1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CodeGenModule.h" 15 #include "clang/AST/StmtVisitor.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/Metadata.h" 21 #include <algorithm> 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Complex Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 30 31 /// Return the complex type that we are meant to emit. 32 static const ComplexType *getComplexType(QualType type) { 33 type = type.getCanonicalType(); 34 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 35 return comp; 36 } else { 37 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 38 } 39 } 40 41 namespace { 42 class ComplexExprEmitter 43 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 44 CodeGenFunction &CGF; 45 CGBuilderTy &Builder; 46 bool IgnoreReal; 47 bool IgnoreImag; 48 public: 49 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 50 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 51 } 52 53 54 //===--------------------------------------------------------------------===// 55 // Utilities 56 //===--------------------------------------------------------------------===// 57 58 bool TestAndClearIgnoreReal() { 59 bool I = IgnoreReal; 60 IgnoreReal = false; 61 return I; 62 } 63 bool TestAndClearIgnoreImag() { 64 bool I = IgnoreImag; 65 IgnoreImag = false; 66 return I; 67 } 68 69 /// EmitLoadOfLValue - Given an expression with complex type that represents a 70 /// value l-value, this method emits the address of the l-value, then loads 71 /// and returns the result. 72 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 73 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 74 } 75 76 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 77 78 /// EmitStoreOfComplex - Store the specified real/imag parts into the 79 /// specified value pointer. 80 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 81 82 /// Emit a cast from complex value Val to DestType. 83 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 84 QualType DestType, SourceLocation Loc); 85 /// Emit a cast from scalar value Val to DestType. 86 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 87 QualType DestType, SourceLocation Loc); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 ComplexPairTy Visit(Expr *E) { 94 ApplyDebugLocation DL(CGF, E); 95 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 96 } 97 98 ComplexPairTy VisitStmt(Stmt *S) { 99 S->dump(CGF.getContext().getSourceManager()); 100 llvm_unreachable("Stmt can't have complex result type!"); 101 } 102 ComplexPairTy VisitExpr(Expr *S); 103 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 104 return Visit(E->getSubExpr()); 105 } 106 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 107 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 108 return Visit(GE->getResultExpr()); 109 } 110 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 111 ComplexPairTy 112 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 113 return Visit(PE->getReplacement()); 114 } 115 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 116 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 117 } 118 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 119 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 120 } 121 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 122 return Visit(E->getSubExpr()); 123 } 124 125 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 126 Expr *E) { 127 assert(Constant && "not a constant"); 128 if (Constant.isReference()) 129 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 130 E->getExprLoc()); 131 132 llvm::Constant *pair = Constant.getValue(); 133 return ComplexPairTy(pair->getAggregateElement(0U), 134 pair->getAggregateElement(1U)); 135 } 136 137 // l-values. 138 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 139 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 140 return emitConstant(Constant, E); 141 return EmitLoadOfLValue(E); 142 } 143 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 144 return EmitLoadOfLValue(E); 145 } 146 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 147 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 148 } 149 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 150 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 151 if (CodeGenFunction::ConstantEmission Constant = 152 CGF.tryEmitAsConstant(ME)) { 153 CGF.EmitIgnoredExpr(ME->getBase()); 154 return emitConstant(Constant, ME); 155 } 156 return EmitLoadOfLValue(ME); 157 } 158 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 159 if (E->isGLValue()) 160 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 161 E->getExprLoc()); 162 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 163 } 164 165 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 166 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 167 } 168 169 // FIXME: CompoundLiteralExpr 170 171 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 172 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 173 // Unlike for scalars, we don't have to worry about function->ptr demotion 174 // here. 175 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 176 } 177 ComplexPairTy VisitCastExpr(CastExpr *E) { 178 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 179 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCallExpr(const CallExpr *E); 183 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 184 185 // Operators. 