1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCastExpr(CastExpr *E) { 183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 186 } 187 ComplexPairTy VisitCallExpr(const CallExpr *E); 188 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 189 190 // Operators. 191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 192 bool isInc, bool isPre) { 193 LValue LV = CGF.EmitLValue(E->getSubExpr()); 194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 195 } 196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 197 return VisitPrePostIncDec(E, false, false); 198 } 199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 200 return VisitPrePostIncDec(E, true, false); 201 } 202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 203 return VisitPrePostIncDec(E, false, true); 204 } 205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 206 return VisitPrePostIncDec(E, true, true); 207 } 208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 209 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 210 TestAndClearIgnoreReal(); 211 TestAndClearIgnoreImag(); 212 return Visit(E->getSubExpr()); 213 } 214 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 215 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 216 // LNot,Real,Imag never return complex. 217 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 218 return Visit(E->getSubExpr()); 219 } 220 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 221 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 222 return Visit(DAE->getExpr()); 223 } 224 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 225 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 226 return Visit(DIE->getExpr()); 227 } 228 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 229 CodeGenFunction::RunCleanupsScope Scope(CGF); 230 ComplexPairTy Vals = Visit(E->getSubExpr()); 231 // Defend against dominance problems caused by jumps out of expression 232 // evaluation through the shared cleanup block. 233 Scope.ForceCleanup({&Vals.first, &Vals.second}); 234 return Vals; 235 } 236 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 237 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 238 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 239 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 240 return ComplexPairTy(Null, Null); 241 } 242 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 243 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 244 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 245 llvm::Constant *Null = 246 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 247 return ComplexPairTy(Null, Null); 248 } 249 250 struct BinOpInfo { 251 ComplexPairTy LHS; 252 ComplexPairTy RHS; 253 QualType Ty; // Computation Type. 254 }; 255 256 BinOpInfo EmitBinOps(const BinaryOperator *E); 257 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 258 ComplexPairTy (ComplexExprEmitter::*Func) 259 (const BinOpInfo &), 260 RValue &Val); 261 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 262 ComplexPairTy (ComplexExprEmitter::*Func) 263 (const BinOpInfo &)); 264 265 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 266 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 267 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 268 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 269 270 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 271 const BinOpInfo &Op); 272 273 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 274 return EmitBinAdd(EmitBinOps(E)); 275 } 276 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 277 return EmitBinSub(EmitBinOps(E)); 278 } 279 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 280 return EmitBinMul(EmitBinOps(E)); 281 } 282 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 283 return EmitBinDiv(EmitBinOps(E)); 284 } 285 286 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 287 return Visit(E->getSemanticForm()); 288 } 289 290 // Compound assignments. 291 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 293 } 294 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 295 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 296 } 297 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 298 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 299 } 300 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 301 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 302 } 303 304 // GCC rejects rem/and/or/xor for integer complex. 305 // Logical and/or always return int, never complex. 306 307 // No comparisons produce a complex result. 308 309 LValue EmitBinAssignLValue(const BinaryOperator *E, 310 ComplexPairTy &Val); 311 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 312 ComplexPairTy VisitBinComma (const BinaryOperator *E); 313 314 315 ComplexPairTy 316 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 317 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 318 319 ComplexPairTy VisitInitListExpr(InitListExpr *E); 320 321 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 322 return EmitLoadOfLValue(E); 323 } 324 325 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 326 327 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 328 return CGF.EmitAtomicExpr(E).getComplexVal(); 329 } 330 }; 331 } // end anonymous namespace. 