1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 #include <algorithm>
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Complex Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
31 
32 /// Return the complex type that we are meant to emit.
33 static const ComplexType *getComplexType(QualType type) {
34   type = type.getCanonicalType();
35   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
36     return comp;
37   } else {
38     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
39   }
40 }
41 
42 namespace  {
43 class ComplexExprEmitter
44   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
45   CodeGenFunction &CGF;
46   CGBuilderTy &Builder;
47   bool IgnoreReal;
48   bool IgnoreImag;
49 public:
50   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
51     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
52   }
53 
54 
55   //===--------------------------------------------------------------------===//
56   //                               Utilities
57   //===--------------------------------------------------------------------===//
58 
59   bool TestAndClearIgnoreReal() {
60     bool I = IgnoreReal;
61     IgnoreReal = false;
62     return I;
63   }
64   bool TestAndClearIgnoreImag() {
65     bool I = IgnoreImag;
66     IgnoreImag = false;
67     return I;
68   }
69 
70   /// EmitLoadOfLValue - Given an expression with complex type that represents a
71   /// value l-value, this method emits the address of the l-value, then loads
72   /// and returns the result.
73   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
74     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
75   }
76 
77   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
78 
79   /// EmitStoreOfComplex - Store the specified real/imag parts into the
80   /// specified value pointer.
81   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
82 
83   /// Emit a cast from complex value Val to DestType.
84   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
85                                          QualType DestType, SourceLocation Loc);
86   /// Emit a cast from scalar value Val to DestType.
87   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
88                                         QualType DestType, SourceLocation Loc);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   ComplexPairTy Visit(Expr *E) {
95     ApplyDebugLocation DL(CGF, E);
96     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
97   }
98 
99   ComplexPairTy VisitStmt(Stmt *S) {
100     S->dump(CGF.getContext().getSourceManager());
101     llvm_unreachable("Stmt can't have complex result type!");
102   }
103   ComplexPairTy VisitExpr(Expr *S);
104   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
105   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
106     return Visit(GE->getResultExpr());
107   }
108   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
109   ComplexPairTy
110   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
111     return Visit(PE->getReplacement());
112   }
113   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
114     return CGF.EmitCoawaitExpr(*S).getComplexVal();
115   }
116   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
117     return CGF.EmitCoyieldExpr(*S).getComplexVal();
118   }
119   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
120     return Visit(E->getSubExpr());
121   }
122 
123   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
124                              Expr *E) {
125     assert(Constant && "not a constant");
126     if (Constant.isReference())
127       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
128                               E->getExprLoc());
129 
130     llvm::Constant *pair = Constant.getValue();
131     return ComplexPairTy(pair->getAggregateElement(0U),
132                          pair->getAggregateElement(1U));
133   }
134 
135   // l-values.
136   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
137     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
138       return emitConstant(Constant, E);
139     return EmitLoadOfLValue(E);
140   }
141   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
142     return EmitLoadOfLValue(E);
143   }
144   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
145     return CGF.EmitObjCMessageExpr(E).getComplexVal();
146   }
147   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
148   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
149     if (CodeGenFunction::ConstantEmission Constant =
150             CGF.tryEmitAsConstant(ME)) {
151       CGF.EmitIgnoredExpr(ME->getBase());
152       return emitConstant(Constant, ME);
153     }
154     return EmitLoadOfLValue(ME);
155   }
156   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
157     if (E->isGLValue())
158       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
159     return CGF.getOpaqueRValueMapping(E).getComplexVal();
160   }
161 
162   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
163     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
164   }
165 
166   // FIXME: CompoundLiteralExpr
167 
168   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
169   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
170     // Unlike for scalars, we don't have to worry about function->ptr demotion
171     // here.
172     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
173   }
174   ComplexPairTy VisitCastExpr(CastExpr *E) {
175     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
176       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
177     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
178   }
179   ComplexPairTy VisitCallExpr(const CallExpr *E);
180   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
181 
182   // Operators.
