1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 105 return Visit(E->getSubExpr()); 106 } 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 117 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 120 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 121 } 122 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 123 return Visit(E->getSubExpr()); 124 } 125 126 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 127 Expr *E) { 128 assert(Constant && "not a constant"); 129 if (Constant.isReference()) 130 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 131 E->getExprLoc()); 132 133 llvm::Constant *pair = Constant.getValue(); 134 return ComplexPairTy(pair->getAggregateElement(0U), 135 pair->getAggregateElement(1U)); 136 } 137 138 // l-values. 139 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 140 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 141 return emitConstant(Constant, E); 142 return EmitLoadOfLValue(E); 143 } 144 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 145 return EmitLoadOfLValue(E); 146 } 147 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 148 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 149 } 150 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 151 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 152 if (CodeGenFunction::ConstantEmission Constant = 153 CGF.tryEmitAsConstant(ME)) { 154 CGF.EmitIgnoredExpr(ME->getBase()); 155 return emitConstant(Constant, ME); 156 } 157 return EmitLoadOfLValue(ME); 158 } 159 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 160 if (E->isGLValue()) 161 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 162 E->getExprLoc()); 163 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 164 } 165 166 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 167 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 168 } 169 170 // FIXME: CompoundLiteralExpr 171 172 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 173 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 174 // Unlike for scalars, we don't have to worry about function->ptr demotion 175 // here. 176 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 177 } 178 ComplexPairTy VisitCastExpr(CastExpr *E) { 179 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 180 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 181 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 182 } 183 ComplexPairTy VisitCallExpr(const CallExpr *E); 184 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 185 186 // Operators. 187 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 188 bool isInc, bool isPre) { 189 LValue LV = CGF.EmitLValue(E->getSubExpr()); 190 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 191 } 192 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 193 return VisitPrePostIncDec(E, false, false); 194 } 195 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 196 return VisitPrePostIncDec(E, true, false); 197 } 198 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 199 return VisitPrePostIncDec(E, false, true); 200 } 201 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 202 return VisitPrePostIncDec(E, true, true); 203 } 204 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 205 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 206 TestAndClearIgnoreReal(); 207 TestAndClearIgnoreImag(); 208 return Visit(E->getSubExpr()); 209 } 210 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 211 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 212 // LNot,Real,Imag never return complex. 213 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 214 return Visit(E->getSubExpr()); 215 } 216 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 217 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 218 return Visit(DAE->getExpr()); 219 } 220 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 221 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 222 return Visit(DIE->getExpr()); 223 } 224 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 225 CodeGenFunction::RunCleanupsScope Scope(CGF); 226 ComplexPairTy Vals = Visit(E->getSubExpr()); 227 // Defend against dominance problems caused by jumps out of expression 228 // evaluation through the shared cleanup block. 229 Scope.ForceCleanup({&Vals.first, &Vals.second}); 230 return Vals; 231 } 232 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 233 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 234 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 235 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 236 return ComplexPairTy(Null, Null); 237 } 238 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 239 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 240 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 241 llvm::Constant *Null = 242 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 243 return ComplexPairTy(Null, Null); 244 } 245 246 struct BinOpInfo { 247 ComplexPairTy LHS; 248 ComplexPairTy RHS; 249 QualType Ty; // Computation Type. 250 }; 251 252 BinOpInfo EmitBinOps(const BinaryOperator *E); 253 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 254 ComplexPairTy (ComplexExprEmitter::*Func) 255 (const BinOpInfo &), 256 RValue &Val); 257 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 258 ComplexPairTy (ComplexExprEmitter::*Func) 259 (const BinOpInfo &)); 260 261 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 262 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 263 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 264 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 265 266 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 267 const BinOpInfo &Op); 268 269 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 270 return EmitBinAdd(EmitBinOps(E)); 271 } 272 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 273 return EmitBinSub(EmitBinOps(E)); 274 } 275 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 276 return EmitBinMul(EmitBinOps(E)); 277 } 278 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 279 return EmitBinDiv(EmitBinOps(E)); 280 } 281 282 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 283 return Visit(E->getSemanticForm()); 284 } 285 286 // Compound assignments. 