1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 #include <algorithm>
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Complex Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
31 
32 /// Return the complex type that we are meant to emit.
33 static const ComplexType *getComplexType(QualType type) {
34   type = type.getCanonicalType();
35   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
36     return comp;
37   } else {
38     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
39   }
40 }
41 
42 namespace  {
43 class ComplexExprEmitter
44   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
45   CodeGenFunction &CGF;
46   CGBuilderTy &Builder;
47   bool IgnoreReal;
48   bool IgnoreImag;
49 public:
50   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
51     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
52   }
53 
54 
55   //===--------------------------------------------------------------------===//
56   //                               Utilities
57   //===--------------------------------------------------------------------===//
58 
59   bool TestAndClearIgnoreReal() {
60     bool I = IgnoreReal;
61     IgnoreReal = false;
62     return I;
63   }
64   bool TestAndClearIgnoreImag() {
65     bool I = IgnoreImag;
66     IgnoreImag = false;
67     return I;
68   }
69 
70   /// EmitLoadOfLValue - Given an expression with complex type that represents a
71   /// value l-value, this method emits the address of the l-value, then loads
72   /// and returns the result.
73   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
74     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
75   }
76 
77   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
78 
79   /// EmitStoreOfComplex - Store the specified real/imag parts into the
80   /// specified value pointer.
81   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
82 
83   /// Emit a cast from complex value Val to DestType.
84   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
85                                          QualType DestType, SourceLocation Loc);
86   /// Emit a cast from scalar value Val to DestType.
87   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
88                                         QualType DestType, SourceLocation Loc);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   ComplexPairTy Visit(Expr *E) {
95     ApplyDebugLocation DL(CGF, E);
96     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
97   }
98 
99   ComplexPairTy VisitStmt(Stmt *S) {
100     S->dump(CGF.getContext().getSourceManager());
101     llvm_unreachable("Stmt can't have complex result type!");
102   }
103   ComplexPairTy VisitExpr(Expr *S);
104   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
105   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
106     return Visit(GE->getResultExpr());
107   }
108   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
109   ComplexPairTy
110   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
111     return Visit(PE->getReplacement());
112   }
113   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
114     return CGF.EmitCoawaitExpr(*S).getComplexVal();
115   }
116   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
117     return CGF.EmitCoyieldExpr(*S).getComplexVal();
118   }
119   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
120     return Visit(E->getSubExpr());
121   }
122 
123   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
124                              Expr *E) {
125     assert(Constant && "not a constant");
126     if (Constant.isReference())
127       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
128                               E->getExprLoc());
129 
130     llvm::Constant *pair = Constant.getValue();
131     return ComplexPairTy(pair->getAggregateElement(0U),
132                          pair->getAggregateElement(1U));
133   }
134 
135   // l-values.
136   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
137     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
138       return emitConstant(Constant, E);
139     return EmitLoadOfLValue(E);
140   }
141   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
142     return EmitLoadOfLValue(E);
143   }
144   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
145     return CGF.EmitObjCMessageExpr(E).getComplexVal();
146   }
147   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
148   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
149     if (CodeGenFunction::ConstantEmission Constant =
150             CGF.tryEmitAsConstant(ME)) {
151       CGF.EmitIgnoredExpr(ME->getBase());
152       return emitConstant(Constant, ME);
153     }
154     return EmitLoadOfLValue(ME);
155   }
156   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
157     if (E->isGLValue())
158       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
159                               E->getExprLoc());
160     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
161   }
162 
163   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
164     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
165   }
166 
167   // FIXME: CompoundLiteralExpr
168 
169   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
170   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
171     // Unlike for scalars, we don't have to worry about function->ptr demotion
172     // here.
173     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
174   }
175   ComplexPairTy VisitCastExpr(CastExpr *E) {
176     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
177       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
178     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
179   }
180   ComplexPairTy VisitCallExpr(const CallExpr *E);
181   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
182 
183   // Operators.
