1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34 
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39 
40   bool Packed;
41   CharUnits NextFieldOffsetInChars;
42   CharUnits LLVMStructAlignment;
43   SmallVector<llvm::Constant *, 32> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
48                                      const APValue &Value, QualType ValTy);
49 
50 private:
51   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
52     : CGM(CGM), CGF(CGF), Packed(false),
53     NextFieldOffsetInChars(CharUnits::Zero()),
54     LLVMStructAlignment(CharUnits::One()) { }
55 
56   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
57                    llvm::Constant *InitExpr);
58 
59   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
60                       llvm::ConstantInt *InitExpr);
61 
62   void AppendPadding(CharUnits PadSize);
63 
64   void AppendTailPadding(CharUnits RecordSize);
65 
66   void ConvertStructToPacked();
67 
68   bool Build(InitListExpr *ILE);
69   void Build(const APValue &Val, QualType ValTy);
70   llvm::Constant *Finalize(QualType Ty);
71 
72   CharUnits getAlignment(const llvm::Constant *C) const {
73     if (Packed)  return CharUnits::One();
74     return CharUnits::fromQuantity(
75         CGM.getTargetData().getABITypeAlignment(C->getType()));
76   }
77 
78   CharUnits getSizeInChars(const llvm::Constant *C) const {
79     return CharUnits::fromQuantity(
80         CGM.getTargetData().getTypeAllocSize(C->getType()));
81   }
82 };
83 
84 void ConstStructBuilder::
85 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
86             llvm::Constant *InitCst) {
87 
88   const ASTContext &Context = CGM.getContext();
89 
90   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
91 
92   assert(NextFieldOffsetInChars <= FieldOffsetInChars
93          && "Field offset mismatch!");
94 
95   CharUnits FieldAlignment = getAlignment(InitCst);
96 
97   // Round up the field offset to the alignment of the field type.
98   CharUnits AlignedNextFieldOffsetInChars =
99     NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
100 
101   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
102     assert(!Packed && "Alignment is wrong even with a packed struct!");
103 
104     // Convert the struct to a packed struct.
105     ConvertStructToPacked();
106 
107     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
108   }
109 
110   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
111     // We need to append padding.
112     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
113 
114     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
115            "Did not add enough padding!");
116 
117     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
118   }
119 
120   // Add the field.
121   Elements.push_back(InitCst);
122   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
123                            getSizeInChars(InitCst);
124 
125   if (Packed)
126     assert(LLVMStructAlignment == CharUnits::One() &&
127            "Packed struct not byte-aligned!");
128   else
129     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
130 }
131 
132 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
133                                         uint64_t FieldOffset,
134                                         llvm::ConstantInt *CI) {
135   const ASTContext &Context = CGM.getContext();
136   const uint64_t CharWidth = Context.getCharWidth();
137   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
138   if (FieldOffset > NextFieldOffsetInBits) {
139     // We need to add padding.
140     CharUnits PadSize = Context.toCharUnitsFromBits(
141       llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
142                                Context.getTargetInfo().getCharAlign()));
143 
144     AppendPadding(PadSize);
145   }
146 
147   uint64_t FieldSize = Field->getBitWidthValue(Context);
148 
149   llvm::APInt FieldValue = CI->getValue();
150 
151   // Promote the size of FieldValue if necessary
152   // FIXME: This should never occur, but currently it can because initializer
153   // constants are cast to bool, and because clang is not enforcing bitfield
154   // width limits.
155   if (FieldSize > FieldValue.getBitWidth())
156     FieldValue = FieldValue.zext(FieldSize);
157 
158   // Truncate the size of FieldValue to the bit field size.
159   if (FieldSize < FieldValue.getBitWidth())
160     FieldValue = FieldValue.trunc(FieldSize);
161 
162   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
163   if (FieldOffset < NextFieldOffsetInBits) {
164     // Either part of the field or the entire field can go into the previous
165     // byte.
166     assert(!Elements.empty() && "Elements can't be empty!");
167 
168     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
169 
170     bool FitsCompletelyInPreviousByte =
171       BitsInPreviousByte >= FieldValue.getBitWidth();
172 
173     llvm::APInt Tmp = FieldValue;
174 
175     if (!FitsCompletelyInPreviousByte) {
176       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
177 
178       if (CGM.getTargetData().isBigEndian()) {
179         Tmp = Tmp.lshr(NewFieldWidth);
180         Tmp = Tmp.trunc(BitsInPreviousByte);
181 
182         // We want the remaining high bits.
183         FieldValue = FieldValue.trunc(NewFieldWidth);
184       } else {
185         Tmp = Tmp.trunc(BitsInPreviousByte);
186 
187         // We want the remaining low bits.
188         FieldValue = FieldValue.lshr(BitsInPreviousByte);
189         FieldValue = FieldValue.trunc(NewFieldWidth);
190       }
191     }
192 
193     Tmp = Tmp.zext(CharWidth);
194     if (CGM.getTargetData().isBigEndian()) {
195       if (FitsCompletelyInPreviousByte)
196         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
197     } else {
198       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
199     }
200 
201     // 'or' in the bits that go into the previous byte.
202     llvm::Value *LastElt = Elements.back();
203     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
204       Tmp |= Val->getValue();
205     else {
206       assert(isa<llvm::UndefValue>(LastElt));
207       // If there is an undef field that we're adding to, it can either be a
208       // scalar undef (in which case, we just replace it with our field) or it
209       // is an array.  If it is an array, we have to pull one byte off the
210       // array so that the other undef bytes stay around.
