1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/Metadata.h" 25 #include <algorithm> 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Complex Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 34 35 /// Return the complex type that we are meant to emit. 36 static const ComplexType *getComplexType(QualType type) { 37 type = type.getCanonicalType(); 38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 39 return comp; 40 } else { 41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 42 } 43 } 44 45 namespace { 46 class ComplexExprEmitter 47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 48 CodeGenFunction &CGF; 49 CGBuilderTy &Builder; 50 bool IgnoreReal; 51 bool IgnoreImag; 52 public: 53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 55 } 56 57 58 //===--------------------------------------------------------------------===// 59 // Utilities 60 //===--------------------------------------------------------------------===// 61 62 bool TestAndClearIgnoreReal() { 63 bool I = IgnoreReal; 64 IgnoreReal = false; 65 return I; 66 } 67 bool TestAndClearIgnoreImag() { 68 bool I = IgnoreImag; 69 IgnoreImag = false; 70 return I; 71 } 72 73 /// EmitLoadOfLValue - Given an expression with complex type that represents a 74 /// value l-value, this method emits the address of the l-value, then loads 75 /// and returns the result. 76 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 78 } 79 80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 81 82 /// EmitStoreOfComplex - Store the specified real/imag parts into the 83 /// specified value pointer. 84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 85 86 /// Emit a cast from complex value Val to DestType. 87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 /// Emit a cast from scalar value Val to DestType. 90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 91 QualType DestType, SourceLocation Loc); 92 93 //===--------------------------------------------------------------------===// 94 // Visitor Methods 95 //===--------------------------------------------------------------------===// 96 97 ComplexPairTy Visit(Expr *E) { 98 ApplyDebugLocation DL(CGF, E); 99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 100 } 101 102 ComplexPairTy VisitStmt(Stmt *S) { 103 S->dump(CGF.getContext().getSourceManager()); 104 llvm_unreachable("Stmt can't have complex result type!"); 105 } 106 ComplexPairTy VisitExpr(Expr *S); 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 117 // l-values. 118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 120 if (result.isReference()) 121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 122 E->getExprLoc()); 123 124 llvm::Constant *pair = result.getValue(); 125 return ComplexPairTy(pair->getAggregateElement(0U), 126 pair->getAggregateElement(1U)); 127 } 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 131 return EmitLoadOfLValue(E); 132 } 133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 134 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 135 } 136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 139 if (E->isGLValue()) 140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 141 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 142 } 143 144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 145 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 146 } 147 148 // FIXME: CompoundLiteralExpr 149 150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 // Unlike for scalars, we don't have to worry about function->ptr demotion 153 // here. 154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 155 } 156 ComplexPairTy VisitCastExpr(CastExpr *E) { 157 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 158 } 159 ComplexPairTy VisitCallExpr(const CallExpr *E); 160 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 161 162 // Operators. 163 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 164 bool isInc, bool isPre) { 165 LValue LV = CGF.EmitLValue(E->getSubExpr()); 166 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 167 } 168 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 169 return VisitPrePostIncDec(E, false, false); 170 } 171 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 172 return VisitPrePostIncDec(E, true, false); 173 } 174 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 175 return VisitPrePostIncDec(E, false, true); 176 } 177 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 178 return VisitPrePostIncDec(E, true, true); 179 } 180 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 181 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 182 TestAndClearIgnoreReal(); 183 TestAndClearIgnoreImag(); 184 return Visit(E->getSubExpr()); 185 } 186 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 187 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 188 // LNot,Real,Imag never return complex. 