1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/Metadata.h" 25 #include <algorithm> 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Complex Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 34 35 /// Return the complex type that we are meant to emit. 36 static const ComplexType *getComplexType(QualType type) { 37 type = type.getCanonicalType(); 38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 39 return comp; 40 } else { 41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 42 } 43 } 44 45 namespace { 46 class ComplexExprEmitter 47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 48 CodeGenFunction &CGF; 49 CGBuilderTy &Builder; 50 bool IgnoreReal; 51 bool IgnoreImag; 52 public: 53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 55 } 56 57 58 //===--------------------------------------------------------------------===// 59 // Utilities 60 //===--------------------------------------------------------------------===// 61 62 bool TestAndClearIgnoreReal() { 63 bool I = IgnoreReal; 64 IgnoreReal = false; 65 return I; 66 } 67 bool TestAndClearIgnoreImag() { 68 bool I = IgnoreImag; 69 IgnoreImag = false; 70 return I; 71 } 72 73 /// EmitLoadOfLValue - Given an expression with complex type that represents a 74 /// value l-value, this method emits the address of the l-value, then loads 75 /// and returns the result. 76 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 78 } 79 80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 81 82 /// EmitStoreOfComplex - Store the specified real/imag parts into the 83 /// specified value pointer. 84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 85 86 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 88 QualType DestType); 89 /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType. 90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 91 QualType DestType); 92 93 //===--------------------------------------------------------------------===// 94 // Visitor Methods 95 //===--------------------------------------------------------------------===// 96 97 ComplexPairTy Visit(Expr *E) { 98 ApplyDebugLocation DL(CGF, E); 99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 100 } 101 102 ComplexPairTy VisitStmt(Stmt *S) { 103 S->dump(CGF.getContext().getSourceManager()); 104 llvm_unreachable("Stmt can't have complex result type!"); 105 } 106 ComplexPairTy VisitExpr(Expr *S); 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 117 // l-values. 118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 120 if (result.isReference()) 121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 122 E->getExprLoc()); 123 124 llvm::Constant *pair = result.getValue(); 125 return ComplexPairTy(pair->getAggregateElement(0U), 126 pair->getAggregateElement(1U)); 127 } 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 131 return EmitLoadOfLValue(E); 132 } 133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 134 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 135 } 136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 139 if (E->isGLValue()) 140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 141 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 142 } 143 144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 145 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 146 } 147 148 // FIXME: CompoundLiteralExpr 149 150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 // Unlike for scalars, we don't have to worry about function->ptr demotion 153 // here. 154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 155 } 156 ComplexPairTy VisitCastExpr(CastExpr *E) { 157 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 158 } 159 ComplexPairTy VisitCallExpr(const CallExpr *E); 160 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 161 162 // Operators. 163 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 164 bool isInc, bool isPre) { 165 LValue LV = CGF.EmitLValue(E->getSubExpr()); 166 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 167 } 168 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 169 return VisitPrePostIncDec(E, false, false); 170 } 171 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 172 return VisitPrePostIncDec(E, true, false); 173 } 174 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 175 return VisitPrePostIncDec(E, false, true); 176 } 177 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 178 return VisitPrePostIncDec(E, true, true); 179 } 180 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 181 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 182 TestAndClearIgnoreReal(); 183 TestAndClearIgnoreImag(); 184 return Visit(E->getSubExpr()); 185 } 186 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 187 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 188 // LNot,Real,Imag never return complex. 