211       if (!isa<llvm::IntegerType>(LastElt->getType())) {
212         // The undef padding will be a multibyte array, create a new smaller
213         // padding and then an hole for our i8 to get plopped into.
214         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
215                "Expected array padding of undefs");
216         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
217         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
218                AT->getNumElements() != 0 &&
219                "Expected non-empty array padding of undefs");
220 
221         // Remove the padding array.
222         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
223         Elements.pop_back();
224 
225         // Add the padding back in two chunks.
226         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
227         AppendPadding(CharUnits::One());
228         assert(isa<llvm::UndefValue>(Elements.back()) &&
229                Elements.back()->getType()->isIntegerTy(CharWidth) &&
230                "Padding addition didn't work right");
231       }
232     }
233 
234     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
235 
236     if (FitsCompletelyInPreviousByte)
237       return;
238   }
239 
240   while (FieldValue.getBitWidth() > CharWidth) {
241     llvm::APInt Tmp;
242 
243     if (CGM.getTargetData().isBigEndian()) {
244       // We want the high bits.
245       Tmp =
246         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
247     } else {
248       // We want the low bits.
249       Tmp = FieldValue.trunc(CharWidth);
250 
251       FieldValue = FieldValue.lshr(CharWidth);
252     }
253 
254     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
255     ++NextFieldOffsetInChars;
256 
257     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
258   }
259 
260   assert(FieldValue.getBitWidth() > 0 &&
261          "Should have at least one bit left!");
262   assert(FieldValue.getBitWidth() <= CharWidth &&
263          "Should not have more than a byte left!");
264 
265   if (FieldValue.getBitWidth() < CharWidth) {
266     if (CGM.getTargetData().isBigEndian()) {
267       unsigned BitWidth = FieldValue.getBitWidth();
268 
269       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
270     } else
271       FieldValue = FieldValue.zext(CharWidth);
272   }
273 
274   // Append the last element.
275   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
276                                             FieldValue));
277   ++NextFieldOffsetInChars;
278 }
279 
280 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
281   if (PadSize.isZero())
282     return;
283 
284   llvm::Type *Ty = CGM.Int8Ty;
285   if (PadSize > CharUnits::One())
286     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
287 
288   llvm::Constant *C = llvm::UndefValue::get(Ty);
289   Elements.push_back(C);
290   assert(getAlignment(C) == CharUnits::One() &&
291          "Padding must have 1 byte alignment!");
292 
293   NextFieldOffsetInChars += getSizeInChars(C);
294 }
295 
296 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
297   assert(NextFieldOffsetInChars <= RecordSize &&
298          "Size mismatch!");
299 
300   AppendPadding(RecordSize - NextFieldOffsetInChars);
301 }
302 
303 void ConstStructBuilder::ConvertStructToPacked() {
304   SmallVector<llvm::Constant *, 16> PackedElements;
305   CharUnits ElementOffsetInChars = CharUnits::Zero();
306 
307   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
308     llvm::Constant *C = Elements[i];
309 
310     CharUnits ElementAlign = CharUnits::fromQuantity(
311       CGM.getTargetData().getABITypeAlignment(C->getType()));
312     CharUnits AlignedElementOffsetInChars =
313       ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
314 
315     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
316       // We need some padding.
317       CharUnits NumChars =
318         AlignedElementOffsetInChars - ElementOffsetInChars;
319 
320       llvm::Type *Ty = CGM.Int8Ty;
321       if (NumChars > CharUnits::One())
322         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
323 
324       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
325       PackedElements.push_back(Padding);
326       ElementOffsetInChars += getSizeInChars(Padding);
327     }
328 
329     PackedElements.push_back(C);
330     ElementOffsetInChars += getSizeInChars(C);
331   }
332 
333   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
334          "Packing the struct changed its size!");
335 
336   Elements.swap(PackedElements);
337   LLVMStructAlignment = CharUnits::One();
338   Packed = true;
339 }
340 
341 bool ConstStructBuilder::Build(InitListExpr *ILE) {
342   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
343   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
344 
345   unsigned FieldNo = 0;
346   unsigned ElementNo = 0;
347   const FieldDecl *LastFD = 0;
348   bool IsMsStruct = RD->hasAttr<MsStructAttr>();
349 
350   for (RecordDecl::field_iterator Field = RD->field_begin(),
351        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
352     if (IsMsStruct) {
353       // Zero-length bitfields following non-bitfield members are
354       // ignored:
355       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
356         --FieldNo;
357         continue;
358       }
359       LastFD = (*Field);
360     }
361 
362     // If this is a union, skip all the fields that aren't being initialized.
363     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
364       continue;
365 
366     // Don't emit anonymous bitfields, they just affect layout.
367     if (Field->isUnnamedBitfield()) {
368       LastFD = (*Field);
369       continue;
370     }
371 
372     // Get the initializer.  A struct can include fields without initializers,
373     // we just use explicit null values for them.
374     llvm::Constant *EltInit;
375     if (ElementNo < ILE->getNumInits())
376       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
377                                      Field->getType(), CGF);
378     else
379       EltInit = CGM.EmitNullConstant(Field->getType());
380 
381     if (!EltInit)
382       return false;
383 
384     if (!Field->isBitField()) {
385       // Handle non-bitfield members.