189 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 190 return Visit(E->getSubExpr()); 191 } 192 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 193 return Visit(DAE->getExpr()); 194 } 195 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 196 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 197 return Visit(DIE->getExpr()); 198 } 199 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 200 CGF.enterFullExpression(E); 201 CodeGenFunction::RunCleanupsScope Scope(CGF); 202 return Visit(E->getSubExpr()); 203 } 204 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 205 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 206 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 207 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 208 return ComplexPairTy(Null, Null); 209 } 210 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 211 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 212 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 213 llvm::Constant *Null = 214 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 215 return ComplexPairTy(Null, Null); 216 } 217 218 struct BinOpInfo { 219 ComplexPairTy LHS; 220 ComplexPairTy RHS; 221 QualType Ty; // Computation Type. 222 }; 223 224 BinOpInfo EmitBinOps(const BinaryOperator *E); 225 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 226 ComplexPairTy (ComplexExprEmitter::*Func) 227 (const BinOpInfo &), 228 RValue &Val); 229 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 230 ComplexPairTy (ComplexExprEmitter::*Func) 231 (const BinOpInfo &)); 232 233 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 234 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 235 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 236 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 237 238 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 239 const BinOpInfo &Op); 240 241 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 242 return EmitBinAdd(EmitBinOps(E)); 243 } 244 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 245 return EmitBinSub(EmitBinOps(E)); 246 } 247 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 248 return EmitBinMul(EmitBinOps(E)); 249 } 250 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 251 return EmitBinDiv(EmitBinOps(E)); 252 } 253 254 // Compound assignments. 255 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 256 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 257 } 258 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 259 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 260 } 261 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 262 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 263 } 264 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 265 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 266 } 267 268 // GCC rejects rem/and/or/xor for integer complex. 269 // Logical and/or always return int, never complex. 270 271 // No comparisons produce a complex result. 272 273 LValue EmitBinAssignLValue(const BinaryOperator *E, 274 ComplexPairTy &Val); 275 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 276 ComplexPairTy VisitBinComma (const BinaryOperator *E); 277 278 279 ComplexPairTy 280 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 281 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 282 283 ComplexPairTy VisitInitListExpr(InitListExpr *E); 284 285 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 286 return EmitLoadOfLValue(E); 287 } 288 289 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 290 291 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 292 return CGF.EmitAtomicExpr(E).getComplexVal(); 293 } 294 }; 295 } // end anonymous namespace. 296 297 //===----------------------------------------------------------------------===// 298 // Utilities 299 //===----------------------------------------------------------------------===// 300 301 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 302 QualType complexType) { 303 CharUnits offset = CharUnits::Zero(); 304 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 305 } 306 307 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 308 QualType complexType) { 309 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 310 CharUnits offset = getContext().getTypeSizeInChars(eltType); 311 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 312 } 313 314 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 315 /// load the real and imaginary pieces, returning them as Real/Imag. 316 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 317 SourceLocation loc) { 318 assert(lvalue.isSimple() && "non-simple complex l-value?"); 319 if (lvalue.getType()->isAtomicType()) 320 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 321 322 Address SrcPtr = lvalue.getAddress(); 323 bool isVolatile = lvalue.isVolatileQualified(); 324 325 llvm::Value *Real = nullptr, *Imag = nullptr; 326 327 if (!IgnoreReal || isVolatile) { 328 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 329 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 330 } 331 332 if (!IgnoreImag || isVolatile) { 333 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 334 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 335 } 336 337 return ComplexPairTy(Real, Imag); 338 } 339 340 /// EmitStoreOfComplex - Store the specified real/imag parts into the 341 /// specified value pointer. 