1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CodeGenModule.h" 15 #include "clang/AST/StmtVisitor.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/Metadata.h" 21 #include <algorithm> 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Complex Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 30 31 /// Return the complex type that we are meant to emit. 32 static const ComplexType *getComplexType(QualType type) { 33 type = type.getCanonicalType(); 34 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 35 return comp; 36 } else { 37 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 38 } 39 } 40 41 namespace { 42 class ComplexExprEmitter 43 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 44 CodeGenFunction &CGF; 45 CGBuilderTy &Builder; 46 bool IgnoreReal; 47 bool IgnoreImag; 48 public: 49 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 50 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 51 } 52 53 54 //===--------------------------------------------------------------------===// 55 // Utilities 56 //===--------------------------------------------------------------------===// 57 58 bool TestAndClearIgnoreReal() { 59 bool I = IgnoreReal; 60 IgnoreReal = false; 61 return I; 62 } 63 bool TestAndClearIgnoreImag() { 64 bool I = IgnoreImag; 65 IgnoreImag = false; 66 return I; 67 } 68 69 /// EmitLoadOfLValue - Given an expression with complex type that represents a 70 /// value l-value, this method emits the address of the l-value, then loads 71 /// and returns the result. 72 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 73 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 74 } 75 76 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 77 78 /// EmitStoreOfComplex - Store the specified real/imag parts into the 79 /// specified value pointer. 80 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 81 82 /// Emit a cast from complex value Val to DestType. 83 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 84 QualType DestType, SourceLocation Loc); 85 /// Emit a cast from scalar value Val to DestType. 86 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 87 QualType DestType, SourceLocation Loc); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 ComplexPairTy Visit(Expr *E) { 94 ApplyDebugLocation DL(CGF, E); 95 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 96 } 97 98 ComplexPairTy VisitStmt(Stmt *S) { 99 S->dump(CGF.getContext().getSourceManager()); 100 llvm_unreachable("Stmt can't have complex result type!"); 101 } 102 ComplexPairTy VisitExpr(Expr *S); 103 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 104 return Visit(E->getSubExpr()); 105 } 106 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 107 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 108 return Visit(GE->getResultExpr()); 109 } 110 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 111 ComplexPairTy 112 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 113 return Visit(PE->getReplacement()); 114 } 115 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 116 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 117 } 118 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 119 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 120 } 121 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 122 return Visit(E->getSubExpr()); 123 } 124 125 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 126 Expr *E) { 127 assert(Constant && "not a constant"); 128 if (Constant.isReference()) 129 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 130 E->getExprLoc()); 131 132 llvm::Constant *pair = Constant.getValue(); 133 return ComplexPairTy(pair->getAggregateElement(0U), 134 pair->getAggregateElement(1U)); 135 } 136 137 // l-values. 138 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 139 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 140 return emitConstant(Constant, E); 141 return EmitLoadOfLValue(E); 142 } 143 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 144 return EmitLoadOfLValue(E); 145 } 146 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 147 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 148 } 149 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 150 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 151 if (CodeGenFunction::ConstantEmission Constant = 152 CGF.tryEmitAsConstant(ME)) { 153 CGF.EmitIgnoredExpr(ME->getBase()); 154 return emitConstant(Constant, ME); 155 } 156 return EmitLoadOfLValue(ME); 157 } 158 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 159 if (E->isGLValue()) 160 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 161 E->getExprLoc()); 162 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 163 } 164 165 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 166 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 167 } 168 169 // FIXME: CompoundLiteralExpr 170 171 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 172 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 173 // Unlike for scalars, we don't have to worry about function->ptr demotion 174 // here. 175 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 176 } 177 ComplexPairTy VisitCastExpr(CastExpr *E) { 178 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 179 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCallExpr(const CallExpr *E); 183 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 184 185 // Operators. 