183   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
184                                    bool isInc, bool isPre) {
185     LValue LV = CGF.EmitLValue(E->getSubExpr());
186     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
187   }
188   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
189     return VisitPrePostIncDec(E, false, false);
190   }
191   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
192     return VisitPrePostIncDec(E, true, false);
193   }
194   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
195     return VisitPrePostIncDec(E, false, true);
196   }
197   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
198     return VisitPrePostIncDec(E, true, true);
199   }
200   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
201   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
202     TestAndClearIgnoreReal();
203     TestAndClearIgnoreImag();
204     return Visit(E->getSubExpr());
205   }
206   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
207   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
208   // LNot,Real,Imag never return complex.
209   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
210     return Visit(E->getSubExpr());
211   }
212   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
213     return Visit(DAE->getExpr());
214   }
215   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
216     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
217     return Visit(DIE->getExpr());
218   }
219   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
220     CGF.enterFullExpression(E);
221     CodeGenFunction::RunCleanupsScope Scope(CGF);
222     ComplexPairTy Vals = Visit(E->getSubExpr());
223     // Defend against dominance problems caused by jumps out of expression
224     // evaluation through the shared cleanup block.
225     Scope.ForceCleanup({&Vals.first, &Vals.second});
226     return Vals;
227   }
228   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
229     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
230     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
231     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
232     return ComplexPairTy(Null, Null);
233   }
234   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
235     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
236     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
237     llvm::Constant *Null =
238                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
239     return ComplexPairTy(Null, Null);
240   }
241 
242   struct BinOpInfo {
243     ComplexPairTy LHS;
244     ComplexPairTy RHS;
245     QualType Ty;  // Computation Type.
246   };
247 
248   BinOpInfo EmitBinOps(const BinaryOperator *E);
249   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
250                                   ComplexPairTy (ComplexExprEmitter::*Func)
251                                   (const BinOpInfo &),
252                                   RValue &Val);
253   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
254                                    ComplexPairTy (ComplexExprEmitter::*Func)
255                                    (const BinOpInfo &));
256 
257   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
258   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
259   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
260   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
261 
262   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
263                                         const BinOpInfo &Op);
264 
265   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
266     return EmitBinAdd(EmitBinOps(E));
267   }
268   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
269     return EmitBinSub(EmitBinOps(E));
270   }
271   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
272     return EmitBinMul(EmitBinOps(E));
273   }
274   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
275     return EmitBinDiv(EmitBinOps(E));
276   }
277 
278   // Compound assignments.
279   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
280     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
281   }
282   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
283     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
284   }
285   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
286     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
287   }
288   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
289     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
290   }
291 
292   // GCC rejects rem/and/or/xor for integer complex.
293   // Logical and/or always return int, never complex.
294 
295   // No comparisons produce a complex result.
296 
297   LValue EmitBinAssignLValue(const BinaryOperator *E,
298                              ComplexPairTy &Val);
299   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
300   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
301 
302 
303   ComplexPairTy
304   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
305   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
306 
307   ComplexPairTy VisitInitListExpr(InitListExpr *E);
308 
309   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
310     return EmitLoadOfLValue(E);
311   }
312 
313   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
314 
315   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
316     return CGF.EmitAtomicExpr(E).getComplexVal();
317   }
318 };
319 }  // end anonymous namespace.
320 
321 //===----------------------------------------------------------------------===//
322 //                                Utilities
323 //===----------------------------------------------------------------------===//
324 
325 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
326                                                  QualType complexType) {
327   CharUnits offset = CharUnits::Zero();
328   return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
329 }
330 
331 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
332                                                  QualType complexType) {
333   QualType eltType = complexType->castAs<ComplexType>()->getElementType();
334   CharUnits offset = getContext().getTypeSizeInChars(eltType);
335   return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
336 }
337 
338 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
339 /// load the real and imaginary pieces, returning them as Real/Imag.
