1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 #include <algorithm>
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Complex Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
31 
32 /// Return the complex type that we are meant to emit.
33 static const ComplexType *getComplexType(QualType type) {
34   type = type.getCanonicalType();
35   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
36     return comp;
37   } else {
38     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
39   }
40 }
41 
42 namespace  {
43 class ComplexExprEmitter
44   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
45   CodeGenFunction &CGF;
46   CGBuilderTy &Builder;
47   bool IgnoreReal;
48   bool IgnoreImag;
49 public:
50   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
51     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
52   }
53 
54 
55   //===--------------------------------------------------------------------===//
56   //                               Utilities
57   //===--------------------------------------------------------------------===//
58 
59   bool TestAndClearIgnoreReal() {
60     bool I = IgnoreReal;
61     IgnoreReal = false;
62     return I;
63   }
64   bool TestAndClearIgnoreImag() {
65     bool I = IgnoreImag;
66     IgnoreImag = false;
67     return I;
68   }
69 
70   /// EmitLoadOfLValue - Given an expression with complex type that represents a
71   /// value l-value, this method emits the address of the l-value, then loads
72   /// and returns the result.
73   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
74     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
75   }
76 
77   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
78 
79   /// EmitStoreOfComplex - Store the specified real/imag parts into the
80   /// specified value pointer.
81   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
82 
83   /// Emit a cast from complex value Val to DestType.
84   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
85                                          QualType DestType, SourceLocation Loc);
86   /// Emit a cast from scalar value Val to DestType.
87   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
88                                         QualType DestType, SourceLocation Loc);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   ComplexPairTy Visit(Expr *E) {
95     ApplyDebugLocation DL(CGF, E);
96     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
97   }
98 
99   ComplexPairTy VisitStmt(Stmt *S) {
100     S->dump(CGF.getContext().getSourceManager());
101     llvm_unreachable("Stmt can't have complex result type!");
102   }
103   ComplexPairTy VisitExpr(Expr *S);
104   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
105     return Visit(E->getSubExpr());
106   }
107   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
108   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109     return Visit(GE->getResultExpr());
110   }
111   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112   ComplexPairTy
113   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114     return Visit(PE->getReplacement());
115   }
116   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
117     return CGF.EmitCoawaitExpr(*S).getComplexVal();
118   }
119   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
120     return CGF.EmitCoyieldExpr(*S).getComplexVal();
121   }
122   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
123     return Visit(E->getSubExpr());
124   }
125 
126   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
127                              Expr *E) {
128     assert(Constant && "not a constant");
129     if (Constant.isReference())
130       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
131                               E->getExprLoc());
132 
133     llvm::Constant *pair = Constant.getValue();
134     return ComplexPairTy(pair->getAggregateElement(0U),
135                          pair->getAggregateElement(1U));
136   }
137 
138   // l-values.
139   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
140     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
141       return emitConstant(Constant, E);
142     return EmitLoadOfLValue(E);
143   }
144   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
145     return EmitLoadOfLValue(E);
146   }
147   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
148     return CGF.EmitObjCMessageExpr(E).getComplexVal();
149   }
150   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
151   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
152     if (CodeGenFunction::ConstantEmission Constant =
153             CGF.tryEmitAsConstant(ME)) {
154       CGF.EmitIgnoredExpr(ME->getBase());
155       return emitConstant(Constant, ME);
156     }
157     return EmitLoadOfLValue(ME);
158   }
159   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
160     if (E->isGLValue())
161       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
162                               E->getExprLoc());
163     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
164   }
165 
166   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
167     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
168   }
169 
170   // FIXME: CompoundLiteralExpr
171 
172   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
173   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
174     // Unlike for scalars, we don't have to worry about function->ptr demotion
175     // here.
176     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
177   }
178   ComplexPairTy VisitCastExpr(CastExpr *E) {
179     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
180       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
181     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
182   }
183   ComplexPairTy VisitCallExpr(const CallExpr *E);
184   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
185 
186   // Operators.