186 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 187 bool isInc, bool isPre) { 188 LValue LV = CGF.EmitLValue(E->getSubExpr()); 189 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 190 } 191 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 192 return VisitPrePostIncDec(E, false, false); 193 } 194 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 195 return VisitPrePostIncDec(E, true, false); 196 } 197 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 198 return VisitPrePostIncDec(E, false, true); 199 } 200 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 201 return VisitPrePostIncDec(E, true, true); 202 } 203 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 204 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 205 TestAndClearIgnoreReal(); 206 TestAndClearIgnoreImag(); 207 return Visit(E->getSubExpr()); 208 } 209 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 210 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 211 // LNot,Real,Imag never return complex. 212 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 213 return Visit(E->getSubExpr()); 214 } 215 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 216 return Visit(DAE->getExpr()); 217 } 218 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 219 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 220 return Visit(DIE->getExpr()); 221 } 222 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 223 CGF.enterFullExpression(E); 224 CodeGenFunction::RunCleanupsScope Scope(CGF); 225 ComplexPairTy Vals = Visit(E->getSubExpr()); 226 // Defend against dominance problems caused by jumps out of expression 227 // evaluation through the shared cleanup block. 228 Scope.ForceCleanup({&Vals.first, &Vals.second}); 229 return Vals; 230 } 231 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 232 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 233 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 234 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 235 return ComplexPairTy(Null, Null); 236 } 237 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 238 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 239 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 240 llvm::Constant *Null = 241 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 242 return ComplexPairTy(Null, Null); 243 } 244 245 struct BinOpInfo { 246 ComplexPairTy LHS; 247 ComplexPairTy RHS; 248 QualType Ty; // Computation Type. 249 }; 250 251 BinOpInfo EmitBinOps(const BinaryOperator *E); 252 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 253 ComplexPairTy (ComplexExprEmitter::*Func) 254 (const BinOpInfo &), 255 RValue &Val); 256 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 257 ComplexPairTy (ComplexExprEmitter::*Func) 258 (const BinOpInfo &)); 259 260 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 261 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 262 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 263 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 264 265 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 266 const BinOpInfo &Op); 267 268 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 269 return EmitBinAdd(EmitBinOps(E)); 270 } 271 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 272 return EmitBinSub(EmitBinOps(E)); 273 } 274 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 275 return EmitBinMul(EmitBinOps(E)); 276 } 277 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 278 return EmitBinDiv(EmitBinOps(E)); 279 } 280 281 // Compound assignments. 282 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 283 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 284 } 285 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 286 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 287 } 288 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 289 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 290 } 291 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 293 } 294 295 // GCC rejects rem/and/or/xor for integer complex. 296 // Logical and/or always return int, never complex. 297 298 // No comparisons produce a complex result. 299 300 LValue EmitBinAssignLValue(const BinaryOperator *E, 301 ComplexPairTy &Val); 302 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 303 ComplexPairTy VisitBinComma (const BinaryOperator *E); 304 305 306 ComplexPairTy 307 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 308 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 309 310 ComplexPairTy VisitInitListExpr(InitListExpr *E); 311 312 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 313 return EmitLoadOfLValue(E); 314 } 315 316 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 317 318 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 319 return CGF.EmitAtomicExpr(E).getComplexVal(); 320 } 321 }; 322 } // end anonymous namespace. 