340 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
341                                                    SourceLocation loc) {
342   assert(lvalue.isSimple() && "non-simple complex l-value?");
343   if (lvalue.getType()->isAtomicType())
344     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
345 
346   Address SrcPtr = lvalue.getAddress();
347   bool isVolatile = lvalue.isVolatileQualified();
348 
349   llvm::Value *Real = nullptr, *Imag = nullptr;
350 
351   if (!IgnoreReal || isVolatile) {
352     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
353     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
354   }
355 
356   if (!IgnoreImag || isVolatile) {
357     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
358     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
359   }
360 
361   return ComplexPairTy(Real, Imag);
362 }
363 
364 /// EmitStoreOfComplex - Store the specified real/imag parts into the
365 /// specified value pointer.
366 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
367                                             bool isInit) {
368   if (lvalue.getType()->isAtomicType() ||
369       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
370     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
371 
372   Address Ptr = lvalue.getAddress();
373   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
374   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
375 
376   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
377   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
378 }
379 
380 
381 
382 //===----------------------------------------------------------------------===//
383 //                            Visitor Methods
384 //===----------------------------------------------------------------------===//
385 
386 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
387   CGF.ErrorUnsupported(E, "complex expression");
388   llvm::Type *EltTy =
389     CGF.ConvertType(getComplexType(E->getType())->getElementType());
390   llvm::Value *U = llvm::UndefValue::get(EltTy);
391   return ComplexPairTy(U, U);
392 }
393 
394 ComplexPairTy ComplexExprEmitter::
395 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
396   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
397   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
398 }
399 
400 
401 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
402   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
403     return EmitLoadOfLValue(E);
404 
405   return CGF.EmitCallExpr(E).getComplexVal();
406 }
407 
408 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
409   CodeGenFunction::StmtExprEvaluation eval(CGF);
410   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
411   assert(RetAlloca.isValid() && "Expected complex return value");
412   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
413                           E->getExprLoc());
414 }
415 
416 /// Emit a cast from complex value Val to DestType.
417 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
418                                                            QualType SrcType,
419                                                            QualType DestType,
420                                                            SourceLocation Loc) {
421   // Get the src/dest element type.
422   SrcType = SrcType->castAs<ComplexType>()->getElementType();
423   DestType = DestType->castAs<ComplexType>()->getElementType();
424 
425   // C99 6.3.1.6: When a value of complex type is converted to another
426   // complex type, both the real and imaginary parts follow the conversion
427   // rules for the corresponding real types.
428   Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
429   Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
430   return Val;
431 }
432 
433 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
434                                                           QualType SrcType,
435                                                           QualType DestType,
436                                                           SourceLocation Loc) {
437   // Convert the input element to the element type of the complex.
438   DestType = DestType->castAs<ComplexType>()->getElementType();
439   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
440 
441   // Return (realval, 0).
442   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
443 }
444 
445 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
446                                            QualType DestTy) {
447   switch (CK) {
448   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
449 
450   // Atomic to non-atomic casts may be more than a no-op for some platforms and
451   // for some types.
