1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 105 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 return Visit(GE->getResultExpr()); 107 } 108 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 109 ComplexPairTy 110 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 111 return Visit(PE->getReplacement()); 112 } 113 114 // l-values. 115 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 116 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 117 if (result.isReference()) 118 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 119 E->getExprLoc()); 120 121 llvm::Constant *pair = result.getValue(); 122 return ComplexPairTy(pair->getAggregateElement(0U), 123 pair->getAggregateElement(1U)); 124 } 125 return EmitLoadOfLValue(E); 126 } 127 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 131 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 132 } 133 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 134 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 135 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 136 if (E->isGLValue()) 137 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 138 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 139 } 140 141 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 142 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 143 } 144 145 // FIXME: CompoundLiteralExpr 146 147 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 148 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 149 // Unlike for scalars, we don't have to worry about function->ptr demotion 150 // here. 151 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 152 } 153 ComplexPairTy VisitCastExpr(CastExpr *E) { 154 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 155 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 156 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 157 } 158 ComplexPairTy VisitCallExpr(const CallExpr *E); 159 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 160 161 // Operators. 162 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 163 bool isInc, bool isPre) { 164 LValue LV = CGF.EmitLValue(E->getSubExpr()); 165 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 166 } 167 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 168 return VisitPrePostIncDec(E, false, false); 169 } 170 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 171 return VisitPrePostIncDec(E, true, false); 172 } 173 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 174 return VisitPrePostIncDec(E, false, true); 175 } 176 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 177 return VisitPrePostIncDec(E, true, true); 178 } 179 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 180 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 181 TestAndClearIgnoreReal(); 182 TestAndClearIgnoreImag(); 183 return Visit(E->getSubExpr()); 184 } 185 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 186 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 187 // LNot,Real,Imag never return complex. 188 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 189 return Visit(E->getSubExpr()); 190 } 191 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 192 return Visit(DAE->getExpr()); 193 } 194 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 195 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 196 return Visit(DIE->getExpr()); 197 } 198 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 199 CGF.enterFullExpression(E); 200 CodeGenFunction::RunCleanupsScope Scope(CGF); 201 return Visit(E->getSubExpr()); 202 } 203 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 204 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 205 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 206 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 207 return ComplexPairTy(Null, Null); 208 } 209 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 210 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 211 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 212 llvm::Constant *Null = 213 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 214 return ComplexPairTy(Null, Null); 215 } 216 217 struct BinOpInfo { 218 ComplexPairTy LHS; 219 ComplexPairTy RHS; 220 QualType Ty; // Computation Type. 221 }; 222 223 BinOpInfo EmitBinOps(const BinaryOperator *E); 224 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 225 ComplexPairTy (ComplexExprEmitter::*Func) 226 (const BinOpInfo &), 227 RValue &Val); 228 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 229 ComplexPairTy (ComplexExprEmitter::*Func) 230 (const BinOpInfo &)); 231 232 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 233 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 234 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 235 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 236 237 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 238 const BinOpInfo &Op); 239 240 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 241 return EmitBinAdd(EmitBinOps(E)); 242 } 243 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 244 return EmitBinSub(EmitBinOps(E)); 245 } 246 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 247 return EmitBinMul(EmitBinOps(E)); 248 } 249 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 250 return EmitBinDiv(EmitBinOps(E)); 251 } 252 253 // Compound assignments. 