189 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 190 return Visit(E->getSubExpr()); 191 } 192 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 193 return Visit(DAE->getExpr()); 194 } 195 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 196 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 197 return Visit(DIE->getExpr()); 198 } 199 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 200 CGF.enterFullExpression(E); 201 CodeGenFunction::RunCleanupsScope Scope(CGF); 202 return Visit(E->getSubExpr()); 203 } 204 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 205 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 206 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 207 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 208 return ComplexPairTy(Null, Null); 209 } 210 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 211 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 212 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 213 llvm::Constant *Null = 214 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 215 return ComplexPairTy(Null, Null); 216 } 217 218 struct BinOpInfo { 219 ComplexPairTy LHS; 220 ComplexPairTy RHS; 221 QualType Ty; // Computation Type. 222 }; 223 224 BinOpInfo EmitBinOps(const BinaryOperator *E); 225 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 226 ComplexPairTy (ComplexExprEmitter::*Func) 227 (const BinOpInfo &), 228 RValue &Val); 229 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 230 ComplexPairTy (ComplexExprEmitter::*Func) 231 (const BinOpInfo &)); 232 233 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 234 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 235 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 236 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 237 238 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 239 const BinOpInfo &Op); 240 241 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 242 return EmitBinAdd(EmitBinOps(E)); 243 } 244 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 245 return EmitBinSub(EmitBinOps(E)); 246 } 247 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 248 return EmitBinMul(EmitBinOps(E)); 249 } 250 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 251 return EmitBinDiv(EmitBinOps(E)); 252 } 253 254 // Compound assignments. 255 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 256 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 257 } 258 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 259 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 260 } 261 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 262 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 263 } 264 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 265 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 266 } 267 268 // GCC rejects rem/and/or/xor for integer complex. 269 // Logical and/or always return int, never complex. 270 271 // No comparisons produce a complex result. 272 273 LValue EmitBinAssignLValue(const BinaryOperator *E, 274 ComplexPairTy &Val); 275 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 276 ComplexPairTy VisitBinComma (const BinaryOperator *E); 277 278 279 ComplexPairTy 280 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 281 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 282 283 ComplexPairTy VisitInitListExpr(InitListExpr *E); 284 285 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 286 return EmitLoadOfLValue(E); 287 } 288 289 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 290 291 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 292 return CGF.EmitAtomicExpr(E).getComplexVal(); 293 } 294 }; 295 } // end anonymous namespace. 296 297 //===----------------------------------------------------------------------===// 298 // Utilities 299 //===----------------------------------------------------------------------===// 300 301 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 302 /// load the real and imaginary pieces, returning them as Real/Imag. 303 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 304 SourceLocation loc) { 305 assert(lvalue.isSimple() && "non-simple complex l-value?"); 306 if (lvalue.getType()->isAtomicType()) 307 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 308 309 llvm::Value *SrcPtr = lvalue.getAddress(); 310 bool isVolatile = lvalue.isVolatileQualified(); 311 unsigned AlignR = lvalue.getAlignment().getQuantity(); 312 ASTContext &C = CGF.getContext(); 313 QualType ComplexTy = lvalue.getType(); 314 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 315 unsigned AlignI = std::min(AlignR, ComplexAlign); 316 317 llvm::Value *Real=nullptr, *Imag=nullptr; 318 319 if (!IgnoreReal || isVolatile) { 320 llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0, 321 SrcPtr->getName() + ".realp"); 322 Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile, 323 SrcPtr->getName() + ".real"); 324 } 325 326 if (!IgnoreImag || isVolatile) { 327 llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1, 328 SrcPtr->getName() + ".imagp"); 329 Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile, 330 SrcPtr->getName() + ".imag"); 331 } 332 return ComplexPairTy(Real, Imag); 333 } 334 335 /// EmitStoreOfComplex - Store the specified real/imag parts into the 336 /// specified value pointer. 