184   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
185                                    bool isInc, bool isPre) {
186     LValue LV = CGF.EmitLValue(E->getSubExpr());
187     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
188   }
189   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
190     return VisitPrePostIncDec(E, false, false);
191   }
192   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
193     return VisitPrePostIncDec(E, true, false);
194   }
195   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
196     return VisitPrePostIncDec(E, false, true);
197   }
198   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
199     return VisitPrePostIncDec(E, true, true);
200   }
201   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
202   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
203     TestAndClearIgnoreReal();
204     TestAndClearIgnoreImag();
205     return Visit(E->getSubExpr());
206   }
207   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
208   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
209   // LNot,Real,Imag never return complex.
210   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
211     return Visit(E->getSubExpr());
212   }
213   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
214     return Visit(DAE->getExpr());
215   }
216   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
217     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
218     return Visit(DIE->getExpr());
219   }
220   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
221     CGF.enterFullExpression(E);
222     CodeGenFunction::RunCleanupsScope Scope(CGF);
223     ComplexPairTy Vals = Visit(E->getSubExpr());
224     // Defend against dominance problems caused by jumps out of expression
225     // evaluation through the shared cleanup block.
226     Scope.ForceCleanup({&Vals.first, &Vals.second});
227     return Vals;
228   }
229   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
230     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
231     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
232     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
233     return ComplexPairTy(Null, Null);
234   }
235   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
236     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
237     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
238     llvm::Constant *Null =
239                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
240     return ComplexPairTy(Null, Null);
241   }
242 
243   struct BinOpInfo {
244     ComplexPairTy LHS;
245     ComplexPairTy RHS;
246     QualType Ty;  // Computation Type.
247   };
248 
249   BinOpInfo EmitBinOps(const BinaryOperator *E);
250   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
251                                   ComplexPairTy (ComplexExprEmitter::*Func)
252                                   (const BinOpInfo &),
253                                   RValue &Val);
254   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
255                                    ComplexPairTy (ComplexExprEmitter::*Func)
256                                    (const BinOpInfo &));
257 
258   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
259   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
260   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
261   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
262 
263   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
264                                         const BinOpInfo &Op);
265 
266   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
267     return EmitBinAdd(EmitBinOps(E));
268   }
269   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
270     return EmitBinSub(EmitBinOps(E));
271   }
272   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
273     return EmitBinMul(EmitBinOps(E));
274   }
275   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
276     return EmitBinDiv(EmitBinOps(E));
277   }
278 
279   // Compound assignments.
280   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
281     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
282   }
283   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
284     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
285   }
286   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
287     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
288   }
289   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
290     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
291   }
292 
293   // GCC rejects rem/and/or/xor for integer complex.
294   // Logical and/or always return int, never complex.
295 
296   // No comparisons produce a complex result.
297 
298   LValue EmitBinAssignLValue(const BinaryOperator *E,
299                              ComplexPairTy &Val);
300   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
301   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
302 
303 
304   ComplexPairTy
305   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
306   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
307 
308   ComplexPairTy VisitInitListExpr(InitListExpr *E);
309 
310   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
311     return EmitLoadOfLValue(E);
312   }
313 
314   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
315 
316   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
317     return CGF.EmitAtomicExpr(E).getComplexVal();
318   }
319 };
320 }  // end anonymous namespace.
321 
322 //===----------------------------------------------------------------------===//
323 //                                Utilities
324 //===----------------------------------------------------------------------===//
325 
326 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
327                                                  QualType complexType) {
328   CharUnits offset = CharUnits::Zero();
329   return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
330 }
331 
332 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
333                                                  QualType complexType) {
334   QualType eltType = complexType->castAs<ComplexType>()->getElementType();
335   CharUnits offset = getContext().getTypeSizeInChars(eltType);
336   return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
337 }
338 
339 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
340 /// load the real and imaginary pieces, returning them as Real/Imag.