342 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 343 bool isInit) { 344 if (lvalue.getType()->isAtomicType() || 345 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 346 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 347 348 Address Ptr = lvalue.getAddress(); 349 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 350 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 351 352 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 353 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 354 } 355 356 357 358 //===----------------------------------------------------------------------===// 359 // Visitor Methods 360 //===----------------------------------------------------------------------===// 361 362 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 363 CGF.ErrorUnsupported(E, "complex expression"); 364 llvm::Type *EltTy = 365 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 366 llvm::Value *U = llvm::UndefValue::get(EltTy); 367 return ComplexPairTy(U, U); 368 } 369 370 ComplexPairTy ComplexExprEmitter:: 371 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 372 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 373 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 374 } 375 376 377 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 378 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 379 return EmitLoadOfLValue(E); 380 381 return CGF.EmitCallExpr(E).getComplexVal(); 382 } 383 384 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 385 CodeGenFunction::StmtExprEvaluation eval(CGF); 386 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 387 assert(RetAlloca.isValid() && "Expected complex return value"); 388 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 389 E->getExprLoc()); 390 } 391 392 /// Emit a cast from complex value Val to DestType. 393 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 394 QualType SrcType, 395 QualType DestType, 396 SourceLocation Loc) { 397 // Get the src/dest element type. 398 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 399 DestType = DestType->castAs<ComplexType>()->getElementType(); 400 401 // C99 6.3.1.6: When a value of complex type is converted to another 402 // complex type, both the real and imaginary parts follow the conversion 403 // rules for the corresponding real types. 404 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 405 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 406 return Val; 407 } 408 409 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 410 QualType SrcType, 411 QualType DestType, 412 SourceLocation Loc) { 413 // Convert the input element to the element type of the complex. 414 DestType = DestType->castAs<ComplexType>()->getElementType(); 415 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 416 417 // Return (realval, 0). 418 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 419 } 420 421 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 422 QualType DestTy) { 423 switch (CK) { 424 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 425 426 // Atomic to non-atomic casts may be more than a no-op for some platforms and 427 // for some types. 428 case CK_AtomicToNonAtomic: 429 case CK_NonAtomicToAtomic: 430 case CK_NoOp: 431 case CK_LValueToRValue: 432 case CK_UserDefinedConversion: 433 return Visit(Op); 434 435 case CK_LValueBitCast: { 436 LValue origLV = CGF.EmitLValue(Op); 437 Address V = origLV.getAddress(); 438 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 439 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 440 } 441 442 case CK_BitCast: 443 case CK_BaseToDerived: 444 case CK_DerivedToBase: 445 case CK_UncheckedDerivedToBase: 446 case CK_Dynamic: 447 case CK_ToUnion: 448 case CK_ArrayToPointerDecay: 449 case CK_FunctionToPointerDecay: 450 case CK_NullToPointer: 451 case CK_NullToMemberPointer: 452 case CK_BaseToDerivedMemberPointer: 453 case CK_DerivedToBaseMemberPointer: 454 case CK_MemberPointerToBoolean: 455 case CK_ReinterpretMemberPointer: 456 case CK_ConstructorConversion: 457 case CK_IntegralToPointer: 458 case CK_PointerToIntegral: 459 case CK_PointerToBoolean: 460 case CK_ToVoid: 461 case CK_VectorSplat: 462 case CK_IntegralCast: 463 case CK_IntegralToBoolean: 464 case CK_IntegralToFloating: 465 case CK_FloatingToIntegral: 466 case CK_FloatingToBoolean: 467 case CK_FloatingCast: 468 case CK_CPointerToObjCPointerCast: 469 case CK_BlockPointerToObjCPointerCast: 470 case CK_AnyPointerToBlockPointerCast: 471 case CK_ObjCObjectLValueCast: 472 case CK_FloatingComplexToReal: 473 case CK_FloatingComplexToBoolean: 474 case CK_IntegralComplexToReal: 475 case CK_IntegralComplexToBoolean: 476 case CK_ARCProduceObject: 477 case CK_ARCConsumeObject: 478 case CK_ARCReclaimReturnedObject: 479 case CK_ARCExtendBlockObject: 480 case CK_CopyAndAutoreleaseBlockObject: 481 case CK_BuiltinFnToFnPtr: 482 case CK_ZeroToOCLEvent: 483 case CK_AddressSpaceConversion: 484 llvm_unreachable("invalid cast kind for complex value"); 485 486 case CK_FloatingRealToComplex: 487 case CK_IntegralRealToComplex: 488 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 489 DestTy, Op->getExprLoc()); 490 491 case CK_FloatingComplexCast: 492 case CK_FloatingComplexToIntegralComplex: 493 case CK_IntegralComplexCast: 494 case CK_IntegralComplexToFloatingComplex: 495 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 496 Op->getExprLoc()); 497 } 498 499 llvm_unreachable("unknown cast resulting in complex value"); 500 } 501 502 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 503 TestAndClearIgnoreReal(); 504 TestAndClearIgnoreImag(); 505 ComplexPairTy Op = Visit(E->getSubExpr()); 506 507 llvm::Value *ResR, *ResI; 508 if (Op.first->getType()->isFloatingPointTy()) { 509 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 510 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 511 } else { 512 ResR = Builder.CreateNeg(Op.first, "neg.r"); 513 ResI = Builder.CreateNeg(Op.second, "neg.i"); 514 } 