332 333 //===----------------------------------------------------------------------===// 334 // Utilities 335 //===----------------------------------------------------------------------===// 336 337 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 338 QualType complexType) { 339 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 340 } 341 342 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 343 QualType complexType) { 344 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 345 } 346 347 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 348 /// load the real and imaginary pieces, returning them as Real/Imag. 349 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 350 SourceLocation loc) { 351 assert(lvalue.isSimple() && "non-simple complex l-value?"); 352 if (lvalue.getType()->isAtomicType()) 353 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 354 355 Address SrcPtr = lvalue.getAddress(CGF); 356 bool isVolatile = lvalue.isVolatileQualified(); 357 358 llvm::Value *Real = nullptr, *Imag = nullptr; 359 360 if (!IgnoreReal || isVolatile) { 361 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 362 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 363 } 364 365 if (!IgnoreImag || isVolatile) { 366 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 367 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 368 } 369 370 return ComplexPairTy(Real, Imag); 371 } 372 373 /// EmitStoreOfComplex - Store the specified real/imag parts into the 374 /// specified value pointer. 375 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 376 bool isInit) { 377 if (lvalue.getType()->isAtomicType() || 378 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 379 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 380 381 Address Ptr = lvalue.getAddress(CGF); 382 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 383 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 384 385 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 386 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 387 } 388 389 390 391 //===----------------------------------------------------------------------===// 392 // Visitor Methods 393 //===----------------------------------------------------------------------===// 394 395 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 396 CGF.ErrorUnsupported(E, "complex expression"); 397 llvm::Type *EltTy = 398 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 399 llvm::Value *U = llvm::UndefValue::get(EltTy); 400 return ComplexPairTy(U, U); 401 } 402 403 ComplexPairTy ComplexExprEmitter:: 404 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 405 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 406 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 407 } 408 409 410 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 411 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 412 return EmitLoadOfLValue(E); 413 414 return CGF.EmitCallExpr(E).getComplexVal(); 415 } 416 417 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 418 CodeGenFunction::StmtExprEvaluation eval(CGF); 419 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 420 assert(RetAlloca.isValid() && "Expected complex return value"); 421 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 422 E->getExprLoc()); 423 } 424 425 /// Emit a cast from complex value Val to DestType. 426 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 427 QualType SrcType, 428 QualType DestType, 429 SourceLocation Loc) { 430 // Get the src/dest element type. 431 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 432 DestType = DestType->castAs<ComplexType>()->getElementType(); 433 434 // C99 6.3.1.6: When a value of complex type is converted to another 435 // complex type, both the real and imaginary parts follow the conversion 436 // rules for the corresponding real types. 437 if (Val.first) 438 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 439 if (Val.second) 440 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 441 return Val; 442 } 443 444 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 445 QualType SrcType, 446 QualType DestType, 447 SourceLocation Loc) { 448 // Convert the input element to the element type of the complex. 449 DestType = DestType->castAs<ComplexType>()->getElementType(); 450 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 451 452 // Return (realval, 0). 453 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 454 } 455 456 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 457 QualType DestTy) { 458 switch (CK) { 459 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 460 461 // Atomic to non-atomic casts may be more than a no-op for some platforms and 462 // for some types. 