187   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
188                                    bool isInc, bool isPre) {
189     LValue LV = CGF.EmitLValue(E->getSubExpr());
190     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
191   }
192   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
193     return VisitPrePostIncDec(E, false, false);
194   }
195   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
196     return VisitPrePostIncDec(E, true, false);
197   }
198   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
199     return VisitPrePostIncDec(E, false, true);
200   }
201   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
202     return VisitPrePostIncDec(E, true, true);
203   }
204   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
205   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
206     TestAndClearIgnoreReal();
207     TestAndClearIgnoreImag();
208     return Visit(E->getSubExpr());
209   }
210   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
211   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
212   // LNot,Real,Imag never return complex.
213   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
214     return Visit(E->getSubExpr());
215   }
216   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
217     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
218     return Visit(DAE->getExpr());
219   }
220   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
221     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
222     return Visit(DIE->getExpr());
223   }
224   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
225     CodeGenFunction::RunCleanupsScope Scope(CGF);
226     ComplexPairTy Vals = Visit(E->getSubExpr());
227     // Defend against dominance problems caused by jumps out of expression
228     // evaluation through the shared cleanup block.
229     Scope.ForceCleanup({&Vals.first, &Vals.second});
230     return Vals;
231   }
232   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
233     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
234     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
235     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
236     return ComplexPairTy(Null, Null);
237   }
238   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
239     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
240     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
241     llvm::Constant *Null =
242                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
243     return ComplexPairTy(Null, Null);
244   }
245 
246   struct BinOpInfo {
247     ComplexPairTy LHS;
248     ComplexPairTy RHS;
249     QualType Ty;  // Computation Type.
250   };
251 
252   BinOpInfo EmitBinOps(const BinaryOperator *E);
253   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
254                                   ComplexPairTy (ComplexExprEmitter::*Func)
255                                   (const BinOpInfo &),
256                                   RValue &Val);
257   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
258                                    ComplexPairTy (ComplexExprEmitter::*Func)
259                                    (const BinOpInfo &));
260 
261   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
262   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
263   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
264   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
265 
266   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
267                                         const BinOpInfo &Op);
268 
269   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
270     return EmitBinAdd(EmitBinOps(E));
271   }
272   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
273     return EmitBinSub(EmitBinOps(E));
274   }
275   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
276     return EmitBinMul(EmitBinOps(E));
277   }
278   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
279     return EmitBinDiv(EmitBinOps(E));
280   }
281 
282   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
283     return Visit(E->getSemanticForm());
284   }
285 
286   // Compound assignments.
287   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
288     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
289   }
290   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
291     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
292   }
293   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
294     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
295   }
296   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
297     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
298   }
299 
300   // GCC rejects rem/and/or/xor for integer complex.
301   // Logical and/or always return int, never complex.
302 
303   // No comparisons produce a complex result.
304 
305   LValue EmitBinAssignLValue(const BinaryOperator *E,
306                              ComplexPairTy &Val);
307   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
308   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
309 
310 
311   ComplexPairTy
312   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
313   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
314 
315   ComplexPairTy VisitInitListExpr(InitListExpr *E);
316 
317   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
318     return EmitLoadOfLValue(E);
319   }
320 
321   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
322 
323   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
324     return CGF.EmitAtomicExpr(E).getComplexVal();
325   }
326 };
327 }  // end anonymous namespace.
328 
329 //===----------------------------------------------------------------------===//
330 //                                Utilities
331 //===----------------------------------------------------------------------===//
332 
333 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
334                                                  QualType complexType) {
335   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
336 }
337 
338 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
339                                                  QualType complexType) {
340   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
341 }
342 
343 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
344 /// load the real and imaginary pieces, returning them as Real/Imag.
345 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
346                                                    SourceLocation loc) {
347   assert(lvalue.isSimple() && "non-simple complex l-value?");
348   if (lvalue.getType()->isAtomicType())
349     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
350 
351   Address SrcPtr = lvalue.getAddress(CGF);
352   bool isVolatile = lvalue.isVolatileQualified();
353 
354   llvm::Value *Real = nullptr, *Imag = nullptr;
355 
356   if (!IgnoreReal || isVolatile) {
357     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
358     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
359   }
360 
361   if (!IgnoreImag || isVolatile) {
362     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
363     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
364   }
365 
366   return ComplexPairTy(Real, Imag);
367 }
368 
369 /// EmitStoreOfComplex - Store the specified real/imag parts into the
370 /// specified value pointer.