186 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 187 bool isInc, bool isPre) { 188 LValue LV = CGF.EmitLValue(E->getSubExpr()); 189 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 190 } 191 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 192 return VisitPrePostIncDec(E, false, false); 193 } 194 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 195 return VisitPrePostIncDec(E, true, false); 196 } 197 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 198 return VisitPrePostIncDec(E, false, true); 199 } 200 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 201 return VisitPrePostIncDec(E, true, true); 202 } 203 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 204 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 205 TestAndClearIgnoreReal(); 206 TestAndClearIgnoreImag(); 207 return Visit(E->getSubExpr()); 208 } 209 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 210 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 211 // LNot,Real,Imag never return complex. 212 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 213 return Visit(E->getSubExpr()); 214 } 215 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 216 return Visit(DAE->getExpr()); 217 } 218 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 219 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 220 return Visit(DIE->getExpr()); 221 } 222 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 223 CGF.enterFullExpression(E); 224 CodeGenFunction::RunCleanupsScope Scope(CGF); 225 ComplexPairTy Vals = Visit(E->getSubExpr()); 226 // Defend against dominance problems caused by jumps out of expression 227 // evaluation through the shared cleanup block. 228 Scope.ForceCleanup({&Vals.first, &Vals.second}); 229 return Vals; 230 } 231 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 232 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 233 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 234 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 235 return ComplexPairTy(Null, Null); 236 } 237 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 238 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 239 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 240 llvm::Constant *Null = 241 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 242 return ComplexPairTy(Null, Null); 243 } 244 245 struct BinOpInfo { 246 ComplexPairTy LHS; 247 ComplexPairTy RHS; 248 QualType Ty; // Computation Type. 249 }; 250 251 BinOpInfo EmitBinOps(const BinaryOperator *E); 252 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 253 ComplexPairTy (ComplexExprEmitter::*Func) 254 (const BinOpInfo &), 255 RValue &Val); 256 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 257 ComplexPairTy (ComplexExprEmitter::*Func) 258 (const BinOpInfo &)); 259 260 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 261 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 262 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 263 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 264 265 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 266 const BinOpInfo &Op); 267 268 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 269 return EmitBinAdd(EmitBinOps(E)); 270 } 271 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 272 return EmitBinSub(EmitBinOps(E)); 273 } 274 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 275 return EmitBinMul(EmitBinOps(E)); 276 } 277 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 278 return EmitBinDiv(EmitBinOps(E)); 279 } 280 281 // Compound assignments. 282 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 283 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 284 } 285 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 286 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 287 } 288 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 289 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 290 } 291 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 293 } 294 295 // GCC rejects rem/and/or/xor for integer complex. 296 // Logical and/or always return int, never complex. 297 298 // No comparisons produce a complex result. 299 300 LValue EmitBinAssignLValue(const BinaryOperator *E, 301 ComplexPairTy &Val); 302 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 303 ComplexPairTy VisitBinComma (const BinaryOperator *E); 304 305 306 ComplexPairTy 307 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 308 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 309 310 ComplexPairTy VisitInitListExpr(InitListExpr *E); 311 312 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 313 return EmitLoadOfLValue(E); 314 } 315 316 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 317 318 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 319 return CGF.EmitAtomicExpr(E).getComplexVal(); 320 } 321 }; 322 } // end anonymous namespace. 