386       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
387     } else {
388       // Otherwise we have a bitfield.
389       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
390                      cast<llvm::ConstantInt>(EltInit));
391     }
392   }
393 
394   return true;
395 }
396 
397 void ConstStructBuilder::Build(const APValue &Val, QualType ValTy) {
398   RecordDecl *RD = ValTy->getAs<RecordType>()->getDecl();
399   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
400 
401   if (CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
402     unsigned BaseNo = 0;
403     for (CXXRecordDecl::base_class_iterator Base = CD->bases_begin(),
404          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
405       // Build the base class subobject at the appropriately-offset location
406       // within this object.
407       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
408       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
409       NextFieldOffsetInChars -= BaseOffset;
410 
411       Build(Val.getStructBase(BaseNo), Base->getType());
412 
413       NextFieldOffsetInChars += BaseOffset;
414     }
415   }
416 
417   unsigned FieldNo = 0;
418   const FieldDecl *LastFD = 0;
419   bool IsMsStruct = RD->hasAttr<MsStructAttr>();
420 
421   for (RecordDecl::field_iterator Field = RD->field_begin(),
422        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
423     if (IsMsStruct) {
424       // Zero-length bitfields following non-bitfield members are
425       // ignored:
426       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
427         --FieldNo;
428         continue;
429       }
430       LastFD = (*Field);
431     }
432 
433     // If this is a union, skip all the fields that aren't being initialized.
434     if (RD->isUnion() && Val.getUnionField() != *Field)
435       continue;
436 
437     // Don't emit anonymous bitfields, they just affect layout.
438     if (Field->isUnnamedBitfield()) {
439       LastFD = (*Field);
440       continue;
441     }
442 
443     // Emit the value of the initializer.
444     const APValue &FieldValue =
445       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
446     llvm::Constant *EltInit =
447       CGM.EmitConstantValue(FieldValue, Field->getType(), CGF);
448     assert(EltInit && "EmitConstantValue can't fail");
449 
450     if (!Field->isBitField()) {
451       // Handle non-bitfield members.
452       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
453     } else {
454       // Otherwise we have a bitfield.
455       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
456                      cast<llvm::ConstantInt>(EltInit));
457     }
458   }
459 }
460 
461 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
462   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
463   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
464 
465   CharUnits LayoutSizeInChars = Layout.getSize();
466 
467   if (NextFieldOffsetInChars > LayoutSizeInChars) {
468     // If the struct is bigger than the size of the record type,
469     // we must have a flexible array member at the end.
470     assert(RD->hasFlexibleArrayMember() &&
471            "Must have flexible array member if struct is bigger than type!");
472 
473     // No tail padding is necessary.
474   } else {
475     // Append tail padding if necessary.
476     AppendTailPadding(LayoutSizeInChars);
477 
478     CharUnits LLVMSizeInChars =
479       NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
480 
481     // Check if we need to convert the struct to a packed struct.
482     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
483         LLVMSizeInChars > LayoutSizeInChars) {
484       assert(!Packed && "Size mismatch!");
485 
486       ConvertStructToPacked();
487       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
488              "Converting to packed did not help!");
489     }
490 
491     assert(LayoutSizeInChars == NextFieldOffsetInChars &&
492            "Tail padding mismatch!");
493   }
494 
495   // Pick the type to use.  If the type is layout identical to the ConvertType
496   // type then use it, otherwise use whatever the builder produced for us.
497   llvm::StructType *STy =
498       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
499                                                Elements, Packed);
500   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
501   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
502     if (ValSTy->isLayoutIdentical(STy))
503       STy = ValSTy;
504   }
505 
506   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
507 
508   assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
509          getSizeInChars(Result) && "Size mismatch!");
510 
511   return Result;
512 }
513 
514 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
515                                                 CodeGenFunction *CGF,
516                                                 InitListExpr *ILE) {
517   ConstStructBuilder Builder(CGM, CGF);
518 
519   if (!Builder.Build(ILE))
520     return 0;
521 
522   return Builder.Finalize(ILE->getType());
523 }
524 
525 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
526                                                 CodeGenFunction *CGF,
527                                                 const APValue &Val,
528                                                 QualType ValTy) {
529   ConstStructBuilder Builder(CGM, CGF);
530   Builder.Build(Val, ValTy);
531   return Builder.Finalize(ValTy);
532 }
533 
534 
535 //===----------------------------------------------------------------------===//
536 //                             ConstExprEmitter
537 //===----------------------------------------------------------------------===//
538 
539 /// This class only needs to handle two cases:
540 /// 1) Literals (this is used by APValue emission to emit literals).
541 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
542 ///    constant fold these types).