337 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 338 bool isInit) { 339 if (lvalue.getType()->isAtomicType()) 340 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 341 342 llvm::Value *Ptr = lvalue.getAddress(); 343 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real"); 344 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag"); 345 unsigned AlignR = lvalue.getAlignment().getQuantity(); 346 ASTContext &C = CGF.getContext(); 347 QualType ComplexTy = lvalue.getType(); 348 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 349 unsigned AlignI = std::min(AlignR, ComplexAlign); 350 351 Builder.CreateAlignedStore(Val.first, RealPtr, AlignR, 352 lvalue.isVolatileQualified()); 353 Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI, 354 lvalue.isVolatileQualified()); 355 } 356 357 358 359 //===----------------------------------------------------------------------===// 360 // Visitor Methods 361 //===----------------------------------------------------------------------===// 362 363 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 364 CGF.ErrorUnsupported(E, "complex expression"); 365 llvm::Type *EltTy = 366 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 367 llvm::Value *U = llvm::UndefValue::get(EltTy); 368 return ComplexPairTy(U, U); 369 } 370 371 ComplexPairTy ComplexExprEmitter:: 372 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 373 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 374 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 375 } 376 377 378 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 379 if (E->getCallReturnType()->isReferenceType()) 380 return EmitLoadOfLValue(E); 381 382 return CGF.EmitCallExpr(E).getComplexVal(); 383 } 384 385 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 386 CodeGenFunction::StmtExprEvaluation eval(CGF); 387 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 388 assert(RetAlloca && "Expected complex return value"); 389 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 390 E->getExprLoc()); 391 } 392 393 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 394 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 395 QualType SrcType, 396 QualType DestType) { 397 // Get the src/dest element type. 398 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 399 DestType = DestType->castAs<ComplexType>()->getElementType(); 400 401 // C99 6.3.1.6: When a value of complex type is converted to another 402 // complex type, both the real and imaginary parts follow the conversion 403 // rules for the corresponding real types. 404 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType); 405 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType); 406 return Val; 407 } 408 409 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 410 QualType SrcType, 411 QualType DestType) { 412 // Convert the input element to the element type of the complex. 413 DestType = DestType->castAs<ComplexType>()->getElementType(); 414 Val = CGF.EmitScalarConversion(Val, SrcType, DestType); 415 416 // Return (realval, 0). 417 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 418 } 419 420 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 421 QualType DestTy) { 422 switch (CK) { 423 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 424 425 // Atomic to non-atomic casts may be more than a no-op for some platforms and 426 // for some types. 427 case CK_AtomicToNonAtomic: 428 case CK_NonAtomicToAtomic: 429 case CK_NoOp: 430 case CK_LValueToRValue: 431 case CK_UserDefinedConversion: 432 return Visit(Op); 433 434 case CK_LValueBitCast: { 435 LValue origLV = CGF.EmitLValue(Op); 436 llvm::Value *V = origLV.getAddress(); 437 V = Builder.CreateBitCast(V, 438 CGF.ConvertType(CGF.getContext().getPointerType(DestTy))); 439 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy, 440 origLV.getAlignment()), 441 Op->getExprLoc()); 442 } 443 444 case CK_BitCast: 445 case CK_BaseToDerived: 446 case CK_DerivedToBase: 447 case CK_UncheckedDerivedToBase: 448 case CK_Dynamic: 449 case CK_ToUnion: 450 case CK_ArrayToPointerDecay: 451 case CK_FunctionToPointerDecay: 452 case CK_NullToPointer: 453 case CK_NullToMemberPointer: 454 case CK_BaseToDerivedMemberPointer: 455 case CK_DerivedToBaseMemberPointer: 456 case CK_MemberPointerToBoolean: 457 case CK_ReinterpretMemberPointer: 458 case CK_ConstructorConversion: 459 case CK_IntegralToPointer: 460 case CK_PointerToIntegral: 461 case CK_PointerToBoolean: 462 case CK_ToVoid: 463 case CK_VectorSplat: 464 case CK_IntegralCast: 465 case CK_IntegralToBoolean: 466 case CK_IntegralToFloating: 467 case CK_FloatingToIntegral: 468 case CK_FloatingToBoolean: 469 case CK_FloatingCast: 470 case CK_CPointerToObjCPointerCast: 471 case CK_BlockPointerToObjCPointerCast: 472 case CK_AnyPointerToBlockPointerCast: 473 case CK_ObjCObjectLValueCast: 474 case CK_FloatingComplexToReal: 475 case CK_FloatingComplexToBoolean: 476 case CK_IntegralComplexToReal: 477 case CK_IntegralComplexToBoolean: 478 case CK_ARCProduceObject: 479 case CK_ARCConsumeObject: 480 case CK_ARCReclaimReturnedObject: 481 case CK_ARCExtendBlockObject: 482 case CK_CopyAndAutoreleaseBlockObject: 483 case CK_BuiltinFnToFnPtr: 484 case CK_ZeroToOCLEvent: 485 case CK_AddressSpaceConversion: 486 llvm_unreachable("invalid cast kind for complex value"); 487 488 case CK_FloatingRealToComplex: 489 case CK_IntegralRealToComplex: 490 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), 491 Op->getType(), DestTy); 492 493 case CK_FloatingComplexCast: 494 case CK_FloatingComplexToIntegralComplex: 495 case CK_IntegralComplexCast: 496 case CK_IntegralComplexToFloatingComplex: 497 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy); 498 } 499 500 llvm_unreachable("unknown cast resulting in complex value"); 501 } 502 503 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 504 TestAndClearIgnoreReal(); 505 TestAndClearIgnoreImag(); 506 ComplexPairTy Op = Visit(E->getSubExpr()); 507 508 llvm::Value *ResR, *ResI; 509 if (Op.first->getType()->isFloatingPointTy()) { 510 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 511 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 