323 324 //===----------------------------------------------------------------------===// 325 // Utilities 326 //===----------------------------------------------------------------------===// 327 328 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 329 QualType complexType) { 330 CharUnits offset = CharUnits::Zero(); 331 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 332 } 333 334 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 335 QualType complexType) { 336 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 337 CharUnits offset = getContext().getTypeSizeInChars(eltType); 338 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 339 } 340 341 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 342 /// load the real and imaginary pieces, returning them as Real/Imag. 343 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 344 SourceLocation loc) { 345 assert(lvalue.isSimple() && "non-simple complex l-value?"); 346 if (lvalue.getType()->isAtomicType()) 347 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 348 349 Address SrcPtr = lvalue.getAddress(); 350 bool isVolatile = lvalue.isVolatileQualified(); 351 352 llvm::Value *Real = nullptr, *Imag = nullptr; 353 354 if (!IgnoreReal || isVolatile) { 355 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 356 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 357 } 358 359 if (!IgnoreImag || isVolatile) { 360 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 361 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 362 } 363 364 return ComplexPairTy(Real, Imag); 365 } 366 367 /// EmitStoreOfComplex - Store the specified real/imag parts into the 368 /// specified value pointer. 369 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 370 bool isInit) { 371 if (lvalue.getType()->isAtomicType() || 372 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 373 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 374 375 Address Ptr = lvalue.getAddress(); 376 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 377 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 378 379 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 380 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 381 } 382 383 384 385 //===----------------------------------------------------------------------===// 386 // Visitor Methods 387 //===----------------------------------------------------------------------===// 388 389 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 390 CGF.ErrorUnsupported(E, "complex expression"); 391 llvm::Type *EltTy = 392 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 393 llvm::Value *U = llvm::UndefValue::get(EltTy); 394 return ComplexPairTy(U, U); 395 } 396 397 ComplexPairTy ComplexExprEmitter:: 398 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 399 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 400 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 401 } 402 403 404 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 405 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 406 return EmitLoadOfLValue(E); 407 408 return CGF.EmitCallExpr(E).getComplexVal(); 409 } 410 411 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 412 CodeGenFunction::StmtExprEvaluation eval(CGF); 413 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 414 assert(RetAlloca.isValid() && "Expected complex return value"); 415 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 416 E->getExprLoc()); 417 } 418 419 /// Emit a cast from complex value Val to DestType. 420 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 421 QualType SrcType, 422 QualType DestType, 423 SourceLocation Loc) { 424 // Get the src/dest element type. 425 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 426 DestType = DestType->castAs<ComplexType>()->getElementType(); 427 428 // C99 6.3.1.6: When a value of complex type is converted to another 429 // complex type, both the real and imaginary parts follow the conversion 430 // rules for the corresponding real types. 431 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 432 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 433 return Val; 434 } 435 436 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 437 QualType SrcType, 438 QualType DestType, 439 SourceLocation Loc) { 440 // Convert the input element to the element type of the complex. 441 DestType = DestType->castAs<ComplexType>()->getElementType(); 442 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 443 444 // Return (realval, 0). 445 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 446 } 447 448 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 449 QualType DestTy) { 450 switch (CK) { 451 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 452 453 // Atomic to non-atomic casts may be more than a no-op for some platforms and 454 // for some types. 