1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include <algorithm> 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Complex Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 30 31 /// Return the complex type that we are meant to emit. 32 static const ComplexType *getComplexType(QualType type) { 33 type = type.getCanonicalType(); 34 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 35 return comp; 36 } else { 37 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 38 } 39 } 40 41 namespace { 42 class ComplexExprEmitter 43 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 44 CodeGenFunction &CGF; 45 CGBuilderTy &Builder; 46 bool IgnoreReal; 47 bool IgnoreImag; 48 public: 49 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 50 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 51 } 52 53 54 //===--------------------------------------------------------------------===// 55 // Utilities 56 //===--------------------------------------------------------------------===// 57 58 bool TestAndClearIgnoreReal() { 59 bool I = IgnoreReal; 60 IgnoreReal = false; 61 return I; 62 } 63 bool TestAndClearIgnoreImag() { 64 bool I = IgnoreImag; 65 IgnoreImag = false; 66 return I; 67 } 68 69 /// EmitLoadOfLValue - Given an expression with complex type that represents a 70 /// value l-value, this method emits the address of the l-value, then loads 71 /// and returns the result. 72 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 73 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 74 } 75 76 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 77 78 /// EmitStoreOfComplex - Store the specified real/imag parts into the 79 /// specified value pointer. 80 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 81 82 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 83 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 84 QualType DestType); 85 /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType. 86 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 87 QualType DestType); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 ComplexPairTy Visit(Expr *E) { 94 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 95 } 96 97 ComplexPairTy VisitStmt(Stmt *S) { 98 S->dump(CGF.getContext().getSourceManager()); 99 llvm_unreachable("Stmt can't have complex result type!"); 100 } 101 ComplexPairTy VisitExpr(Expr *S); 102 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 103 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 104 return Visit(GE->getResultExpr()); 105 } 106 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 107 ComplexPairTy 108 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 109 return Visit(PE->getReplacement()); 110 } 111 112 // l-values. 113 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 114 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 115 if (result.isReference()) 116 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 117 E->getExprLoc()); 118 119 llvm::Constant *pair = result.getValue(); 120 return ComplexPairTy(pair->getAggregateElement(0U), 121 pair->getAggregateElement(1U)); 122 } 123 return EmitLoadOfLValue(E); 124 } 125 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 126 return EmitLoadOfLValue(E); 127 } 128 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 129 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 130 } 131 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 132 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 133 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 134 if (E->isGLValue()) 135 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 136 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 137 } 138 139 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 140 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 141 } 142 143 // FIXME: CompoundLiteralExpr 144 145 ComplexPairTy EmitCast(CastExpr::CastKind CK, Expr *Op, QualType DestTy); 146 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 147 // Unlike for scalars, we don't have to worry about function->ptr demotion 148 // here. 149 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 150 } 151 ComplexPairTy VisitCastExpr(CastExpr *E) { 152 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 153 } 154 ComplexPairTy VisitCallExpr(const CallExpr *E); 155 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 156 157 // Operators. 158 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 159 bool isInc, bool isPre) { 160 LValue LV = CGF.EmitLValue(E->getSubExpr()); 161 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 162 } 163 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 164 return VisitPrePostIncDec(E, false, false); 165 } 166 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 167 return VisitPrePostIncDec(E, true, false); 168 } 169 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 170 return VisitPrePostIncDec(E, false, true); 171 } 172 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 173 return VisitPrePostIncDec(E, true, true); 174 } 175 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 176 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 177 TestAndClearIgnoreReal(); 178 TestAndClearIgnoreImag(); 179 return Visit(E->getSubExpr()); 180 } 181 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 182 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 183 // LNot,Real,Imag never return complex. 