323 324 //===----------------------------------------------------------------------===// 325 // Utilities 326 //===----------------------------------------------------------------------===// 327 328 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 329 QualType complexType) { 330 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 331 } 332 333 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 334 QualType complexType) { 335 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 336 } 337 338 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 339 /// load the real and imaginary pieces, returning them as Real/Imag. 340 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 341 SourceLocation loc) { 342 assert(lvalue.isSimple() && "non-simple complex l-value?"); 343 if (lvalue.getType()->isAtomicType()) 344 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 345 346 Address SrcPtr = lvalue.getAddress(); 347 bool isVolatile = lvalue.isVolatileQualified(); 348 349 llvm::Value *Real = nullptr, *Imag = nullptr; 350 351 if (!IgnoreReal || isVolatile) { 352 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 353 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 354 } 355 356 if (!IgnoreImag || isVolatile) { 357 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 358 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 359 } 360 361 return ComplexPairTy(Real, Imag); 362 } 363 364 /// EmitStoreOfComplex - Store the specified real/imag parts into the 365 /// specified value pointer. 366 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 367 bool isInit) { 368 if (lvalue.getType()->isAtomicType() || 369 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 370 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 371 372 Address Ptr = lvalue.getAddress(); 373 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 374 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 375 376 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 377 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 378 } 379 380 381 382 //===----------------------------------------------------------------------===// 383 // Visitor Methods 384 //===----------------------------------------------------------------------===// 385 386 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 387 CGF.ErrorUnsupported(E, "complex expression"); 388 llvm::Type *EltTy = 389 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 390 llvm::Value *U = llvm::UndefValue::get(EltTy); 391 return ComplexPairTy(U, U); 392 } 393 394 ComplexPairTy ComplexExprEmitter:: 395 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 396 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 397 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 398 } 399 400 401 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 402 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 403 return EmitLoadOfLValue(E); 404 405 return CGF.EmitCallExpr(E).getComplexVal(); 406 } 407 408 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 409 CodeGenFunction::StmtExprEvaluation eval(CGF); 410 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 411 assert(RetAlloca.isValid() && "Expected complex return value"); 412 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 413 E->getExprLoc()); 414 } 415 416 /// Emit a cast from complex value Val to DestType. 417 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 418 QualType SrcType, 419 QualType DestType, 420 SourceLocation Loc) { 421 // Get the src/dest element type. 422 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 423 DestType = DestType->castAs<ComplexType>()->getElementType(); 424 425 // C99 6.3.1.6: When a value of complex type is converted to another 426 // complex type, both the real and imaginary parts follow the conversion 427 // rules for the corresponding real types. 428 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 429 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 430 return Val; 431 } 432 433 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 434 QualType SrcType, 435 QualType DestType, 436 SourceLocation Loc) { 437 // Convert the input element to the element type of the complex. 438 DestType = DestType->castAs<ComplexType>()->getElementType(); 439 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 440 441 // Return (realval, 0). 442 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 443 } 444 445 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 446 QualType DestTy) { 447 switch (CK) { 448 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 449 450 // Atomic to non-atomic casts may be more than a no-op for some platforms and 451 // for some types. 