371 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
372                                             bool isInit) {
373   if (lvalue.getType()->isAtomicType() ||
374       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
375     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
376 
377   Address Ptr = lvalue.getAddress(CGF);
378   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
379   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
380 
381   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
382   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
383 }
384 
385 
386 
387 //===----------------------------------------------------------------------===//
388 //                            Visitor Methods
389 //===----------------------------------------------------------------------===//
390 
391 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
392   CGF.ErrorUnsupported(E, "complex expression");
393   llvm::Type *EltTy =
394     CGF.ConvertType(getComplexType(E->getType())->getElementType());
395   llvm::Value *U = llvm::UndefValue::get(EltTy);
396   return ComplexPairTy(U, U);
397 }
398 
399 ComplexPairTy ComplexExprEmitter::
400 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
401   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
402   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
403 }
404 
405 
406 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
407   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
408     return EmitLoadOfLValue(E);
409 
410   return CGF.EmitCallExpr(E).getComplexVal();
411 }
412 
413 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
414   CodeGenFunction::StmtExprEvaluation eval(CGF);
415   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
416   assert(RetAlloca.isValid() && "Expected complex return value");
417   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
418                           E->getExprLoc());
419 }
420 
421 /// Emit a cast from complex value Val to DestType.
422 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
423                                                            QualType SrcType,
424                                                            QualType DestType,
425                                                            SourceLocation Loc) {
426   // Get the src/dest element type.
427   SrcType = SrcType->castAs<ComplexType>()->getElementType();
428   DestType = DestType->castAs<ComplexType>()->getElementType();
429 
430   // C99 6.3.1.6: When a value of complex type is converted to another
431   // complex type, both the real and imaginary parts follow the conversion
432   // rules for the corresponding real types.
433   if (Val.first)
434     Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
435   if (Val.second)
436     Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
437   return Val;
438 }
439 
440 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
441                                                           QualType SrcType,
442                                                           QualType DestType,
443                                                           SourceLocation Loc) {
444   // Convert the input element to the element type of the complex.
445   DestType = DestType->castAs<ComplexType>()->getElementType();
446   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
447 
448   // Return (realval, 0).
449   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
450 }
451 
452 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
453                                            QualType DestTy) {
454   switch (CK) {
455   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
456 
457   // Atomic to non-atomic casts may be more than a no-op for some platforms and
458   // for some types.
459   case CK_AtomicToNonAtomic:
460   case CK_NonAtomicToAtomic:
461   case CK_NoOp:
462   case CK_LValueToRValue:
463   case CK_UserDefinedConversion:
464     return Visit(Op);
465 
466   case CK_LValueBitCast: {
467     LValue origLV = CGF.EmitLValue(Op);
468     Address V = origLV.getAddress(CGF);
469     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
470     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
471   }
472 
473   case CK_LValueToRValueBitCast: {
474     LValue SourceLVal = CGF.EmitLValue(Op);
475     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
476                                                 CGF.ConvertTypeForMem(DestTy));
477     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
478     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
479     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
480   }
481 
482   case CK_BitCast:
483   case CK_BaseToDerived:
484   case CK_DerivedToBase:
485   case CK_UncheckedDerivedToBase:
486   case CK_Dynamic:
487   case CK_ToUnion:
488   case CK_ArrayToPointerDecay:
489   case CK_FunctionToPointerDecay:
490   case CK_NullToPointer:
491   case CK_NullToMemberPointer:
492   case CK_BaseToDerivedMemberPointer:
493   case CK_DerivedToBaseMemberPointer:
494   case CK_MemberPointerToBoolean:
495   case CK_ReinterpretMemberPointer:
496   case CK_ConstructorConversion:
497   case CK_IntegralToPointer:
498   case CK_PointerToIntegral:
499   case CK_PointerToBoolean:
500   case CK_ToVoid:
501   case CK_VectorSplat:
502   case CK_IntegralCast:
503   case CK_BooleanToSignedIntegral:
504   case CK_IntegralToBoolean:
505   case CK_IntegralToFloating:
506   case CK_FloatingToIntegral:
507   case CK_FloatingToBoolean:
508   case CK_FloatingCast:
509   case CK_CPointerToObjCPointerCast:
510   case CK_BlockPointerToObjCPointerCast:
511   case CK_AnyPointerToBlockPointerCast:
512   case CK_ObjCObjectLValueCast:
513   case CK_FloatingComplexToReal:
514   case CK_FloatingComplexToBoolean:
515   case CK_IntegralComplexToReal:
516   case CK_IntegralComplexToBoolean:
517   case CK_ARCProduceObject:
518   case CK_ARCConsumeObject:
519   case CK_ARCReclaimReturnedObject:
520   case CK_ARCExtendBlockObject:
521   case CK_CopyAndAutoreleaseBlockObject:
522   case CK_BuiltinFnToFnPtr:
523   case CK_ZeroToOCLOpaqueType:
524   case CK_AddressSpaceConversion:
525   case CK_IntToOCLSampler:
526   case CK_FixedPointCast:
527   case CK_FixedPointToBoolean:
528   case CK_FixedPointToIntegral:
529   case CK_IntegralToFixedPoint:
530     llvm_unreachable("invalid cast kind for complex value");
531 
532   case CK_FloatingRealToComplex:
533   case CK_IntegralRealToComplex:
534     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
535                                    DestTy, Op->getExprLoc());
536 
537   case CK_FloatingComplexCast:
538   case CK_FloatingComplexToIntegralComplex:
539   case CK_IntegralComplexCast:
540   case CK_IntegralComplexToFloatingComplex:
541     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
542                                     Op->getExprLoc());
543   }
544 
545   llvm_unreachable("unknown cast resulting in complex value");
546 }
547 
548 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
549   TestAndClearIgnoreReal();
550   TestAndClearIgnoreImag();
551   ComplexPairTy Op = Visit(E->getSubExpr());
552 
553   llvm::Value *ResR, *ResI;
554   if (Op.first->getType()->isFloatingPointTy()) {
555     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
556     ResI = Builder.CreateFNeg(Op.second, "neg.i");
557   } else {
558     ResR = Builder.CreateNeg(Op.first,  "neg.r");
559     ResI = Builder.CreateNeg(Op.second, "neg.i");
560   }
561   return ComplexPairTy(ResR, ResI);
562 }
563 
564 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
565   TestAndClearIgnoreReal();
566   TestAndClearIgnoreImag();
567   // ~(a+ib) = a + i*-b
568   ComplexPairTy Op = Visit(E->getSubExpr());
569   llvm::Value *ResI;
570   if (Op.second->getType()->isFloatingPointTy())
571     ResI = Builder.CreateFNeg(Op.second, "conj.i");
572   else
573     ResI = Builder.CreateNeg(Op.second, "conj.i");
574 
575   return ComplexPairTy(Op.first, ResI);
576 }
577 
578 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
579   llvm::Value *ResR, *ResI;
580 
581   if (Op.LHS.first->getType()->isFloatingPointTy()) {
582     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
583     if (Op.LHS.second && Op.RHS.second)
584       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
585     else
586       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
587     assert(ResI && "Only one operand may be real!");
588   } else {
589     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
590     assert(Op.LHS.second && Op.RHS.second &&
591            "Both operands of integer complex operators must be complex!");
592     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
593   }
594   return ComplexPairTy(ResR, ResI);
595 }
596 
597 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
598   llvm::Value *ResR, *ResI;
599   if (Op.LHS.first->getType()->isFloatingPointTy()) {
600     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
601     if (Op.LHS.second && Op.RHS.second)
602       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
603     else
604       ResI = Op.LHS.second ? Op.LHS.second
605                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
606     assert(ResI && "Only one operand may be real!");
607   } else {
608     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
609     assert(Op.LHS.second && Op.RHS.second &&
610            "Both operands of integer complex operators must be complex!");
611     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
612   }
613   return ComplexPairTy(ResR, ResI);
614 }
615 
616 /// Emit a libcall for a binary operation on complex types.