184 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 185 return Visit(E->getSubExpr()); 186 } 187 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 188 return Visit(DAE->getExpr()); 189 } 190 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 191 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 192 return Visit(DIE->getExpr()); 193 } 194 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 195 CGF.enterFullExpression(E); 196 CodeGenFunction::RunCleanupsScope Scope(CGF); 197 return Visit(E->getSubExpr()); 198 } 199 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 200 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 201 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 202 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 203 return ComplexPairTy(Null, Null); 204 } 205 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 206 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 207 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 208 llvm::Constant *Null = 209 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 210 return ComplexPairTy(Null, Null); 211 } 212 213 struct BinOpInfo { 214 ComplexPairTy LHS; 215 ComplexPairTy RHS; 216 QualType Ty; // Computation Type. 217 }; 218 219 BinOpInfo EmitBinOps(const BinaryOperator *E); 220 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 221 ComplexPairTy (ComplexExprEmitter::*Func) 222 (const BinOpInfo &), 223 RValue &Val); 224 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 225 ComplexPairTy (ComplexExprEmitter::*Func) 226 (const BinOpInfo &)); 227 228 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 229 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 230 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 231 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 232 233 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 234 const BinOpInfo &Op); 235 236 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 237 return EmitBinAdd(EmitBinOps(E)); 238 } 239 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 240 return EmitBinSub(EmitBinOps(E)); 241 } 242 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 243 return EmitBinMul(EmitBinOps(E)); 244 } 245 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 246 return EmitBinDiv(EmitBinOps(E)); 247 } 248 249 // Compound assignments. 250 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 251 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 252 } 253 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 254 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 255 } 256 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 257 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 258 } 259 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 260 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 261 } 262 263 // GCC rejects rem/and/or/xor for integer complex. 264 // Logical and/or always return int, never complex. 265 266 // No comparisons produce a complex result. 267 268 LValue EmitBinAssignLValue(const BinaryOperator *E, 269 ComplexPairTy &Val); 270 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 271 ComplexPairTy VisitBinComma (const BinaryOperator *E); 272 273 274 ComplexPairTy 275 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 276 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 277 278 ComplexPairTy VisitInitListExpr(InitListExpr *E); 279 280 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 281 return EmitLoadOfLValue(E); 282 } 283 284 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 285 286 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 287 return CGF.EmitAtomicExpr(E).getComplexVal(); 288 } 289 }; 290 } // end anonymous namespace. 291 292 //===----------------------------------------------------------------------===// 293 // Utilities 294 //===----------------------------------------------------------------------===// 295 296 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 297 /// load the real and imaginary pieces, returning them as Real/Imag. 298 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 299 SourceLocation loc) { 300 assert(lvalue.isSimple() && "non-simple complex l-value?"); 301 if (lvalue.getType()->isAtomicType()) 302 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 303 304 llvm::Value *SrcPtr = lvalue.getAddress(); 305 bool isVolatile = lvalue.isVolatileQualified(); 306 unsigned AlignR = lvalue.getAlignment().getQuantity(); 307 ASTContext &C = CGF.getContext(); 308 QualType ComplexTy = lvalue.getType(); 309 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 310 unsigned AlignI = std::min(AlignR, ComplexAlign); 311 312 llvm::Value *Real=nullptr, *Imag=nullptr; 313 314 if (!IgnoreReal || isVolatile) { 315 llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0, 316 SrcPtr->getName() + ".realp"); 317 Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile, 318 SrcPtr->getName() + ".real"); 319 } 320 321 if (!IgnoreImag || isVolatile) { 322 llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1, 323 SrcPtr->getName() + ".imagp"); 324 Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile, 325 SrcPtr->getName() + ".imag"); 326 } 327 return ComplexPairTy(Real, Imag); 328 } 329 330 /// EmitStoreOfComplex - Store the specified real/imag parts into the 331 /// specified value pointer. 