455 case CK_AtomicToNonAtomic: 456 case CK_NonAtomicToAtomic: 457 case CK_NoOp: 458 case CK_LValueToRValue: 459 case CK_UserDefinedConversion: 460 return Visit(Op); 461 462 case CK_LValueBitCast: { 463 LValue origLV = CGF.EmitLValue(Op); 464 Address V = origLV.getAddress(); 465 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 466 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 467 } 468 469 case CK_BitCast: 470 case CK_BaseToDerived: 471 case CK_DerivedToBase: 472 case CK_UncheckedDerivedToBase: 473 case CK_Dynamic: 474 case CK_ToUnion: 475 case CK_ArrayToPointerDecay: 476 case CK_FunctionToPointerDecay: 477 case CK_NullToPointer: 478 case CK_NullToMemberPointer: 479 case CK_BaseToDerivedMemberPointer: 480 case CK_DerivedToBaseMemberPointer: 481 case CK_MemberPointerToBoolean: 482 case CK_ReinterpretMemberPointer: 483 case CK_ConstructorConversion: 484 case CK_IntegralToPointer: 485 case CK_PointerToIntegral: 486 case CK_PointerToBoolean: 487 case CK_ToVoid: 488 case CK_VectorSplat: 489 case CK_IntegralCast: 490 case CK_BooleanToSignedIntegral: 491 case CK_IntegralToBoolean: 492 case CK_IntegralToFloating: 493 case CK_FloatingToIntegral: 494 case CK_FloatingToBoolean: 495 case CK_FloatingCast: 496 case CK_CPointerToObjCPointerCast: 497 case CK_BlockPointerToObjCPointerCast: 498 case CK_AnyPointerToBlockPointerCast: 499 case CK_ObjCObjectLValueCast: 500 case CK_FloatingComplexToReal: 501 case CK_FloatingComplexToBoolean: 502 case CK_IntegralComplexToReal: 503 case CK_IntegralComplexToBoolean: 504 case CK_ARCProduceObject: 505 case CK_ARCConsumeObject: 506 case CK_ARCReclaimReturnedObject: 507 case CK_ARCExtendBlockObject: 508 case CK_CopyAndAutoreleaseBlockObject: 509 case CK_BuiltinFnToFnPtr: 510 case CK_ZeroToOCLOpaqueType: 511 case CK_AddressSpaceConversion: 512 case CK_IntToOCLSampler: 513 case CK_FixedPointCast: 514 case CK_FixedPointToBoolean: 515 llvm_unreachable("invalid cast kind for complex value"); 516 517 case CK_FloatingRealToComplex: 518 case CK_IntegralRealToComplex: 519 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 520 DestTy, Op->getExprLoc()); 521 522 case CK_FloatingComplexCast: 523 case CK_FloatingComplexToIntegralComplex: 524 case CK_IntegralComplexCast: 525 case CK_IntegralComplexToFloatingComplex: 526 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 527 Op->getExprLoc()); 528 } 529 530 llvm_unreachable("unknown cast resulting in complex value"); 531 } 532 533 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 534 TestAndClearIgnoreReal(); 535 TestAndClearIgnoreImag(); 536 ComplexPairTy Op = Visit(E->getSubExpr()); 537 538 llvm::Value *ResR, *ResI; 539 if (Op.first->getType()->isFloatingPointTy()) { 540 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 541 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 542 } else { 543 ResR = Builder.CreateNeg(Op.first, "neg.r"); 544 ResI = Builder.CreateNeg(Op.second, "neg.i"); 545 } 546 return ComplexPairTy(ResR, ResI); 547 } 548 549 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 550 TestAndClearIgnoreReal(); 551 TestAndClearIgnoreImag(); 552 // ~(a+ib) = a + i*-b 553 ComplexPairTy Op = Visit(E->getSubExpr()); 554 llvm::Value *ResI; 555 if (Op.second->getType()->isFloatingPointTy()) 556 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 557 else 558 ResI = Builder.CreateNeg(Op.second, "conj.i"); 559 560 return ComplexPairTy(Op.first, ResI); 561 } 562 563 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 564 llvm::Value *ResR, *ResI; 565 566 if (Op.LHS.first->getType()->isFloatingPointTy()) { 567 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 568 if (Op.LHS.second && Op.RHS.second) 569 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 570 else 571 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 572 assert(ResI && "Only one operand may be real!"); 573 } else { 574 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 575 assert(Op.LHS.second && Op.RHS.second && 576 "Both operands of integer complex operators must be complex!"); 577 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 578 } 579 return ComplexPairTy(ResR, ResI); 580 } 581 582 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 583 llvm::Value *ResR, *ResI; 584 if (Op.LHS.first->getType()->isFloatingPointTy()) { 585 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 586 if (Op.LHS.second && Op.RHS.second) 587 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 588 else 589 ResI = Op.LHS.second ? Op.LHS.second 590 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 591 assert(ResI && "Only one operand may be real!"); 592 } else { 593 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 594 assert(Op.LHS.second && Op.RHS.second && 595 "Both operands of integer complex operators must be complex!"); 596 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 597 } 598 return ComplexPairTy(ResR, ResI); 599 } 600 601 /// Emit a libcall for a binary operation on complex types. 602 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 603 const BinOpInfo &Op) { 604 CallArgList Args; 605 Args.add(RValue::get(Op.LHS.first), 606 Op.Ty->castAs<ComplexType>()->getElementType()); 607 Args.add(RValue::get(Op.LHS.second), 608 Op.Ty->castAs<ComplexType>()->getElementType()); 609 Args.add(RValue::get(Op.RHS.first), 610 Op.Ty->castAs<ComplexType>()->getElementType()); 611 Args.add(RValue::get(Op.RHS.second), 612 Op.Ty->castAs<ComplexType>()->getElementType()); 613 614 // We *must* use the full CG function call building logic here because the 615 // complex type has special ABI handling. We also should not forget about 616 // special calling convention which may be used for compiler builtins. 