConstantFP::get(VMContext, 1063 Value.getComplexFloatImag()); 1064 1065 // FIXME: the target may want to specify that this is packed. 1066 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1067 Complex[1]->getType(), 1068 NULL); 1069 return llvm::ConstantStruct::get(STy, Complex); 1070 } 1071 case APValue::Vector: { 1072 SmallVector<llvm::Constant *, 4> Inits; 1073 unsigned NumElts = Value.getVectorLength(); 1074 1075 for (unsigned i = 0; i != NumElts; ++i) { 1076 const APValue &Elt = Value.getVectorElt(i); 1077 if (Elt.isInt()) 1078 Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); 1079 else 1080 Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); 1081 } 1082 return llvm::ConstantVector::get(Inits); 1083 } 1084 case APValue::AddrLabelDiff: { 1085 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1086 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1087 llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF); 1088 llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF); 1089 1090 // Compute difference 1091 llvm::Type *ResultType = getTypes().ConvertType(DestType); 1092 LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy); 1093 RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy); 1094 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1095 1096 // LLVM is a bit sensitive about the exact format of the 1097 // address-of-label difference; make sure to truncate after 1098 // the subtraction. 1099 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1100 } 1101 case APValue::Struct: 1102 case APValue::Union: 1103 return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType); 1104 case APValue::Array: { 1105 const ArrayType *CAT = Context.getAsArrayType(DestType); 1106 unsigned NumElements = Value.getArraySize(); 1107 unsigned NumInitElts = Value.getArrayInitializedElts(); 1108 1109 std::vector<llvm::Constant*> Elts; 1110 Elts.reserve(NumElements); 1111 1112 // Emit array filler, if there is one. 1113 llvm::Constant *Filler = 0; 1114 if (Value.hasArrayFiller()) 1115 Filler = EmitConstantValue(Value.getArrayFiller(), 1116 CAT->getElementType(), CGF); 1117 1118 // Emit initializer elements. 1119 llvm::Type *CommonElementType = 0; 1120 for (unsigned I = 0; I < NumElements; ++I) { 1121 llvm::Constant *C = Filler; 1122 if (I < NumInitElts) 1123 C = EmitConstantValue(Value.getArrayInitializedElt(I), 1124 CAT->getElementType(), CGF); 1125 if (I == 0) 1126 CommonElementType = C->getType(); 1127 else if (C->getType() != CommonElementType) 1128 CommonElementType = 0; 1129 Elts.push_back(C); 1130 } 1131 1132 if (!CommonElementType) { 1133 // FIXME: Try to avoid packing the array 1134 std::vector<llvm::Type*> Types; 1135 Types.reserve(NumElements); 1136 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1137 Types.push_back(Elts[i]->getType()); 1138 llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true); 1139 return llvm::ConstantStruct::get(SType, Elts); 1140 } 1141 1142 llvm::ArrayType *AType = 1143 llvm::ArrayType::get(CommonElementType, NumElements); 1144 return llvm::ConstantArray::get(AType, Elts); 1145 } 1146 case APValue::MemberPointer: 1147 return getCXXABI().EmitMemberPointer(Value, DestType); 1148 } 1149 llvm_unreachable("Unknown APValue kind"); 1150 } 1151 1152 llvm::Constant * 1153 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1154 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1155 return ConstExprEmitter(*this, 0).EmitLValue(E); 1156 } 1157 1158 llvm::Constant * 1159 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1160 // Member pointer constants always have a very particular form. 1161 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1162 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1163 1164 // A member function pointer. 1165 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1166 return getCXXABI().EmitMemberPointer(method); 1167 1168 // Otherwise, a member data pointer. 1169 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1170 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1171 return getCXXABI().EmitMemberDataPointer(type, chars); 1172 } 1173 1174 static void 1175 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T, 1176 SmallVectorImpl<llvm::Constant *> &Elements, 1177 uint64_t StartOffset) { 1178 assert(StartOffset % CGM.getContext().getCharWidth() == 0 && 1179 "StartOffset not byte aligned!"); 1180 1181 if (CGM.getTypes().isZeroInitializable(T)) 1182 return; 1183 1184 if (const ConstantArrayType *CAT = 1185 CGM.getContext().getAsConstantArrayType(T)) { 1186 QualType ElementTy = CAT->getElementType(); 1187 uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy); 1188 1189 for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) { 1190 FillInNullDataMemberPointers(CGM, ElementTy, Elements, 1191 StartOffset + I * ElementSize); 1192 } 1193 } else if (const RecordType *RT = T->getAs<RecordType>()) { 1194 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1195 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1196 1197 // Go through all bases and fill in any null pointer to data members. 1198 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 1199 E = RD->bases_end(); I != E; ++I) { 1200 if (I->isVirtual()) { 1201 // Ignore virtual bases. 1202 continue; 1203 } 1204 1205 const CXXRecordDecl *BaseDecl = 1206 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl()); 1207 1208 // Ignore empty bases. 1209 if (BaseDecl->isEmpty()) 1210 continue; 1211 1212 // Ignore bases that don't have any pointer to data members. 1213 if (CGM.getTypes().isZeroInitializable(BaseDecl)) 1214 continue; 1215 1216 uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl); 1217 FillInNullDataMemberPointers(CGM, I->getType(), 1218 Elements, StartOffset + BaseOffset); 1219 } 1220 1221 // Visit all fields. 1222 unsigned FieldNo = 0; 1223 for (RecordDecl::field_iterator I = RD->field_begin(), 1224 E = RD->field_end(); I != E; ++I, ++FieldNo) { 1225 QualType FieldType = I->getType(); 1226 1227 if (CGM.getTypes().isZeroInitializable(FieldType)) 1228 continue; 1229 1230 uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo); 1231 FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset); 1232 } 1233 } else { 1234 assert(T->isMemberPointerType() && "Should only see member pointers here!"); 1235 assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() && 1236 "Should only see pointers to data members here!"); 1237 1238 CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset); 1239 CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T); 1240 1241 // FIXME: hardcodes Itanium member pointer representation! 