341 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
342                                                    SourceLocation loc) {
343   assert(lvalue.isSimple() && "non-simple complex l-value?");
344   if (lvalue.getType()->isAtomicType())
345     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
346 
347   Address SrcPtr = lvalue.getAddress();
348   bool isVolatile = lvalue.isVolatileQualified();
349 
350   llvm::Value *Real = nullptr, *Imag = nullptr;
351 
352   if (!IgnoreReal || isVolatile) {
353     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
354     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
355   }
356 
357   if (!IgnoreImag || isVolatile) {
358     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
359     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
360   }
361 
362   return ComplexPairTy(Real, Imag);
363 }
364 
365 /// EmitStoreOfComplex - Store the specified real/imag parts into the
366 /// specified value pointer.
367 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
368                                             bool isInit) {
369   if (lvalue.getType()->isAtomicType() ||
370       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
371     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
372 
373   Address Ptr = lvalue.getAddress();
374   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
375   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
376 
377   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
378   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
379 }
380 
381 
382 
383 //===----------------------------------------------------------------------===//
384 //                            Visitor Methods
385 //===----------------------------------------------------------------------===//
386 
387 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
388   CGF.ErrorUnsupported(E, "complex expression");
389   llvm::Type *EltTy =
390     CGF.ConvertType(getComplexType(E->getType())->getElementType());
391   llvm::Value *U = llvm::UndefValue::get(EltTy);
392   return ComplexPairTy(U, U);
393 }
394 
395 ComplexPairTy ComplexExprEmitter::
396 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
397   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
398   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
399 }
400 
401 
402 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
403   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
404     return EmitLoadOfLValue(E);
405 
406   return CGF.EmitCallExpr(E).getComplexVal();
407 }
408 
409 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
410   CodeGenFunction::StmtExprEvaluation eval(CGF);
411   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
412   assert(RetAlloca.isValid() && "Expected complex return value");
413   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
414                           E->getExprLoc());
415 }
416 
417 /// Emit a cast from complex value Val to DestType.
418 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
419                                                            QualType SrcType,
420                                                            QualType DestType,
421                                                            SourceLocation Loc) {
422   // Get the src/dest element type.
423   SrcType = SrcType->castAs<ComplexType>()->getElementType();
424   DestType = DestType->castAs<ComplexType>()->getElementType();
425 
426   // C99 6.3.1.6: When a value of complex type is converted to another
427   // complex type, both the real and imaginary parts follow the conversion
428   // rules for the corresponding real types.
429   Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
430   Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
431   return Val;
432 }
433 
434 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
435                                                           QualType SrcType,
436                                                           QualType DestType,
437                                                           SourceLocation Loc) {
438   // Convert the input element to the element type of the complex.
439   DestType = DestType->castAs<ComplexType>()->getElementType();
440   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
441 
442   // Return (realval, 0).
443   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
444 }
445 
446 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
447                                            QualType DestTy) {
448   switch (CK) {
449   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
450 
451   // Atomic to non-atomic casts may be more than a no-op for some platforms and
452   // for some types.
453   case CK_AtomicToNonAtomic:
454   case CK_NonAtomicToAtomic:
455   case CK_NoOp:
456   case CK_LValueToRValue:
457   case CK_UserDefinedConversion:
458     return Visit(Op);
459 
460   case CK_LValueBitCast: {
461     LValue origLV = CGF.EmitLValue(Op);
462     Address V = origLV.getAddress();