332 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, 333 LValue lvalue, 334 bool isInit) { 335 if (lvalue.getType()->isAtomicType()) 336 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 337 338 llvm::Value *Ptr = lvalue.getAddress(); 339 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real"); 340 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag"); 341 unsigned AlignR = lvalue.getAlignment().getQuantity(); 342 ASTContext &C = CGF.getContext(); 343 QualType ComplexTy = lvalue.getType(); 344 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 345 unsigned AlignI = std::min(AlignR, ComplexAlign); 346 347 Builder.CreateAlignedStore(Val.first, RealPtr, AlignR, 348 lvalue.isVolatileQualified()); 349 Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI, 350 lvalue.isVolatileQualified()); 351 } 352 353 354 355 //===----------------------------------------------------------------------===// 356 // Visitor Methods 357 //===----------------------------------------------------------------------===// 358 359 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 360 CGF.ErrorUnsupported(E, "complex expression"); 361 llvm::Type *EltTy = 362 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 363 llvm::Value *U = llvm::UndefValue::get(EltTy); 364 return ComplexPairTy(U, U); 365 } 366 367 ComplexPairTy ComplexExprEmitter:: 368 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 369 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 370 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 371 } 372 373 374 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 375 if (E->getCallReturnType()->isReferenceType()) 376 return EmitLoadOfLValue(E); 377 378 return CGF.EmitCallExpr(E).getComplexVal(); 379 } 380 381 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 382 CodeGenFunction::StmtExprEvaluation eval(CGF); 383 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 384 assert(RetAlloca && "Expected complex return value"); 385 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 386 E->getExprLoc()); 387 } 388 389 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 390 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 391 QualType SrcType, 392 QualType DestType) { 393 // Get the src/dest element type. 394 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 395 DestType = DestType->castAs<ComplexType>()->getElementType(); 396 397 // C99 6.3.1.6: When a value of complex type is converted to another 398 // complex type, both the real and imaginary parts follow the conversion 399 // rules for the corresponding real types. 400 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType); 401 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType); 402 return Val; 403 } 404 405 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 406 QualType SrcType, 407 QualType DestType) { 408 // Convert the input element to the element type of the complex. 409 DestType = DestType->castAs<ComplexType>()->getElementType(); 410 Val = CGF.EmitScalarConversion(Val, SrcType, DestType); 411 412 // Return (realval, 0). 413 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 414 } 415 416 ComplexPairTy ComplexExprEmitter::EmitCast(CastExpr::CastKind CK, Expr *Op, 417 QualType DestTy) { 418 switch (CK) { 419 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 420 421 // Atomic to non-atomic casts may be more than a no-op for some platforms and 422 // for some types. 423 case CK_AtomicToNonAtomic: 424 case CK_NonAtomicToAtomic: 425 case CK_NoOp: 426 case CK_LValueToRValue: 427 case CK_UserDefinedConversion: 428 return Visit(Op); 429 430 case CK_LValueBitCast: { 431 LValue origLV = CGF.EmitLValue(Op); 432 llvm::Value *V = origLV.getAddress(); 433 V = Builder.CreateBitCast(V, 434 CGF.ConvertType(CGF.getContext().getPointerType(DestTy))); 435 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy, 436 origLV.getAlignment()), 437 Op->getExprLoc()); 438 } 439 440 case CK_BitCast: 441 case CK_BaseToDerived: 442 case CK_DerivedToBase: 443 case CK_UncheckedDerivedToBase: 444 case CK_Dynamic: 445 case CK_ToUnion: 446 case CK_ArrayToPointerDecay: 447 case CK_FunctionToPointerDecay: 448 case CK_NullToPointer: 449 case CK_NullToMemberPointer: 450 case CK_BaseToDerivedMemberPointer: 451 case CK_DerivedToBaseMemberPointer: 452 case CK_MemberPointerToBoolean: 453 case