617 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
618                                                           const BinOpInfo &Op) {
619   CallArgList Args;
620   Args.add(RValue::get(Op.LHS.first),
621            Op.Ty->castAs<ComplexType>()->getElementType());
622   Args.add(RValue::get(Op.LHS.second),
623            Op.Ty->castAs<ComplexType>()->getElementType());
624   Args.add(RValue::get(Op.RHS.first),
625            Op.Ty->castAs<ComplexType>()->getElementType());
626   Args.add(RValue::get(Op.RHS.second),
627            Op.Ty->castAs<ComplexType>()->getElementType());
628 
629   // We *must* use the full CG function call building logic here because the
630   // complex type has special ABI handling. We also should not forget about
631   // special calling convention which may be used for compiler builtins.
632 
633   // We create a function qualified type to state that this call does not have
634   // any exceptions.
635   FunctionProtoType::ExtProtoInfo EPI;
636   EPI = EPI.withExceptionSpec(
637       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
638   SmallVector<QualType, 4> ArgsQTys(
639       4, Op.Ty->castAs<ComplexType>()->getElementType());
640   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
641   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
642       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
643 
644   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
645   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
646       FTy, LibCallName, llvm::AttributeList(), true);
647   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
648 
649   llvm::CallBase *Call;
650   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
651   Call->setCallingConv(CGF.CGM.getRuntimeCC());
652   return Res.getComplexVal();
653 }
654 
655 /// Lookup the libcall name for a given floating point type complex
656 /// multiply.
657 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
658   switch (Ty->getTypeID()) {
659   default:
660     llvm_unreachable("Unsupported floating point type!");
661   case llvm::Type::HalfTyID:
662     return "__mulhc3";
663   case llvm::Type::FloatTyID:
664     return "__mulsc3";
665   case llvm::Type::DoubleTyID:
666     return "__muldc3";
667   case llvm::Type::PPC_FP128TyID:
668     return "__multc3";
669   case llvm::Type::X86_FP80TyID:
670     return "__mulxc3";
671   case llvm::Type::FP128TyID:
672     return "__multc3";
673   }
674 }
675 
676 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
677 // typed values.
678 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
679   using llvm::Value;
680   Value *ResR, *ResI;
681   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
682 
683   if (Op.LHS.first->getType()->isFloatingPointTy()) {
684     // The general formulation is:
685     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
686     //
687     // But we can fold away components which would be zero due to a real
688     // operand according to C11 Annex G.5.1p2.
689     // FIXME: C11 also provides for imaginary types which would allow folding
690     // still more of this within the type system.
691 
692     if (Op.LHS.second && Op.RHS.second) {
693       // If both operands are complex, emit the core math directly, and then
694       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
695       // to carefully re-compute the correct infinity representation if
696       // possible. The expectation is that the presence of NaNs here is
697       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
698       // This is good, because the libcall re-computes the core multiplication
699       // exactly the same as we do here and re-tests for NaNs in order to be
700       // a generic complex*complex libcall.
701 
702       // First compute the four products.
703       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
704       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
705       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
706       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
707 
708       // The real part is the difference of the first two, the imaginary part is
709       // the sum of the second.
710       ResR = Builder.CreateFSub(AC, BD, "mul_r");
711       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
712 
713       // Emit the test for the real part becoming NaN and create a branch to
714       // handle it. We test for NaN by comparing the number to itself.
715       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
716       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
717       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
718       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
719       llvm::BasicBlock *OrigBB = Branch->getParent();
720 
721       // Give hint that we very much don't expect to see NaNs.
722       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
723       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
724       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
725 
726       // Now test the imaginary part and create its branch.
727       CGF.EmitBlock(INaNBB);
728       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
729       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
730       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
731       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
732 
733       // Now emit the libcall on this slowest of the slow paths.
734       CGF.EmitBlock(LibCallBB);
735       Value *LibCallR, *LibCallI;
736       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
737           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
738       Builder.CreateBr(ContBB);
739 
740       // Finally continue execution by phi-ing together the different
741       // computation paths.