452   case CK_AtomicToNonAtomic:
453   case CK_NonAtomicToAtomic:
454   case CK_NoOp:
455   case CK_LValueToRValue:
456   case CK_UserDefinedConversion:
457     return Visit(Op);
458 
459   case CK_LValueBitCast: {
460     LValue origLV = CGF.EmitLValue(Op);
461     Address V = origLV.getAddress();
462     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
463     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
464   }
465 
466   case CK_BitCast:
467   case CK_BaseToDerived:
468   case CK_DerivedToBase:
469   case CK_UncheckedDerivedToBase:
470   case CK_Dynamic:
471   case CK_ToUnion:
472   case CK_ArrayToPointerDecay:
473   case CK_FunctionToPointerDecay:
474   case CK_NullToPointer:
475   case CK_NullToMemberPointer:
476   case CK_BaseToDerivedMemberPointer:
477   case CK_DerivedToBaseMemberPointer:
478   case CK_MemberPointerToBoolean:
479   case CK_ReinterpretMemberPointer:
480   case CK_ConstructorConversion:
481   case CK_IntegralToPointer:
482   case CK_PointerToIntegral:
483   case CK_PointerToBoolean:
484   case CK_ToVoid:
485   case CK_VectorSplat:
486   case CK_IntegralCast:
487   case CK_BooleanToSignedIntegral:
488   case CK_IntegralToBoolean:
489   case CK_IntegralToFloating:
490   case CK_FloatingToIntegral:
491   case CK_FloatingToBoolean:
492   case CK_FloatingCast:
493   case CK_CPointerToObjCPointerCast:
494   case CK_BlockPointerToObjCPointerCast:
495   case CK_AnyPointerToBlockPointerCast:
496   case CK_ObjCObjectLValueCast:
497   case CK_FloatingComplexToReal:
498   case CK_FloatingComplexToBoolean:
499   case CK_IntegralComplexToReal:
500   case CK_IntegralComplexToBoolean:
501   case CK_ARCProduceObject:
502   case CK_ARCConsumeObject:
503   case CK_ARCReclaimReturnedObject:
504   case CK_ARCExtendBlockObject:
505   case CK_CopyAndAutoreleaseBlockObject:
506   case CK_BuiltinFnToFnPtr:
507   case CK_ZeroToOCLEvent:
508   case CK_ZeroToOCLQueue:
509   case CK_AddressSpaceConversion:
510   case CK_IntToOCLSampler:
511     llvm_unreachable("invalid cast kind for complex value");
512 
513   case CK_FloatingRealToComplex:
514   case CK_IntegralRealToComplex:
515     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
516                                    DestTy, Op->getExprLoc());
517 
518   case CK_FloatingComplexCast:
519   case CK_FloatingComplexToIntegralComplex:
520   case CK_IntegralComplexCast:
521   case CK_IntegralComplexToFloatingComplex:
522     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
523                                     Op->getExprLoc());
524   }
525 
526   llvm_unreachable("unknown cast resulting in complex value");
527 }
528 
529 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
530   TestAndClearIgnoreReal();
531   TestAndClearIgnoreImag();
532   ComplexPairTy Op = Visit(E->getSubExpr());
533 
534   llvm::Value *ResR, *ResI;
535   if (Op.first->getType()->isFloatingPointTy()) {
536     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
537     ResI = Builder.CreateFNeg(Op.second, "neg.i");
538   } else {
539     ResR = Builder.CreateNeg(Op.first,  "neg.r");
540     ResI = Builder.CreateNeg(Op.second, "neg.i");
541   }
542   return ComplexPairTy(ResR, ResI);
543 }
544 
545 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
546   TestAndClearIgnoreReal();
547   TestAndClearIgnoreImag();
548   // ~(a+ib) = a + i*-b
549   ComplexPairTy Op = Visit(E->getSubExpr());
550   llvm::Value *ResI;
551   if (Op.second->getType()->isFloatingPointTy())
552     ResI = Builder.CreateFNeg(Op.second, "conj.i");
553   else
554     ResI = Builder.CreateNeg(Op.second, "conj.i");
555 
556   return ComplexPairTy(Op.first, ResI);
557 }
558 
559 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
560   llvm::Value *ResR, *ResI;
561 
562   if (Op.LHS.first->getType()->isFloatingPointTy()) {
563     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
564     if (Op.LHS.second && Op.RHS.second)
565       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
566     else
567       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
568     assert(ResI && "Only one operand may be real!");
569   } else {
570     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
571     assert(Op.LHS.second && Op.RHS.second &&
572            "Both operands of integer complex operators must be complex!");
573     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
574   }
575   return ComplexPairTy(ResR, ResI);
576 }
577 
578 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
579   llvm::Value *ResR, *ResI;
580   if (Op.LHS.first->getType()->isFloatingPointTy()) {
581     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
582     if (Op.LHS.second && Op.RHS.second)
583       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
584     else
585       ResI = Op.LHS.second ? Op.LHS.second
586                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
587     assert(ResI && "Only one operand may be real!");
588   } else {
589     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
590     assert(Op.LHS.second && Op.RHS.second &&
591            "Both operands of integer complex operators must be complex!");
592     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
593   }
594   return ComplexPairTy(ResR, ResI);
595 }
596 
597 /// \brief Emit a libcall for a binary operation on complex types.