463     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
464     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
465   }
466 
467   case CK_BitCast:
468   case CK_BaseToDerived:
469   case CK_DerivedToBase:
470   case CK_UncheckedDerivedToBase:
471   case CK_Dynamic:
472   case CK_ToUnion:
473   case CK_ArrayToPointerDecay:
474   case CK_FunctionToPointerDecay:
475   case CK_NullToPointer:
476   case CK_NullToMemberPointer:
477   case CK_BaseToDerivedMemberPointer:
478   case CK_DerivedToBaseMemberPointer:
479   case CK_MemberPointerToBoolean:
480   case CK_ReinterpretMemberPointer:
481   case CK_ConstructorConversion:
482   case CK_IntegralToPointer:
483   case CK_PointerToIntegral:
484   case CK_PointerToBoolean:
485   case CK_ToVoid:
486   case CK_VectorSplat:
487   case CK_IntegralCast:
488   case CK_BooleanToSignedIntegral:
489   case CK_IntegralToBoolean:
490   case CK_IntegralToFloating:
491   case CK_FloatingToIntegral:
492   case CK_FloatingToBoolean:
493   case CK_FloatingCast:
494   case CK_CPointerToObjCPointerCast:
495   case CK_BlockPointerToObjCPointerCast:
496   case CK_AnyPointerToBlockPointerCast:
497   case CK_ObjCObjectLValueCast:
498   case CK_FloatingComplexToReal:
499   case CK_FloatingComplexToBoolean:
500   case CK_IntegralComplexToReal:
501   case CK_IntegralComplexToBoolean:
502   case CK_ARCProduceObject:
503   case CK_ARCConsumeObject:
504   case CK_ARCReclaimReturnedObject:
505   case CK_ARCExtendBlockObject:
506   case CK_CopyAndAutoreleaseBlockObject:
507   case CK_BuiltinFnToFnPtr:
508   case CK_ZeroToOCLOpaqueType:
509   case CK_AddressSpaceConversion:
510   case CK_IntToOCLSampler:
511   case CK_FixedPointCast:
512   case CK_FixedPointToBoolean:
513     llvm_unreachable("invalid cast kind for complex value");
514 
515   case CK_FloatingRealToComplex:
516   case CK_IntegralRealToComplex:
517     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
518                                    DestTy, Op->getExprLoc());
519 
520   case CK_FloatingComplexCast:
521   case CK_FloatingComplexToIntegralComplex:
522   case CK_IntegralComplexCast:
523   case CK_IntegralComplexToFloatingComplex:
524     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
525                                     Op->getExprLoc());
526   }
527 
528   llvm_unreachable("unknown cast resulting in complex value");
529 }
530 
531 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
532   TestAndClearIgnoreReal();
533   TestAndClearIgnoreImag();
534   ComplexPairTy Op = Visit(E->getSubExpr());
535 
536   llvm::Value *ResR, *ResI;
537   if (Op.first->getType()->isFloatingPointTy()) {
538     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
539     ResI = Builder.CreateFNeg(Op.second, "neg.i");
540   } else {
541     ResR = Builder.CreateNeg(Op.first,  "neg.r");
542     ResI = Builder.CreateNeg(Op.second, "neg.i");
543   }
544   return ComplexPairTy(ResR, ResI);
545 }
546 
547 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
548   TestAndClearIgnoreReal();
549   TestAndClearIgnoreImag();
550   // ~(a+ib) = a + i*-b
551   ComplexPairTy Op = Visit(E->getSubExpr());
552   llvm::Value *ResI;
553   if (Op.second->getType()->isFloatingPointTy())
554     ResI = Builder.CreateFNeg(Op.second, "conj.i");
555   else
556     ResI = Builder.CreateNeg(Op.second, "conj.i");
557 
558   return ComplexPairTy(Op.first, ResI);
559 }
560 
561 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
562   llvm::Value *ResR, *ResI;
563 
564   if (Op.LHS.first->getType()->isFloatingPointTy()) {
565     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
566     if (Op.LHS.second && Op.RHS.second)
567       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
568     else
569       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
570     assert(ResI && "Only one operand may be real!");
571   } else {
572     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
573     assert(Op.LHS.second && Op.RHS.second &&
574            "Both operands of integer complex operators must be complex!");
575     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
576   }
577   return ComplexPairTy(ResR, ResI);
578 }
579 
580 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
581   llvm::Value *ResR, *ResI;
582   if (Op.LHS.first->getType()->isFloatingPointTy()) {
583     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
584     if (Op.LHS.second && Op.RHS.second)
585       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
586     else
587       ResI = Op.LHS.second ? Op.LHS.second
588                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
589     assert(ResI && "Only one operand may be real!");
590   } else {
591     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
592     assert(Op.LHS.second && Op.RHS.second &&
593            "Both operands of integer complex operators must be complex!");
594     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
595   }
596   return ComplexPairTy(ResR, ResI);
597 }
598 
599 /// Emit a libcall for a binary operation on complex types.