254 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 255 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 256 } 257 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 259 } 260 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 262 } 263 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 265 } 266 267 // GCC rejects rem/and/or/xor for integer complex. 268 // Logical and/or always return int, never complex. 269 270 // No comparisons produce a complex result. 271 272 LValue EmitBinAssignLValue(const BinaryOperator *E, 273 ComplexPairTy &Val); 274 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 275 ComplexPairTy VisitBinComma (const BinaryOperator *E); 276 277 278 ComplexPairTy 279 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 280 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 281 282 ComplexPairTy VisitInitListExpr(InitListExpr *E); 283 284 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 285 return EmitLoadOfLValue(E); 286 } 287 288 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 289 290 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 291 return CGF.EmitAtomicExpr(E).getComplexVal(); 292 } 293 }; 294 } // end anonymous namespace. 295 296 //===----------------------------------------------------------------------===// 297 // Utilities 298 //===----------------------------------------------------------------------===// 299 300 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 301 QualType complexType) { 302 CharUnits offset = CharUnits::Zero(); 303 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 304 } 305 306 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 307 QualType complexType) { 308 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 309 CharUnits offset = getContext().getTypeSizeInChars(eltType); 310 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 311 } 312 313 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 314 /// load the real and imaginary pieces, returning them as Real/Imag. 315 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 316 SourceLocation loc) { 317 assert(lvalue.isSimple() && "non-simple complex l-value?"); 318 if (lvalue.getType()->isAtomicType()) 319 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 320 321 Address SrcPtr = lvalue.getAddress(); 322 bool isVolatile = lvalue.isVolatileQualified(); 323 324 llvm::Value *Real = nullptr, *Imag = nullptr; 325 326 if (!IgnoreReal || isVolatile) { 327 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 328 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 329 } 330 331 if (!IgnoreImag || isVolatile) { 332 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 333 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 334 } 335 336 return ComplexPairTy(Real, Imag); 337 } 338 339 /// EmitStoreOfComplex - Store the specified real/imag parts into the 340 /// specified value pointer. 341 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 342 bool isInit) { 343 if (lvalue.getType()->isAtomicType() || 344 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 345 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 346 347 Address Ptr = lvalue.getAddress(); 348 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 349 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 350 351 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 352 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 353 } 354 355 356 357 //===----------------------------------------------------------------------===// 358 // Visitor Methods 359 //===----------------------------------------------------------------------===// 360 361 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 362 CGF.ErrorUnsupported(E, "complex expression"); 363 llvm::Type *EltTy = 364 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 365 llvm::Value *U = llvm::UndefValue::get(EltTy); 366 return ComplexPairTy(U, U); 367 } 368 369 ComplexPairTy ComplexExprEmitter:: 370 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 371 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 372 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 373 } 374 375 376 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 377 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 378 return EmitLoadOfLValue(E); 379 380 return CGF.EmitCallExpr(E).getComplexVal(); 381 } 382 383 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 384 CodeGenFunction::StmtExprEvaluation eval(CGF); 385 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 386 assert(RetAlloca.isValid() && "Expected complex return value"); 387 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 388 E->getExprLoc()); 389 } 390 391 /// Emit a cast from complex value Val to DestType. 392 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 393 QualType SrcType, 394 QualType DestType, 395 SourceLocation Loc) { 396 // Get the src/dest element type. 397 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 398 DestType = DestType->castAs<ComplexType>()->getElementType(); 399 400 // C99 6.3.1.6: When a value of complex type is converted to another 401 // complex type, both the real and imaginary parts follow the conversion 402 // rules for the corresponding real types. 