617 618 // We create a function qualified type to state that this call does not have 619 // any exceptions. 620 FunctionProtoType::ExtProtoInfo EPI; 621 EPI = EPI.withExceptionSpec( 622 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 623 SmallVector<QualType, 4> ArgsQTys( 624 4, Op.Ty->castAs<ComplexType>()->getElementType()); 625 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 626 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 627 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 628 629 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 630 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 631 FTy, LibCallName, llvm::AttributeList(), true); 632 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 633 634 llvm::CallBase *Call; 635 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 636 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 637 return Res.getComplexVal(); 638 } 639 640 /// Lookup the libcall name for a given floating point type complex 641 /// multiply. 642 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 643 switch (Ty->getTypeID()) { 644 default: 645 llvm_unreachable("Unsupported floating point type!"); 646 case llvm::Type::HalfTyID: 647 return "__mulhc3"; 648 case llvm::Type::FloatTyID: 649 return "__mulsc3"; 650 case llvm::Type::DoubleTyID: 651 return "__muldc3"; 652 case llvm::Type::PPC_FP128TyID: 653 return "__multc3"; 654 case llvm::Type::X86_FP80TyID: 655 return "__mulxc3"; 656 case llvm::Type::FP128TyID: 657 return "__multc3"; 658 } 659 } 660 661 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 662 // typed values. 663 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 664 using llvm::Value; 665 Value *ResR, *ResI; 666 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 667 668 if (Op.LHS.first->getType()->isFloatingPointTy()) { 669 // The general formulation is: 670 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 671 // 672 // But we can fold away components which would be zero due to a real 673 // operand according to C11 Annex G.5.1p2. 674 // FIXME: C11 also provides for imaginary types which would allow folding 675 // still more of this within the type system. 676 677 if (Op.LHS.second && Op.RHS.second) { 678 // If both operands are complex, emit the core math directly, and then 679 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 680 // to carefully re-compute the correct infinity representation if 681 // possible. The expectation is that the presence of NaNs here is 682 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 683 // This is good, because the libcall re-computes the core multiplication 684 // exactly the same as we do here and re-tests for NaNs in order to be 685 // a generic complex*complex libcall. 686 687 // First compute the four products. 688 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 689 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 690 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 691 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 692 693 // The real part is the difference of the first two, the imaginary part is 694 // the sum of the second. 695 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 696 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 697 698 // Emit the test for the real part becoming NaN and create a branch to 699 // handle it. We test for NaN by comparing the number to itself. 700 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 701 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 702 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 703 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 704 llvm::BasicBlock *OrigBB = Branch->getParent(); 705 706 // Give hint that we very much don't expect to see NaNs. 707 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 708 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 709 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 710 711 // Now test the imaginary part and create its branch. 712 CGF.EmitBlock(INaNBB); 713 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 714 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 715 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 716 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 717 718 // Now emit the libcall on this slowest of the slow paths. 719 CGF.EmitBlock(LibCallBB); 720 Value *LibCallR, *LibCallI; 721 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 722 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 723 Builder.CreateBr(ContBB); 724 725 // Finally continue execution by phi-ing together the different 726 // computation paths. 