452 case CK_AtomicToNonAtomic: 453 case CK_NonAtomicToAtomic: 454 case CK_NoOp: 455 case CK_LValueToRValue: 456 case CK_UserDefinedConversion: 457 return Visit(Op); 458 459 case CK_LValueBitCast: { 460 LValue origLV = CGF.EmitLValue(Op); 461 Address V = origLV.getAddress(); 462 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 463 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 464 } 465 466 case CK_BitCast: 467 case CK_BaseToDerived: 468 case CK_DerivedToBase: 469 case CK_UncheckedDerivedToBase: 470 case CK_Dynamic: 471 case CK_ToUnion: 472 case CK_ArrayToPointerDecay: 473 case CK_FunctionToPointerDecay: 474 case CK_NullToPointer: 475 case CK_NullToMemberPointer: 476 case CK_BaseToDerivedMemberPointer: 477 case CK_DerivedToBaseMemberPointer: 478 case CK_MemberPointerToBoolean: 479 case CK_ReinterpretMemberPointer: 480 case CK_ConstructorConversion: 481 case CK_IntegralToPointer: 482 case CK_PointerToIntegral: 483 case CK_PointerToBoolean: 484 case CK_ToVoid: 485 case CK_VectorSplat: 486 case CK_IntegralCast: 487 case CK_BooleanToSignedIntegral: 488 case CK_IntegralToBoolean: 489 case CK_IntegralToFloating: 490 case CK_FloatingToIntegral: 491 case CK_FloatingToBoolean: 492 case CK_FloatingCast: 493 case CK_CPointerToObjCPointerCast: 494 case CK_BlockPointerToObjCPointerCast: 495 case CK_AnyPointerToBlockPointerCast: 496 case CK_ObjCObjectLValueCast: 497 case CK_FloatingComplexToReal: 498 case CK_FloatingComplexToBoolean: 499 case CK_IntegralComplexToReal: 500 case CK_IntegralComplexToBoolean: 501 case CK_ARCProduceObject: 502 case CK_ARCConsumeObject: 503 case CK_ARCReclaimReturnedObject: 504 case CK_ARCExtendBlockObject: 505 case CK_CopyAndAutoreleaseBlockObject: 506 case CK_BuiltinFnToFnPtr: 507 case CK_ZeroToOCLOpaqueType: 508 case CK_AddressSpaceConversion: 509 case CK_IntToOCLSampler: 510 case CK_FixedPointCast: 511 case CK_FixedPointToBoolean: 512 case CK_FixedPointToIntegral: 513 case CK_IntegralToFixedPoint: 514 llvm_unreachable("invalid cast kind for complex value"); 515 516 case CK_FloatingRealToComplex: 517 case CK_IntegralRealToComplex: 518 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 519 DestTy, Op->getExprLoc()); 520 521 case CK_FloatingComplexCast: 522 case CK_FloatingComplexToIntegralComplex: 523 case CK_IntegralComplexCast: 524 case CK_IntegralComplexToFloatingComplex: 525 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 526 Op->getExprLoc()); 527 } 528 529 llvm_unreachable("unknown cast resulting in complex value"); 530 } 531 532 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 533 TestAndClearIgnoreReal(); 534 TestAndClearIgnoreImag(); 535 ComplexPairTy Op = Visit(E->getSubExpr()); 536 537 llvm::Value *ResR, *ResI; 538 if (Op.first->getType()->isFloatingPointTy()) { 539 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 540 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 541 } else { 542 ResR = Builder.CreateNeg(Op.first, "neg.r"); 543 ResI = Builder.CreateNeg(Op.second, "neg.i"); 544 } 545 return ComplexPairTy(ResR, ResI); 546 } 547 548 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 549 TestAndClearIgnoreReal(); 550 TestAndClearIgnoreImag(); 551 // ~(a+ib) = a + i*-b 552 ComplexPairTy Op = Visit(E->getSubExpr()); 553 llvm::Value *ResI; 554 if (Op.second->getType()->isFloatingPointTy()) 555 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 556 else 557 ResI = Builder.CreateNeg(Op.second, "conj.i"); 558 559 return ComplexPairTy(Op.first, ResI); 560 } 561 562 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 563 llvm::Value *ResR, *ResI; 564 565 if (Op.LHS.first->getType()->isFloatingPointTy()) { 566 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 567 if (Op.LHS.second && Op.RHS.second) 568 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 569 else 570 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 571 assert(ResI && "Only one operand may be real!"); 572 } else { 573 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 574 assert(Op.LHS.second && Op.RHS.second && 575 "Both operands of integer complex operators must be complex!"); 576 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 577 } 578 return ComplexPairTy(ResR, ResI); 579 } 580 581 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 582 llvm::Value *ResR, *ResI; 583 if (Op.LHS.first->getType()->isFloatingPointTy()) { 584 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 585 if (Op.LHS.second && Op.RHS.second) 586 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 587 else 588 ResI = Op.LHS.second ? Op.LHS.second 589 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 590 assert(ResI && "Only one operand may be real!"); 591 } else { 592 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 593 assert(Op.LHS.second && Op.RHS.second && 594 "Both operands of integer complex operators must be complex!"); 595 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 596 } 597 return ComplexPairTy(ResR, ResI); 598 } 599 600 /// Emit a libcall for a binary operation on complex types. 601 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 602 const BinOpInfo &Op) { 603 CallArgList Args; 604 Args.add(RValue::get(Op.LHS.first), 605 Op.Ty->castAs<ComplexType>()->getElementType()); 606 Args.add(RValue::get(Op.LHS.second), 607 Op.Ty->castAs<ComplexType>()->getElementType()); 608 Args.add(RValue::get(Op.RHS.first), 609 Op.Ty->castAs<ComplexType>()->getElementType()); 610 Args.add(RValue::get(Op.RHS.second), 611 Op.Ty->castAs<ComplexType>()->getElementType()); 612 613 // We *must* use the full CG function call building logic here because the 614 // complex type has special ABI handling. We also should not forget about 615 // special calling convention which may be used for compiler builtins. 