403 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 404 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 405 return Val; 406 } 407 408 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 409 QualType SrcType, 410 QualType DestType, 411 SourceLocation Loc) { 412 // Convert the input element to the element type of the complex. 413 DestType = DestType->castAs<ComplexType>()->getElementType(); 414 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 415 416 // Return (realval, 0). 417 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 418 } 419 420 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 421 QualType DestTy) { 422 switch (CK) { 423 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 424 425 // Atomic to non-atomic casts may be more than a no-op for some platforms and 426 // for some types. 427 case CK_AtomicToNonAtomic: 428 case CK_NonAtomicToAtomic: 429 case CK_NoOp: 430 case CK_LValueToRValue: 431 case CK_UserDefinedConversion: 432 return Visit(Op); 433 434 case CK_LValueBitCast: { 435 LValue origLV = CGF.EmitLValue(Op); 436 Address V = origLV.getAddress(); 437 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 438 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 439 } 440 441 case CK_BitCast: 442 case CK_BaseToDerived: 443 case CK_DerivedToBase: 444 case CK_UncheckedDerivedToBase: 445 case CK_Dynamic: 446 case CK_ToUnion: 447 case CK_ArrayToPointerDecay: 448 case CK_FunctionToPointerDecay: 449 case CK_NullToPointer: 450 case CK_NullToMemberPointer: 451 case CK_BaseToDerivedMemberPointer: 452 case CK_DerivedToBaseMemberPointer: 453 case CK_MemberPointerToBoolean: 454 case CK_ReinterpretMemberPointer: 455 case CK_ConstructorConversion: 456 case CK_IntegralToPointer: 457 case CK_PointerToIntegral: 458 case CK_PointerToBoolean: 459 case CK_ToVoid: 460 case CK_VectorSplat: 461 case CK_IntegralCast: 462 case CK_BooleanToSignedIntegral: 463 case CK_IntegralToBoolean: 464 case CK_IntegralToFloating: 465 case CK_FloatingToIntegral: 466 case CK_FloatingToBoolean: 467 case CK_FloatingCast: 468 case CK_CPointerToObjCPointerCast: 469 case CK_BlockPointerToObjCPointerCast: 470 case CK_AnyPointerToBlockPointerCast: 471 case CK_ObjCObjectLValueCast: 472 case CK_FloatingComplexToReal: 473 case CK_FloatingComplexToBoolean: 474 case CK_IntegralComplexToReal: 475 case CK_IntegralComplexToBoolean: 476 case CK_ARCProduceObject: 477 case CK_ARCConsumeObject: 478 case CK_ARCReclaimReturnedObject: 479 case CK_ARCExtendBlockObject: 480 case CK_CopyAndAutoreleaseBlockObject: 481 case CK_BuiltinFnToFnPtr: 482 case CK_ZeroToOCLEvent: 483 case CK_AddressSpaceConversion: 484 case CK_IntToOCLSampler: 485 llvm_unreachable("invalid cast kind for complex value"); 486 487 case CK_FloatingRealToComplex: 488 case CK_IntegralRealToComplex: 489 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 490 DestTy, Op->getExprLoc()); 491 492 case CK_FloatingComplexCast: 493 case CK_FloatingComplexToIntegralComplex: 494 case CK_IntegralComplexCast: 495 case CK_IntegralComplexToFloatingComplex: 496 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 497 Op->getExprLoc()); 498 } 499 500 llvm_unreachable("unknown cast resulting in complex value"); 501 } 502 503 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 504 TestAndClearIgnoreReal(); 505 TestAndClearIgnoreImag(); 506 ComplexPairTy Op = Visit(E->getSubExpr()); 507 508 llvm::Value *ResR, *ResI; 509 if (Op.first->getType()->isFloatingPointTy()) { 510 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 511 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 512 } else { 513 ResR = Builder.CreateNeg(Op.first, "neg.r"); 514 ResI = Builder.CreateNeg(Op.second, "neg.i"); 515 } 516 return ComplexPairTy(ResR, ResI); 517 } 518 519 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 520 TestAndClearIgnoreReal(); 521 TestAndClearIgnoreImag(); 522 // ~(a+ib) = a + i*-b 523 ComplexPairTy Op = Visit(E->getSubExpr()); 524 llvm::Value *ResI; 525 if (Op.second->getType()->isFloatingPointTy()) 526 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 527 else 528 ResI = Builder.CreateNeg(Op.second, "conj.i"); 529 530 return ComplexPairTy(Op.first, ResI); 531 } 532 533 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 534 llvm::Value *ResR, *ResI; 535 536 if (Op.LHS.first->getType()->isFloatingPointTy()) { 537 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 538 if (Op.LHS.second && Op.RHS.second) 539 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 540 else 541 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 542 assert(ResI && "Only one operand may be real!"); 543 } else { 544 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 545 assert(Op.LHS.second && Op.RHS.second && 546 "Both operands of integer complex operators must be complex!"); 547 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 548 } 549 return ComplexPairTy(ResR, ResI); 550 } 551 552 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 553 llvm::Value *ResR, *ResI; 554 if (Op.LHS.first->getType()->isFloatingPointTy()) { 555 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 556 if (Op.LHS.second && Op.RHS.second) 557 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 558 else 559 ResI = Op.LHS.second ? Op.LHS.second 560 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 561 assert(ResI && "Only one operand may be real!"); 562 } else { 563 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 564 assert(Op.LHS.second && Op.RHS.second && 565 "Both operands of integer complex operators must be complex!"); 566 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 567 } 568 return ComplexPairTy(ResR, ResI); 569 } 570 571 /// \brief Emit a libcall for a binary operation on complex types. 