463 case CK_AtomicToNonAtomic: 464 case CK_NonAtomicToAtomic: 465 case CK_NoOp: 466 case CK_LValueToRValue: 467 case CK_UserDefinedConversion: 468 return Visit(Op); 469 470 case CK_LValueBitCast: { 471 LValue origLV = CGF.EmitLValue(Op); 472 Address V = origLV.getAddress(CGF); 473 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 474 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 475 } 476 477 case CK_LValueToRValueBitCast: { 478 LValue SourceLVal = CGF.EmitLValue(Op); 479 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 480 CGF.ConvertTypeForMem(DestTy)); 481 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 482 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 483 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 484 } 485 486 case CK_BitCast: 487 case CK_BaseToDerived: 488 case CK_DerivedToBase: 489 case CK_UncheckedDerivedToBase: 490 case CK_Dynamic: 491 case CK_ToUnion: 492 case CK_ArrayToPointerDecay: 493 case CK_FunctionToPointerDecay: 494 case CK_NullToPointer: 495 case CK_NullToMemberPointer: 496 case CK_BaseToDerivedMemberPointer: 497 case CK_DerivedToBaseMemberPointer: 498 case CK_MemberPointerToBoolean: 499 case CK_ReinterpretMemberPointer: 500 case CK_ConstructorConversion: 501 case CK_IntegralToPointer: 502 case CK_PointerToIntegral: 503 case CK_PointerToBoolean: 504 case CK_ToVoid: 505 case CK_VectorSplat: 506 case CK_IntegralCast: 507 case CK_BooleanToSignedIntegral: 508 case CK_IntegralToBoolean: 509 case CK_IntegralToFloating: 510 case CK_FloatingToIntegral: 511 case CK_FloatingToBoolean: 512 case CK_FloatingCast: 513 case CK_CPointerToObjCPointerCast: 514 case CK_BlockPointerToObjCPointerCast: 515 case CK_AnyPointerToBlockPointerCast: 516 case CK_ObjCObjectLValueCast: 517 case CK_FloatingComplexToReal: 518 case CK_FloatingComplexToBoolean: 519 case CK_IntegralComplexToReal: 520 case CK_IntegralComplexToBoolean: 521 case CK_ARCProduceObject: 522 case CK_ARCConsumeObject: 523 case CK_ARCReclaimReturnedObject: 524 case CK_ARCExtendBlockObject: 525 case CK_CopyAndAutoreleaseBlockObject: 526 case CK_BuiltinFnToFnPtr: 527 case CK_ZeroToOCLOpaqueType: 528 case CK_AddressSpaceConversion: 529 case CK_IntToOCLSampler: 530 case CK_FloatingToFixedPoint: 531 case CK_FixedPointToFloating: 532 case CK_FixedPointCast: 533 case CK_FixedPointToBoolean: 534 case CK_FixedPointToIntegral: 535 case CK_IntegralToFixedPoint: 536 llvm_unreachable("invalid cast kind for complex value"); 537 538 case CK_FloatingRealToComplex: 539 case CK_IntegralRealToComplex: 540 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 541 DestTy, Op->getExprLoc()); 542 543 case CK_FloatingComplexCast: 544 case CK_FloatingComplexToIntegralComplex: 545 case CK_IntegralComplexCast: 546 case CK_IntegralComplexToFloatingComplex: 547 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 548 Op->getExprLoc()); 549 } 550 551 llvm_unreachable("unknown cast resulting in complex value"); 552 } 553 554 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 555 TestAndClearIgnoreReal(); 556 TestAndClearIgnoreImag(); 557 ComplexPairTy Op = Visit(E->getSubExpr()); 558 559 llvm::Value *ResR, *ResI; 560 if (Op.first->getType()->isFloatingPointTy()) { 561 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 562 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 563 } else { 564 ResR = Builder.CreateNeg(Op.first, "neg.r"); 565 ResI = Builder.CreateNeg(Op.second, "neg.i"); 566 } 567 return ComplexPairTy(ResR, ResI); 568 } 569 570 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 571 TestAndClearIgnoreReal(); 572 TestAndClearIgnoreImag(); 573 // ~(a+ib) = a + i*-b 574 ComplexPairTy Op = Visit(E->getSubExpr()); 575 llvm::Value *ResI; 576 if (Op.second->getType()->isFloatingPointTy()) 577 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 578 else 579 ResI = Builder.CreateNeg(Op.second, "conj.i"); 580 581 return ComplexPairTy(Op.first, ResI); 582 } 583 584 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 585 llvm::Value *ResR, *ResI; 586 587 if (Op.LHS.first->getType()->isFloatingPointTy()) { 588 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 589 if (Op.LHS.second && Op.RHS.second) 590 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 591 else 592 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 593 assert(ResI && "Only one operand may be real!"); 594 } else { 595 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 596 assert(Op.LHS.second && Op.RHS.second && 597 "Both operands of integer complex operators must be complex!"); 598 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 599 } 600 return ComplexPairTy(ResR, ResI); 601 } 602 603 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 604 llvm::Value *ResR, *ResI; 605 if (Op.LHS.first->getType()->isFloatingPointTy()) { 606 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 607 if (Op.LHS.second && Op.RHS.second) 608 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 609 else 610 ResI = Op.LHS.second ? Op.LHS.second 611 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 612 assert(ResI && "Only one operand may be real!"); 613 } else { 614 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 615 assert(Op.LHS.second && Op.RHS.second && 616 "Both operands of integer complex operators must be complex!"); 617 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 618 } 619 return ComplexPairTy(ResR, ResI); 620 } 621 622 /// Emit a libcall for a binary operation on complex types. 