287 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 288 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 289 } 290 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 291 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 292 } 293 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 294 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 295 } 296 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 297 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 298 } 299 300 // GCC rejects rem/and/or/xor for integer complex. 301 // Logical and/or always return int, never complex. 302 303 // No comparisons produce a complex result. 304 305 LValue EmitBinAssignLValue(const BinaryOperator *E, 306 ComplexPairTy &Val); 307 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 308 ComplexPairTy VisitBinComma (const BinaryOperator *E); 309 310 311 ComplexPairTy 312 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 313 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 314 315 ComplexPairTy VisitInitListExpr(InitListExpr *E); 316 317 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 318 return EmitLoadOfLValue(E); 319 } 320 321 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 322 323 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 324 return CGF.EmitAtomicExpr(E).getComplexVal(); 325 } 326 }; 327 } // end anonymous namespace. 328 329 //===----------------------------------------------------------------------===// 330 // Utilities 331 //===----------------------------------------------------------------------===// 332 333 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 334 QualType complexType) { 335 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 336 } 337 338 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 339 QualType complexType) { 340 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 341 } 342 343 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 344 /// load the real and imaginary pieces, returning them as Real/Imag. 345 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 346 SourceLocation loc) { 347 assert(lvalue.isSimple() && "non-simple complex l-value?"); 348 if (lvalue.getType()->isAtomicType()) 349 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 350 351 Address SrcPtr = lvalue.getAddress(CGF); 352 bool isVolatile = lvalue.isVolatileQualified(); 353 354 llvm::Value *Real = nullptr, *Imag = nullptr; 355 356 if (!IgnoreReal || isVolatile) { 357 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 358 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 359 } 360 361 if (!IgnoreImag || isVolatile) { 362 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 363 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 364 } 365 366 return ComplexPairTy(Real, Imag); 367 } 368 369 /// EmitStoreOfComplex - Store the specified real/imag parts into the 370 /// specified value pointer. 371 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 372 bool isInit) { 373 if (lvalue.getType()->isAtomicType() || 374 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 375 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 376 377 Address Ptr = lvalue.getAddress(CGF); 378 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 379 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 380 381 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 382 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 383 } 384 385 386 387 //===----------------------------------------------------------------------===// 388 // Visitor Methods 389 //===----------------------------------------------------------------------===// 390 391 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 392 CGF.ErrorUnsupported(E, "complex expression"); 393 llvm::Type *EltTy = 394 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 395 llvm::Value *U = llvm::UndefValue::get(EltTy); 396 return ComplexPairTy(U, U); 397 } 398 399 ComplexPairTy ComplexExprEmitter:: 400 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 401 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 402 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 403 } 404 405 406 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 407 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 408 return EmitLoadOfLValue(E); 409 410 return CGF.EmitCallExpr(E).getComplexVal(); 411 } 412 413 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 414 CodeGenFunction::StmtExprEvaluation eval(CGF); 415 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 416 assert(RetAlloca.isValid() && "Expected complex return value"); 417 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 418 E->getExprLoc()); 419 } 420 421 /// Emit a cast from complex value Val to DestType. 