600 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
601                                                           const BinOpInfo &Op) {
602   CallArgList Args;
603   Args.add(RValue::get(Op.LHS.first),
604            Op.Ty->castAs<ComplexType>()->getElementType());
605   Args.add(RValue::get(Op.LHS.second),
606            Op.Ty->castAs<ComplexType>()->getElementType());
607   Args.add(RValue::get(Op.RHS.first),
608            Op.Ty->castAs<ComplexType>()->getElementType());
609   Args.add(RValue::get(Op.RHS.second),
610            Op.Ty->castAs<ComplexType>()->getElementType());
611 
612   // We *must* use the full CG function call building logic here because the
613   // complex type has special ABI handling. We also should not forget about
614   // special calling convention which may be used for compiler builtins.
615 
616   // We create a function qualified type to state that this call does not have
617   // any exceptions.
618   FunctionProtoType::ExtProtoInfo EPI;
619   EPI = EPI.withExceptionSpec(
620       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
621   SmallVector<QualType, 4> ArgsQTys(
622       4, Op.Ty->castAs<ComplexType>()->getElementType());
623   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
624   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
625       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
626 
627   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
628   llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
629   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
630 
631   llvm::Instruction *Call;
632   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
633   cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getRuntimeCC());
634   return Res.getComplexVal();
635 }
636 
637 /// Lookup the libcall name for a given floating point type complex
638 /// multiply.
639 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
640   switch (Ty->getTypeID()) {
641   default:
642     llvm_unreachable("Unsupported floating point type!");
643   case llvm::Type::HalfTyID:
644     return "__mulhc3";
645   case llvm::Type::FloatTyID:
646     return "__mulsc3";
647   case llvm::Type::DoubleTyID:
648     return "__muldc3";
649   case llvm::Type::PPC_FP128TyID:
650     return "__multc3";
651   case llvm::Type::X86_FP80TyID:
652     return "__mulxc3";
653   case llvm::Type::FP128TyID:
654     return "__multc3";
655   }
656 }
657 
658 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
659 // typed values.
660 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
661   using llvm::Value;
662   Value *ResR, *ResI;
663   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
664 
665   if (Op.LHS.first->getType()->isFloatingPointTy()) {
666     // The general formulation is:
667     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
668     //
669     // But we can fold away components which would be zero due to a real
670     // operand according to C11 Annex G.5.1p2.
671     // FIXME: C11 also provides for imaginary types which would allow folding
672     // still more of this within the type system.
673 
674     if (Op.LHS.second && Op.RHS.second) {
675       // If both operands are complex, emit the core math directly, and then
676       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
677       // to carefully re-compute the correct infinity representation if
678       // possible. The expectation is that the presence of NaNs here is
679       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
680       // This is good, because the libcall re-computes the core multiplication
681       // exactly the same as we do here and re-tests for NaNs in order to be
682       // a generic complex*complex libcall.
683 
684       // First compute the four products.
685       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
686       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
687       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
688       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
689 
690       // The real part is the difference of the first two, the imaginary part is
691       // the sum of the second.
692       ResR = Builder.CreateFSub(AC, BD, "mul_r");
693       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
694 
695       // Emit the test for the real part becoming NaN and create a branch to
696       // handle it. We test for NaN by comparing the number to itself.
697       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
698       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
699       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
700       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
701       llvm::BasicBlock *OrigBB = Branch->getParent();
702 
703       // Give hint that we very much don't expect to see NaNs.
704       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
705       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
706       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
707 
708       // Now test the imaginary part and create its branch.
709       CGF.EmitBlock(INaNBB);
710       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
711       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
712       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
713       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
714 
715       // Now emit the libcall on this slowest of the slow paths.
716       CGF.EmitBlock(LibCallBB);
717       Value *LibCallR, *LibCallI;
718       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
719           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
720       Builder.CreateBr(ContBB);
721 
722       // Finally continue execution by phi-ing together the different
723       // computation paths.