598 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
599                                                           const BinOpInfo &Op) {
600   CallArgList Args;
601   Args.add(RValue::get(Op.LHS.first),
602            Op.Ty->castAs<ComplexType>()->getElementType());
603   Args.add(RValue::get(Op.LHS.second),
604            Op.Ty->castAs<ComplexType>()->getElementType());
605   Args.add(RValue::get(Op.RHS.first),
606            Op.Ty->castAs<ComplexType>()->getElementType());
607   Args.add(RValue::get(Op.RHS.second),
608            Op.Ty->castAs<ComplexType>()->getElementType());
609 
610   // We *must* use the full CG function call building logic here because the
611   // complex type has special ABI handling. We also should not forget about
612   // special calling convention which may be used for compiler builtins.
613 
614   // We create a function qualified type to state that this call does not have
615   // any exceptions.
616   FunctionProtoType::ExtProtoInfo EPI;
617   EPI = EPI.withExceptionSpec(
618       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
619   SmallVector<QualType, 4> ArgsQTys(
620       4, Op.Ty->castAs<ComplexType>()->getElementType());
621   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
622   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
623       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
624 
625   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
626   llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
627   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
628 
629   llvm::Instruction *Call;
630   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
631   cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
632   return Res.getComplexVal();
633 }
634 
635 /// \brief Lookup the libcall name for a given floating point type complex
636 /// multiply.
637 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
638   switch (Ty->getTypeID()) {
639   default:
640     llvm_unreachable("Unsupported floating point type!");
641   case llvm::Type::HalfTyID:
642     return "__mulhc3";
643   case llvm::Type::FloatTyID:
644     return "__mulsc3";
645   case llvm::Type::DoubleTyID:
646     return "__muldc3";
647   case llvm::Type::PPC_FP128TyID:
648     return "__multc3";
649   case llvm::Type::X86_FP80TyID:
650     return "__mulxc3";
651   case llvm::Type::FP128TyID:
652     return "__multc3";
653   }
654 }
655 
656 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
657 // typed values.
658 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
659   using llvm::Value;
660   Value *ResR, *ResI;
661   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
662 
663   if (Op.LHS.first->getType()->isFloatingPointTy()) {
664     // The general formulation is:
665     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
666     //
667     // But we can fold away components which would be zero due to a real
668     // operand according to C11 Annex G.5.1p2.
669     // FIXME: C11 also provides for imaginary types which would allow folding
670     // still more of this within the type system.
671 
672     if (Op.LHS.second && Op.RHS.second) {
673       // If both operands are complex, emit the core math directly, and then
674       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
675       // to carefully re-compute the correct infinity representation if
676       // possible. The expectation is that the presence of NaNs here is
677       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
678       // This is good, because the libcall re-computes the core multiplication
679       // exactly the same as we do here and re-tests for NaNs in order to be
680       // a generic complex*complex libcall.
681 
682       // First compute the four products.
683       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
684       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
685       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
686       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
687 
688       // The real part is the difference of the first two, the imaginary part is
689       // the sum of the second.
690       ResR = Builder.CreateFSub(AC, BD, "mul_r");
691       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
692 
693       // Emit the test for the real part becoming NaN and create a branch to
694       // handle it. We test for NaN by comparing the number to itself.
695       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
696       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
697       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
698       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
699       llvm::BasicBlock *OrigBB = Branch->getParent();
700 
701       // Give hint that we very much don't expect to see NaNs.
702       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
703       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
704       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
705 
706       // Now test the imaginary part and create its branch.
707       CGF.EmitBlock(INaNBB);
708       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
709       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
710       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
711       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
712 
713       // Now emit the libcall on this slowest of the slow paths.
714       CGF.EmitBlock(LibCallBB);
715       Value *LibCallR, *LibCallI;
716       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
717           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
718       Builder.CreateBr(ContBB);
719 
720       // Finally continue execution by phi-ing together the different
721       // computation paths.