1242 llvm::Constant *NegativeOne = 1243 llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true); 1244 1245 // Fill in the null data member pointer. 1246 for (CharUnits I = StartIndex; I != EndIndex; ++I) 1247 Elements[I.getQuantity()] = NegativeOne; 1248 } 1249 } 1250 1251 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1252 llvm::Type *baseType, 1253 const CXXRecordDecl *base); 1254 1255 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 1256 const CXXRecordDecl *record, 1257 bool asCompleteObject) { 1258 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 1259 llvm::StructType *structure = 1260 (asCompleteObject ? layout.getLLVMType() 1261 : layout.getBaseSubobjectLLVMType()); 1262 1263 unsigned numElements = structure->getNumElements(); 1264 std::vector<llvm::Constant *> elements(numElements); 1265 1266 // Fill in all the bases. 1267 for (CXXRecordDecl::base_class_const_iterator 1268 I = record->bases_begin(), E = record->bases_end(); I != E; ++I) { 1269 if (I->isVirtual()) { 1270 // Ignore virtual bases; if we're laying out for a complete 1271 // object, we'll lay these out later. 1272 continue; 1273 } 1274 1275 const CXXRecordDecl *base = 1276 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl()); 1277 1278 // Ignore empty bases. 1279 if (base->isEmpty()) 1280 continue; 1281 1282 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 1283 llvm::Type *baseType = structure->getElementType(fieldIndex); 1284 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1285 } 1286 1287 // Fill in all the fields. 1288 for (RecordDecl::field_iterator I = record->field_begin(), 1289 E = record->field_end(); I != E; ++I) { 1290 const FieldDecl *field = *I; 1291 1292 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 1293 // will fill in later.) 1294 if (!field->isBitField()) { 1295 unsigned fieldIndex = layout.getLLVMFieldNo(field); 1296 elements[fieldIndex] = CGM.EmitNullConstant(field->getType()); 1297 } 1298 1299 // For unions, stop after the first named field. 1300 if (record->isUnion() && field->getDeclName()) 1301 break; 1302 } 1303 1304 // Fill in the virtual bases, if we're working with the complete object. 1305 if (asCompleteObject) { 1306 for (CXXRecordDecl::base_class_const_iterator 1307 I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) { 1308 const CXXRecordDecl *base = 1309 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl()); 1310 1311 // Ignore empty bases. 1312 if (base->isEmpty()) 1313 continue; 1314 1315 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 1316 1317 // We might have already laid this field out. 1318 if (elements[fieldIndex]) continue; 1319 1320 llvm::Type *baseType = structure->getElementType(fieldIndex); 1321 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1322 } 1323 } 1324 1325 // Now go through all other fields and zero them out. 1326 for (unsigned i = 0; i != numElements; ++i) { 1327 if (!elements[i]) 1328 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 1329 } 1330 1331 return llvm::ConstantStruct::get(structure, elements); 1332 } 1333 1334 /// Emit the null constant for a base subobject. 1335 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1336 llvm::Type *baseType, 1337 const CXXRecordDecl *base) { 1338 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 1339 1340 // Just zero out bases that don't have any pointer to data members. 1341 if (baseLayout.isZeroInitializableAsBase()) 1342 return llvm::Constant::getNullValue(baseType); 1343 1344 // If the base type is a struct, we can just use its null constant. 1345 if (isa<llvm::StructType>(baseType)) { 1346 return EmitNullConstant(CGM, base, /*complete*/ false); 1347 } 1348 1349 // Otherwise, some bases are represented as arrays of i8 if the size 1350 // of the base is smaller than its corresponding LLVM type. Figure 1351 // out how many elements this base array has. 1352 llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType); 1353 unsigned numBaseElements = baseArrayType->getNumElements(); 1354 1355 // Fill in null data member pointers. 1356 SmallVector<llvm::Constant *, 16> baseElements(numBaseElements); 1357 FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base), 1358 baseElements, 0); 1359 1360 // Now go through all other elements and zero them out. 1361 if (numBaseElements) { 1362 llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty); 1363 for (unsigned i = 0; i != numBaseElements; ++i) { 1364 if (!baseElements[i]) 1365 baseElements[i] = i8_zero; 1366 } 1367 } 1368 1369 return llvm::ConstantArray::get(baseArrayType, baseElements); 1370 } 1371 1372 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 1373 if (getTypes().isZeroInitializable(T)) 1374 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 1375 1376 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 1377 llvm::ArrayType *ATy = 1378 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 1379 1380 QualType ElementTy = CAT->getElementType(); 1381 1382 llvm::Constant *Element = EmitNullConstant(ElementTy); 1383 unsigned NumElements = CAT->getSize().getZExtValue(); 1384 1385 if (Element->isNullValue()) 1386 return llvm::ConstantAggregateZero::get(ATy); 1387 1388 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 1389 return llvm::ConstantArray::get(ATy, Array); 1390 } 1391 1392 if (const RecordType *RT = T->getAs<RecordType>()) { 1393 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1394 return ::EmitNullConstant(*this, RD, /*complete object*/ true); 1395 } 1396 1397 assert(T->isMemberPointerType() && "Should only see member pointers here!"); 1398 assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() && 1399 "Should only see pointers to data members here!"); 1400 1401 // Itanium C++ ABI 2.3: 1402 // A NULL pointer is represented as -1. 1403 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 1404 } 1405 1406 llvm::Constant * 1407 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 1408 return ::EmitNullConstant(*this, Record, false); 1409 } 1410