515 return ComplexPairTy(ResR, ResI); 516 } 517 518 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 519 TestAndClearIgnoreReal(); 520 TestAndClearIgnoreImag(); 521 // ~(a+ib) = a + i*-b 522 ComplexPairTy Op = Visit(E->getSubExpr()); 523 llvm::Value *ResI; 524 if (Op.second->getType()->isFloatingPointTy()) 525 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 526 else 527 ResI = Builder.CreateNeg(Op.second, "conj.i"); 528 529 return ComplexPairTy(Op.first, ResI); 530 } 531 532 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 533 llvm::Value *ResR, *ResI; 534 535 if (Op.LHS.first->getType()->isFloatingPointTy()) { 536 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 537 if (Op.LHS.second && Op.RHS.second) 538 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 539 else 540 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 541 assert(ResI && "Only one operand may be real!"); 542 } else { 543 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 544 assert(Op.LHS.second && Op.RHS.second && 545 "Both operands of integer complex operators must be complex!"); 546 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 547 } 548 return ComplexPairTy(ResR, ResI); 549 } 550 551 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 552 llvm::Value *ResR, *ResI; 553 if (Op.LHS.first->getType()->isFloatingPointTy()) { 554 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 555 if (Op.LHS.second && Op.RHS.second) 556 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 557 else 558 ResI = Op.LHS.second ? Op.LHS.second 559 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 560 assert(ResI && "Only one operand may be real!"); 561 } else { 562 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 563 assert(Op.LHS.second && Op.RHS.second && 564 "Both operands of integer complex operators must be complex!"); 565 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 566 } 567 return ComplexPairTy(ResR, ResI); 568 } 569 570 /// \brief Emit a libcall for a binary operation on complex types. 571 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 572 const BinOpInfo &Op) { 573 CallArgList Args; 574 Args.add(RValue::get(Op.LHS.first), 575 Op.Ty->castAs<ComplexType>()->getElementType()); 576 Args.add(RValue::get(Op.LHS.second), 577 Op.Ty->castAs<ComplexType>()->getElementType()); 578 Args.add(RValue::get(Op.RHS.first), 579 Op.Ty->castAs<ComplexType>()->getElementType()); 580 Args.add(RValue::get(Op.RHS.second), 581 Op.Ty->castAs<ComplexType>()->getElementType()); 582 583 // We *must* use the full CG function call building logic here because the 584 // complex type has special ABI handling. We also should not forget about 585 // special calling convention which may be used for compiler builtins. 586 const CGFunctionInfo &FuncInfo = 587 CGF.CGM.getTypes().arrangeFreeFunctionCall( 588 Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */), 589 RequiredArgs::All); 590 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 591 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 592 llvm::Instruction *Call; 593 594 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 595 nullptr, &Call); 596 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 597 cast<llvm::CallInst>(Call)->setDoesNotThrow(); 598 599 return Res.getComplexVal(); 600 } 601 602 /// \brief Lookup the libcall name for a given floating point type complex 603 /// multiply. 604 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 605 switch (Ty->getTypeID()) { 606 default: 607 llvm_unreachable("Unsupported floating point type!"); 608 case llvm::Type::HalfTyID: 609 return "__mulhc3"; 610 case llvm::Type::FloatTyID: 611 return "__mulsc3"; 612 case llvm::Type::DoubleTyID: 613 return "__muldc3"; 614 case llvm::Type::PPC_FP128TyID: 615 return "__multc3"; 616 case llvm::Type::X86_FP80TyID: 617 return "__mulxc3"; 618 case llvm::Type::FP128TyID: 619 return "__multc3"; 620 } 621 } 622 623 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 624 // typed values. 625 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 626 using llvm::Value; 627 Value *ResR, *ResI; 628 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 629 630 if (Op.LHS.first->getType()->isFloatingPointTy()) { 631 // The general formulation is: 632 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 633 // 634 // But we can fold away components which would be zero due to a real 635 // operand according to C11 Annex G.5.1p2. 636 // FIXME: C11 also provides for imaginary types which would allow folding 637 // still more of this within the type system. 638 639 if (Op.LHS.second && Op.RHS.second) { 640 // If both operands are complex, emit the core math directly, and then 641 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 642 // to carefully re-compute the correct infinity representation if 643 // possible. The expectation is that the presence of NaNs here is 644 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 645 // This is good, because the libcall re-computes the core multiplication 646 // exactly the same as we do here and re-tests for NaNs in order to be 647 // a generic complex*complex libcall. 648 649 // First compute the four products. 650 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 651 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 652 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 653 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 654 655 // The real part is the difference of the first two, the imaginary part is 656 // the sum of the second. 