512 } else { 513 ResR = Builder.CreateNeg(Op.first, "neg.r"); 514 ResI = Builder.CreateNeg(Op.second, "neg.i"); 515 } 516 return ComplexPairTy(ResR, ResI); 517 } 518 519 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 520 TestAndClearIgnoreReal(); 521 TestAndClearIgnoreImag(); 522 // ~(a+ib) = a + i*-b 523 ComplexPairTy Op = Visit(E->getSubExpr()); 524 llvm::Value *ResI; 525 if (Op.second->getType()->isFloatingPointTy()) 526 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 527 else 528 ResI = Builder.CreateNeg(Op.second, "conj.i"); 529 530 return ComplexPairTy(Op.first, ResI); 531 } 532 533 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 534 llvm::Value *ResR, *ResI; 535 536 if (Op.LHS.first->getType()->isFloatingPointTy()) { 537 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 538 if (Op.LHS.second && Op.RHS.second) 539 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 540 else 541 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 542 assert(ResI && "Only one operand may be real!"); 543 } else { 544 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 545 assert(Op.LHS.second && Op.RHS.second && 546 "Both operands of integer complex operators must be complex!"); 547 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 548 } 549 return ComplexPairTy(ResR, ResI); 550 } 551 552 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 553 llvm::Value *ResR, *ResI; 554 if (Op.LHS.first->getType()->isFloatingPointTy()) { 555 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 556 if (Op.LHS.second && Op.RHS.second) 557 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 558 else 559 ResI = Op.LHS.second ? Op.LHS.second 560 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 561 assert(ResI && "Only one operand may be real!"); 562 } else { 563 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 564 assert(Op.LHS.second && Op.RHS.second && 565 "Both operands of integer complex operators must be complex!"); 566 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 567 } 568 return ComplexPairTy(ResR, ResI); 569 } 570 571 /// \brief Emit a libcall for a binary operation on complex types. 572 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 573 const BinOpInfo &Op) { 574 CallArgList Args; 575 Args.add(RValue::get(Op.LHS.first), 576 Op.Ty->castAs<ComplexType>()->getElementType()); 577 Args.add(RValue::get(Op.LHS.second), 578 Op.Ty->castAs<ComplexType>()->getElementType()); 579 Args.add(RValue::get(Op.RHS.first), 580 Op.Ty->castAs<ComplexType>()->getElementType()); 581 Args.add(RValue::get(Op.RHS.second), 582 Op.Ty->castAs<ComplexType>()->getElementType()); 583 584 // We *must* use the full CG function call building logic here because the 585 // complex type has special ABI handling. We also should not forget about 586 // special calling convention which may be used for compiler builtins. 587 const CGFunctionInfo &FuncInfo = 588 CGF.CGM.getTypes().arrangeFreeFunctionCall( 589 Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */), 590 RequiredArgs::All); 591 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 592 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 593 llvm::Instruction *Call; 594 595 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 596 nullptr, &Call); 597 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 598 cast<llvm::CallInst>(Call)->setDoesNotThrow(); 599 600 return Res.getComplexVal(); 601 } 602 603 /// \brief Lookup the libcall name for a given floating point type complex 604 /// multiply. 605 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 606 switch (Ty->getTypeID()) { 607 default: 608 llvm_unreachable("Unsupported floating point type!"); 609 case llvm::Type::HalfTyID: 610 return "__mulhc3"; 611 case llvm::Type::FloatTyID: 612 return "__mulsc3"; 613 case llvm::Type::DoubleTyID: 614 return "__muldc3"; 615 case llvm::Type::PPC_FP128TyID: 616 return "__multc3"; 617 case llvm::Type::X86_FP80TyID: 618 return "__mulxc3"; 619 case llvm::Type::FP128TyID: 620 return "__multc3"; 621 } 622 } 623 624 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 625 // typed values. 626 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 627 using llvm::Value; 628 Value *ResR, *ResI; 629 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 630 631 if (Op.LHS.first->getType()->isFloatingPointTy()) { 632 // The general formulation is: 633 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 634 // 635 // But we can fold away components which would be zero due to a real 636 // operand according to C11 Annex G.5.1p2. 637 // FIXME: C11 also provides for imaginary types which would allow folding 638 // still more of this within the type system. 639 640 if (Op.LHS.second && Op.RHS.second) { 641 // If both operands are complex, emit the core math directly, and then 642 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 643 // to carefully re-compute the correct infinity representation if 644 // possible. The expectation is that the presence of NaNs here is 645 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 646 // This is good, because the libcall re-computes the core multiplication 647 // exactly the same as we do here and re-tests for NaNs in order to be 648 // a generic complex*complex libcall. 649 650 // First compute the four products. 