616 617 // We create a function qualified type to state that this call does not have 618 // any exceptions. 619 FunctionProtoType::ExtProtoInfo EPI; 620 EPI = EPI.withExceptionSpec( 621 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 622 SmallVector<QualType, 4> ArgsQTys( 623 4, Op.Ty->castAs<ComplexType>()->getElementType()); 624 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 625 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 626 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 627 628 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 629 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 630 FTy, LibCallName, llvm::AttributeList(), true); 631 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 632 633 llvm::CallBase *Call; 634 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 635 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 636 return Res.getComplexVal(); 637 } 638 639 /// Lookup the libcall name for a given floating point type complex 640 /// multiply. 641 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 642 switch (Ty->getTypeID()) { 643 default: 644 llvm_unreachable("Unsupported floating point type!"); 645 case llvm::Type::HalfTyID: 646 return "__mulhc3"; 647 case llvm::Type::FloatTyID: 648 return "__mulsc3"; 649 case llvm::Type::DoubleTyID: 650 return "__muldc3"; 651 case llvm::Type::PPC_FP128TyID: 652 return "__multc3"; 653 case llvm::Type::X86_FP80TyID: 654 return "__mulxc3"; 655 case llvm::Type::FP128TyID: 656 return "__multc3"; 657 } 658 } 659 660 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 661 // typed values. 662 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 663 using llvm::Value; 664 Value *ResR, *ResI; 665 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 666 667 if (Op.LHS.first->getType()->isFloatingPointTy()) { 668 // The general formulation is: 669 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 670 // 671 // But we can fold away components which would be zero due to a real 672 // operand according to C11 Annex G.5.1p2. 673 // FIXME: C11 also provides for imaginary types which would allow folding 674 // still more of this within the type system. 675 676 if (Op.LHS.second && Op.RHS.second) { 677 // If both operands are complex, emit the core math directly, and then 678 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 679 // to carefully re-compute the correct infinity representation if 680 // possible. The expectation is that the presence of NaNs here is 681 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 682 // This is good, because the libcall re-computes the core multiplication 683 // exactly the same as we do here and re-tests for NaNs in order to be 684 // a generic complex*complex libcall. 685 686 // First compute the four products. 687 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 688 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 689 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 690 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 691 692 // The real part is the difference of the first two, the imaginary part is 693 // the sum of the second. 694 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 695 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 696 697 // Emit the test for the real part becoming NaN and create a branch to 698 // handle it. We test for NaN by comparing the number to itself. 699 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 700 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 701 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 702 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 703 llvm::BasicBlock *OrigBB = Branch->getParent(); 704 705 // Give hint that we very much don't expect to see NaNs. 706 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 707 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 708 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 709 710 // Now test the imaginary part and create its branch. 711 CGF.EmitBlock(INaNBB); 712 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 713 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 714 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 715 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 716 717 // Now emit the libcall on this slowest of the slow paths. 718 CGF.EmitBlock(LibCallBB); 719 Value *LibCallR, *LibCallI; 720 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 721 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 722 Builder.CreateBr(ContBB); 723 724 // Finally continue execution by phi-ing together the different 725 // computation paths. 