422 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 423 QualType SrcType, 424 QualType DestType, 425 SourceLocation Loc) { 426 // Get the src/dest element type. 427 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 428 DestType = DestType->castAs<ComplexType>()->getElementType(); 429 430 // C99 6.3.1.6: When a value of complex type is converted to another 431 // complex type, both the real and imaginary parts follow the conversion 432 // rules for the corresponding real types. 433 if (Val.first) 434 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 435 if (Val.second) 436 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 437 return Val; 438 } 439 440 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 441 QualType SrcType, 442 QualType DestType, 443 SourceLocation Loc) { 444 // Convert the input element to the element type of the complex. 445 DestType = DestType->castAs<ComplexType>()->getElementType(); 446 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 447 448 // Return (realval, 0). 449 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 450 } 451 452 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 453 QualType DestTy) { 454 switch (CK) { 455 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 456 457 // Atomic to non-atomic casts may be more than a no-op for some platforms and 458 // for some types. 459 case CK_AtomicToNonAtomic: 460 case CK_NonAtomicToAtomic: 461 case CK_NoOp: 462 case CK_LValueToRValue: 463 case CK_UserDefinedConversion: 464 return Visit(Op); 465 466 case CK_LValueBitCast: { 467 LValue origLV = CGF.EmitLValue(Op); 468 Address V = origLV.getAddress(CGF); 469 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 470 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 471 } 472 473 case CK_LValueToRValueBitCast: { 474 LValue SourceLVal = CGF.EmitLValue(Op); 475 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 476 CGF.ConvertTypeForMem(DestTy)); 477 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 478 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 479 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 480 } 481 482 case CK_BitCast: 483 case CK_BaseToDerived: 484 case CK_DerivedToBase: 485 case CK_UncheckedDerivedToBase: 486 case CK_Dynamic: 487 case CK_ToUnion: 488 case CK_ArrayToPointerDecay: 489 case CK_FunctionToPointerDecay: 490 case CK_NullToPointer: 491 case CK_NullToMemberPointer: 492 case CK_BaseToDerivedMemberPointer: 493 case CK_DerivedToBaseMemberPointer: 494 case CK_MemberPointerToBoolean: 495 case CK_ReinterpretMemberPointer: 496 case CK_ConstructorConversion: 497 case CK_IntegralToPointer: 498 case CK_PointerToIntegral: 499 case CK_PointerToBoolean: 500 case CK_ToVoid: 501 case CK_VectorSplat: 502 case CK_IntegralCast: 503 case CK_BooleanToSignedIntegral: 504 case CK_IntegralToBoolean: 505 case CK_IntegralToFloating: 506 case CK_FloatingToIntegral: 507 case CK_FloatingToBoolean: 508 case CK_FloatingCast: 509 case CK_CPointerToObjCPointerCast: 510 case CK_BlockPointerToObjCPointerCast: 511 case CK_AnyPointerToBlockPointerCast: 512 case CK_ObjCObjectLValueCast: 513 case CK_FloatingComplexToReal: 514 case CK_FloatingComplexToBoolean: 515 case CK_IntegralComplexToReal: 516 case CK_IntegralComplexToBoolean: 517 case CK_ARCProduceObject: 518 case CK_ARCConsumeObject: 519 case CK_ARCReclaimReturnedObject: 520 case CK_ARCExtendBlockObject: 521 case CK_CopyAndAutoreleaseBlockObject: 522 case CK_BuiltinFnToFnPtr: 523 case CK_ZeroToOCLOpaqueType: 524 case CK_AddressSpaceConversion: 525 case CK_IntToOCLSampler: 526 case CK_FixedPointCast: 527 case CK_FixedPointToBoolean: 528 case CK_FixedPointToIntegral: 529 case CK_IntegralToFixedPoint: 530 llvm_unreachable("invalid cast kind for complex value"); 531 532 case CK_FloatingRealToComplex: 533 case CK_IntegralRealToComplex: 534 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 535 DestTy, Op->getExprLoc()); 536 537 case CK_FloatingComplexCast: 538 case CK_FloatingComplexToIntegralComplex: 539 case CK_IntegralComplexCast: 540 case CK_IntegralComplexToFloatingComplex: 541 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 542 Op->getExprLoc()); 543 } 544 545 llvm_unreachable("unknown cast resulting in complex value"); 546 } 547 548 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 549 TestAndClearIgnoreReal(); 550 TestAndClearIgnoreImag(); 551 ComplexPairTy Op = Visit(E->getSubExpr()); 552 553 llvm::Value *ResR, *ResI; 554 if (Op.first->getType()->isFloatingPointTy()) { 555 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 556 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 557 } else { 558 ResR = Builder.CreateNeg(Op.first, "neg.r"); 559 ResI = Builder.CreateNeg(Op.second, "neg.i"); 560 } 561 return ComplexPairTy(ResR, ResI); 562 } 563 564 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 565 TestAndClearIgnoreReal(); 566 TestAndClearIgnoreImag(); 567 // ~(a+ib) = a + i*-b 568 ComplexPairTy Op = Visit(E->getSubExpr()); 569 llvm::Value *ResI; 570 if (Op.second->getType()->isFloatingPointTy()) 571 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 572 else 573 ResI = Builder.CreateNeg(Op.second, "conj.i"); 574 575 return ComplexPairTy(Op.first, ResI); 576 } 577 578 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 579 llvm::Value *ResR, *ResI; 580 581 if (Op.LHS.first->getType()->isFloatingPointTy()) { 582 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 583 if (Op.LHS.second && Op.RHS.second) 584 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 585 else 586 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 587 assert(ResI && "Only one operand may be real!"); 588 } else { 589 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 