722       CGF.EmitBlock(ContBB);
723       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
724       RealPHI->addIncoming(ResR, OrigBB);
725       RealPHI->addIncoming(ResR, INaNBB);
726       RealPHI->addIncoming(LibCallR, LibCallBB);
727       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
728       ImagPHI->addIncoming(ResI, OrigBB);
729       ImagPHI->addIncoming(ResI, INaNBB);
730       ImagPHI->addIncoming(LibCallI, LibCallBB);
731       return ComplexPairTy(RealPHI, ImagPHI);
732     }
733     assert((Op.LHS.second || Op.RHS.second) &&
734            "At least one operand must be complex!");
735 
736     // If either of the operands is a real rather than a complex, the
737     // imaginary component is ignored when computing the real component of the
738     // result.
739     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
740 
741     ResI = Op.LHS.second
742                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
743                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
744   } else {
745     assert(Op.LHS.second && Op.RHS.second &&
746            "Both operands of integer complex operators must be complex!");
747     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
748     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
749     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
750 
751     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
752     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
753     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
754   }
755   return ComplexPairTy(ResR, ResI);
756 }
757 
758 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
759 // typed values.
760 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
761   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
762   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
763 
764 
765   llvm::Value *DSTr, *DSTi;
766   if (LHSr->getType()->isFloatingPointTy()) {
767     // If we have a complex operand on the RHS, we delegate to a libcall to
768     // handle all of the complexities and minimize underflow/overflow cases.
769     //
770     // FIXME: We would be able to avoid the libcall in many places if we
771     // supported imaginary types in addition to complex types.
772     if (RHSi) {
773       BinOpInfo LibCallOp = Op;
774       // If LHS was a real, supply a null imaginary part.
775       if (!LHSi)
776         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
777 
778       switch (LHSr->getType()->getTypeID()) {
779       default:
780         llvm_unreachable("Unsupported floating point type!");
781       case llvm::Type::HalfTyID:
782         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
783       case llvm::Type::FloatTyID:
784         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
785       case llvm::Type::DoubleTyID:
786         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
787       case llvm::Type::PPC_FP128TyID:
788         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
789       case llvm::Type::X86_FP80TyID:
790         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
791       case llvm::Type::FP128TyID:
792         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
793       }
794     }
795     assert(LHSi && "Can have at most one non-complex operand!");
796 
797     DSTr = Builder.CreateFDiv(LHSr, RHSr);
798     DSTi = Builder.CreateFDiv(LHSi, RHSr);
799   } else {
800     assert(Op.LHS.second && Op.RHS.second &&
801            "Both operands of integer complex operators must be complex!");
802     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
803     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
804     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
805     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
806 
807     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
808     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
809     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
810 
811     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
812     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
813     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
814 
815     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
816       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
817       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
818     } else {
819       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
820       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
821     }
822   }
823 
824   return ComplexPairTy(DSTr, DSTi);
825 }
826 
827 ComplexExprEmitter::BinOpInfo
828 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
829   TestAndClearIgnoreReal();
830   TestAndClearIgnoreImag();
831   BinOpInfo Ops;
832   if (E->getLHS()->getType()->isRealFloatingType())
833     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
834   else
835     Ops.LHS = Visit(E->getLHS());
836   if (E->getRHS()->getType()->isRealFloatingType())
837     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
838   else
839     Ops.RHS = Visit(E->getRHS());
840 
841   Ops.Ty = E->getType();
842   return Ops;
843 }
844 
845 
846 LValue ComplexExprEmitter::
847 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
848           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
849                          RValue &Val) {
850   TestAndClearIgnoreReal();
851   TestAndClearIgnoreImag();
852   QualType LHSTy = E->getLHS()->getType();
853   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
854     LHSTy = AT->getValueType();
855 
856   BinOpInfo OpInfo;
857 
858   // Load the RHS and LHS operands.
859   // __block variables need to have the rhs evaluated first, plus this should
860   // improve codegen a little.