CK_ReinterpretMemberPointer: 454 case CK_ConstructorConversion: 455 case CK_IntegralToPointer: 456 case CK_PointerToIntegral: 457 case CK_PointerToBoolean: 458 case CK_ToVoid: 459 case CK_VectorSplat: 460 case CK_IntegralCast: 461 case CK_IntegralToBoolean: 462 case CK_IntegralToFloating: 463 case CK_FloatingToIntegral: 464 case CK_FloatingToBoolean: 465 case CK_FloatingCast: 466 case CK_CPointerToObjCPointerCast: 467 case CK_BlockPointerToObjCPointerCast: 468 case CK_AnyPointerToBlockPointerCast: 469 case CK_ObjCObjectLValueCast: 470 case CK_FloatingComplexToReal: 471 case CK_FloatingComplexToBoolean: 472 case CK_IntegralComplexToReal: 473 case CK_IntegralComplexToBoolean: 474 case CK_ARCProduceObject: 475 case CK_ARCConsumeObject: 476 case CK_ARCReclaimReturnedObject: 477 case CK_ARCExtendBlockObject: 478 case CK_CopyAndAutoreleaseBlockObject: 479 case CK_BuiltinFnToFnPtr: 480 case CK_ZeroToOCLEvent: 481 case CK_AddressSpaceConversion: 482 llvm_unreachable("invalid cast kind for complex value"); 483 484 case CK_FloatingRealToComplex: 485 case CK_IntegralRealToComplex: 486 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), 487 Op->getType(), DestTy); 488 489 case CK_FloatingComplexCast: 490 case CK_FloatingComplexToIntegralComplex: 491 case CK_IntegralComplexCast: 492 case CK_IntegralComplexToFloatingComplex: 493 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy); 494 } 495 496 llvm_unreachable("unknown cast resulting in complex value"); 497 } 498 499 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 500 TestAndClearIgnoreReal(); 501 TestAndClearIgnoreImag(); 502 ComplexPairTy Op = Visit(E->getSubExpr()); 503 504 llvm::Value *ResR, *ResI; 505 if (Op.first->getType()->isFloatingPointTy()) { 506 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 507 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 508 } else { 509 ResR = Builder.CreateNeg(Op.first, "neg.r"); 510 ResI = Builder.CreateNeg(Op.second, "neg.i"); 511 } 512 return ComplexPairTy(ResR, ResI); 513 } 514 515 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 516 TestAndClearIgnoreReal(); 517 TestAndClearIgnoreImag(); 518 // ~(a+ib) = a + i*-b 519 ComplexPairTy Op = Visit(E->getSubExpr()); 520 llvm::Value *ResI; 521 if (Op.second->getType()->isFloatingPointTy()) 522 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 523 else 524 ResI = Builder.CreateNeg(Op.second, "conj.i"); 525 526 return ComplexPairTy(Op.first, ResI); 527 } 528 529 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 530 llvm::Value *ResR, *ResI; 531 532 if (Op.LHS.first->getType()->isFloatingPointTy()) { 533 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 534 if (Op.LHS.second && Op.RHS.second) 535 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 536 else 537 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 538 assert(ResI && "Only one operand may be real!"); 539 } else { 540 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 541 assert(Op.LHS.second && Op.RHS.second && 542 "Both operands of integer complex operators must be complex!"); 543 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 544 } 545 return ComplexPairTy(ResR, ResI); 546 } 547 548 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 549 llvm::Value *ResR, *ResI; 550 if (Op.LHS.first->getType()->isFloatingPointTy()) { 551 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 552 if (Op.LHS.second && Op.RHS.second) 553 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 554 else 555 ResI = Op.LHS.second ? Op.LHS.second 556 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 557 assert(ResI && "Only one operand may be real!"); 558 } else { 559 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 560 assert(Op.LHS.second && Op.RHS.second && 561 "Both operands of integer complex operators must be complex!"); 562 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 563 } 564 return ComplexPairTy(ResR, ResI); 565 } 566 567 /// \brief Emit a libcall for a binary operation on complex types. 568 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 569 const BinOpInfo &Op) { 570 CallArgList Args; 571 Args.add(RValue::get(Op.LHS.first), 572 Op.Ty->castAs<ComplexType>()->getElementType()); 573 Args.add(RValue::get(Op.LHS.second), 574 Op.Ty->castAs<ComplexType>()->getElementType()); 575 Args.add(RValue::get(Op.RHS.first), 576 Op.Ty->castAs<ComplexType>()->getElementType()); 577 Args.add(RValue::get(Op.RHS.second), 578 Op.Ty->castAs<ComplexType>()->getElementType()); 579 580 // We *must* use the full CG function call building logic here because the 581 // complex type has special ABI handling. 582 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 583 Op.Ty, Args, FunctionType::ExtInfo(), RequiredArgs::All); 584 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 585 llvm::Constant *Func = CGF.CGM.CreateRuntimeFunction(FTy, LibCallName); 586 587 return CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args).getComplexVal(); 588 } 589 590 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 591 // typed values. 