543 class ConstExprEmitter :
544   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
545   CodeGenModule &CGM;
546   CodeGenFunction *CGF;
547   llvm::LLVMContext &VMContext;
548 public:
549   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
550     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
551   }
552 
553   //===--------------------------------------------------------------------===//
554   //                            Visitor Methods
555   //===--------------------------------------------------------------------===//
556 
557   llvm::Constant *VisitStmt(Stmt *S) {
558     return 0;
559   }
560 
561   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
562     return Visit(PE->getSubExpr());
563   }
564 
565   llvm::Constant *
566   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
567     return Visit(PE->getReplacement());
568   }
569 
570   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
571     return Visit(GE->getResultExpr());
572   }
573 
574   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
575     return Visit(E->getInitializer());
576   }
577 
578   llvm::Constant *VisitCastExpr(CastExpr* E) {
579     Expr *subExpr = E->getSubExpr();
580     llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
581     if (!C) return 0;
582 
583     llvm::Type *destType = ConvertType(E->getType());
584 
585     switch (E->getCastKind()) {
586     case CK_ToUnion: {
587       // GCC cast to union extension
588       assert(E->getType()->isUnionType() &&
589              "Destination type is not union type!");
590 
591       // Build a struct with the union sub-element as the first member,
592       // and padded to the appropriate size
593       SmallVector<llvm::Constant*, 2> Elts;
594       SmallVector<llvm::Type*, 2> Types;
595       Elts.push_back(C);
596       Types.push_back(C->getType());
597       unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
598       unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType);
599 
600       assert(CurSize <= TotalSize && "Union size mismatch!");
601       if (unsigned NumPadBytes = TotalSize - CurSize) {
602         llvm::Type *Ty = CGM.Int8Ty;
603         if (NumPadBytes > 1)
604           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
605 
606         Elts.push_back(llvm::UndefValue::get(Ty));
607         Types.push_back(Ty);
608       }
609 
610       llvm::StructType* STy =
611         llvm::StructType::get(C->getType()->getContext(), Types, false);
612       return llvm::ConstantStruct::get(STy, Elts);
613     }
614 
615     case CK_LValueToRValue:
616     case CK_AtomicToNonAtomic:
617     case CK_NonAtomicToAtomic:
618     case CK_NoOp:
619       return C;
620 
621     case CK_Dependent: llvm_unreachable("saw dependent cast!");
622 
623     // These will never be supported.
624     case CK_ObjCObjectLValueCast:
625     case CK_ARCProduceObject:
626     case CK_ARCConsumeObject:
627     case CK_ARCReclaimReturnedObject:
628     case CK_ARCExtendBlockObject:
629       return 0;
630 
631     // These don't need to be handled here because Evaluate knows how to
632     // evaluate them in the cases where they can be folded.
633     case CK_ToVoid:
634     case CK_Dynamic:
635     case CK_LValueBitCast:
636     case CK_NullToMemberPointer:
637     case CK_DerivedToBaseMemberPointer:
638     case CK_BaseToDerivedMemberPointer:
639     case CK_UserDefinedConversion:
640     case CK_ConstructorConversion:
641     case CK_CPointerToObjCPointerCast:
642     case CK_BlockPointerToObjCPointerCast:
643     case CK_AnyPointerToBlockPointerCast:
644     case CK_BitCast:
645     case CK_ArrayToPointerDecay:
646     case CK_FunctionToPointerDecay:
647     case CK_BaseToDerived:
648     case CK_DerivedToBase:
649     case CK_UncheckedDerivedToBase:
650     case CK_MemberPointerToBoolean:
651     case CK_VectorSplat:
652     case CK_FloatingRealToComplex:
653     case CK_FloatingComplexToReal:
654     case CK_FloatingComplexToBoolean:
655     case CK_FloatingComplexCast:
656     case CK_FloatingComplexToIntegralComplex:
657     case CK_IntegralRealToComplex:
658     case CK_IntegralComplexToReal:
659     case CK_IntegralComplexToBoolean:
660     case CK_IntegralComplexCast:
661     case CK_IntegralComplexToFloatingComplex:
662     case CK_PointerToIntegral:
663     case CK_PointerToBoolean:
664     case CK_NullToPointer:
665     case CK_IntegralCast:
666     case CK_IntegralToPointer:
667     case CK_IntegralToBoolean:
668     case CK_IntegralToFloating:
669     case CK_FloatingToIntegral:
670     case CK_FloatingToBoolean:
671     case CK_FloatingCast:
672       return 0;
673     }
674     llvm_unreachable("Invalid CastKind");
675   }
676 
677   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
678     return Visit(DAE->getExpr());
679   }
680 
681   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
682     return Visit(E->GetTemporaryExpr());
683   }
684 
685   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
686     unsigned NumInitElements = ILE->getNumInits();
687     if (NumInitElements == 1 && ILE->getType() == ILE->getInit(0)->getType() &&
688         (isa<StringLiteral>(ILE->getInit(0)) ||
689          isa<ObjCEncodeExpr>(ILE->getInit(0))))
690       return Visit(ILE->getInit(0));
691 
692     llvm::ArrayType *AType =
693         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
694     llvm::Type *ElemTy = AType->getElementType();
695     unsigned NumElements = AType->getNumElements();
696 
697     // Initialising an array requires us to automatically
698     // initialise any elements that have not been initialised explicitly
699     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
700 
701     // Copy initializer elements.
702     std::vector<llvm::Constant*> Elts;
703     Elts.reserve(NumInitableElts + NumElements);
704     unsigned i = 0;
705     bool RewriteType = false;
706     for (; i < NumInitableElts; ++i) {
707       Expr *Init = ILE->getInit(i);
708       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
709       if (!C)
710         return 0;
711       RewriteType |= (C->getType() != ElemTy);
712       Elts.push_back(C);
713     }
714 
715     // Initialize remaining array elements.
716     // FIXME: This doesn't handle member pointers correctly!