724       CGF.EmitBlock(ContBB);
725       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
726       RealPHI->addIncoming(ResR, OrigBB);
727       RealPHI->addIncoming(ResR, INaNBB);
728       RealPHI->addIncoming(LibCallR, LibCallBB);
729       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
730       ImagPHI->addIncoming(ResI, OrigBB);
731       ImagPHI->addIncoming(ResI, INaNBB);
732       ImagPHI->addIncoming(LibCallI, LibCallBB);
733       return ComplexPairTy(RealPHI, ImagPHI);
734     }
735     assert((Op.LHS.second || Op.RHS.second) &&
736            "At least one operand must be complex!");
737 
738     // If either of the operands is a real rather than a complex, the
739     // imaginary component is ignored when computing the real component of the
740     // result.
741     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
742 
743     ResI = Op.LHS.second
744                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
745                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
746   } else {
747     assert(Op.LHS.second && Op.RHS.second &&
748            "Both operands of integer complex operators must be complex!");
749     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
750     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
751     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
752 
753     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
754     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
755     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
756   }
757   return ComplexPairTy(ResR, ResI);
758 }
759 
760 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
761 // typed values.
762 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
763   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
764   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
765 
766   llvm::Value *DSTr, *DSTi;
767   if (LHSr->getType()->isFloatingPointTy()) {
768     // If we have a complex operand on the RHS and FastMath is not allowed, we
769     // delegate to a libcall to handle all of the complexities and minimize
770     // underflow/overflow cases. When FastMath is allowed we construct the
771     // divide inline using the same algorithm as for integer operands.
772     //
773     // FIXME: We would be able to avoid the libcall in many places if we
774     // supported imaginary types in addition to complex types.
775     if (RHSi && !CGF.getLangOpts().FastMath) {
776       BinOpInfo LibCallOp = Op;
777       // If LHS was a real, supply a null imaginary part.
778       if (!LHSi)
779         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
780 
781       switch (LHSr->getType()->getTypeID()) {
782       default:
783         llvm_unreachable("Unsupported floating point type!");
784       case llvm::Type::HalfTyID:
785         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
786       case llvm::Type::FloatTyID:
787         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
788       case llvm::Type::DoubleTyID:
789         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
790       case llvm::Type::PPC_FP128TyID:
791         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
792       case llvm::Type::X86_FP80TyID:
793         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
794       case llvm::Type::FP128TyID:
795         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
796       }
797     } else if (RHSi) {
798       if (!LHSi)
799         LHSi = llvm::Constant::getNullValue(RHSi->getType());
800 
801       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
802       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
803       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
804       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
805 
806       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
807       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
808       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
809 
810       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
811       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
812       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
813 
814       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
815       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
816     } else {
817       assert(LHSi && "Can have at most one non-complex operand!");
818 
819       DSTr = Builder.CreateFDiv(LHSr, RHSr);
820       DSTi = Builder.CreateFDiv(LHSi, RHSr);
821     }
822   } else {
823     assert(Op.LHS.second && Op.RHS.second &&
824            "Both operands of integer complex operators must be complex!");
825     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
826     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
827     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
828     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
829 
830     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
831     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
832     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
833 
834     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
835     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
836     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
837 
838     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
839       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
840       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
841     } else {
842       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
843       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
844     }
845   }
846 
847   return ComplexPairTy(DSTr, DSTi);
848 }
849 
850 ComplexExprEmitter::BinOpInfo
851 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
852   TestAndClearIgnoreReal();
853   TestAndClearIgnoreImag();
854   BinOpInfo Ops;
855   if (E->getLHS()->getType()->isRealFloatingType())
856     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
857   else
858     Ops.LHS = Visit(E->getLHS());
859   if (E->getRHS()->getType()->isRealFloatingType())
860     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
861   else
862     Ops.RHS = Visit(E->getRHS());
863 
864   Ops.Ty = E->getType();
865   return Ops;
866 }
867 
868 
869 LValue ComplexExprEmitter::
870 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
871           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
872                          RValue &Val) {
873   TestAndClearIgnoreReal();
874   TestAndClearIgnoreImag();
875   QualType LHSTy = E->getLHS()->getType();
876   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
877     LHSTy = AT->getValueType();
878 
879   BinOpInfo OpInfo;
880 
881   // Load the RHS and LHS operands.