727 CGF.EmitBlock(ContBB); 728 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 729 RealPHI->addIncoming(ResR, OrigBB); 730 RealPHI->addIncoming(ResR, INaNBB); 731 RealPHI->addIncoming(LibCallR, LibCallBB); 732 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 733 ImagPHI->addIncoming(ResI, OrigBB); 734 ImagPHI->addIncoming(ResI, INaNBB); 735 ImagPHI->addIncoming(LibCallI, LibCallBB); 736 return ComplexPairTy(RealPHI, ImagPHI); 737 } 738 assert((Op.LHS.second || Op.RHS.second) && 739 "At least one operand must be complex!"); 740 741 // If either of the operands is a real rather than a complex, the 742 // imaginary component is ignored when computing the real component of the 743 // result. 744 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 745 746 ResI = Op.LHS.second 747 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 748 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 749 } else { 750 assert(Op.LHS.second && Op.RHS.second && 751 "Both operands of integer complex operators must be complex!"); 752 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 753 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 754 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 755 756 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 757 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 758 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 759 } 760 return ComplexPairTy(ResR, ResI); 761 } 762 763 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 764 // typed values. 765 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 766 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 767 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 768 769 llvm::Value *DSTr, *DSTi; 770 if (LHSr->getType()->isFloatingPointTy()) { 771 // If we have a complex operand on the RHS and FastMath is not allowed, we 772 // delegate to a libcall to handle all of the complexities and minimize 773 // underflow/overflow cases. When FastMath is allowed we construct the 774 // divide inline using the same algorithm as for integer operands. 775 // 776 // FIXME: We would be able to avoid the libcall in many places if we 777 // supported imaginary types in addition to complex types. 778 if (RHSi && !CGF.getLangOpts().FastMath) { 779 BinOpInfo LibCallOp = Op; 780 // If LHS was a real, supply a null imaginary part. 781 if (!LHSi) 782 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 783 784 switch (LHSr->getType()->getTypeID()) { 785 default: 786 llvm_unreachable("Unsupported floating point type!"); 787 case llvm::Type::HalfTyID: 788 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 789 case llvm::Type::FloatTyID: 790 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 791 case llvm::Type::DoubleTyID: 792 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 793 case llvm::Type::PPC_FP128TyID: 794 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 795 case llvm::Type::X86_FP80TyID: 796 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 797 case llvm::Type::FP128TyID: 798 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 799 } 800 } else if (RHSi) { 801 if (!LHSi) 802 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 803 804 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 805 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 806 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 807 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 808 809 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 810 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 811 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 812 813 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 814 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 815 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 816 817 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 818 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 819 } else { 820 assert(LHSi && "Can have at most one non-complex operand!"); 821 822 DSTr = Builder.CreateFDiv(LHSr, RHSr); 823 DSTi = Builder.CreateFDiv(LHSi, RHSr); 824 } 825 } else { 826 assert(Op.LHS.second && Op.RHS.second && 827 "Both operands of integer complex operators must be complex!"); 828 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 829 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 830 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 831 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 832 833 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 834 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 835 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 836 837 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 838 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 839 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 840 841 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 842 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 843 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 844 } else { 845 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 846 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 847 } 848 } 849 850 return ComplexPairTy(DSTr, DSTi); 851 } 852 853 ComplexExprEmitter::BinOpInfo 854 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 855 TestAndClearIgnoreReal(); 856 TestAndClearIgnoreImag(); 857 BinOpInfo Ops; 858 if (E->getLHS()->getType()->isRealFloatingType()) 859 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 860 else 861 Ops.LHS = Visit(E->getLHS()); 862 if (E->getRHS()->getType()->isRealFloatingType()) 863 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 864 else 865 Ops.RHS = Visit(E->getRHS()); 866 867 Ops.Ty = E->getType(); 868 return Ops; 869 } 870 871 872 LValue ComplexExprEmitter:: 873 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 874 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 875 RValue &Val) { 876 TestAndClearIgnoreReal(); 877 TestAndClearIgnoreImag(); 878 QualType LHSTy = E->getLHS()->getType(); 879 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 880 LHSTy = AT->getValueType(); 881 882 BinOpInfo OpInfo; 883 884 // Load the RHS and LHS operands. 