861   OpInfo.Ty = E->getComputationResultType();
862   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
863 
864   // The RHS should have been converted to the computation type.
865   if (E->getRHS()->getType()->isRealFloatingType()) {
866     assert(
867         CGF.getContext()
868             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
869     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
870   } else {
871     assert(CGF.getContext()
872                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
873     OpInfo.RHS = Visit(E->getRHS());
874   }
875 
876   LValue LHS = CGF.EmitLValue(E->getLHS());
877 
878   // Load from the l-value and convert it.
879   SourceLocation Loc = E->getExprLoc();
880   if (LHSTy->isAnyComplexType()) {
881     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
882     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
883   } else {
884     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
885     // For floating point real operands we can directly pass the scalar form
886     // to the binary operator emission and potentially get more efficient code.
887     if (LHSTy->isRealFloatingType()) {
888       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
889         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
890       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
891     } else {
892       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
893     }
894   }
895 
896   // Expand the binary operator.
897   ComplexPairTy Result = (this->*Func)(OpInfo);
898 
899   // Truncate the result and store it into the LHS lvalue.
900   if (LHSTy->isAnyComplexType()) {
901     ComplexPairTy ResVal =
902         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
903     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
904     Val = RValue::getComplex(ResVal);
905   } else {
906     llvm::Value *ResVal =
907         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
908     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
909     Val = RValue::get(ResVal);
910   }
911 
912   return LHS;
913 }
914 
915 // Compound assignments.
916 ComplexPairTy ComplexExprEmitter::
917 EmitCompoundAssign(const CompoundAssignOperator *E,
918                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
919   RValue Val;
920   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
921 
922   // The result of an assignment in C is the assigned r-value.
923   if (!CGF.getLangOpts().CPlusPlus)
924     return Val.getComplexVal();
925 
926   // If the lvalue is non-volatile, return the computed value of the assignment.
927   if (!LV.isVolatileQualified())
928     return Val.getComplexVal();
929 
930   return EmitLoadOfLValue(LV, E->getExprLoc());
931 }
932 
933 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
934                                                ComplexPairTy &Val) {
935   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
936                                                  E->getRHS()->getType()) &&
937          "Invalid assignment");
938   TestAndClearIgnoreReal();
939   TestAndClearIgnoreImag();
940 
941   // Emit the RHS.  __block variables need the RHS evaluated first.
942   Val = Visit(E->getRHS());
943 
944   // Compute the address to store into.
945   LValue LHS = CGF.EmitLValue(E->getLHS());
946 
947   // Store the result value into the LHS lvalue.
948   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
949 
950   return LHS;
951 }
952 
953 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
954   ComplexPairTy Val;
955   LValue LV = EmitBinAssignLValue(E, Val);
956 
957   // The result of an assignment in C is the assigned r-value.
958   if (!CGF.getLangOpts().CPlusPlus)
959     return Val;
960 
961   // If the lvalue is non-volatile, return the computed value of the assignment.
962   if (!LV.isVolatileQualified())
963     return Val;
964 
965   return EmitLoadOfLValue(LV, E->getExprLoc());
966 }
967 
968 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
969   CGF.EmitIgnoredExpr(E->getLHS());
970   return Visit(E->getRHS());
971 }
972 
973 ComplexPairTy ComplexExprEmitter::
974 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
975   TestAndClearIgnoreReal();
976   TestAndClearIgnoreImag();
977   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
978   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
979   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
980 
981   // Bind the common expression if necessary.
982   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
983 
984 
985   CodeGenFunction::ConditionalEvaluation eval(CGF);
986   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
987                            CGF.getProfileCount(E));
988 
989   eval.begin(CGF);
990   CGF.EmitBlock(LHSBlock);
991   CGF.incrementProfileCounter(E);
992   ComplexPairTy LHS = Visit(E->getTrueExpr());
993   LHSBlock = Builder.GetInsertBlock();
994   CGF.EmitBranch(ContBlock);
995   eval.end(CGF);
996 
997   eval.begin(CGF);
998   CGF.EmitBlock(RHSBlock);
999   ComplexPairTy RHS = Visit(E->getFalseExpr());
1000   RHSBlock = Builder.GetInsertBlock();
1001   CGF.EmitBlock(ContBlock);
1002   eval.end(CGF);
1003 
1004   // Create a PHI node for the real part.