590 assert(Op.LHS.second && Op.RHS.second && 591 "Both operands of integer complex operators must be complex!"); 592 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 593 } 594 return ComplexPairTy(ResR, ResI); 595 } 596 597 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 598 llvm::Value *ResR, *ResI; 599 if (Op.LHS.first->getType()->isFloatingPointTy()) { 600 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 601 if (Op.LHS.second && Op.RHS.second) 602 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 603 else 604 ResI = Op.LHS.second ? Op.LHS.second 605 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 606 assert(ResI && "Only one operand may be real!"); 607 } else { 608 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 609 assert(Op.LHS.second && Op.RHS.second && 610 "Both operands of integer complex operators must be complex!"); 611 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 612 } 613 return ComplexPairTy(ResR, ResI); 614 } 615 616 /// Emit a libcall for a binary operation on complex types. 617 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 618 const BinOpInfo &Op) { 619 CallArgList Args; 620 Args.add(RValue::get(Op.LHS.first), 621 Op.Ty->castAs<ComplexType>()->getElementType()); 622 Args.add(RValue::get(Op.LHS.second), 623 Op.Ty->castAs<ComplexType>()->getElementType()); 624 Args.add(RValue::get(Op.RHS.first), 625 Op.Ty->castAs<ComplexType>()->getElementType()); 626 Args.add(RValue::get(Op.RHS.second), 627 Op.Ty->castAs<ComplexType>()->getElementType()); 628 629 // We *must* use the full CG function call building logic here because the 630 // complex type has special ABI handling. We also should not forget about 631 // special calling convention which may be used for compiler builtins. 632 633 // We create a function qualified type to state that this call does not have 634 // any exceptions. 635 FunctionProtoType::ExtProtoInfo EPI; 636 EPI = EPI.withExceptionSpec( 637 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 638 SmallVector<QualType, 4> ArgsQTys( 639 4, Op.Ty->castAs<ComplexType>()->getElementType()); 640 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 641 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 642 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 643 644 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 645 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 646 FTy, LibCallName, llvm::AttributeList(), true); 647 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 648 649 llvm::CallBase *Call; 650 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 651 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 652 return Res.getComplexVal(); 653 } 654 655 /// Lookup the libcall name for a given floating point type complex 656 /// multiply. 657 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 658 switch (Ty->getTypeID()) { 659 default: 660 llvm_unreachable("Unsupported floating point type!"); 661 case llvm::Type::HalfTyID: 662 return "__mulhc3"; 663 case llvm::Type::FloatTyID: 664 return "__mulsc3"; 665 case llvm::Type::DoubleTyID: 666 return "__muldc3"; 667 case llvm::Type::PPC_FP128TyID: 668 return "__multc3"; 669 case llvm::Type::X86_FP80TyID: 670 return "__mulxc3"; 671 case llvm::Type::FP128TyID: 672 return "__multc3"; 673 } 674 } 675 676 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 677 // typed values. 678 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 679 using llvm::Value; 680 Value *ResR, *ResI; 681 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 682 683 if (Op.LHS.first->getType()->isFloatingPointTy()) { 684 // The general formulation is: 685 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 686 // 687 // But we can fold away components which would be zero due to a real 688 // operand according to C11 Annex G.5.1p2. 689 // FIXME: C11 also provides for imaginary types which would allow folding 690 // still more of this within the type system. 691 692 if (Op.LHS.second && Op.RHS.second) { 693 // If both operands are complex, emit the core math directly, and then 694 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 695 // to carefully re-compute the correct infinity representation if 696 // possible. The expectation is that the presence of NaNs here is 697 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 698 // This is good, because the libcall re-computes the core multiplication 699 // exactly the same as we do here and re-tests for NaNs in order to be 700 // a generic complex*complex libcall. 701 702 // First compute the four products. 703 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 704 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 705 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 706 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 707 708 // The real part is the difference of the first two, the imaginary part is 709 // the sum of the second. 710 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 711 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 712 713 // Emit the test for the real part becoming NaN and create a branch to 714 // handle it. We test for NaN by comparing the number to itself. 715 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 716 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 717 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 718 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 719 llvm::BasicBlock *OrigBB = Branch->getParent(); 720 721 // Give hint that we very much don't expect to see NaNs. 722 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 723 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 724 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 725 726 // Now test the imaginary part and create its branch. 