885 // __block variables need to have the rhs evaluated first, plus this should 886 // improve codegen a little. 887 OpInfo.Ty = E->getComputationResultType(); 888 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 889 890 // The RHS should have been converted to the computation type. 891 if (E->getRHS()->getType()->isRealFloatingType()) { 892 assert( 893 CGF.getContext() 894 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 895 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 896 } else { 897 assert(CGF.getContext() 898 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 899 OpInfo.RHS = Visit(E->getRHS()); 900 } 901 902 LValue LHS = CGF.EmitLValue(E->getLHS()); 903 904 // Load from the l-value and convert it. 905 SourceLocation Loc = E->getExprLoc(); 906 if (LHSTy->isAnyComplexType()) { 907 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 908 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 909 } else { 910 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 911 // For floating point real operands we can directly pass the scalar form 912 // to the binary operator emission and potentially get more efficient code. 913 if (LHSTy->isRealFloatingType()) { 914 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 915 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 916 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 917 } else { 918 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 919 } 920 } 921 922 // Expand the binary operator. 923 ComplexPairTy Result = (this->*Func)(OpInfo); 924 925 // Truncate the result and store it into the LHS lvalue. 926 if (LHSTy->isAnyComplexType()) { 927 ComplexPairTy ResVal = 928 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 929 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 930 Val = RValue::getComplex(ResVal); 931 } else { 932 llvm::Value *ResVal = 933 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 934 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 935 Val = RValue::get(ResVal); 936 } 937 938 return LHS; 939 } 940 941 // Compound assignments. 942 ComplexPairTy ComplexExprEmitter:: 943 EmitCompoundAssign(const CompoundAssignOperator *E, 944 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 945 RValue Val; 946 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 947 948 // The result of an assignment in C is the assigned r-value. 949 if (!CGF.getLangOpts().CPlusPlus) 950 return Val.getComplexVal(); 951 952 // If the lvalue is non-volatile, return the computed value of the assignment. 953 if (!LV.isVolatileQualified()) 954 return Val.getComplexVal(); 955 956 return EmitLoadOfLValue(LV, E->getExprLoc()); 957 } 958 959 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 960 ComplexPairTy &Val) { 961 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 962 E->getRHS()->getType()) && 963 "Invalid assignment"); 964 TestAndClearIgnoreReal(); 965 TestAndClearIgnoreImag(); 966 967 // Emit the RHS. __block variables need the RHS evaluated first. 968 Val = Visit(E->getRHS()); 969 970 // Compute the address to store into. 971 LValue LHS = CGF.EmitLValue(E->getLHS()); 972 973 // Store the result value into the LHS lvalue. 974 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 975 976 return LHS; 977 } 978 979 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 980 ComplexPairTy Val; 981 LValue LV = EmitBinAssignLValue(E, Val); 982 983 // The result of an assignment in C is the assigned r-value. 984 if (!CGF.getLangOpts().CPlusPlus) 985 return Val; 986 987 // If the lvalue is non-volatile, return the computed value of the assignment. 988 if (!LV.isVolatileQualified()) 989 return Val; 990 991 return EmitLoadOfLValue(LV, E->getExprLoc()); 992 } 993 994 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 995 CGF.EmitIgnoredExpr(E->getLHS()); 996 return Visit(E->getRHS()); 997 } 998 999 ComplexPairTy ComplexExprEmitter:: 1000 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1001 TestAndClearIgnoreReal(); 1002 TestAndClearIgnoreImag(); 1003 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1004 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1005 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1006 1007 // Bind the common expression if necessary. 