726 CGF.EmitBlock(ContBB); 727 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 728 RealPHI->addIncoming(ResR, OrigBB); 729 RealPHI->addIncoming(ResR, INaNBB); 730 RealPHI->addIncoming(LibCallR, LibCallBB); 731 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 732 ImagPHI->addIncoming(ResI, OrigBB); 733 ImagPHI->addIncoming(ResI, INaNBB); 734 ImagPHI->addIncoming(LibCallI, LibCallBB); 735 return ComplexPairTy(RealPHI, ImagPHI); 736 } 737 assert((Op.LHS.second || Op.RHS.second) && 738 "At least one operand must be complex!"); 739 740 // If either of the operands is a real rather than a complex, the 741 // imaginary component is ignored when computing the real component of the 742 // result. 743 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 744 745 ResI = Op.LHS.second 746 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 747 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 748 } else { 749 assert(Op.LHS.second && Op.RHS.second && 750 "Both operands of integer complex operators must be complex!"); 751 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 752 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 753 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 754 755 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 756 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 757 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 758 } 759 return ComplexPairTy(ResR, ResI); 760 } 761 762 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 763 // typed values. 764 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 765 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 766 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 767 768 llvm::Value *DSTr, *DSTi; 769 if (LHSr->getType()->isFloatingPointTy()) { 770 // If we have a complex operand on the RHS and FastMath is not allowed, we 771 // delegate to a libcall to handle all of the complexities and minimize 772 // underflow/overflow cases. When FastMath is allowed we construct the 773 // divide inline using the same algorithm as for integer operands. 774 // 775 // FIXME: We would be able to avoid the libcall in many places if we 776 // supported imaginary types in addition to complex types. 777 if (RHSi && !CGF.getLangOpts().FastMath) { 778 BinOpInfo LibCallOp = Op; 779 // If LHS was a real, supply a null imaginary part. 780 if (!LHSi) 781 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 782 783 switch (LHSr->getType()->getTypeID()) { 784 default: 785 llvm_unreachable("Unsupported floating point type!"); 786 case llvm::Type::HalfTyID: 787 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 788 case llvm::Type::FloatTyID: 789 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 790 case llvm::Type::DoubleTyID: 791 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 792 case llvm::Type::PPC_FP128TyID: 793 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 794 case llvm::Type::X86_FP80TyID: 795 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 796 case llvm::Type::FP128TyID: 797 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 798 } 799 } else if (RHSi) { 800 if (!LHSi) 801 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 802 803 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 804 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 805 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 806 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 807 808 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 809 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 810 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 811 812 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 813 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 814 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 815 816 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 817 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 818 } else { 819 assert(LHSi && "Can have at most one non-complex operand!"); 820 821 DSTr = Builder.CreateFDiv(LHSr, RHSr); 822 DSTi = Builder.CreateFDiv(LHSi, RHSr); 823 } 824 } else { 825 assert(Op.LHS.second && Op.RHS.second && 826 "Both operands of integer complex operators must be complex!"); 827 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 828 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 829 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 830 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 831 832 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 833 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 834 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 835 836 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 837 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 838 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 839 840 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 841 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 842 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 843 } else { 844 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 845 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 846 } 847 } 848 849 return ComplexPairTy(DSTr, DSTi); 850 } 851 852 ComplexExprEmitter::BinOpInfo 853 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 854 TestAndClearIgnoreReal(); 855 TestAndClearIgnoreImag(); 856 BinOpInfo Ops; 857 if (E->getLHS()->getType()->isRealFloatingType()) 858 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 859 else 860 Ops.LHS = Visit(E->getLHS()); 861 if (E->getRHS()->getType()->isRealFloatingType()) 862 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 863 else 864 Ops.RHS = Visit(E->getRHS()); 865 866 Ops.Ty = E->getType(); 867 return Ops; 868 } 869 870 871 LValue ComplexExprEmitter:: 872 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 873 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 874 RValue &Val) { 875 TestAndClearIgnoreReal(); 876 TestAndClearIgnoreImag(); 877 QualType LHSTy = E->getLHS()->getType(); 878 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 879 LHSTy = AT->getValueType(); 880 881 BinOpInfo OpInfo; 882 883 // Load the RHS and LHS operands. 