1005   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1006   RealPN->addIncoming(LHS.first, LHSBlock);
1007   RealPN->addIncoming(RHS.first, RHSBlock);
1008 
1009   // Create a PHI node for the imaginary part.
1010   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1011   ImagPN->addIncoming(LHS.second, LHSBlock);
1012   ImagPN->addIncoming(RHS.second, RHSBlock);
1013 
1014   return ComplexPairTy(RealPN, ImagPN);
1015 }
1016 
1017 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1018   return Visit(E->getChosenSubExpr());
1019 }
1020 
1021 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1022     bool Ignore = TestAndClearIgnoreReal();
1023     (void)Ignore;
1024     assert (Ignore == false && "init list ignored");
1025     Ignore = TestAndClearIgnoreImag();
1026     (void)Ignore;
1027     assert (Ignore == false && "init list ignored");
1028 
1029   if (E->getNumInits() == 2) {
1030     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1031     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1032     return ComplexPairTy(Real, Imag);
1033   } else if (E->getNumInits() == 1) {
1034     return Visit(E->getInit(0));
1035   }
1036 
1037   // Empty init list intializes to null
1038   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1039   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1040   llvm::Type* LTy = CGF.ConvertType(Ty);
1041   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1042   return ComplexPairTy(zeroConstant, zeroConstant);
1043 }
1044 
1045 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1046   Address ArgValue = Address::invalid();
1047   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1048 
1049   if (!ArgPtr.isValid()) {
1050     CGF.ErrorUnsupported(E, "complex va_arg expression");
1051     llvm::Type *EltTy =
1052       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1053     llvm::Value *U = llvm::UndefValue::get(EltTy);
1054     return ComplexPairTy(U, U);
1055   }
1056 
1057   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1058                           E->getExprLoc());
1059 }
1060 
1061 //===----------------------------------------------------------------------===//
1062 //                         Entry Point into this File
1063 //===----------------------------------------------------------------------===//
1064 
1065 /// EmitComplexExpr - Emit the computation of the specified expression of
1066 /// complex type, ignoring the result.
1067 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1068                                                bool IgnoreImag) {
1069   assert(E && getComplexType(E->getType()) &&
1070          "Invalid complex expression to emit");
1071 
1072   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1073       .Visit(const_cast<Expr *>(E));
1074 }
1075 
1076 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1077                                                 bool isInit) {
1078   assert(E && getComplexType(E->getType()) &&
1079          "Invalid complex expression to emit");
1080   ComplexExprEmitter Emitter(*this);
1081   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1082   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1083 }
1084 
1085 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1086 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1087                                          bool isInit) {
1088   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1089 }
1090 
1091 /// EmitLoadOfComplex - Load a complex number from the specified address.
1092 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1093                                                  SourceLocation loc) {
1094   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1095 }
1096 
1097 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1098   assert(E->getOpcode() == BO_Assign);
1099   ComplexPairTy Val; // ignored
1100   return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1101 }
1102 
1103 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1104     const ComplexExprEmitter::BinOpInfo &);
1105 
1106 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1107   switch (Op) {
1108   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1109   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1110   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1111   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1112   default:
1113     llvm_unreachable("unexpected complex compound assignment");
1114   }
1115 }
1116 
1117 LValue CodeGenFunction::
1118 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1119   CompoundFunc Op = getComplexOp(E->getOpcode());
1120   RValue Val;
1121   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1122 }
1123 
1124 LValue CodeGenFunction::
1125 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1126                                     llvm::Value *&Result) {
1127   CompoundFunc Op = getComplexOp(E->getOpcode());
1128   RValue Val;
1129   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1130   Result = Val.getScalarVal();
1131   return Ret;
1132 }
1133