592 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 593 using llvm::Value; 594 Value *ResR, *ResI; 595 596 if (Op.LHS.first->getType()->isFloatingPointTy()) { 597 // The general formulation is: 598 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 599 // 600 // But we can fold away components which would be zero due to a real 601 // operand according to C11 Annex G.5.1p2. 602 // FIXME: C11 also provides for imaginary types which would allow folding 603 // still more of this within the type system. 604 605 if (Op.LHS.second && Op.RHS.second) { 606 // If both operands are complex, delegate to a libcall which works to 607 // prevent underflow and overflow. 608 StringRef LibCallName; 609 switch (Op.LHS.first->getType()->getTypeID()) { 610 default: 611 llvm_unreachable("Unsupported floating point type!"); 612 case llvm::Type::HalfTyID: 613 return EmitComplexBinOpLibCall("__mulhc3", Op); 614 case llvm::Type::FloatTyID: 615 return EmitComplexBinOpLibCall("__mulsc3", Op); 616 case llvm::Type::DoubleTyID: 617 return EmitComplexBinOpLibCall("__muldc3", Op); 618 case llvm::Type::X86_FP80TyID: 619 return EmitComplexBinOpLibCall("__mulxc3", Op); 620 } 621 } 622 assert((Op.LHS.second || Op.RHS.second) && 623 "At least one operand must be complex!"); 624 625 // If either of the operands is a real rather than a complex, the 626 // imaginary component is ignored when computing the real component of the 627 // result. 628 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 629 630 ResI = Op.LHS.second 631 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 632 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 633 } else { 634 assert(Op.LHS.second && Op.RHS.second && 635 "Both operands of integer complex operators must be complex!"); 636 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 637 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 638 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 639 640 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 641 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 642 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 643 } 644 return ComplexPairTy(ResR, ResI); 645 } 646 647 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 648 // typed values. 649 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 650 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 651 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 652 653 654 llvm::Value *DSTr, *DSTi; 655 if (LHSr->getType()->isFloatingPointTy()) { 656 // If we have a complex operand on the RHS, we delegate to a libcall to 657 // handle all of the complexities and minimize underflow/overflow cases. 658 // 659 // FIXME: We would be able to avoid the libcall in many places if we 660 // supported imaginary types in addition to complex types. 661 if (RHSi) { 662 BinOpInfo LibCallOp = Op; 663 // If LHS was a real, supply a null imaginary part. 664 if (!LHSi) 665 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 666 667 StringRef LibCallName; 668 switch (LHSr->getType()->getTypeID()) { 669 default: 670 llvm_unreachable("Unsupported floating point type!"); 671 case llvm::Type::HalfTyID: 672 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 673 case llvm::Type::FloatTyID: 674 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 675 case llvm::Type::DoubleTyID: 676 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 677 case llvm::Type::X86_FP80TyID: 678 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 679 } 680 } 681 assert(LHSi && "Can have at most one non-complex operand!"); 682 683 DSTr = Builder.CreateFDiv(LHSr, RHSr); 684 DSTi = Builder.CreateFDiv(LHSi, RHSr); 685 } else { 686 assert(Op.LHS.second && Op.RHS.second && 687 "Both operands of integer complex operators must be complex!"); 688 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 689 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 690 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 691 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 692 693 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 694 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 695 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 696 697 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 698 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 699 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 700 701 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 702 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 703 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 704 } else { 705 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 706 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 707 } 708 } 709 710 return ComplexPairTy(DSTr, DSTi); 711 } 712 713 ComplexExprEmitter::BinOpInfo 714 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 715 TestAndClearIgnoreReal(); 716 TestAndClearIgnoreImag(); 717 BinOpInfo Ops; 718 if (E->getLHS()->getType()->isRealFloatingType()) 719 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 720 else 721 Ops.LHS = Visit(E->getLHS()); 722 if (E->getRHS()->getType()->isRealFloatingType()) 723 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 724 else 725 Ops.RHS = Visit(E->getRHS()); 726 727 Ops.Ty = E->getType(); 728 return Ops; 729 } 730 731 732 LValue ComplexExprEmitter:: 733 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 734 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 735 RValue &Val) { 736 TestAndClearIgnoreReal(); 737 TestAndClearIgnoreImag(); 738 QualType LHSTy = E->getLHS()->getType(); 739 740 BinOpInfo OpInfo; 741 742 // Load the RHS and LHS operands. 