727 CGF.EmitBlock(INaNBB); 728 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 729 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 730 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 731 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 732 733 // Now emit the libcall on this slowest of the slow paths. 734 CGF.EmitBlock(LibCallBB); 735 Value *LibCallR, *LibCallI; 736 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 737 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 738 Builder.CreateBr(ContBB); 739 740 // Finally continue execution by phi-ing together the different 741 // computation paths. 742 CGF.EmitBlock(ContBB); 743 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 744 RealPHI->addIncoming(ResR, OrigBB); 745 RealPHI->addIncoming(ResR, INaNBB); 746 RealPHI->addIncoming(LibCallR, LibCallBB); 747 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 748 ImagPHI->addIncoming(ResI, OrigBB); 749 ImagPHI->addIncoming(ResI, INaNBB); 750 ImagPHI->addIncoming(LibCallI, LibCallBB); 751 return ComplexPairTy(RealPHI, ImagPHI); 752 } 753 assert((Op.LHS.second || Op.RHS.second) && 754 "At least one operand must be complex!"); 755 756 // If either of the operands is a real rather than a complex, the 757 // imaginary component is ignored when computing the real component of the 758 // result. 759 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 760 761 ResI = Op.LHS.second 762 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 763 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 764 } else { 765 assert(Op.LHS.second && Op.RHS.second && 766 "Both operands of integer complex operators must be complex!"); 767 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 768 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 769 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 770 771 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 772 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 773 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 774 } 775 return ComplexPairTy(ResR, ResI); 776 } 777 778 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 779 // typed values. 780 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 781 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 782 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 783 784 llvm::Value *DSTr, *DSTi; 785 if (LHSr->getType()->isFloatingPointTy()) { 786 // If we have a complex operand on the RHS and FastMath is not allowed, we 787 // delegate to a libcall to handle all of the complexities and minimize 788 // underflow/overflow cases. When FastMath is allowed we construct the 789 // divide inline using the same algorithm as for integer operands. 790 // 791 // FIXME: We would be able to avoid the libcall in many places if we 792 // supported imaginary types in addition to complex types. 793 if (RHSi && !CGF.getLangOpts().FastMath) { 794 BinOpInfo LibCallOp = Op; 795 // If LHS was a real, supply a null imaginary part. 796 if (!LHSi) 797 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 798 799 switch (LHSr->getType()->getTypeID()) { 800 default: 801 llvm_unreachable("Unsupported floating point type!"); 802 case llvm::Type::HalfTyID: 803 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 804 case llvm::Type::FloatTyID: 805 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 806 case llvm::Type::DoubleTyID: 807 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 808 case llvm::Type::PPC_FP128TyID: 809 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 810 case llvm::Type::X86_FP80TyID: 811 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 812 case llvm::Type::FP128TyID: 813 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 814 } 815 } else if (RHSi) { 816 if (!LHSi) 817 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 818 819 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 820 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 821 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 822 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 823 824 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 825 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 826 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 827 828 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 829 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 830 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 831 832 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 833 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 834 } else { 835 assert(LHSi && "Can have at most one non-complex operand!"); 836 837 DSTr = Builder.CreateFDiv(LHSr, RHSr); 838 DSTi = Builder.CreateFDiv(LHSi, RHSr); 839 } 840 } else { 841 assert(Op.LHS.second && Op.RHS.second && 842 "Both operands of integer complex operators must be complex!"); 843 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 844 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 845 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 846 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 847 848 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 849 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 850 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 851 852 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 853 