623 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 624 const BinOpInfo &Op) { 625 CallArgList Args; 626 Args.add(RValue::get(Op.LHS.first), 627 Op.Ty->castAs<ComplexType>()->getElementType()); 628 Args.add(RValue::get(Op.LHS.second), 629 Op.Ty->castAs<ComplexType>()->getElementType()); 630 Args.add(RValue::get(Op.RHS.first), 631 Op.Ty->castAs<ComplexType>()->getElementType()); 632 Args.add(RValue::get(Op.RHS.second), 633 Op.Ty->castAs<ComplexType>()->getElementType()); 634 635 // We *must* use the full CG function call building logic here because the 636 // complex type has special ABI handling. We also should not forget about 637 // special calling convention which may be used for compiler builtins. 638 639 // We create a function qualified type to state that this call does not have 640 // any exceptions. 641 FunctionProtoType::ExtProtoInfo EPI; 642 EPI = EPI.withExceptionSpec( 643 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 644 SmallVector<QualType, 4> ArgsQTys( 645 4, Op.Ty->castAs<ComplexType>()->getElementType()); 646 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 647 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 648 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 649 650 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 651 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 652 FTy, LibCallName, llvm::AttributeList(), true); 653 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 654 655 llvm::CallBase *Call; 656 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 657 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 658 return Res.getComplexVal(); 659 } 660 661 /// Lookup the libcall name for a given floating point type complex 662 /// multiply. 663 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 664 switch (Ty->getTypeID()) { 665 default: 666 llvm_unreachable("Unsupported floating point type!"); 667 case llvm::Type::HalfTyID: 668 return "__mulhc3"; 669 case llvm::Type::FloatTyID: 670 return "__mulsc3"; 671 case llvm::Type::DoubleTyID: 672 return "__muldc3"; 673 case llvm::Type::PPC_FP128TyID: 674 return "__multc3"; 675 case llvm::Type::X86_FP80TyID: 676 return "__mulxc3"; 677 case llvm::Type::FP128TyID: 678 return "__multc3"; 679 } 680 } 681 682 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 683 // typed values. 684 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 685 using llvm::Value; 686 Value *ResR, *ResI; 687 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 688 689 if (Op.LHS.first->getType()->isFloatingPointTy()) { 690 // The general formulation is: 691 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 692 // 693 // But we can fold away components which would be zero due to a real 694 // operand according to C11 Annex G.5.1p2. 695 // FIXME: C11 also provides for imaginary types which would allow folding 696 // still more of this within the type system. 697 698 if (Op.LHS.second && Op.RHS.second) { 699 // If both operands are complex, emit the core math directly, and then 700 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 701 // to carefully re-compute the correct infinity representation if 702 // possible. The expectation is that the presence of NaNs here is 703 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 704 // This is good, because the libcall re-computes the core multiplication 705 // exactly the same as we do here and re-tests for NaNs in order to be 706 // a generic complex*complex libcall. 707 708 // First compute the four products. 709 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 710 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 711 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 712 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 713 714 // The real part is the difference of the first two, the imaginary part is 715 // the sum of the second. 716 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 717 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 718 719 // Emit the test for the real part becoming NaN and create a branch to 720 // handle it. We test for NaN by comparing the number to itself. 721 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 722 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 723 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 724 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 725 llvm::BasicBlock *OrigBB = Branch->getParent(); 726 727 // Give hint that we very much don't expect to see NaNs. 728 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 729 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 730 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 731 732 // Now test the imaginary part and create its branch. 733 CGF.EmitBlock(INaNBB); 734 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 735 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 736 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 737 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 738 739 // Now emit the libcall on this slowest of the slow paths. 740 CGF.EmitBlock(LibCallBB); 741 Value *LibCallR, *LibCallI; 742 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 743 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 744 Builder.CreateBr(ContBB); 745 746 // Finally continue execution by phi-ing together the different 747 // computation paths. 