742       CGF.EmitBlock(ContBB);
743       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
744       RealPHI->addIncoming(ResR, OrigBB);
745       RealPHI->addIncoming(ResR, INaNBB);
746       RealPHI->addIncoming(LibCallR, LibCallBB);
747       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
748       ImagPHI->addIncoming(ResI, OrigBB);
749       ImagPHI->addIncoming(ResI, INaNBB);
750       ImagPHI->addIncoming(LibCallI, LibCallBB);
751       return ComplexPairTy(RealPHI, ImagPHI);
752     }
753     assert((Op.LHS.second || Op.RHS.second) &&
754            "At least one operand must be complex!");
755 
756     // If either of the operands is a real rather than a complex, the
757     // imaginary component is ignored when computing the real component of the
758     // result.
759     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
760 
761     ResI = Op.LHS.second
762                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
763                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
764   } else {
765     assert(Op.LHS.second && Op.RHS.second &&
766            "Both operands of integer complex operators must be complex!");
767     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
768     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
769     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
770 
771     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
772     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
773     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
774   }
775   return ComplexPairTy(ResR, ResI);
776 }
777 
778 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
779 // typed values.
780 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
781   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
782   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
783 
784   llvm::Value *DSTr, *DSTi;
785   if (LHSr->getType()->isFloatingPointTy()) {
786     // If we have a complex operand on the RHS and FastMath is not allowed, we
787     // delegate to a libcall to handle all of the complexities and minimize
788     // underflow/overflow cases. When FastMath is allowed we construct the
789     // divide inline using the same algorithm as for integer operands.
790     //
791     // FIXME: We would be able to avoid the libcall in many places if we
792     // supported imaginary types in addition to complex types.
793     if (RHSi && !CGF.getLangOpts().FastMath) {
794       BinOpInfo LibCallOp = Op;
795       // If LHS was a real, supply a null imaginary part.
796       if (!LHSi)
797         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
798 
799       switch (LHSr->getType()->getTypeID()) {
800       default:
801         llvm_unreachable("Unsupported floating point type!");
802       case llvm::Type::HalfTyID:
803         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
804       case llvm::Type::FloatTyID:
805         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
806       case llvm::Type::DoubleTyID:
807         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
808       case llvm::Type::PPC_FP128TyID:
809         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
810       case llvm::Type::X86_FP80TyID:
811         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
812       case llvm::Type::FP128TyID:
813         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
814       }
815     } else if (RHSi) {
816       if (!LHSi)
817         LHSi = llvm::Constant::getNullValue(RHSi->getType());
818 
819       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
820       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
821       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
822       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
823 
824       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
825       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
826       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
827 
828       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
829       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
830       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
831 
832       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
833       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
834     } else {
835       assert(LHSi && "Can have at most one non-complex operand!");
836 
837       DSTr = Builder.CreateFDiv(LHSr, RHSr);
838       DSTi = Builder.CreateFDiv(LHSi, RHSr);
839     }
840   } else {
841     assert(Op.LHS.second && Op.RHS.second &&
842            "Both operands of integer complex operators must be complex!");
843     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
844     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
845     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
846     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
847 
848     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
849     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
850     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
851 
852     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
853     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
854     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
855 
856     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
857       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
858       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
859     } else {
860       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
861       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
862     }
863   }
864 
865   return ComplexPairTy(DSTr, DSTi);
866 }
867 
868 ComplexExprEmitter::BinOpInfo
869 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
870   TestAndClearIgnoreReal();
871   TestAndClearIgnoreImag();
872   BinOpInfo Ops;
873   if (E->getLHS()->getType()->isRealFloatingType())
874     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
875   else
876     Ops.LHS = Visit(E->getLHS());
877   if (E->getRHS()->getType()->isRealFloatingType())
878     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
879   else
880     Ops.RHS = Visit(E->getRHS());
881 
882   Ops.Ty = E->getType();
883   return Ops;
884 }
885 
886 
887 LValue ComplexExprEmitter::
888 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
889           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
890                          RValue &Val) {
891   TestAndClearIgnoreReal();
892   TestAndClearIgnoreImag();
893   QualType LHSTy = E->getLHS()->getType();
894   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
895     LHSTy = AT->getValueType();
896 
897   BinOpInfo OpInfo;
898 
899   // Load the RHS and LHS operands.