651 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 652 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 653 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 654 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 655 656 // The real part is the difference of the first two, the imaginary part is 657 // the sum of the second. 658 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 659 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 660 661 // Emit the test for the real part becoming NaN and create a branch to 662 // handle it. We test for NaN by comparing the number to itself. 663 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 664 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 665 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 666 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 667 llvm::BasicBlock *OrigBB = Branch->getParent(); 668 669 // Give hint that we very much don't expect to see NaNs. 670 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 671 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 672 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 673 674 // Now test the imaginary part and create its branch. 675 CGF.EmitBlock(INaNBB); 676 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 677 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 678 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 679 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 680 681 // Now emit the libcall on this slowest of the slow paths. 682 CGF.EmitBlock(LibCallBB); 683 Value *LibCallR, *LibCallI; 684 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 685 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 686 Builder.CreateBr(ContBB); 687 688 // Finally continue execution by phi-ing together the different 689 // computation paths. 690 CGF.EmitBlock(ContBB); 691 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 692 RealPHI->addIncoming(ResR, OrigBB); 693 RealPHI->addIncoming(ResR, INaNBB); 694 RealPHI->addIncoming(LibCallR, LibCallBB); 695 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 696 ImagPHI->addIncoming(ResI, OrigBB); 697 ImagPHI->addIncoming(ResI, INaNBB); 698 ImagPHI->addIncoming(LibCallI, LibCallBB); 699 return ComplexPairTy(RealPHI, ImagPHI); 700 } 701 assert((Op.LHS.second || Op.RHS.second) && 702 "At least one operand must be complex!"); 703 704 // If either of the operands is a real rather than a complex, the 705 // imaginary component is ignored when computing the real component of the 706 // result. 707 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 708 709 ResI = Op.LHS.second 710 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 711 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 712 } else { 713 assert(Op.LHS.second && Op.RHS.second && 714 "Both operands of integer complex operators must be complex!"); 715 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 716 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 717 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 718 719 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 720 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 721 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 722 } 723 return ComplexPairTy(ResR, ResI); 724 } 725 726 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 727 // typed values. 728 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 729 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 730 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 731 732 733 llvm::Value *DSTr, *DSTi; 734 if (LHSr->getType()->isFloatingPointTy()) { 735 // If we have a complex operand on the RHS, we delegate to a libcall to 736 // handle all of the complexities and minimize underflow/overflow cases. 737 // 738 // FIXME: We would be able to avoid the libcall in many places if we 739 // supported imaginary types in addition to complex types. 740 if (RHSi) { 741 BinOpInfo LibCallOp = Op; 742 // If LHS was a real, supply a null imaginary part. 743 if (!LHSi) 744 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 745 746 StringRef LibCallName; 747 switch (LHSr->getType()->getTypeID()) { 748 default: 749 llvm_unreachable("Unsupported floating point type!"); 750 case llvm::Type::HalfTyID: 751 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 752 case llvm::Type::FloatTyID: 753 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 754 case llvm::Type::DoubleTyID: 755 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 756 case llvm::Type::PPC_FP128TyID: 757 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 758 case llvm::Type::X86_FP80TyID: 759 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 760 case llvm::Type::FP128TyID: 761 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 762 } 763 } 764 assert(LHSi && "Can have at most one non-complex operand!"); 765 766 DSTr = Builder.CreateFDiv(LHSr, RHSr); 767 DSTi = Builder.CreateFDiv(LHSi, RHSr); 768 } else { 769 assert(Op.LHS.second && Op.RHS.second && 770 "Both operands of integer complex operators must be complex!"); 771 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 772 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 773 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 774 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 775 776 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 777 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 778 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 779 780 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 