1008 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1009 1010 1011 CodeGenFunction::ConditionalEvaluation eval(CGF); 1012 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1013 CGF.getProfileCount(E)); 1014 1015 eval.begin(CGF); 1016 CGF.EmitBlock(LHSBlock); 1017 CGF.incrementProfileCounter(E); 1018 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1019 LHSBlock = Builder.GetInsertBlock(); 1020 CGF.EmitBranch(ContBlock); 1021 eval.end(CGF); 1022 1023 eval.begin(CGF); 1024 CGF.EmitBlock(RHSBlock); 1025 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1026 RHSBlock = Builder.GetInsertBlock(); 1027 CGF.EmitBlock(ContBlock); 1028 eval.end(CGF); 1029 1030 // Create a PHI node for the real part. 1031 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1032 RealPN->addIncoming(LHS.first, LHSBlock); 1033 RealPN->addIncoming(RHS.first, RHSBlock); 1034 1035 // Create a PHI node for the imaginary part. 1036 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1037 ImagPN->addIncoming(LHS.second, LHSBlock); 1038 ImagPN->addIncoming(RHS.second, RHSBlock); 1039 1040 return ComplexPairTy(RealPN, ImagPN); 1041 } 1042 1043 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1044 return Visit(E->getChosenSubExpr()); 1045 } 1046 1047 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1048 bool Ignore = TestAndClearIgnoreReal(); 1049 (void)Ignore; 1050 assert (Ignore == false && "init list ignored"); 1051 Ignore = TestAndClearIgnoreImag(); 1052 (void)Ignore; 1053 assert (Ignore == false && "init list ignored"); 1054 1055 if (E->getNumInits() == 2) { 1056 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1057 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1058 return ComplexPairTy(Real, Imag); 1059 } else if (E->getNumInits() == 1) { 1060 return Visit(E->getInit(0)); 1061 } 1062 1063 // Empty init list initializes to null 1064 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1065 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1066 llvm::Type* LTy = CGF.ConvertType(Ty); 1067 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1068 return ComplexPairTy(zeroConstant, zeroConstant); 1069 } 1070 1071 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1072 Address ArgValue = Address::invalid(); 1073 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1074 1075 if (!ArgPtr.isValid()) { 1076 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1077 llvm::Type *EltTy = 1078 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1079 llvm::Value *U = llvm::UndefValue::get(EltTy); 1080 return ComplexPairTy(U, U); 1081 } 1082 1083 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1084 E->getExprLoc()); 1085 } 1086 1087 //===----------------------------------------------------------------------===// 1088 // Entry Point into this File 1089 //===----------------------------------------------------------------------===// 1090 1091 /// EmitComplexExpr - Emit the computation of the specified expression of 1092 /// complex type, ignoring the result. 1093 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1094 bool IgnoreImag) { 1095 assert(E && getComplexType(E->getType()) && 1096 "Invalid complex expression to emit"); 1097 1098 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1099 .Visit(const_cast<Expr *>(E)); 1100 } 1101 1102 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1103 bool isInit) { 1104 assert(E && getComplexType(E->getType()) && 1105 "Invalid complex expression to emit"); 1106 ComplexExprEmitter Emitter(*this); 1107 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1108 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1109 } 1110 1111 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1112 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1113 bool isInit) { 1114 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1115 } 1116 1117 /// EmitLoadOfComplex - Load a complex number from the specified address. 1118 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1119 SourceLocation loc) { 1120 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1121 } 1122 1123 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1124 assert(E->getOpcode() == BO_Assign); 1125 ComplexPairTy Val; // ignored 1126 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1127 } 1128 1129 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1130 const ComplexExprEmitter::BinOpInfo &); 1131 1132 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1133 switch (Op) { 1134 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1135 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1136 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1137 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1138 default: 1139 llvm_unreachable("unexpected complex compound assignment"); 1140 } 1141 } 1142 1143 LValue CodeGenFunction:: 1144 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1145 CompoundFunc Op = getComplexOp(E->getOpcode()); 1146 RValue Val; 1147 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1148 } 1149 1150 LValue CodeGenFunction:: 1151 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1152 llvm::Value *&Result) { 1153 CompoundFunc Op = getComplexOp(E->getOpcode()); 1154 RValue Val; 1155 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1156 Result = Val.getScalarVal(); 1157 return Ret; 1158 } 1159