572 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 573 const BinOpInfo &Op) { 574 CallArgList Args; 575 Args.add(RValue::get(Op.LHS.first), 576 Op.Ty->castAs<ComplexType>()->getElementType()); 577 Args.add(RValue::get(Op.LHS.second), 578 Op.Ty->castAs<ComplexType>()->getElementType()); 579 Args.add(RValue::get(Op.RHS.first), 580 Op.Ty->castAs<ComplexType>()->getElementType()); 581 Args.add(RValue::get(Op.RHS.second), 582 Op.Ty->castAs<ComplexType>()->getElementType()); 583 584 // We *must* use the full CG function call building logic here because the 585 // complex type has special ABI handling. We also should not forget about 586 // special calling convention which may be used for compiler builtins. 587 588 // We create a function qualified type to state that this call does not have 589 // any exceptions. 590 FunctionProtoType::ExtProtoInfo EPI; 591 EPI = EPI.withExceptionSpec( 592 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 593 SmallVector<QualType, 4> ArgsQTys( 594 4, Op.Ty->castAs<ComplexType>()->getElementType()); 595 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 596 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 597 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 598 599 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 600 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 601 llvm::Instruction *Call; 602 603 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 604 FQTy->getAs<FunctionProtoType>(), &Call); 605 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 606 return Res.getComplexVal(); 607 } 608 609 /// \brief Lookup the libcall name for a given floating point type complex 610 /// multiply. 611 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 612 switch (Ty->getTypeID()) { 613 default: 614 llvm_unreachable("Unsupported floating point type!"); 615 case llvm::Type::HalfTyID: 616 return "__mulhc3"; 617 case llvm::Type::FloatTyID: 618 return "__mulsc3"; 619 case llvm::Type::DoubleTyID: 620 return "__muldc3"; 621 case llvm::Type::PPC_FP128TyID: 622 return "__multc3"; 623 case llvm::Type::X86_FP80TyID: 624 return "__mulxc3"; 625 case llvm::Type::FP128TyID: 626 return "__multc3"; 627 } 628 } 629 630 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 631 // typed values. 632 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 633 using llvm::Value; 634 Value *ResR, *ResI; 635 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 636 637 if (Op.LHS.first->getType()->isFloatingPointTy()) { 638 // The general formulation is: 639 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 640 // 641 // But we can fold away components which would be zero due to a real 642 // operand according to C11 Annex G.5.1p2. 643 // FIXME: C11 also provides for imaginary types which would allow folding 644 // still more of this within the type system. 645 646 if (Op.LHS.second && Op.RHS.second) { 647 // If both operands are complex, emit the core math directly, and then 648 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 649 // to carefully re-compute the correct infinity representation if 650 // possible. The expectation is that the presence of NaNs here is 651 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 652 // This is good, because the libcall re-computes the core multiplication 653 // exactly the same as we do here and re-tests for NaNs in order to be 654 // a generic complex*complex libcall. 655 656 // First compute the four products. 657 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 658 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 659 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 660 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 661 662 // The real part is the difference of the first two, the imaginary part is 663 // the sum of the second. 664 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 665 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 666 667 // Emit the test for the real part becoming NaN and create a branch to 668 // handle it. We test for NaN by comparing the number to itself. 669 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 670 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 671 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 672 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 673 llvm::BasicBlock *OrigBB = Branch->getParent(); 674 675 // Give hint that we very much don't expect to see NaNs. 676 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 677 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 678 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 679 680 // Now test the imaginary part and create its branch. 