743 // __block variables need to have the rhs evaluated first, plus this should 744 // improve codegen a little. 745 OpInfo.Ty = E->getComputationResultType(); 746 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 747 748 // The RHS should have been converted to the computation type. 749 if (E->getRHS()->getType()->isRealFloatingType()) { 750 assert( 751 CGF.getContext() 752 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 753 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 754 } else { 755 assert(CGF.getContext() 756 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 757 OpInfo.RHS = Visit(E->getRHS()); 758 } 759 760 LValue LHS = CGF.EmitLValue(E->getLHS()); 761 762 // Load from the l-value and convert it. 763 if (LHSTy->isAnyComplexType()) { 764 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc()); 765 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 766 } else { 767 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc()); 768 // For floating point real operands we can directly pass the scalar form 769 // to the binary operator emission and potentially get more efficient code. 770 if (LHSTy->isRealFloatingType()) { 771 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 772 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy); 773 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 774 } else { 775 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 776 } 777 } 778 779 // Expand the binary operator. 780 ComplexPairTy Result = (this->*Func)(OpInfo); 781 782 // Truncate the result and store it into the LHS lvalue. 783 if (LHSTy->isAnyComplexType()) { 784 ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); 785 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 786 Val = RValue::getComplex(ResVal); 787 } else { 788 llvm::Value *ResVal = 789 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy); 790 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 791 Val = RValue::get(ResVal); 792 } 793 794 return LHS; 795 } 796 797 // Compound assignments. 798 ComplexPairTy ComplexExprEmitter:: 799 EmitCompoundAssign(const CompoundAssignOperator *E, 800 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 801 RValue Val; 802 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 803 804 // The result of an assignment in C is the assigned r-value. 805 if (!CGF.getLangOpts().CPlusPlus) 806 return Val.getComplexVal(); 807 808 // If the lvalue is non-volatile, return the computed value of the assignment. 809 if (!LV.isVolatileQualified()) 810 return Val.getComplexVal(); 811 812 return EmitLoadOfLValue(LV, E->getExprLoc()); 813 } 814 815 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 816 ComplexPairTy &Val) { 817 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 818 E->getRHS()->getType()) && 819 "Invalid assignment"); 820 TestAndClearIgnoreReal(); 821 TestAndClearIgnoreImag(); 822 823 // Emit the RHS. __block variables need the RHS evaluated first. 824 Val = Visit(E->getRHS()); 825 826 // Compute the address to store into. 827 LValue LHS = CGF.EmitLValue(E->getLHS()); 828 829 // Store the result value into the LHS lvalue. 830 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 831 832 return LHS; 833 } 834 835 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 836 ComplexPairTy Val; 837 LValue LV = EmitBinAssignLValue(E, Val); 838 839 // The result of an assignment in C is the assigned r-value. 840 if (!CGF.getLangOpts().CPlusPlus) 841 return Val; 842 843 // If the lvalue is non-volatile, return the computed value of the assignment. 844 if (!LV.isVolatileQualified()) 845 return Val; 846 847 return EmitLoadOfLValue(LV, E->getExprLoc()); 848 } 849 850 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 851 CGF.EmitIgnoredExpr(E->getLHS()); 852 return Visit(E->getRHS()); 853 } 854 855 ComplexPairTy ComplexExprEmitter:: 856 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 857 TestAndClearIgnoreReal(); 858 TestAndClearIgnoreImag(); 859 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 860 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 861 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 862 863 // Bind the common expression if necessary. 