884 // __block variables need to have the rhs evaluated first, plus this should 885 // improve codegen a little. 886 OpInfo.Ty = E->getComputationResultType(); 887 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 888 889 // The RHS should have been converted to the computation type. 890 if (E->getRHS()->getType()->isRealFloatingType()) { 891 assert( 892 CGF.getContext() 893 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 894 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 895 } else { 896 assert(CGF.getContext() 897 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 898 OpInfo.RHS = Visit(E->getRHS()); 899 } 900 901 LValue LHS = CGF.EmitLValue(E->getLHS()); 902 903 // Load from the l-value and convert it. 904 SourceLocation Loc = E->getExprLoc(); 905 if (LHSTy->isAnyComplexType()) { 906 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 907 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 908 } else { 909 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 910 // For floating point real operands we can directly pass the scalar form 911 // to the binary operator emission and potentially get more efficient code. 912 if (LHSTy->isRealFloatingType()) { 913 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 914 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 915 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 916 } else { 917 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 918 } 919 } 920 921 // Expand the binary operator. 922 ComplexPairTy Result = (this->*Func)(OpInfo); 923 924 // Truncate the result and store it into the LHS lvalue. 925 if (LHSTy->isAnyComplexType()) { 926 ComplexPairTy ResVal = 927 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 928 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 929 Val = RValue::getComplex(ResVal); 930 } else { 931 llvm::Value *ResVal = 932 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 933 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 934 Val = RValue::get(ResVal); 935 } 936 937 return LHS; 938 } 939 940 // Compound assignments. 941 ComplexPairTy ComplexExprEmitter:: 942 EmitCompoundAssign(const CompoundAssignOperator *E, 943 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 944 RValue Val; 945 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 946 947 // The result of an assignment in C is the assigned r-value. 948 if (!CGF.getLangOpts().CPlusPlus) 949 return Val.getComplexVal(); 950 951 // If the lvalue is non-volatile, return the computed value of the assignment. 952 if (!LV.isVolatileQualified()) 953 return Val.getComplexVal(); 954 955 return EmitLoadOfLValue(LV, E->getExprLoc()); 956 } 957 958 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 959 ComplexPairTy &Val) { 960 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 961 E->getRHS()->getType()) && 962 "Invalid assignment"); 963 TestAndClearIgnoreReal(); 964 TestAndClearIgnoreImag(); 965 966 // Emit the RHS. __block variables need the RHS evaluated first. 967 Val = Visit(E->getRHS()); 968 969 // Compute the address to store into. 970 LValue LHS = CGF.EmitLValue(E->getLHS()); 971 972 // Store the result value into the LHS lvalue. 973 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 974 975 return LHS; 976 } 977 978 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 979 ComplexPairTy Val; 980 LValue LV = EmitBinAssignLValue(E, Val); 981 982 // The result of an assignment in C is the assigned r-value. 983 if (!CGF.getLangOpts().CPlusPlus) 984 return Val; 985 986 // If the lvalue is non-volatile, return the computed value of the assignment. 987 if (!LV.isVolatileQualified()) 988 return Val; 989 990 return EmitLoadOfLValue(LV, E->getExprLoc()); 991 } 992 993 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 994 CGF.EmitIgnoredExpr(E->getLHS()); 995 return Visit(E->getRHS()); 996 } 997 998 ComplexPairTy ComplexExprEmitter:: 999 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1000 TestAndClearIgnoreReal(); 1001 TestAndClearIgnoreImag(); 1002 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1003 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1004 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1005 1006 // Bind the common expression if necessary. 