681 CGF.EmitBlock(INaNBB); 682 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 683 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 684 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 685 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 686 687 // Now emit the libcall on this slowest of the slow paths. 688 CGF.EmitBlock(LibCallBB); 689 Value *LibCallR, *LibCallI; 690 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 691 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 692 Builder.CreateBr(ContBB); 693 694 // Finally continue execution by phi-ing together the different 695 // computation paths. 696 CGF.EmitBlock(ContBB); 697 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 698 RealPHI->addIncoming(ResR, OrigBB); 699 RealPHI->addIncoming(ResR, INaNBB); 700 RealPHI->addIncoming(LibCallR, LibCallBB); 701 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 702 ImagPHI->addIncoming(ResI, OrigBB); 703 ImagPHI->addIncoming(ResI, INaNBB); 704 ImagPHI->addIncoming(LibCallI, LibCallBB); 705 return ComplexPairTy(RealPHI, ImagPHI); 706 } 707 assert((Op.LHS.second || Op.RHS.second) && 708 "At least one operand must be complex!"); 709 710 // If either of the operands is a real rather than a complex, the 711 // imaginary component is ignored when computing the real component of the 712 // result. 713 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 714 715 ResI = Op.LHS.second 716 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 717 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 718 } else { 719 assert(Op.LHS.second && Op.RHS.second && 720 "Both operands of integer complex operators must be complex!"); 721 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 722 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 723 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 724 725 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 726 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 727 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 728 } 729 return ComplexPairTy(ResR, ResI); 730 } 731 732 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 733 // typed values. 734 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 735 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 736 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 737 738 739 llvm::Value *DSTr, *DSTi; 740 if (LHSr->getType()->isFloatingPointTy()) { 741 // If we have a complex operand on the RHS, we delegate to a libcall to 742 // handle all of the complexities and minimize underflow/overflow cases. 743 // 744 // FIXME: We would be able to avoid the libcall in many places if we 745 // supported imaginary types in addition to complex types. 746 if (RHSi) { 747 BinOpInfo LibCallOp = Op; 748 // If LHS was a real, supply a null imaginary part. 749 if (!LHSi) 750 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 751 752 StringRef LibCallName; 753 switch (LHSr->getType()->getTypeID()) { 754 default: 755 llvm_unreachable("Unsupported floating point type!"); 756 case llvm::Type::HalfTyID: 757 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 758 case llvm::Type::FloatTyID: 759 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 760 case llvm::Type::DoubleTyID: 761 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 762 case llvm::Type::PPC_FP128TyID: 763 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 764 case llvm::Type::X86_FP80TyID: 765 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 766 case llvm::Type::FP128TyID: 767 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 768 } 769 } 770 assert(LHSi && "Can have at most one non-complex operand!"); 771 772 DSTr = Builder.CreateFDiv(LHSr, RHSr); 773 DSTi = Builder.CreateFDiv(LHSi, RHSr); 774 } else { 775 assert(Op.LHS.second && Op.RHS.second && 776 "Both operands of integer complex operators must be complex!"); 777 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 778 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 779 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 780 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 781 782 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 783 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 784 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 785 786 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 787 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 788 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 789 790 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 791 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 792 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 793 } else { 794 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 795 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 796 } 797 } 798 799 return ComplexPairTy(DSTr, DSTi); 800 } 801 802 ComplexExprEmitter::BinOpInfo 803 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 804 TestAndClearIgnoreReal(); 