657 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 658 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 659 660 // Emit the test for the real part becoming NaN and create a branch to 661 // handle it. We test for NaN by comparing the number to itself. 662 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 663 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 664 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 665 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 666 llvm::BasicBlock *OrigBB = Branch->getParent(); 667 668 // Give hint that we very much don't expect to see NaNs. 669 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 670 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 671 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 672 673 // Now test the imaginary part and create its branch. 674 CGF.EmitBlock(INaNBB); 675 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 676 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 677 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 678 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 679 680 // Now emit the libcall on this slowest of the slow paths. 681 CGF.EmitBlock(LibCallBB); 682 Value *LibCallR, *LibCallI; 683 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 684 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 685 Builder.CreateBr(ContBB); 686 687 // Finally continue execution by phi-ing together the different 688 // computation paths. 689 CGF.EmitBlock(ContBB); 690 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 691 RealPHI->addIncoming(ResR, OrigBB); 692 RealPHI->addIncoming(ResR, INaNBB); 693 RealPHI->addIncoming(LibCallR, LibCallBB); 694 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 695 ImagPHI->addIncoming(ResI, OrigBB); 696 ImagPHI->addIncoming(ResI, INaNBB); 697 ImagPHI->addIncoming(LibCallI, LibCallBB); 698 return ComplexPairTy(RealPHI, ImagPHI); 699 } 700 assert((Op.LHS.second || Op.RHS.second) && 701 "At least one operand must be complex!"); 702 703 // If either of the operands is a real rather than a complex, the 704 // imaginary component is ignored when computing the real component of the 705 // result. 706 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 707 708 ResI = Op.LHS.second 709 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 710 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 711 } else { 712 assert(Op.LHS.second && Op.RHS.second && 713 "Both operands of integer complex operators must be complex!"); 714 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 715 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 716 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 717 718 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 719 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 720 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 721 } 722 return ComplexPairTy(ResR, ResI); 723 } 724 725 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 726 // typed values. 727 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 728 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 729 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 730 731 732 llvm::Value *DSTr, *DSTi; 733 if (LHSr->getType()->isFloatingPointTy()) { 734 // If we have a complex operand on the RHS, we delegate to a libcall to 735 // handle all of the complexities and minimize underflow/overflow cases. 736 // 737 // FIXME: We would be able to avoid the libcall in many places if we 738 // supported imaginary types in addition to complex types. 739 if (RHSi) { 740 BinOpInfo LibCallOp = Op; 741 // If LHS was a real, supply a null imaginary part. 742 if (!LHSi) 743 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 744 745 StringRef LibCallName; 746 switch (LHSr->getType()->getTypeID()) { 747 default: 748 llvm_unreachable("Unsupported floating point type!"); 749 case llvm::Type::HalfTyID: 750 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 751 case llvm::Type::FloatTyID: 752 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 753 case llvm::Type::DoubleTyID: 754 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 755 case llvm::Type::PPC_FP128TyID: 756 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 757 case llvm::Type::X86_FP80TyID: 758 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 759 case llvm::Type::FP128TyID: 760 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 761 } 762 } 763 assert(LHSi && "Can have at most one non-complex operand!"); 764 765 DSTr = Builder.CreateFDiv(LHSr, RHSr); 766 DSTi = Builder.CreateFDiv(LHSi, RHSr); 767 } else { 768 assert(Op.LHS.second && Op.RHS.second && 769 "Both operands of integer complex operators must be complex!"); 770 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 771 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 772 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 773 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 774 775 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 776 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 777 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 778 779 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 780 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 781 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 