882   // __block variables need to have the rhs evaluated first, plus this should
883   // improve codegen a little.
884   OpInfo.Ty = E->getComputationResultType();
885   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
886 
887   // The RHS should have been converted to the computation type.
888   if (E->getRHS()->getType()->isRealFloatingType()) {
889     assert(
890         CGF.getContext()
891             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
892     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
893   } else {
894     assert(CGF.getContext()
895                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
896     OpInfo.RHS = Visit(E->getRHS());
897   }
898 
899   LValue LHS = CGF.EmitLValue(E->getLHS());
900 
901   // Load from the l-value and convert it.
902   SourceLocation Loc = E->getExprLoc();
903   if (LHSTy->isAnyComplexType()) {
904     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
905     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
906   } else {
907     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
908     // For floating point real operands we can directly pass the scalar form
909     // to the binary operator emission and potentially get more efficient code.
910     if (LHSTy->isRealFloatingType()) {
911       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
912         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
913       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
914     } else {
915       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
916     }
917   }
918 
919   // Expand the binary operator.
920   ComplexPairTy Result = (this->*Func)(OpInfo);
921 
922   // Truncate the result and store it into the LHS lvalue.
923   if (LHSTy->isAnyComplexType()) {
924     ComplexPairTy ResVal =
925         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
926     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
927     Val = RValue::getComplex(ResVal);
928   } else {
929     llvm::Value *ResVal =
930         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
931     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
932     Val = RValue::get(ResVal);
933   }
934 
935   return LHS;
936 }
937 
938 // Compound assignments.
939 ComplexPairTy ComplexExprEmitter::
940 EmitCompoundAssign(const CompoundAssignOperator *E,
941                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
942   RValue Val;
943   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
944 
945   // The result of an assignment in C is the assigned r-value.
946   if (!CGF.getLangOpts().CPlusPlus)
947     return Val.getComplexVal();
948 
949   // If the lvalue is non-volatile, return the computed value of the assignment.
950   if (!LV.isVolatileQualified())
951     return Val.getComplexVal();
952 
953   return EmitLoadOfLValue(LV, E->getExprLoc());
954 }
955 
956 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
957                                                ComplexPairTy &Val) {
958   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
959                                                  E->getRHS()->getType()) &&
960          "Invalid assignment");
961   TestAndClearIgnoreReal();
962   TestAndClearIgnoreImag();
963 
964   // Emit the RHS.  __block variables need the RHS evaluated first.
965   Val = Visit(E->getRHS());
966 
967   // Compute the address to store into.
968   LValue LHS = CGF.EmitLValue(E->getLHS());
969 
970   // Store the result value into the LHS lvalue.
971   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
972 
973   return LHS;
974 }
975 
976 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
977   ComplexPairTy Val;
978   LValue LV = EmitBinAssignLValue(E, Val);
979 
980   // The result of an assignment in C is the assigned r-value.
981   if (!CGF.getLangOpts().CPlusPlus)
982     return Val;
983 
984   // If the lvalue is non-volatile, return the computed value of the assignment.
985   if (!LV.isVolatileQualified())
986     return Val;
987 
988   return EmitLoadOfLValue(LV, E->getExprLoc());
989 }
990 
991 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
992   CGF.EmitIgnoredExpr(E->getLHS());
993   return Visit(E->getRHS());
994 }
995 
996 ComplexPairTy ComplexExprEmitter::
997 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
998   TestAndClearIgnoreReal();
999   TestAndClearIgnoreImag();
1000   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1001   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1002   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1003 
1004   // Bind the common expression if necessary.
1005   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1006 
1007 
1008   CodeGenFunction::ConditionalEvaluation eval(CGF);
1009   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1010                            CGF.getProfileCount(E));
1011 
1012   eval.begin(CGF);
1013   CGF.EmitBlock(LHSBlock);
1014   CGF.incrementProfileCounter(E);
1015   ComplexPairTy LHS = Visit(E->getTrueExpr());
1016   LHSBlock = Builder.GetInsertBlock();
1017   CGF.EmitBranch(ContBlock);
1018   eval.end(CGF);
1019 
1020   eval.begin(CGF);
1021   CGF.EmitBlock(RHSBlock);
1022   ComplexPairTy RHS = Visit(E->getFalseExpr());
1023   RHSBlock = Builder.GetInsertBlock();
1024   CGF.EmitBlock(ContBlock);
1025   eval.end(CGF);
1026 
1027   // Create a PHI node for the real part.