805 TestAndClearIgnoreImag(); 806 BinOpInfo Ops; 807 if (E->getLHS()->getType()->isRealFloatingType()) 808 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 809 else 810 Ops.LHS = Visit(E->getLHS()); 811 if (E->getRHS()->getType()->isRealFloatingType()) 812 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 813 else 814 Ops.RHS = Visit(E->getRHS()); 815 816 Ops.Ty = E->getType(); 817 return Ops; 818 } 819 820 821 LValue ComplexExprEmitter:: 822 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 823 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 824 RValue &Val) { 825 TestAndClearIgnoreReal(); 826 TestAndClearIgnoreImag(); 827 QualType LHSTy = E->getLHS()->getType(); 828 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 829 LHSTy = AT->getValueType(); 830 831 BinOpInfo OpInfo; 832 833 // Load the RHS and LHS operands. 834 // __block variables need to have the rhs evaluated first, plus this should 835 // improve codegen a little. 836 OpInfo.Ty = E->getComputationResultType(); 837 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 838 839 // The RHS should have been converted to the computation type. 840 if (E->getRHS()->getType()->isRealFloatingType()) { 841 assert( 842 CGF.getContext() 843 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 844 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 845 } else { 846 assert(CGF.getContext() 847 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 848 OpInfo.RHS = Visit(E->getRHS()); 849 } 850 851 LValue LHS = CGF.EmitLValue(E->getLHS()); 852 853 // Load from the l-value and convert it. 854 SourceLocation Loc = E->getExprLoc(); 855 if (LHSTy->isAnyComplexType()) { 856 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 857 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 858 } else { 859 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 860 // For floating point real operands we can directly pass the scalar form 861 // to the binary operator emission and potentially get more efficient code. 862 if (LHSTy->isRealFloatingType()) { 863 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 864 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 865 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 866 } else { 867 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 868 } 869 } 870 871 // Expand the binary operator. 872 ComplexPairTy Result = (this->*Func)(OpInfo); 873 874 // Truncate the result and store it into the LHS lvalue. 875 if (LHSTy->isAnyComplexType()) { 876 ComplexPairTy ResVal = 877 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 878 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 879 Val = RValue::getComplex(ResVal); 880 } else { 881 llvm::Value *ResVal = 882 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 883 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 884 Val = RValue::get(ResVal); 885 } 886 887 return LHS; 888 } 889 890 // Compound assignments. 891 ComplexPairTy ComplexExprEmitter:: 892 EmitCompoundAssign(const CompoundAssignOperator *E, 893 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 894 RValue Val; 895 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 896 897 // The result of an assignment in C is the assigned r-value. 898 if (!CGF.getLangOpts().CPlusPlus) 899 return Val.getComplexVal(); 900 901 // If the lvalue is non-volatile, return the computed value of the assignment. 902 if (!LV.isVolatileQualified()) 903 return Val.getComplexVal(); 904 905 return EmitLoadOfLValue(LV, E->getExprLoc()); 906 } 907 908 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 909 ComplexPairTy &Val) { 910 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 911 E->getRHS()->getType()) && 912 "Invalid assignment"); 913 TestAndClearIgnoreReal(); 914 TestAndClearIgnoreImag(); 915 916 // Emit the RHS. __block variables need the RHS evaluated first. 917 Val = Visit(E->getRHS()); 918 919 // Compute the address to store into. 920 LValue LHS = CGF.EmitLValue(E->getLHS()); 921 922 // Store the result value into the LHS lvalue. 923 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 924 925 return LHS; 926 } 927 928 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 929 ComplexPairTy Val; 930 LValue LV = EmitBinAssignLValue(E, Val); 931 932 // The result of an assignment in C is the assigned r-value. 933 if (!CGF.getLangOpts().CPlusPlus) 934 return Val; 935 936 // If the lvalue is non-volatile, return the computed value of the assignment. 937 if (!LV.isVolatileQualified()) 938 return Val; 939 940 return EmitLoadOfLValue(LV, E->getExprLoc()); 941 } 942 943 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 944 CGF.EmitIgnoredExpr(E->getLHS()); 945 return Visit(E->getRHS()); 946 } 947 948 ComplexPairTy ComplexExprEmitter:: 949 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 950 TestAndClearIgnoreReal(); 951 TestAndClearIgnoreImag(); 952 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 953 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 954 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 955 956 // Bind the common expression if necessary. 