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 854 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 855 856 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 857 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 858 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 859 } else { 860 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 861 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 862 } 863 } 864 865 return ComplexPairTy(DSTr, DSTi); 866 } 867 868 ComplexExprEmitter::BinOpInfo 869 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 870 TestAndClearIgnoreReal(); 871 TestAndClearIgnoreImag(); 872 BinOpInfo Ops; 873 if (E->getLHS()->getType()->isRealFloatingType()) 874 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 875 else 876 Ops.LHS = Visit(E->getLHS()); 877 if (E->getRHS()->getType()->isRealFloatingType()) 878 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 879 else 880 Ops.RHS = Visit(E->getRHS()); 881 882 Ops.Ty = E->getType(); 883 return Ops; 884 } 885 886 887 LValue ComplexExprEmitter:: 888 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 889 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 890 RValue &Val) { 891 TestAndClearIgnoreReal(); 892 TestAndClearIgnoreImag(); 893 QualType LHSTy = E->getLHS()->getType(); 894 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 895 LHSTy = AT->getValueType(); 896 897 BinOpInfo OpInfo; 898 899 // Load the RHS and LHS operands. 900 // __block variables need to have the rhs evaluated first, plus this should 901 // improve codegen a little. 902 OpInfo.Ty = E->getComputationResultType(); 903 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 904 905 // The RHS should have been converted to the computation type. 906 if (E->getRHS()->getType()->isRealFloatingType()) { 907 assert( 908 CGF.getContext() 909 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 910 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 911 } else { 912 assert(CGF.getContext() 913 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 914 OpInfo.RHS = Visit(E->getRHS()); 915 } 916 917 LValue LHS = CGF.EmitLValue(E->getLHS()); 918 919 // Load from the l-value and convert it. 920 SourceLocation Loc = E->getExprLoc(); 921 if (LHSTy->isAnyComplexType()) { 922 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 923 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 924 } else { 925 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 926 // For floating point real operands we can directly pass the scalar form 927 // to the binary operator emission and potentially get more efficient code. 928 if (LHSTy->isRealFloatingType()) { 929 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 930 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 931 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 932 } else { 933 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 934 } 935 } 936 937 // Expand the binary operator. 938 ComplexPairTy Result = (this->*Func)(OpInfo); 939 940 // Truncate the result and store it into the LHS lvalue. 941 if (LHSTy->isAnyComplexType()) { 942 ComplexPairTy ResVal = 943 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 944 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 945 Val = RValue::getComplex(ResVal); 946 } else { 947 llvm::Value *ResVal = 948 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 949 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 950 Val = RValue::get(ResVal); 951 } 952 953 return LHS; 954 } 955 956 // Compound assignments. 957 ComplexPairTy ComplexExprEmitter:: 958 EmitCompoundAssign(const CompoundAssignOperator *E, 959 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 960 RValue Val; 961 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 962 963 // The result of an assignment in C is the assigned r-value. 964 if (!CGF.getLangOpts().CPlusPlus) 965 return Val.getComplexVal(); 966 967 // If the lvalue is non-volatile, return the computed value of the assignment. 968 if (!LV.isVolatileQualified()) 969 return Val.getComplexVal(); 970 971 return EmitLoadOfLValue(LV, E->getExprLoc()); 972 } 973 974 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 975 ComplexPairTy &Val) { 976 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 977 E->getRHS()->getType()) && 978 "Invalid assignment"); 979 TestAndClearIgnoreReal(); 980 TestAndClearIgnoreImag(); 981 982 // Emit the RHS. __block variables need the RHS evaluated first. 983 Val = Visit(E->getRHS()); 984 985 // Compute the address to store into. 986 LValue LHS = CGF.EmitLValue(E->getLHS()); 987 988 // Store the result value into the LHS lvalue. 989 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 990 991 return LHS; 992 } 993 994 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 995 ComplexPairTy Val; 996 LValue LV = EmitBinAssignLValue(E, Val); 997 998 // The result of an assignment in C is the assigned r-value. 999 if (!CGF.getLangOpts().CPlusPlus) 1000 return Val; 1001 1002 // If the lvalue is non-volatile, return the computed value of the assignment. 1003 if (!LV.isVolatileQualified()) 1004 return Val; 1005 1006 return EmitLoadOfLValue(LV, E->getExprLoc()); 1007 } 1008 1009 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1010 CGF.EmitIgnoredExpr(E->getLHS()); 1011 return Visit(E->getRHS()); 1012 } 1013 1014 ComplexPairTy ComplexExprEmitter:: 1015 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1016 TestAndClearIgnoreReal(); 1017 TestAndClearIgnoreImag(); 1018 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1019 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1020 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1021 1022 // Bind the common expression if necessary. 