781 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 782 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 783 784 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 785 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 786 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 787 } else { 788 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 789 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 790 } 791 } 792 793 return ComplexPairTy(DSTr, DSTi); 794 } 795 796 ComplexExprEmitter::BinOpInfo 797 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 798 TestAndClearIgnoreReal(); 799 TestAndClearIgnoreImag(); 800 BinOpInfo Ops; 801 if (E->getLHS()->getType()->isRealFloatingType()) 802 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 803 else 804 Ops.LHS = Visit(E->getLHS()); 805 if (E->getRHS()->getType()->isRealFloatingType()) 806 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 807 else 808 Ops.RHS = Visit(E->getRHS()); 809 810 Ops.Ty = E->getType(); 811 return Ops; 812 } 813 814 815 LValue ComplexExprEmitter:: 816 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 817 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 818 RValue &Val) { 819 TestAndClearIgnoreReal(); 820 TestAndClearIgnoreImag(); 821 QualType LHSTy = E->getLHS()->getType(); 822 823 BinOpInfo OpInfo; 824 825 // Load the RHS and LHS operands. 826 // __block variables need to have the rhs evaluated first, plus this should 827 // improve codegen a little. 828 OpInfo.Ty = E->getComputationResultType(); 829 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 830 831 // The RHS should have been converted to the computation type. 832 if (E->getRHS()->getType()->isRealFloatingType()) { 833 assert( 834 CGF.getContext() 835 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 836 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 837 } else { 838 assert(CGF.getContext() 839 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 840 OpInfo.RHS = Visit(E->getRHS()); 841 } 842 843 LValue LHS = CGF.EmitLValue(E->getLHS()); 844 845 // Load from the l-value and convert it. 846 if (LHSTy->isAnyComplexType()) { 847 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc()); 848 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 849 } else { 850 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc()); 851 // For floating point real operands we can directly pass the scalar form 852 // to the binary operator emission and potentially get more efficient code. 853 if (LHSTy->isRealFloatingType()) { 854 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 855 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy); 856 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 857 } else { 858 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 859 } 860 } 861 862 // Expand the binary operator. 863 ComplexPairTy Result = (this->*Func)(OpInfo); 864 865 // Truncate the result and store it into the LHS lvalue. 866 if (LHSTy->isAnyComplexType()) { 867 ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); 868 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 869 Val = RValue::getComplex(ResVal); 870 } else { 871 llvm::Value *ResVal = 872 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy); 873 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 874 Val = RValue::get(ResVal); 875 } 876 877 return LHS; 878 } 879 880 // Compound assignments. 881 ComplexPairTy ComplexExprEmitter:: 882 EmitCompoundAssign(const CompoundAssignOperator *E, 883 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 884 RValue Val; 885 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 886 887 // The result of an assignment in C is the assigned r-value. 888 if (!CGF.getLangOpts().CPlusPlus) 889 return Val.getComplexVal(); 890 891 // If the lvalue is non-volatile, return the computed value of the assignment. 892 if (!LV.isVolatileQualified()) 893 return Val.getComplexVal(); 894 895 return EmitLoadOfLValue(LV, E->getExprLoc()); 896 } 897 898 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 899 ComplexPairTy &Val) { 900 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 901 E->getRHS()->getType()) && 902 "Invalid assignment"); 903 TestAndClearIgnoreReal(); 904 TestAndClearIgnoreImag(); 905 906 // Emit the RHS. __block variables need the RHS evaluated first. 907 Val = Visit(E->getRHS()); 908 909 // Compute the address to store into. 910 LValue LHS = CGF.EmitLValue(E->getLHS()); 911 912 // Store the result value into the LHS lvalue. 913 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 914 915 return LHS; 916 } 917 918 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 919 ComplexPairTy Val; 920 LValue LV = EmitBinAssignLValue(E, Val); 921 922 // The result of an assignment in C is the assigned r-value. 923 if (!CGF.getLangOpts().CPlusPlus) 924 return Val; 925 926 // If the lvalue is non-volatile, return the computed value of the assignment. 927 if (!LV.isVolatileQualified()) 928 return Val; 929 930 return EmitLoadOfLValue(LV, E->getExprLoc()); 931 } 932 933 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 934 CGF.EmitIgnoredExpr(E->getLHS()); 935 return Visit(E->getRHS()); 936 } 937 938 ComplexPairTy ComplexExprEmitter:: 939 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 940 TestAndClearIgnoreReal(); 941 TestAndClearIgnoreImag(); 942 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 943 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 944 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 945 946 // Bind the common expression if necessary. 