864 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 865 866 RegionCounter Cnt = CGF.getPGORegionCounter(E); 867 CodeGenFunction::ConditionalEvaluation eval(CGF); 868 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 869 870 eval.begin(CGF); 871 CGF.EmitBlock(LHSBlock); 872 Cnt.beginRegion(Builder); 873 ComplexPairTy LHS = Visit(E->getTrueExpr()); 874 LHSBlock = Builder.GetInsertBlock(); 875 CGF.EmitBranch(ContBlock); 876 eval.end(CGF); 877 878 eval.begin(CGF); 879 CGF.EmitBlock(RHSBlock); 880 ComplexPairTy RHS = Visit(E->getFalseExpr()); 881 RHSBlock = Builder.GetInsertBlock(); 882 CGF.EmitBlock(ContBlock); 883 eval.end(CGF); 884 885 // Create a PHI node for the real part. 886 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 887 RealPN->addIncoming(LHS.first, LHSBlock); 888 RealPN->addIncoming(RHS.first, RHSBlock); 889 890 // Create a PHI node for the imaginary part. 891 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 892 ImagPN->addIncoming(LHS.second, LHSBlock); 893 ImagPN->addIncoming(RHS.second, RHSBlock); 894 895 return ComplexPairTy(RealPN, ImagPN); 896 } 897 898 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 899 return Visit(E->getChosenSubExpr()); 900 } 901 902 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 903 bool Ignore = TestAndClearIgnoreReal(); 904 (void)Ignore; 905 assert (Ignore == false && "init list ignored"); 906 Ignore = TestAndClearIgnoreImag(); 907 (void)Ignore; 908 assert (Ignore == false && "init list ignored"); 909 910 if (E->getNumInits() == 2) { 911 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 912 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 913 return ComplexPairTy(Real, Imag); 914 } else if (E->getNumInits() == 1) { 915 return Visit(E->getInit(0)); 916 } 917 918 // Empty init list intializes to null 919 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 920 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 921 llvm::Type* LTy = CGF.ConvertType(Ty); 922 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 923 return ComplexPairTy(zeroConstant, zeroConstant); 924 } 925 926 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 927 llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr()); 928 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType()); 929 930 if (!ArgPtr) { 931 CGF.ErrorUnsupported(E, "complex va_arg expression"); 932 llvm::Type *EltTy = 933 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 934 llvm::Value *U = llvm::UndefValue::get(EltTy); 935 return ComplexPairTy(U, U); 936 } 937 938 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()), 939 E->getExprLoc()); 940 } 941 942 //===----------------------------------------------------------------------===// 943 // Entry Point into this File 944 //===----------------------------------------------------------------------===// 945 946 /// EmitComplexExpr - Emit the computation of the specified expression of 947 /// complex type, ignoring the result. 948 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 949 bool IgnoreImag) { 950 assert(E && getComplexType(E->getType()) && 951 "Invalid complex expression to emit"); 952 953 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 954 .Visit(const_cast<Expr*>(E)); 955 } 956 957 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 958 bool isInit) { 959 assert(E && getComplexType(E->getType()) && 960 "Invalid complex expression to emit"); 961 ComplexExprEmitter Emitter(*this); 962 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 963 Emitter.EmitStoreOfComplex(Val, dest, isInit); 964 } 965 966 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 967 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 968 bool isInit) { 969 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 970 } 971 972 /// EmitLoadOfComplex - Load a complex number from the specified address. 973 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 974 SourceLocation loc) { 975 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 976 } 977 978 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 979 assert(E->getOpcode() == BO_Assign); 980 ComplexPairTy Val; // ignored 981 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 982 } 983 984 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 985 const ComplexExprEmitter::BinOpInfo &); 986 987 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 988 switch (Op) { 989 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 990 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 991 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 992 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 993 default: 994 llvm_unreachable("unexpected complex compound assignment"); 995 } 996 } 997 998 LValue CodeGenFunction:: 999 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1000 CompoundFunc Op = getComplexOp(E->getOpcode()); 1001 RValue Val; 1002 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1003 } 1004 1005 LValue CodeGenFunction:: 1006 EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 1007 llvm::Value *&Result) { 1008 CompoundFunc Op = getComplexOp(E->getOpcode()); 1009 RValue Val; 1010 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1011 Result = Val.getScalarVal(); 1012 return Ret; 1013 } 1014