900   // __block variables need to have the rhs evaluated first, plus this should
901   // improve codegen a little.
902   OpInfo.Ty = E->getComputationResultType();
903   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
904 
905   // The RHS should have been converted to the computation type.
906   if (E->getRHS()->getType()->isRealFloatingType()) {
907     assert(
908         CGF.getContext()
909             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
910     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
911   } else {
912     assert(CGF.getContext()
913                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
914     OpInfo.RHS = Visit(E->getRHS());
915   }
916 
917   LValue LHS = CGF.EmitLValue(E->getLHS());
918 
919   // Load from the l-value and convert it.
920   SourceLocation Loc = E->getExprLoc();
921   if (LHSTy->isAnyComplexType()) {
922     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
923     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
924   } else {
925     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
926     // For floating point real operands we can directly pass the scalar form
927     // to the binary operator emission and potentially get more efficient code.
928     if (LHSTy->isRealFloatingType()) {
929       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
930         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
931       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
932     } else {
933       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
934     }
935   }
936 
937   // Expand the binary operator.
938   ComplexPairTy Result = (this->*Func)(OpInfo);
939 
940   // Truncate the result and store it into the LHS lvalue.
941   if (LHSTy->isAnyComplexType()) {
942     ComplexPairTy ResVal =
943         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
944     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
945     Val = RValue::getComplex(ResVal);
946   } else {
947     llvm::Value *ResVal =
948         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
949     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
950     Val = RValue::get(ResVal);
951   }
952 
953   return LHS;
954 }
955 
956 // Compound assignments.
957 ComplexPairTy ComplexExprEmitter::
958 EmitCompoundAssign(const CompoundAssignOperator *E,
959                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
960   RValue Val;
961   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
962 
963   // The result of an assignment in C is the assigned r-value.
964   if (!CGF.getLangOpts().CPlusPlus)
965     return Val.getComplexVal();
966 
967   // If the lvalue is non-volatile, return the computed value of the assignment.
968   if (!LV.isVolatileQualified())
969     return Val.getComplexVal();
970 
971   return EmitLoadOfLValue(LV, E->getExprLoc());
972 }
973 
974 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
975                                                ComplexPairTy &Val) {
976   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
977                                                  E->getRHS()->getType()) &&
978          "Invalid assignment");
979   TestAndClearIgnoreReal();
980   TestAndClearIgnoreImag();
981 
982   // Emit the RHS.  __block variables need the RHS evaluated first.
983   Val = Visit(E->getRHS());
984 
985   // Compute the address to store into.
986   LValue LHS = CGF.EmitLValue(E->getLHS());
987 
988   // Store the result value into the LHS lvalue.
989   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
990 
991   return LHS;
992 }
993 
994 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
995   ComplexPairTy Val;
996   LValue LV = EmitBinAssignLValue(E, Val);
997 
998   // The result of an assignment in C is the assigned r-value.
999   if (!CGF.getLangOpts().CPlusPlus)
1000     return Val;
1001 
1002   // If the lvalue is non-volatile, return the computed value of the assignment.
1003   if (!LV.isVolatileQualified())
1004     return Val;
1005 
1006   return EmitLoadOfLValue(LV, E->getExprLoc());
1007 }
1008 
1009 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1010   CGF.EmitIgnoredExpr(E->getLHS());
1011   return Visit(E->getRHS());
1012 }
1013 
1014 ComplexPairTy ComplexExprEmitter::
1015 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1016   TestAndClearIgnoreReal();
1017   TestAndClearIgnoreImag();
1018   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1019   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1020   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1021 
1022   // Bind the common expression if necessary.
1023   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1024 
1025 
1026   CodeGenFunction::ConditionalEvaluation eval(CGF);
1027   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1028                            CGF.getProfileCount(E));
1029 
1030   eval.begin(CGF);
1031   CGF.EmitBlock(LHSBlock);
1032   CGF.incrementProfileCounter(E);
1033   ComplexPairTy LHS = Visit(E->getTrueExpr());
1034   LHSBlock = Builder.GetInsertBlock();
1035   CGF.EmitBranch(ContBlock);
1036   eval.end(CGF);
1037 
1038   eval.begin(CGF);
1039   CGF.EmitBlock(RHSBlock);
1040   ComplexPairTy RHS = Visit(E->getFalseExpr());
1041   RHSBlock = Builder.GetInsertBlock();
1042   CGF.EmitBlock(ContBlock);
1043   eval.end(CGF);
1044 
1045   // Create a PHI node for the real part.