947 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 948 949 RegionCounter Cnt = CGF.getPGORegionCounter(E); 950 CodeGenFunction::ConditionalEvaluation eval(CGF); 951 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 952 953 eval.begin(CGF); 954 CGF.EmitBlock(LHSBlock); 955 Cnt.beginRegion(Builder); 956 ComplexPairTy LHS = Visit(E->getTrueExpr()); 957 LHSBlock = Builder.GetInsertBlock(); 958 CGF.EmitBranch(ContBlock); 959 eval.end(CGF); 960 961 eval.begin(CGF); 962 CGF.EmitBlock(RHSBlock); 963 ComplexPairTy RHS = Visit(E->getFalseExpr()); 964 RHSBlock = Builder.GetInsertBlock(); 965 CGF.EmitBlock(ContBlock); 966 eval.end(CGF); 967 968 // Create a PHI node for the real part. 969 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 970 RealPN->addIncoming(LHS.first, LHSBlock); 971 RealPN->addIncoming(RHS.first, RHSBlock); 972 973 // Create a PHI node for the imaginary part. 974 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 975 ImagPN->addIncoming(LHS.second, LHSBlock); 976 ImagPN->addIncoming(RHS.second, RHSBlock); 977 978 return ComplexPairTy(RealPN, ImagPN); 979 } 980 981 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 982 return Visit(E->getChosenSubExpr()); 983 } 984 985 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 986 bool Ignore = TestAndClearIgnoreReal(); 987 (void)Ignore; 988 assert (Ignore == false && "init list ignored"); 989 Ignore = TestAndClearIgnoreImag(); 990 (void)Ignore; 991 assert (Ignore == false && "init list ignored"); 992 993 if (E->getNumInits() == 2) { 994 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 995 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 996 return ComplexPairTy(Real, Imag); 997 } else if (E->getNumInits() == 1) { 998 return Visit(E->getInit(0)); 999 } 1000 1001 // Empty init list intializes to null 1002 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1003 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1004 llvm::Type* LTy = CGF.ConvertType(Ty); 1005 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1006 return ComplexPairTy(zeroConstant, zeroConstant); 1007 } 1008 1009 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1010 llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr()); 1011 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType()); 1012 1013 if (!ArgPtr) { 1014 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1015 llvm::Type *EltTy = 1016 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1017 llvm::Value *U = llvm::UndefValue::get(EltTy); 1018 return ComplexPairTy(U, U); 1019 } 1020 1021 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()), 1022 E->getExprLoc()); 1023 } 1024 1025 //===----------------------------------------------------------------------===// 1026 // Entry Point into this File 1027 //===----------------------------------------------------------------------===// 1028 1029 /// EmitComplexExpr - Emit the computation of the specified expression of 1030 /// complex type, ignoring the result. 1031 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1032 bool IgnoreImag) { 1033 assert(E && getComplexType(E->getType()) && 1034 "Invalid complex expression to emit"); 1035 1036 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1037 .Visit(const_cast<Expr*>(E)); 1038 } 1039 1040 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1041 bool isInit) { 1042 assert(E && getComplexType(E->getType()) && 1043 "Invalid complex expression to emit"); 1044 ComplexExprEmitter Emitter(*this); 1045 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1046 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1047 } 1048 1049 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1050 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1051 bool isInit) { 1052 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1053 } 1054 1055 /// EmitLoadOfComplex - Load a complex number from the specified address. 1056 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1057 SourceLocation loc) { 1058 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1059 } 1060 1061 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1062 assert(E->getOpcode() == BO_Assign); 1063 ComplexPairTy Val; // ignored 1064 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1065 } 1066 1067 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1068 const ComplexExprEmitter::BinOpInfo &); 1069 1070 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1071 switch (Op) { 1072 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1073 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1074 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1075 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1076 default: 1077 llvm_unreachable("unexpected complex compound assignment"); 1078 } 1079 } 1080 1081 LValue CodeGenFunction:: 1082 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1083 CompoundFunc Op = getComplexOp(E->getOpcode()); 1084 RValue Val; 1085 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1086 } 1087 1088 LValue CodeGenFunction:: 1089 EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 1090 llvm::Value *&Result) { 1091 CompoundFunc Op = getComplexOp(E->getOpcode()); 1092 RValue Val; 1093 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1094 Result = Val.getScalarVal(); 1095 return Ret; 1096 } 1097