748 CGF.EmitBlock(ContBB); 749 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 750 RealPHI->addIncoming(ResR, OrigBB); 751 RealPHI->addIncoming(ResR, INaNBB); 752 RealPHI->addIncoming(LibCallR, LibCallBB); 753 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 754 ImagPHI->addIncoming(ResI, OrigBB); 755 ImagPHI->addIncoming(ResI, INaNBB); 756 ImagPHI->addIncoming(LibCallI, LibCallBB); 757 return ComplexPairTy(RealPHI, ImagPHI); 758 } 759 assert((Op.LHS.second || Op.RHS.second) && 760 "At least one operand must be complex!"); 761 762 // If either of the operands is a real rather than a complex, the 763 // imaginary component is ignored when computing the real component of the 764 // result. 765 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 766 767 ResI = Op.LHS.second 768 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 769 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 770 } else { 771 assert(Op.LHS.second && Op.RHS.second && 772 "Both operands of integer complex operators must be complex!"); 773 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 774 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 775 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 776 777 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 778 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 779 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 780 } 781 return ComplexPairTy(ResR, ResI); 782 } 783 784 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 785 // typed values. 786 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 787 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 788 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 789 790 llvm::Value *DSTr, *DSTi; 791 if (LHSr->getType()->isFloatingPointTy()) { 792 // If we have a complex operand on the RHS and FastMath is not allowed, we 793 // delegate to a libcall to handle all of the complexities and minimize 794 // underflow/overflow cases. When FastMath is allowed we construct the 795 // divide inline using the same algorithm as for integer operands. 796 // 797 // FIXME: We would be able to avoid the libcall in many places if we 798 // supported imaginary types in addition to complex types. 799 if (RHSi && !CGF.getLangOpts().FastMath) { 800 BinOpInfo LibCallOp = Op; 801 // If LHS was a real, supply a null imaginary part. 802 if (!LHSi) 803 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 804 805 switch (LHSr->getType()->getTypeID()) { 806 default: 807 llvm_unreachable("Unsupported floating point type!"); 808 case llvm::Type::HalfTyID: 809 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 810 case llvm::Type::FloatTyID: 811 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 812 case llvm::Type::DoubleTyID: 813 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 814 case llvm::Type::PPC_FP128TyID: 815 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 816 case llvm::Type::X86_FP80TyID: 817 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 818 case llvm::Type::FP128TyID: 819 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 820 } 821 } else if (RHSi) { 822 if (!LHSi) 823 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 824 825 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 826 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 827 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 828 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 829 830 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 831 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 832 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 833 834 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 835 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 836 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 837 838 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 839 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 840 } else { 841 assert(LHSi && "Can have at most one non-complex operand!"); 842 843 DSTr = Builder.CreateFDiv(LHSr, RHSr); 844 DSTi = Builder.CreateFDiv(LHSi, RHSr); 845 } 846 } else { 847 assert(Op.LHS.second && Op.RHS.second && 848 "Both operands of integer complex operators must be complex!"); 849 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 850 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 851 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 852 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 853 854 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 855 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 856 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 857 858 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 859 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 860 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 861 862 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 863 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 864 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 865 } else { 866 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 867 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 868 } 869 } 870 871 return ComplexPairTy(DSTr, DSTi); 872 } 873 874 ComplexExprEmitter::BinOpInfo 875 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 876 TestAndClearIgnoreReal(); 877 TestAndClearIgnoreImag(); 878 BinOpInfo Ops; 879 