1046   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1047   RealPN->addIncoming(LHS.first, LHSBlock);
1048   RealPN->addIncoming(RHS.first, RHSBlock);
1049 
1050   // Create a PHI node for the imaginary part.
1051   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1052   ImagPN->addIncoming(LHS.second, LHSBlock);
1053   ImagPN->addIncoming(RHS.second, RHSBlock);
1054 
1055   return ComplexPairTy(RealPN, ImagPN);
1056 }
1057 
1058 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1059   return Visit(E->getChosenSubExpr());
1060 }
1061 
1062 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1063     bool Ignore = TestAndClearIgnoreReal();
1064     (void)Ignore;
1065     assert (Ignore == false && "init list ignored");
1066     Ignore = TestAndClearIgnoreImag();
1067     (void)Ignore;
1068     assert (Ignore == false && "init list ignored");
1069 
1070   if (E->getNumInits() == 2) {
1071     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1072     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1073     return ComplexPairTy(Real, Imag);
1074   } else if (E->getNumInits() == 1) {
1075     return Visit(E->getInit(0));
1076   }
1077 
1078   // Empty init list initializes to null
1079   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1080   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1081   llvm::Type* LTy = CGF.ConvertType(Ty);
1082   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1083   return ComplexPairTy(zeroConstant, zeroConstant);
1084 }
1085 
1086 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1087   Address ArgValue = Address::invalid();
1088   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1089 
1090   if (!ArgPtr.isValid()) {
1091     CGF.ErrorUnsupported(E, "complex va_arg expression");
1092     llvm::Type *EltTy =
1093       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1094     llvm::Value *U = llvm::UndefValue::get(EltTy);
1095     return ComplexPairTy(U, U);
1096   }
1097 
1098   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1099                           E->getExprLoc());
1100 }
1101 
1102 //===----------------------------------------------------------------------===//
1103 //                         Entry Point into this File
1104 //===----------------------------------------------------------------------===//
1105 
1106 /// EmitComplexExpr - Emit the computation of the specified expression of
1107 /// complex type, ignoring the result.
1108 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1109                                                bool IgnoreImag) {
1110   assert(E && getComplexType(E->getType()) &&
1111          "Invalid complex expression to emit");
1112 
1113   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1114       .Visit(const_cast<Expr *>(E));
1115 }
1116 
1117 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1118                                                 bool isInit) {
1119   assert(E && getComplexType(E->getType()) &&
1120          "Invalid complex expression to emit");
1121   ComplexExprEmitter Emitter(*this);
1122   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1123   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1124 }
1125 
1126 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1127 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1128                                          bool isInit) {
1129   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1130 }
1131 
1132 /// EmitLoadOfComplex - Load a complex number from the specified address.
1133 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1134                                                  SourceLocation loc) {
1135   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1136 }
1137 
1138 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1139   assert(E->getOpcode() == BO_Assign);
1140   ComplexPairTy Val; // ignored
1141   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1142   if (getLangOpts().OpenMP)
1143     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1144                                                               E->getLHS());
1145   return LVal;
1146 }
1147 
1148 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1149     const ComplexExprEmitter::BinOpInfo &);
1150 
1151 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1152   switch (Op) {
1153   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1154   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1155   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1156   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1157   default:
1158     llvm_unreachable("unexpected complex compound assignment");
1159   }
1160 }
1161 
1162 LValue CodeGenFunction::
1163 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1164   CompoundFunc Op = getComplexOp(E->getOpcode());
1165   RValue Val;
1166   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1167 }
1168 
1169 LValue CodeGenFunction::
1170 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1171                                     llvm::Value *&Result) {
1172   CompoundFunc Op = getComplexOp(E->getOpcode());
1173   RValue Val;
1174   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1175   Result = Val.getScalarVal();
1176   return Ret;
1177 }
1178