717     llvm::Constant *fillC;
718     if (Expr *filler = ILE->getArrayFiller())
719       fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
720     else
721       fillC = llvm::Constant::getNullValue(ElemTy);
722     if (!fillC)
723       return 0;
724     RewriteType |= (fillC->getType() != ElemTy);
725     for (; i < NumElements; ++i)
726       Elts.push_back(fillC);
727 
728     if (RewriteType) {
729       // FIXME: Try to avoid packing the array
730       std::vector<llvm::Type*> Types;
731       Types.reserve(NumInitableElts + NumElements);
732       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
733         Types.push_back(Elts[i]->getType());
734       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
735                                                             Types, true);
736       return llvm::ConstantStruct::get(SType, Elts);
737     }
738 
739     return llvm::ConstantArray::get(AType, Elts);
740   }
741 
742   llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
743     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
744   }
745 
746   llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
747     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
748   }
749 
750   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
751     return CGM.EmitNullConstant(E->getType());
752   }
753 
754   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
755     if (ILE->getType()->isArrayType())
756       return EmitArrayInitialization(ILE);
757 
758     if (ILE->getType()->isRecordType())
759       return EmitStructInitialization(ILE);
760 
761     if (ILE->getType()->isUnionType())
762       return EmitUnionInitialization(ILE);
763 
764     return 0;
765   }
766 
767   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
768     if (!E->getConstructor()->isTrivial())
769       return 0;
770 
771     QualType Ty = E->getType();
772 
773     // FIXME: We should not have to call getBaseElementType here.
774     const RecordType *RT =
775       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
776     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
777 
778     // If the class doesn't have a trivial destructor, we can't emit it as a
779     // constant expr.
780     if (!RD->hasTrivialDestructor())
781       return 0;
782 
783     // Only copy and default constructors can be trivial.
784 
785 
786     if (E->getNumArgs()) {
787       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
788       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
789              "trivial ctor has argument but isn't a copy/move ctor");
790 
791       Expr *Arg = E->getArg(0);
792       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
793              "argument to copy ctor is of wrong type");
794 
795       return Visit(Arg);
796     }
797 
798     return CGM.EmitNullConstant(Ty);
799   }
800 
801   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
802     return CGM.GetConstantArrayFromStringLiteral(E);
803   }
804 
805   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
806     // This must be an @encode initializing an array in a static initializer.
807     // Don't emit it as the address of the string, emit the string data itself
808     // as an inline array.
809     std::string Str;
810     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
811     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
812 
813     // Resize the string to the right size, adding zeros at the end, or
814     // truncating as needed.
815     Str.resize(CAT->getSize().getZExtValue(), '\0');
816     return llvm::ConstantDataArray::getString(VMContext, Str, false);
817   }
818 
819   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
820     return Visit(E->getSubExpr());
821   }
822 
823   // Utility methods
824   llvm::Type *ConvertType(QualType T) {
825     return CGM.getTypes().ConvertType(T);
826   }
827 
828 public:
829   llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
830     if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
831       if (Decl->hasAttr<WeakRefAttr>())
832         return CGM.GetWeakRefReference(Decl);
833       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
834         return CGM.GetAddrOfFunction(FD);
835       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
836         // We can never refer to a variable with local storage.
837         if (!VD->hasLocalStorage()) {
838           if (VD->isFileVarDecl() || VD->hasExternalStorage())
839             return CGM.GetAddrOfGlobalVar(VD);
840           else if (VD->isLocalVarDecl()) {
841             assert(CGF && "Can't access static local vars without CGF");
842             return CGF->GetAddrOfStaticLocalVar(VD);
843           }
844         }
845       }
846       return 0;
847     }
848 
849     Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
850     switch (E->getStmtClass()) {
851     default: break;
852     case Expr::CompoundLiteralExprClass: {
853       // Note that due to the nature of compound literals, this is guaranteed
854       // to be the only use of the variable, so we just generate it here.
855       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
856       llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
857                                                CLE->getType(), CGF);
858       // FIXME: "Leaked" on failure.
859       if (C)
860         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
861                                      E->getType().isConstant(CGM.getContext()),
862                                      llvm::GlobalValue::InternalLinkage,
863                                      C, ".compoundliteral", 0, false,
864                           CGM.getContext().getTargetAddressSpace(E->getType()));
865       return C;
866     }
867     case Expr::StringLiteralClass:
868       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
869     case Expr::ObjCEncodeExprClass:
870       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
871     case Expr::ObjCStringLiteralClass: {
872       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
873       llvm::Constant *C =
874           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
875       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
876     }
877     case Expr::PredefinedExprClass: {
878       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
879       if (CGF) {
880         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
881         return cast<llvm::Constant>(Res.getAddress());
882       } else if (Type == PredefinedExpr::PrettyFunction) {
883         return CGM.GetAddrOfConstantCString("top level", ".tmp");
884       }
885 
886       return CGM.GetAddrOfConstantCString("", ".tmp");
887     }
888     case Expr::AddrLabelExprClass: {
889       assert(CGF && "Invalid address of label expression outside function.");
890       llvm::Constant *Ptr =
891         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
892       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
893     }
894     case Expr::CallExprClass: {
895       CallExpr* CE = cast<CallExpr>(E);
896       unsigned builtin = CE->isBuiltinCall();
897       if (builtin !=
898             Builtin::BI__builtin___CFStringMakeConstantString &&
899           builtin !=
900             Builtin::BI__builtin___NSStringMakeConstantString)
901         break;
902       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
903       const StringLiteral *Literal = cast<StringLiteral>(Arg);
904       if (builtin ==
905             Builtin::BI__builtin___NSStringMakeConstantString) {
906         return CGM.getObjCRuntime().GenerateConstantString(Literal);
907       }
908       // FIXME: need to deal with UCN conversion issues.