957 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 958 959 960 CodeGenFunction::ConditionalEvaluation eval(CGF); 961 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 962 CGF.getProfileCount(E)); 963 964 eval.begin(CGF); 965 CGF.EmitBlock(LHSBlock); 966 CGF.incrementProfileCounter(E); 967 ComplexPairTy LHS = Visit(E->getTrueExpr()); 968 LHSBlock = Builder.GetInsertBlock(); 969 CGF.EmitBranch(ContBlock); 970 eval.end(CGF); 971 972 eval.begin(CGF); 973 CGF.EmitBlock(RHSBlock); 974 ComplexPairTy RHS = Visit(E->getFalseExpr()); 975 RHSBlock = Builder.GetInsertBlock(); 976 CGF.EmitBlock(ContBlock); 977 eval.end(CGF); 978 979 // Create a PHI node for the real part. 980 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 981 RealPN->addIncoming(LHS.first, LHSBlock); 982 RealPN->addIncoming(RHS.first, RHSBlock); 983 984 // Create a PHI node for the imaginary part. 985 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 986 ImagPN->addIncoming(LHS.second, LHSBlock); 987 ImagPN->addIncoming(RHS.second, RHSBlock); 988 989 return ComplexPairTy(RealPN, ImagPN); 990 } 991 992 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 993 return Visit(E->getChosenSubExpr()); 994 } 995 996 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 997 bool Ignore = TestAndClearIgnoreReal(); 998 (void)Ignore; 999 assert (Ignore == false && "init list ignored"); 1000 Ignore = TestAndClearIgnoreImag(); 1001 (void)Ignore; 1002 assert (Ignore == false && "init list ignored"); 1003 1004 if (E->getNumInits() == 2) { 1005 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1006 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1007 return ComplexPairTy(Real, Imag); 1008 } else if (E->getNumInits() == 1) { 1009 return Visit(E->getInit(0)); 1010 } 1011 1012 // Empty init list intializes to null 1013 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1014 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1015 llvm::Type* LTy = CGF.ConvertType(Ty); 1016 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1017 return ComplexPairTy(zeroConstant, zeroConstant); 1018 } 1019 1020 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1021 Address ArgValue = Address::invalid(); 1022 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1023 1024 if (!ArgPtr.isValid()) { 1025 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1026 llvm::Type *EltTy = 1027 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1028 llvm::Value *U = llvm::UndefValue::get(EltTy); 1029 return ComplexPairTy(U, U); 1030 } 1031 1032 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1033 E->getExprLoc()); 1034 } 1035 1036 //===----------------------------------------------------------------------===// 1037 // Entry Point into this File 1038 //===----------------------------------------------------------------------===// 1039 1040 /// EmitComplexExpr - Emit the computation of the specified expression of 1041 /// complex type, ignoring the result. 1042 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1043 bool IgnoreImag) { 1044 assert(E && getComplexType(E->getType()) && 1045 "Invalid complex expression to emit"); 1046 1047 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1048 .Visit(const_cast<Expr *>(E)); 1049 } 1050 1051 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1052 bool isInit) { 1053 assert(E && getComplexType(E->getType()) && 1054 "Invalid complex expression to emit"); 1055 ComplexExprEmitter Emitter(*this); 1056 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1057 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1058 } 1059 1060 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1061 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1062 bool isInit) { 1063 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1064 } 1065 1066 /// EmitLoadOfComplex - Load a complex number from the specified address. 1067 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1068 SourceLocation loc) { 1069 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1070 } 1071 1072 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1073 assert(E->getOpcode() == BO_Assign); 1074 ComplexPairTy Val; // ignored 1075 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1076 } 1077 1078 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1079 const ComplexExprEmitter::BinOpInfo &); 1080 1081 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1082 switch (Op) { 1083 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1084 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1085 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1086 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1087 default: 1088 llvm_unreachable("unexpected complex compound assignment"); 1089 } 1090 } 1091 1092 LValue CodeGenFunction:: 1093 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1094 CompoundFunc Op = getComplexOp(E->getOpcode()); 1095 RValue Val; 1096 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1097 } 1098 1099 LValue CodeGenFunction:: 1100 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1101 llvm::Value *&Result) { 1102 CompoundFunc Op = getComplexOp(E->getOpcode()); 1103 RValue Val; 1104 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1105 Result = Val.getScalarVal(); 1106 return Ret; 1107 } 1108