1007 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1008 1009 1010 CodeGenFunction::ConditionalEvaluation eval(CGF); 1011 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1012 CGF.getProfileCount(E)); 1013 1014 eval.begin(CGF); 1015 CGF.EmitBlock(LHSBlock); 1016 CGF.incrementProfileCounter(E); 1017 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1018 LHSBlock = Builder.GetInsertBlock(); 1019 CGF.EmitBranch(ContBlock); 1020 eval.end(CGF); 1021 1022 eval.begin(CGF); 1023 CGF.EmitBlock(RHSBlock); 1024 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1025 RHSBlock = Builder.GetInsertBlock(); 1026 CGF.EmitBlock(ContBlock); 1027 eval.end(CGF); 1028 1029 // Create a PHI node for the real part. 1030 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1031 RealPN->addIncoming(LHS.first, LHSBlock); 1032 RealPN->addIncoming(RHS.first, RHSBlock); 1033 1034 // Create a PHI node for the imaginary part. 1035 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1036 ImagPN->addIncoming(LHS.second, LHSBlock); 1037 ImagPN->addIncoming(RHS.second, RHSBlock); 1038 1039 return ComplexPairTy(RealPN, ImagPN); 1040 } 1041 1042 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1043 return Visit(E->getChosenSubExpr()); 1044 } 1045 1046 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1047 bool Ignore = TestAndClearIgnoreReal(); 1048 (void)Ignore; 1049 assert (Ignore == false && "init list ignored"); 1050 Ignore = TestAndClearIgnoreImag(); 1051 (void)Ignore; 1052 assert (Ignore == false && "init list ignored"); 1053 1054 if (E->getNumInits() == 2) { 1055 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1056 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1057 return ComplexPairTy(Real, Imag); 1058 } else if (E->getNumInits() == 1) { 1059 return Visit(E->getInit(0)); 1060 } 1061 1062 // Empty init list initializes to null 1063 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1064 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1065 llvm::Type* LTy = CGF.ConvertType(Ty); 1066 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1067 return ComplexPairTy(zeroConstant, zeroConstant); 1068 } 1069 1070 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1071 Address ArgValue = Address::invalid(); 1072 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1073 1074 if (!ArgPtr.isValid()) { 1075 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1076 llvm::Type *EltTy = 1077 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1078 llvm::Value *U = llvm::UndefValue::get(EltTy); 1079 return ComplexPairTy(U, U); 1080 } 1081 1082 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1083 E->getExprLoc()); 1084 } 1085 1086 //===----------------------------------------------------------------------===// 1087 // Entry Point into this File 1088 //===----------------------------------------------------------------------===// 1089 1090 /// EmitComplexExpr - Emit the computation of the specified expression of 1091 /// complex type, ignoring the result. 1092 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1093 bool IgnoreImag) { 1094 assert(E && getComplexType(E->getType()) && 1095 "Invalid complex expression to emit"); 1096 1097 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1098 .Visit(const_cast<Expr *>(E)); 1099 } 1100 1101 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1102 bool isInit) { 1103 assert(E && getComplexType(E->getType()) && 1104 "Invalid complex expression to emit"); 1105 ComplexExprEmitter Emitter(*this); 1106 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1107 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1108 } 1109 1110 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1111 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1112 bool isInit) { 1113 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1114 } 1115 1116 /// EmitLoadOfComplex - Load a complex number from the specified address. 1117 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1118 SourceLocation loc) { 1119 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1120 } 1121 1122 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1123 assert(E->getOpcode() == BO_Assign); 1124 ComplexPairTy Val; // ignored 1125 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1126 } 1127 1128 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1129 const ComplexExprEmitter::BinOpInfo &); 1130 1131 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1132 switch (Op) { 1133 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1134 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1135 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1136 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1137 default: 1138 llvm_unreachable("unexpected complex compound assignment"); 1139 } 1140 } 1141 1142 LValue CodeGenFunction:: 1143 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1144 CompoundFunc Op = getComplexOp(E->getOpcode()); 1145 RValue Val; 1146 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1147 } 1148 1149 LValue CodeGenFunction:: 1150 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1151 llvm::Value *&Result) { 1152 CompoundFunc Op = getComplexOp(E->getOpcode()); 1153 RValue Val; 1154 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1155 Result = Val.getScalarVal(); 1156 return Ret; 1157 } 1158