782 783 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 784 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 785 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 786 } else { 787 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 788 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 789 } 790 } 791 792 return ComplexPairTy(DSTr, DSTi); 793 } 794 795 ComplexExprEmitter::BinOpInfo 796 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 797 TestAndClearIgnoreReal(); 798 TestAndClearIgnoreImag(); 799 BinOpInfo Ops; 800 if (E->getLHS()->getType()->isRealFloatingType()) 801 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 802 else 803 Ops.LHS = Visit(E->getLHS()); 804 if (E->getRHS()->getType()->isRealFloatingType()) 805 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 806 else 807 Ops.RHS = Visit(E->getRHS()); 808 809 Ops.Ty = E->getType(); 810 return Ops; 811 } 812 813 814 LValue ComplexExprEmitter:: 815 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 816 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 817 RValue &Val) { 818 TestAndClearIgnoreReal(); 819 TestAndClearIgnoreImag(); 820 QualType LHSTy = E->getLHS()->getType(); 821 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 822 LHSTy = AT->getValueType(); 823 824 BinOpInfo OpInfo; 825 826 // Load the RHS and LHS operands. 827 // __block variables need to have the rhs evaluated first, plus this should 828 // improve codegen a little. 829 OpInfo.Ty = E->getComputationResultType(); 830 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 831 832 // The RHS should have been converted to the computation type. 833 if (E->getRHS()->getType()->isRealFloatingType()) { 834 assert( 835 CGF.getContext() 836 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 837 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 838 } else { 839 assert(CGF.getContext() 840 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 841 OpInfo.RHS = Visit(E->getRHS()); 842 } 843 844 LValue LHS = CGF.EmitLValue(E->getLHS()); 845 846 // Load from the l-value and convert it. 847 SourceLocation Loc = E->getExprLoc(); 848 if (LHSTy->isAnyComplexType()) { 849 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 850 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 851 } else { 852 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 853 // For floating point real operands we can directly pass the scalar form 854 // to the binary operator emission and potentially get more efficient code. 855 if (LHSTy->isRealFloatingType()) { 856 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 857 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 858 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 859 } else { 860 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 861 } 862 } 863 864 // Expand the binary operator. 865 ComplexPairTy Result = (this->*Func)(OpInfo); 866 867 // Truncate the result and store it into the LHS lvalue. 868 if (LHSTy->isAnyComplexType()) { 869 ComplexPairTy ResVal = 870 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 871 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 872 Val = RValue::getComplex(ResVal); 873 } else { 874 llvm::Value *ResVal = 875 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 876 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 877 Val = RValue::get(ResVal); 878 } 879 880 return LHS; 881 } 882 883 // Compound assignments. 884 ComplexPairTy ComplexExprEmitter:: 885 EmitCompoundAssign(const CompoundAssignOperator *E, 886 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 887 RValue Val; 888 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 889 890 // The result of an assignment in C is the assigned r-value. 891 if (!CGF.getLangOpts().CPlusPlus) 892 return Val.getComplexVal(); 893 894 // If the lvalue is non-volatile, return the computed value of the assignment. 895 if (!LV.isVolatileQualified()) 896 return Val.getComplexVal(); 897 898 return EmitLoadOfLValue(LV, E->getExprLoc()); 899 } 900 901 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 902 ComplexPairTy &Val) { 903 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 904 E->getRHS()->getType()) && 905 "Invalid assignment"); 906 TestAndClearIgnoreReal(); 907 TestAndClearIgnoreImag(); 908 909 // Emit the RHS. __block variables need the RHS evaluated first. 910 Val = Visit(E->getRHS()); 911 912 // Compute the address to store into. 913 LValue LHS = CGF.EmitLValue(E->getLHS()); 914 915 // Store the result value into the LHS lvalue. 916 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 917 918 return LHS; 919 } 920 921 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 922 ComplexPairTy Val; 923 LValue LV = EmitBinAssignLValue(E, Val); 924 925 // The result of an assignment in C is the assigned r-value. 926 if (!CGF.getLangOpts().CPlusPlus) 927 return Val; 928 929 // If the lvalue is non-volatile, return the computed value of the assignment. 930 if (!LV.isVolatileQualified()) 931 return Val; 932 933 return EmitLoadOfLValue(LV, E->getExprLoc()); 934 } 935 936 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 937 CGF.EmitIgnoredExpr(E->getLHS()); 938 return Visit(E->getRHS()); 939 } 940 941 ComplexPairTy ComplexExprEmitter:: 942 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 943 TestAndClearIgnoreReal(); 944 TestAndClearIgnoreImag(); 945 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 946 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 947 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 948 949 // Bind the common expression if necessary. 