1023 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1024 1025 1026 CodeGenFunction::ConditionalEvaluation eval(CGF); 1027 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1028 CGF.getProfileCount(E)); 1029 1030 eval.begin(CGF); 1031 CGF.EmitBlock(LHSBlock); 1032 CGF.incrementProfileCounter(E); 1033 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1034 LHSBlock = Builder.GetInsertBlock(); 1035 CGF.EmitBranch(ContBlock); 1036 eval.end(CGF); 1037 1038 eval.begin(CGF); 1039 CGF.EmitBlock(RHSBlock); 1040 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1041 RHSBlock = Builder.GetInsertBlock(); 1042 CGF.EmitBlock(ContBlock); 1043 eval.end(CGF); 1044 1045 // Create a PHI node for the real part. 1046 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1047 RealPN->addIncoming(LHS.first, LHSBlock); 1048 RealPN->addIncoming(RHS.first, RHSBlock); 1049 1050 // Create a PHI node for the imaginary part. 1051 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1052 ImagPN->addIncoming(LHS.second, LHSBlock); 1053 ImagPN->addIncoming(RHS.second, RHSBlock); 1054 1055 return ComplexPairTy(RealPN, ImagPN); 1056 } 1057 1058 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1059 return Visit(E->getChosenSubExpr()); 1060 } 1061 1062 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1063 bool Ignore = TestAndClearIgnoreReal(); 1064 (void)Ignore; 1065 assert (Ignore == false && "init list ignored"); 1066 Ignore = TestAndClearIgnoreImag(); 1067 (void)Ignore; 1068 assert (Ignore == false && "init list ignored"); 1069 1070 if (E->getNumInits() == 2) { 1071 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1072 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1073 return ComplexPairTy(Real, Imag); 1074 } else if (E->getNumInits() == 1) { 1075 return Visit(E->getInit(0)); 1076 } 1077 1078 // Empty init list initializes to null 1079 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1080 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1081 llvm::Type* LTy = CGF.ConvertType(Ty); 1082 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1083 return ComplexPairTy(zeroConstant, zeroConstant); 1084 } 1085 1086 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1087 Address ArgValue = Address::invalid(); 1088 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1089 1090 if (!ArgPtr.isValid()) { 1091 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1092 llvm::Type *EltTy = 1093 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1094 llvm::Value *U = llvm::UndefValue::get(EltTy); 1095 return ComplexPairTy(U, U); 1096 } 1097 1098 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1099 E->getExprLoc()); 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Entry Point into this File 1104 //===----------------------------------------------------------------------===// 1105 1106 /// EmitComplexExpr - Emit the computation of the specified expression of 1107 /// complex type, ignoring the result. 1108 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1109 bool IgnoreImag) { 1110 assert(E && getComplexType(E->getType()) && 1111 "Invalid complex expression to emit"); 1112 1113 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1114 .Visit(const_cast<Expr *>(E)); 1115 } 1116 1117 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1118 bool isInit) { 1119 assert(E && getComplexType(E->getType()) && 1120 "Invalid complex expression to emit"); 1121 ComplexExprEmitter Emitter(*this); 1122 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1123 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1124 } 1125 1126 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1127 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1128 bool isInit) { 1129 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1130 } 1131 1132 /// EmitLoadOfComplex - Load a complex number from the specified address. 1133 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1134 SourceLocation loc) { 1135 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1136 } 1137 1138 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1139 assert(E->getOpcode() == BO_Assign); 1140 ComplexPairTy Val; // ignored 1141 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1142 if (getLangOpts().OpenMP) 1143 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1144 E->getLHS()); 1145 return LVal; 1146 } 1147 1148 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1149 const ComplexExprEmitter::BinOpInfo &); 1150 1151 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1152 switch (Op) { 1153 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1154 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1155 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1156 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1157 default: 1158 llvm_unreachable("unexpected complex compound assignment"); 1159 } 1160 } 1161 1162 LValue CodeGenFunction:: 1163 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1164 CompoundFunc Op = getComplexOp(E->getOpcode()); 1165 RValue Val; 1166 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1167 } 1168 1169 LValue CodeGenFunction:: 1170 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1171 llvm::Value *&Result) { 1172 CompoundFunc Op = getComplexOp(E->getOpcode()); 1173 RValue Val; 1174 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1175 Result = Val.getScalarVal(); 1176 return Ret; 1177 } 1178