909       return CGM.GetAddrOfConstantCFString(Literal);
910     }
911     case Expr::BlockExprClass: {
912       std::string FunctionName;
913       if (CGF)
914         FunctionName = CGF->CurFn->getName();
915       else
916         FunctionName = "global";
917 
918       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
919     }
920     case Expr::CXXTypeidExprClass: {
921       CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
922       QualType T;
923       if (Typeid->isTypeOperand())
924         T = Typeid->getTypeOperand();
925       else
926         T = Typeid->getExprOperand()->getType();
927       return CGM.GetAddrOfRTTIDescriptor(T);
928     }
929     }
930 
931     return 0;
932   }
933 };
934 
935 }  // end anonymous namespace.
936 
937 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
938                                                 CodeGenFunction *CGF) {
939   if (const APValue *Value = D.evaluateValue())
940     return EmitConstantValue(*Value, D.getType(), CGF);
941 
942   const Expr *E = D.getInit();
943   assert(E && "No initializer to emit");
944 
945   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
946   if (C && C->getType()->isIntegerTy(1)) {
947     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
948     C = llvm::ConstantExpr::getZExt(C, BoolTy);
949   }
950   return C;
951 }
952 
953 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
954                                                 QualType DestType,
955                                                 CodeGenFunction *CGF) {
956   Expr::EvalResult Result;
957 
958   bool Success = false;
959 
960   if (DestType->isReferenceType())
961     Success = E->EvaluateAsLValue(Result, Context);
962   else
963     Success = E->EvaluateAsRValue(Result, Context);
964 
965   if (Success && !Result.HasSideEffects)
966     return EmitConstantValue(Result.Val, DestType, CGF);
967 
968   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
969   if (C && C->getType()->isIntegerTy(1)) {
970     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
971     C = llvm::ConstantExpr::getZExt(C, BoolTy);
972   }
973   return C;
974 }
975 
976 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
977                                                  QualType DestType,
978                                                  CodeGenFunction *CGF) {
979   switch (Value.getKind()) {
980   case APValue::Uninitialized:
981     llvm_unreachable("Constant expressions should be initialized.");
982   case APValue::LValue: {
983     llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
984     llvm::Constant *Offset =
985       llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
986 
987     llvm::Constant *C;
988     if (APValue::LValueBase LVBase = Value.getLValueBase()) {
989       // An array can be represented as an lvalue referring to the base.
990       if (isa<llvm::ArrayType>(DestTy)) {
991         assert(Offset->isNullValue() && "offset on array initializer");
992         return ConstExprEmitter(*this, CGF).Visit(
993           const_cast<Expr*>(LVBase.get<const Expr*>()));
994       }
995 
996       C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
997 
998       // Apply offset if necessary.
999       if (!Offset->isNullValue()) {
1000         llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
1001         Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
1002         C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
1003       }
1004 
1005       // Convert to the appropriate type; this could be an lvalue for
1006       // an integer.
1007       if (isa<llvm::PointerType>(DestTy))
1008         return llvm::ConstantExpr::getBitCast(C, DestTy);
1009 
1010       return llvm::ConstantExpr::getPtrToInt(C, DestTy);
1011     } else {
1012       C = Offset;
1013 
1014       // Convert to the appropriate type; this could be an lvalue for
1015       // an integer.
1016       if (isa<llvm::PointerType>(DestTy))
1017         return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1018 
1019       // If the types don't match this should only be a truncate.
1020       if (C->getType() != DestTy)
1021         return llvm::ConstantExpr::getTrunc(C, DestTy);
1022 
1023       return C;
1024     }
1025   }
1026   case APValue::Int: {
1027     llvm::Constant *C = llvm::ConstantInt::get(VMContext,
1028                                                Value.getInt());
1029 
1030     if (C->getType()->isIntegerTy(1)) {
1031       llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
1032       C = llvm::ConstantExpr::getZExt(C, BoolTy);
1033     }
1034     return C;
1035   }
1036   case APValue::ComplexInt: {
1037     llvm::Constant *Complex[2];
1038 
1039     Complex[0] = llvm::ConstantInt::get(VMContext,
1040                                         Value.getComplexIntReal());
1041     Complex[1] = llvm::ConstantInt::get(VMContext,
1042                                         Value.getComplexIntImag());
1043 
1044     // FIXME: the target may want to specify that this is packed.
1045     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1046                                                   Complex[1]->getType(),
1047                                                   NULL);
1048     return llvm::ConstantStruct::get(STy, Complex);
1049   }
1050   case APValue::Float: {
1051     const llvm::APFloat &Init = Value.getFloat();
1052     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf)
1053       return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1054     else
1055       return llvm::ConstantFP::get(VMContext, Init);
1056   }
1057   case APValue::ComplexFloat: {
1058     llvm::Constant *Complex[2];
1059 
1060     Complex[0] = llvm::ConstantFP::get(VMContext,
1061                                        Value.getComplexFloatReal());
1062     Complex[1] = llvm::ConstantFP::get(VMContext,
1063                                        Value.getComplexFloatImag());
1064 
1065     // FIXME: the target may want to specify that this is packed.