if (E->getLHS()->getType()->isRealFloatingType()) 880 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 881 else 882 Ops.LHS = Visit(E->getLHS()); 883 if (E->getRHS()->getType()->isRealFloatingType()) 884 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 885 else 886 Ops.RHS = Visit(E->getRHS()); 887 888 Ops.Ty = E->getType(); 889 return Ops; 890 } 891 892 893 LValue ComplexExprEmitter:: 894 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 895 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 896 RValue &Val) { 897 TestAndClearIgnoreReal(); 898 TestAndClearIgnoreImag(); 899 QualType LHSTy = E->getLHS()->getType(); 900 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 901 LHSTy = AT->getValueType(); 902 903 BinOpInfo OpInfo; 904 905 // Load the RHS and LHS operands. 906 // __block variables need to have the rhs evaluated first, plus this should 907 // improve codegen a little. 908 OpInfo.Ty = E->getComputationResultType(); 909 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 910 911 // The RHS should have been converted to the computation type. 912 if (E->getRHS()->getType()->isRealFloatingType()) { 913 assert( 914 CGF.getContext() 915 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 916 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 917 } else { 918 assert(CGF.getContext() 919 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 920 OpInfo.RHS = Visit(E->getRHS()); 921 } 922 923 LValue LHS = CGF.EmitLValue(E->getLHS()); 924 925 // Load from the l-value and convert it. 926 SourceLocation Loc = E->getExprLoc(); 927 if (LHSTy->isAnyComplexType()) { 928 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 929 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 930 } else { 931 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 932 // For floating point real operands we can directly pass the scalar form 933 // to the binary operator emission and potentially get more efficient code. 934 if (LHSTy->isRealFloatingType()) { 935 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 936 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 937 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 938 } else { 939 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 940 } 941 } 942 943 // Expand the binary operator. 944 ComplexPairTy Result = (this->*Func)(OpInfo); 945 946 // Truncate the result and store it into the LHS lvalue. 947 if (LHSTy->isAnyComplexType()) { 948 ComplexPairTy ResVal = 949 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 950 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 951 Val = RValue::getComplex(ResVal); 952 } else { 953 llvm::Value *ResVal = 954 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 955 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 956 Val = RValue::get(ResVal); 957 } 958 959 return LHS; 960 } 961 962 // Compound assignments. 963 ComplexPairTy ComplexExprEmitter:: 964 EmitCompoundAssign(const CompoundAssignOperator *E, 965 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 966 RValue Val; 967 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 968 969 // The result of an assignment in C is the assigned r-value. 970 if (!CGF.getLangOpts().CPlusPlus) 971 return Val.getComplexVal(); 972 973 // If the lvalue is non-volatile, return the computed value of the assignment. 974 if (!LV.isVolatileQualified()) 975 return Val.getComplexVal(); 976 977 return EmitLoadOfLValue(LV, E->getExprLoc()); 978 } 979 980 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 981 ComplexPairTy &Val) { 982 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 983 E->getRHS()->getType()) && 984 "Invalid assignment"); 985 TestAndClearIgnoreReal(); 986 TestAndClearIgnoreImag(); 987 988 // Emit the RHS. __block variables need the RHS evaluated first. 989 Val = Visit(E->getRHS()); 990 991 // Compute the address to store into. 992 LValue LHS = CGF.EmitLValue(E->getLHS()); 993 994 // Store the result value into the LHS lvalue. 995 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 996 997 return LHS; 998 } 999 1000 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1001 ComplexPairTy Val; 1002 LValue LV = EmitBinAssignLValue(E, Val); 1003 1004 // The result of an assignment in C is the assigned r-value. 1005 if (!CGF.getLangOpts().CPlusPlus) 1006 return Val; 1007 1008 // If the lvalue is non-volatile, return the computed value of the assignment. 1009 if (!LV.isVolatileQualified()) 1010 return Val; 1011 1012 return EmitLoadOfLValue(LV, E->getExprLoc()); 1013 } 1014 1015 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1016 CGF.EmitIgnoredExpr(E->getLHS()); 1017 return Visit(E->getRHS()); 1018 } 1019 1020 ComplexPairTy ComplexExprEmitter:: 1021 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1022 TestAndClearIgnoreReal(); 1023 TestAndClearIgnoreImag(); 1024 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1025 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1026 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1027 1028 // Bind the common expression if necessary. 