950 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 951 952 953 CodeGenFunction::ConditionalEvaluation eval(CGF); 954 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 955 CGF.getProfileCount(E)); 956 957 eval.begin(CGF); 958 CGF.EmitBlock(LHSBlock); 959 CGF.incrementProfileCounter(E); 960 ComplexPairTy LHS = Visit(E->getTrueExpr()); 961 LHSBlock = Builder.GetInsertBlock(); 962 CGF.EmitBranch(ContBlock); 963 eval.end(CGF); 964 965 eval.begin(CGF); 966 CGF.EmitBlock(RHSBlock); 967 ComplexPairTy RHS = Visit(E->getFalseExpr()); 968 RHSBlock = Builder.GetInsertBlock(); 969 CGF.EmitBlock(ContBlock); 970 eval.end(CGF); 971 972 // Create a PHI node for the real part. 973 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 974 RealPN->addIncoming(LHS.first, LHSBlock); 975 RealPN->addIncoming(RHS.first, RHSBlock); 976 977 // Create a PHI node for the imaginary part. 978 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 979 ImagPN->addIncoming(LHS.second, LHSBlock); 980 ImagPN->addIncoming(RHS.second, RHSBlock); 981 982 return ComplexPairTy(RealPN, ImagPN); 983 } 984 985 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 986 return Visit(E->getChosenSubExpr()); 987 } 988 989 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 990 bool Ignore = TestAndClearIgnoreReal(); 991 (void)Ignore; 992 assert (Ignore == false && "init list ignored"); 993 Ignore = TestAndClearIgnoreImag(); 994 (void)Ignore; 995 assert (Ignore == false && "init list ignored"); 996 997 if (E->getNumInits() == 2) { 998 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 999 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1000 return ComplexPairTy(Real, Imag); 1001 } else if (E->getNumInits() == 1) { 1002 return Visit(E->getInit(0)); 1003 } 1004 1005 // Empty init list intializes to null 1006 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1007 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1008 llvm::Type* LTy = CGF.ConvertType(Ty); 1009 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1010 return ComplexPairTy(zeroConstant, zeroConstant); 1011 } 1012 1013 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1014 Address ArgValue = Address::invalid(); 1015 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1016 1017 if (!ArgPtr.isValid()) { 1018 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1019 llvm::Type *EltTy = 1020 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1021 llvm::Value *U = llvm::UndefValue::get(EltTy); 1022 return ComplexPairTy(U, U); 1023 } 1024 1025 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1026 E->getExprLoc()); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // Entry Point into this File 1031 //===----------------------------------------------------------------------===// 1032 1033 /// EmitComplexExpr - Emit the computation of the specified expression of 1034 /// complex type, ignoring the result. 1035 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1036 bool IgnoreImag) { 1037 assert(E && getComplexType(E->getType()) && 1038 "Invalid complex expression to emit"); 1039 1040 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1041 .Visit(const_cast<Expr *>(E)); 1042 } 1043 1044 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1045 bool isInit) { 1046 assert(E && getComplexType(E->getType()) && 1047 "Invalid complex expression to emit"); 1048 ComplexExprEmitter Emitter(*this); 1049 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1050 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1051 } 1052 1053 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1054 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1055 bool isInit) { 1056 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1057 } 1058 1059 /// EmitLoadOfComplex - Load a complex number from the specified address. 1060 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1061 SourceLocation loc) { 1062 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1063 } 1064 1065 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1066 assert(E->getOpcode() == BO_Assign); 1067 ComplexPairTy Val; // ignored 1068 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1069 } 1070 1071 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1072 const ComplexExprEmitter::BinOpInfo &); 1073 1074 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1075 switch (Op) { 1076 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1077 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1078 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1079 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1080 default: 1081 llvm_unreachable("unexpected complex compound assignment"); 1082 } 1083 } 1084 1085 LValue CodeGenFunction:: 1086 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1087 CompoundFunc Op = getComplexOp(E->getOpcode()); 1088 RValue Val; 1089 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1090 } 1091 1092 LValue CodeGenFunction:: 1093 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1094 llvm::Value *&Result) { 1095 CompoundFunc Op = getComplexOp(E->getOpcode()); 1096 RValue Val; 1097 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1098 Result = Val.getScalarVal(); 1099 return Ret; 1100 } 1101