1066     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1067                                                   Complex[1]->getType(),
1068                                                   NULL);
1069     return llvm::ConstantStruct::get(STy, Complex);
1070   }
1071   case APValue::Vector: {
1072     SmallVector<llvm::Constant *, 4> Inits;
1073     unsigned NumElts = Value.getVectorLength();
1074 
1075     for (unsigned i = 0; i != NumElts; ++i) {
1076       const APValue &Elt = Value.getVectorElt(i);
1077       if (Elt.isInt())
1078         Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1079       else
1080         Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1081     }
1082     return llvm::ConstantVector::get(Inits);
1083   }
1084   case APValue::AddrLabelDiff: {
1085     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1086     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1087     llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1088     llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1089 
1090     // Compute difference
1091     llvm::Type *ResultType = getTypes().ConvertType(DestType);
1092     LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1093     RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1094     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1095 
1096     // LLVM is a bit sensitive about the exact format of the
1097     // address-of-label difference; make sure to truncate after
1098     // the subtraction.
1099     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1100   }
1101   case APValue::Struct:
1102   case APValue::Union:
1103     return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
1104   case APValue::Array: {
1105     const ArrayType *CAT = Context.getAsArrayType(DestType);
1106     unsigned NumElements = Value.getArraySize();
1107     unsigned NumInitElts = Value.getArrayInitializedElts();
1108 
1109     std::vector<llvm::Constant*> Elts;
1110     Elts.reserve(NumElements);
1111 
1112     // Emit array filler, if there is one.
1113     llvm::Constant *Filler = 0;
1114     if (Value.hasArrayFiller())
1115       Filler = EmitConstantValue(Value.getArrayFiller(),
1116                                  CAT->getElementType(), CGF);
1117 
1118     // Emit initializer elements.
1119     llvm::Type *CommonElementType = 0;
1120     for (unsigned I = 0; I < NumElements; ++I) {
1121       llvm::Constant *C = Filler;
1122       if (I < NumInitElts)
1123         C = EmitConstantValue(Value.getArrayInitializedElt(I),
1124                               CAT->getElementType(), CGF);
1125       if (I == 0)
1126         CommonElementType = C->getType();
1127       else if (C->getType() != CommonElementType)
1128         CommonElementType = 0;
1129       Elts.push_back(C);
1130     }
1131 
1132     if (!CommonElementType) {
1133       // FIXME: Try to avoid packing the array
1134       std::vector<llvm::Type*> Types;
1135       Types.reserve(NumElements);
1136       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1137         Types.push_back(Elts[i]->getType());
1138       llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
1139       return llvm::ConstantStruct::get(SType, Elts);
1140     }
1141 
1142     llvm::ArrayType *AType =
1143       llvm::ArrayType::get(CommonElementType, NumElements);
1144     return llvm::ConstantArray::get(AType, Elts);
1145   }
1146   case APValue::MemberPointer:
1147     return getCXXABI().EmitMemberPointer(Value, DestType);
1148   }
1149   llvm_unreachable("Unknown APValue kind");
1150 }
1151 
1152 llvm::Constant *
1153 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1154   assert(E->isFileScope() && "not a file-scope compound literal expr");
1155   return ConstExprEmitter(*this, 0).EmitLValue(E);
1156 }
1157 
1158 llvm::Constant *
1159 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1160   // Member pointer constants always have a very particular form.
1161   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1162   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1163 
1164   // A member function pointer.
1165   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1166     return getCXXABI().EmitMemberPointer(method);
1167 
1168   // Otherwise, a member data pointer.
1169   uint64_t fieldOffset = getContext().getFieldOffset(decl);
1170   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1171   return getCXXABI().EmitMemberDataPointer(type, chars);
1172 }
1173 
1174 static void
1175 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1176                              SmallVectorImpl<llvm::Constant *> &Elements,
1177                              uint64_t StartOffset) {
1178   assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1179          "StartOffset not byte aligned!");
1180 
1181   if (CGM.getTypes().isZeroInitializable(T))
1182     return;
1183 
1184   if (const ConstantArrayType *CAT =
1185         CGM.getContext().getAsConstantArrayType(T)) {
1186     QualType ElementTy = CAT->getElementType();
1187     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1188 
1189     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1190       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1191                                    StartOffset + I * ElementSize);
1192     }
1193   } else if (const RecordType *RT = T->getAs<RecordType>()) {
1194     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1195     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1196 
1197     // Go through all bases and fill in any null pointer to data members.
1198     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1199          E = RD->bases_end(); I != E; ++I) {
1200       if (I->isVirtual()) {
1201         // Ignore virtual bases.
1202         continue;
1203       }
1204 
1205       const CXXRecordDecl *BaseDecl =
1206       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1207 
1208       // Ignore empty bases.
1209       if (BaseDecl->isEmpty())
1210         continue;
1211 
1212       // Ignore bases that don't have any pointer to data members.
1213       if (CGM.getTypes().isZeroInitializable(BaseDecl))
1214         continue;
1215 
1216       uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl);
1217       FillInNullDataMemberPointers(CGM, I->getType(),
1218                                    Elements, StartOffset + BaseOffset);
1219     }
1220 
1221     // Visit all fields.
1222     unsigned FieldNo = 0;
1223     for (RecordDecl::field_iterator I = RD->field_begin(),
1224          E = RD->field_end(); I != E; ++I, ++FieldNo) {
1225       QualType FieldType = I->getType();
1226 
1227       if (CGM.getTypes().isZeroInitializable(FieldType))
1228         continue;
1229 
1230       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1231       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1232     }
1233   } else {
1234     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1235     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1236            "Should only see pointers to data members here!");
1237 
1238     CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1239     CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1240 
1241     // FIXME: hardcodes Itanium member pointer representation!