1028   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1029   RealPN->addIncoming(LHS.first, LHSBlock);
1030   RealPN->addIncoming(RHS.first, RHSBlock);
1031 
1032   // Create a PHI node for the imaginary part.
1033   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1034   ImagPN->addIncoming(LHS.second, LHSBlock);
1035   ImagPN->addIncoming(RHS.second, RHSBlock);
1036 
1037   return ComplexPairTy(RealPN, ImagPN);
1038 }
1039 
1040 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1041   return Visit(E->getChosenSubExpr());
1042 }
1043 
1044 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1045     bool Ignore = TestAndClearIgnoreReal();
1046     (void)Ignore;
1047     assert (Ignore == false && "init list ignored");
1048     Ignore = TestAndClearIgnoreImag();
1049     (void)Ignore;
1050     assert (Ignore == false && "init list ignored");
1051 
1052   if (E->getNumInits() == 2) {
1053     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1054     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1055     return ComplexPairTy(Real, Imag);
1056   } else if (E->getNumInits() == 1) {
1057     return Visit(E->getInit(0));
1058   }
1059 
1060   // Empty init list initializes to null
1061   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1062   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1063   llvm::Type* LTy = CGF.ConvertType(Ty);
1064   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1065   return ComplexPairTy(zeroConstant, zeroConstant);
1066 }
1067 
1068 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1069   Address ArgValue = Address::invalid();
1070   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1071 
1072   if (!ArgPtr.isValid()) {
1073     CGF.ErrorUnsupported(E, "complex va_arg expression");
1074     llvm::Type *EltTy =
1075       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1076     llvm::Value *U = llvm::UndefValue::get(EltTy);
1077     return ComplexPairTy(U, U);
1078   }
1079 
1080   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1081                           E->getExprLoc());
1082 }
1083 
1084 //===----------------------------------------------------------------------===//
1085 //                         Entry Point into this File
1086 //===----------------------------------------------------------------------===//
1087 
1088 /// EmitComplexExpr - Emit the computation of the specified expression of
1089 /// complex type, ignoring the result.
1090 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1091                                                bool IgnoreImag) {
1092   assert(E && getComplexType(E->getType()) &&
1093          "Invalid complex expression to emit");
1094 
1095   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1096       .Visit(const_cast<Expr *>(E));
1097 }
1098 
1099 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1100                                                 bool isInit) {
1101   assert(E && getComplexType(E->getType()) &&
1102          "Invalid complex expression to emit");
1103   ComplexExprEmitter Emitter(*this);
1104   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1105   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1106 }
1107 
1108 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1109 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1110                                          bool isInit) {
1111   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1112 }
1113 
1114 /// EmitLoadOfComplex - Load a complex number from the specified address.
1115 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1116                                                  SourceLocation loc) {
1117   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1118 }
1119 
1120 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1121   assert(E->getOpcode() == BO_Assign);
1122   ComplexPairTy Val; // ignored
1123   return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1124 }
1125 
1126 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1127     const ComplexExprEmitter::BinOpInfo &);
1128 
1129 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1130   switch (Op) {
1131   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1132   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1133   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1134   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1135   default:
1136     llvm_unreachable("unexpected complex compound assignment");
1137   }
1138 }
1139 
1140 LValue CodeGenFunction::
1141 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1142   CompoundFunc Op = getComplexOp(E->getOpcode());
1143   RValue Val;
1144   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1145 }
1146 
1147 LValue CodeGenFunction::
1148 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1149                                     llvm::Value *&Result) {
1150   CompoundFunc Op = getComplexOp(E->getOpcode());
1151   RValue Val;
1152   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1153   Result = Val.getScalarVal();
1154   return Ret;
1155 }
1156