1029 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1030 1031 1032 CodeGenFunction::ConditionalEvaluation eval(CGF); 1033 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1034 CGF.getProfileCount(E)); 1035 1036 eval.begin(CGF); 1037 CGF.EmitBlock(LHSBlock); 1038 CGF.incrementProfileCounter(E); 1039 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1040 LHSBlock = Builder.GetInsertBlock(); 1041 CGF.EmitBranch(ContBlock); 1042 eval.end(CGF); 1043 1044 eval.begin(CGF); 1045 CGF.EmitBlock(RHSBlock); 1046 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1047 RHSBlock = Builder.GetInsertBlock(); 1048 CGF.EmitBlock(ContBlock); 1049 eval.end(CGF); 1050 1051 // Create a PHI node for the real part. 1052 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1053 RealPN->addIncoming(LHS.first, LHSBlock); 1054 RealPN->addIncoming(RHS.first, RHSBlock); 1055 1056 // Create a PHI node for the imaginary part. 1057 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1058 ImagPN->addIncoming(LHS.second, LHSBlock); 1059 ImagPN->addIncoming(RHS.second, RHSBlock); 1060 1061 return ComplexPairTy(RealPN, ImagPN); 1062 } 1063 1064 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1065 return Visit(E->getChosenSubExpr()); 1066 } 1067 1068 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1069 bool Ignore = TestAndClearIgnoreReal(); 1070 (void)Ignore; 1071 assert (Ignore == false && "init list ignored"); 1072 Ignore = TestAndClearIgnoreImag(); 1073 (void)Ignore; 1074 assert (Ignore == false && "init list ignored"); 1075 1076 if (E->getNumInits() == 2) { 1077 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1078 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1079 return ComplexPairTy(Real, Imag); 1080 } else if (E->getNumInits() == 1) { 1081 return Visit(E->getInit(0)); 1082 } 1083 1084 // Empty init list initializes to null 1085 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1086 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1087 llvm::Type* LTy = CGF.ConvertType(Ty); 1088 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1089 return ComplexPairTy(zeroConstant, zeroConstant); 1090 } 1091 1092 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1093 Address ArgValue = Address::invalid(); 1094 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1095 1096 if (!ArgPtr.isValid()) { 1097 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1098 llvm::Type *EltTy = 1099 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1100 llvm::Value *U = llvm::UndefValue::get(EltTy); 1101 return ComplexPairTy(U, U); 1102 } 1103 1104 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1105 E->getExprLoc()); 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // Entry Point into this File 1110 //===----------------------------------------------------------------------===// 1111 1112 /// EmitComplexExpr - Emit the computation of the specified expression of 1113 /// complex type, ignoring the result. 1114 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1115 bool IgnoreImag) { 1116 assert(E && getComplexType(E->getType()) && 1117 "Invalid complex expression to emit"); 1118 1119 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1120 .Visit(const_cast<Expr *>(E)); 1121 } 1122 1123 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1124 bool isInit) { 1125 assert(E && getComplexType(E->getType()) && 1126 "Invalid complex expression to emit"); 1127 ComplexExprEmitter Emitter(*this); 1128 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1129 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1130 } 1131 1132 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1133 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1134 bool isInit) { 1135 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1136 } 1137 1138 /// EmitLoadOfComplex - Load a complex number from the specified address. 1139 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1140 SourceLocation loc) { 1141 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1142 } 1143 1144 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1145 assert(E->getOpcode() == BO_Assign); 1146 ComplexPairTy Val; // ignored 1147 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1148 if (getLangOpts().OpenMP) 1149 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1150 E->getLHS()); 1151 return LVal; 1152 } 1153 1154 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1155 const ComplexExprEmitter::BinOpInfo &); 1156 1157 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1158 switch (Op) { 1159 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1160 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1161 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1162 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1163 default: 1164 llvm_unreachable("unexpected complex compound assignment"); 1165 } 1166 } 1167 1168 LValue CodeGenFunction:: 1169 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1170 CompoundFunc Op = getComplexOp(E->getOpcode()); 1171 RValue Val; 1172 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1173 } 1174 1175 LValue CodeGenFunction:: 1176 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1177 llvm::Value *&Result) { 1178 CompoundFunc Op = getComplexOp(E->getOpcode()); 1179 RValue Val; 1180 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1181 Result = Val.getScalarVal(); 1182 return Ret; 1183 } 1184