1242     llvm::Constant *NegativeOne =
1243       llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
1244 
1245     // Fill in the null data member pointer.
1246     for (CharUnits I = StartIndex; I != EndIndex; ++I)
1247       Elements[I.getQuantity()] = NegativeOne;
1248   }
1249 }
1250 
1251 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1252                                                llvm::Type *baseType,
1253                                                const CXXRecordDecl *base);
1254 
1255 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1256                                         const CXXRecordDecl *record,
1257                                         bool asCompleteObject) {
1258   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1259   llvm::StructType *structure =
1260     (asCompleteObject ? layout.getLLVMType()
1261                       : layout.getBaseSubobjectLLVMType());
1262 
1263   unsigned numElements = structure->getNumElements();
1264   std::vector<llvm::Constant *> elements(numElements);
1265 
1266   // Fill in all the bases.
1267   for (CXXRecordDecl::base_class_const_iterator
1268          I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1269     if (I->isVirtual()) {
1270       // Ignore virtual bases; if we're laying out for a complete
1271       // object, we'll lay these out later.
1272       continue;
1273     }
1274 
1275     const CXXRecordDecl *base =
1276       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1277 
1278     // Ignore empty bases.
1279     if (base->isEmpty())
1280       continue;
1281 
1282     unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1283     llvm::Type *baseType = structure->getElementType(fieldIndex);
1284     elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1285   }
1286 
1287   // Fill in all the fields.
1288   for (RecordDecl::field_iterator I = record->field_begin(),
1289          E = record->field_end(); I != E; ++I) {
1290     const FieldDecl *field = *I;
1291 
1292     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1293     // will fill in later.)
1294     if (!field->isBitField()) {
1295       unsigned fieldIndex = layout.getLLVMFieldNo(field);
1296       elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1297     }
1298 
1299     // For unions, stop after the first named field.
1300     if (record->isUnion() && field->getDeclName())
1301       break;
1302   }
1303 
1304   // Fill in the virtual bases, if we're working with the complete object.
1305   if (asCompleteObject) {
1306     for (CXXRecordDecl::base_class_const_iterator
1307            I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1308       const CXXRecordDecl *base =
1309         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1310 
1311       // Ignore empty bases.
1312       if (base->isEmpty())
1313         continue;
1314 
1315       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1316 
1317       // We might have already laid this field out.
1318       if (elements[fieldIndex]) continue;
1319 
1320       llvm::Type *baseType = structure->getElementType(fieldIndex);
1321       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1322     }
1323   }
1324 
1325   // Now go through all other fields and zero them out.
1326   for (unsigned i = 0; i != numElements; ++i) {
1327     if (!elements[i])
1328       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1329   }
1330 
1331   return llvm::ConstantStruct::get(structure, elements);
1332 }
1333 
1334 /// Emit the null constant for a base subobject.
1335 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1336                                                llvm::Type *baseType,
1337                                                const CXXRecordDecl *base) {
1338   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1339 
1340   // Just zero out bases that don't have any pointer to data members.
1341   if (baseLayout.isZeroInitializableAsBase())
1342     return llvm::Constant::getNullValue(baseType);
1343 
1344   // If the base type is a struct, we can just use its null constant.
1345   if (isa<llvm::StructType>(baseType)) {
1346     return EmitNullConstant(CGM, base, /*complete*/ false);
1347   }
1348 
1349   // Otherwise, some bases are represented as arrays of i8 if the size
1350   // of the base is smaller than its corresponding LLVM type.  Figure
1351   // out how many elements this base array has.
1352   llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1353   unsigned numBaseElements = baseArrayType->getNumElements();
1354 
1355   // Fill in null data member pointers.
1356   SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
1357   FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1358                                baseElements, 0);
1359 
1360   // Now go through all other elements and zero them out.
1361   if (numBaseElements) {
1362     llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
1363     for (unsigned i = 0; i != numBaseElements; ++i) {
1364       if (!baseElements[i])
1365         baseElements[i] = i8_zero;
1366     }
1367   }
1368 
1369   return llvm::ConstantArray::get(baseArrayType, baseElements);
1370 }
1371 
1372 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1373   if (getTypes().isZeroInitializable(T))
1374     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1375 
1376   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1377     llvm::ArrayType *ATy =
1378       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1379 
1380     QualType ElementTy = CAT->getElementType();
1381 
1382     llvm::Constant *Element = EmitNullConstant(ElementTy);
1383     unsigned NumElements = CAT->getSize().getZExtValue();
1384 
1385     if (Element->isNullValue())
1386       return llvm::ConstantAggregateZero::get(ATy);
1387 
1388     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
1389     return llvm::ConstantArray::get(ATy, Array);
1390   }
1391 
1392   if (const RecordType *RT = T->getAs<RecordType>()) {
1393     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1394     return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1395   }
1396 
1397   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1398   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1399          "Should only see pointers to data members here!");
1400 
1401   // Itanium C++ ABI 2.3:
1402   //   A NULL pointer is represented as -1.
1403   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1404 }
1405 
1406 llvm::Constant *
1407 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1408   return ::EmitNullConstant(*this, Record, false);
1409 }
1410