1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 105 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 return Visit(GE->getResultExpr()); 107 } 108 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 109 ComplexPairTy 110 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 111 return Visit(PE->getReplacement()); 112 } 113 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 114 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 115 } 116 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 117 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 120 return Visit(E->getSubExpr()); 121 } 122 123 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 124 Expr *E) { 125 assert(Constant && "not a constant"); 126 if (Constant.isReference()) 127 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 128 E->getExprLoc()); 129 130 llvm::Constant *pair = Constant.getValue(); 131 return ComplexPairTy(pair->getAggregateElement(0U), 132 pair->getAggregateElement(1U)); 133 } 134 135 // l-values. 136 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 137 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 138 return emitConstant(Constant, E); 139 return EmitLoadOfLValue(E); 140 } 141 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 142 return EmitLoadOfLValue(E); 143 } 144 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 145 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 146 } 147 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 148 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 149 if (CodeGenFunction::ConstantEmission Constant = 150 CGF.tryEmitAsConstant(ME)) { 151 CGF.EmitIgnoredExpr(ME->getBase()); 152 return emitConstant(Constant, ME); 153 } 154 return EmitLoadOfLValue(ME); 155 } 156 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 157 if (E->isGLValue()) 158 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 159 E->getExprLoc()); 160 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 161 } 162 163 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 164 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 165 } 166 167 // FIXME: CompoundLiteralExpr 168 169 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 170 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 171 // Unlike for scalars, we don't have to worry about function->ptr demotion 172 // here. 173 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 174 } 175 ComplexPairTy VisitCastExpr(CastExpr *E) { 176 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 177 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 178 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 179 } 180 ComplexPairTy VisitCallExpr(const CallExpr *E); 181 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 182 183 // Operators. 184 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 185 bool isInc, bool isPre) { 186 LValue LV = CGF.EmitLValue(E->getSubExpr()); 187 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 188 } 189 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 190 return VisitPrePostIncDec(E, false, false); 191 } 192 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 193 return VisitPrePostIncDec(E, true, false); 194 } 195 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 196 return VisitPrePostIncDec(E, false, true); 197 } 198 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 199 return VisitPrePostIncDec(E, true, true); 200 } 201 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 202 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 203 TestAndClearIgnoreReal(); 204 TestAndClearIgnoreImag(); 205 return Visit(E->getSubExpr()); 206 } 207 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 208 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 209 // LNot,Real,Imag never return complex. 210 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 211 return Visit(E->getSubExpr()); 212 } 213 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 214 return Visit(DAE->getExpr()); 215 } 216 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 217 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 218 return Visit(DIE->getExpr()); 219 } 220 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 221 CGF.enterFullExpression(E); 222 CodeGenFunction::RunCleanupsScope Scope(CGF); 223 ComplexPairTy Vals = Visit(E->getSubExpr()); 224 // Defend against dominance problems caused by jumps out of expression 225 // evaluation through the shared cleanup block. 226 Scope.ForceCleanup({&Vals.first, &Vals.second}); 227 return Vals; 228 } 229 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 230 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 231 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 232 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 233 return ComplexPairTy(Null, Null); 234 } 235 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 236 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 237 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 238 llvm::Constant *Null = 239 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 240 return ComplexPairTy(Null, Null); 241 } 242 243 struct BinOpInfo { 244 ComplexPairTy LHS; 245 ComplexPairTy RHS; 246 QualType Ty; // Computation Type. 247 }; 248 249 BinOpInfo EmitBinOps(const BinaryOperator *E); 250 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 251 ComplexPairTy (ComplexExprEmitter::*Func) 252 (const BinOpInfo &), 253 RValue &Val); 254 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 255 ComplexPairTy (ComplexExprEmitter::*Func) 256 (const BinOpInfo &)); 257 258 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 259 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 260 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 261 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 262 263 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 264 const BinOpInfo &Op); 265 266 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 267 return EmitBinAdd(EmitBinOps(E)); 268 } 269 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 270 return EmitBinSub(EmitBinOps(E)); 271 } 272 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 273 return EmitBinMul(EmitBinOps(E)); 274 } 275 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 276 return EmitBinDiv(EmitBinOps(E)); 277 } 278 279 // Compound assignments. 280 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 281 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 282 } 283 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 284 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 285 } 286 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 287 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 288 } 289 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 290 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 291 } 292 293 // GCC rejects rem/and/or/xor for integer complex. 294 // Logical and/or always return int, never complex. 295 296 // No comparisons produce a complex result. 297 298 LValue EmitBinAssignLValue(const BinaryOperator *E, 299 ComplexPairTy &Val); 300 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 301 ComplexPairTy VisitBinComma (const BinaryOperator *E); 302 303 304 ComplexPairTy 305 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 306 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 307 308 ComplexPairTy VisitInitListExpr(InitListExpr *E); 309 310 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 311 return EmitLoadOfLValue(E); 312 } 313 314 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 315 316 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 317 return CGF.EmitAtomicExpr(E).getComplexVal(); 318 } 319 }; 320 } // end anonymous namespace. 321 322 //===----------------------------------------------------------------------===// 323 // Utilities 324 //===----------------------------------------------------------------------===// 325 326 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 327 QualType complexType) { 328 CharUnits offset = CharUnits::Zero(); 329 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 330 } 331 332 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 333 QualType complexType) { 334 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 335 CharUnits offset = getContext().getTypeSizeInChars(eltType); 336 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 337 } 338 339 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 340 /// load the real and imaginary pieces, returning them as Real/Imag. 341 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 342 SourceLocation loc) { 343 assert(lvalue.isSimple() && "non-simple complex l-value?"); 344 if (lvalue.getType()->isAtomicType()) 345 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 346 347 Address SrcPtr = lvalue.getAddress(); 348 bool isVolatile = lvalue.isVolatileQualified(); 349 350 llvm::Value *Real = nullptr, *Imag = nullptr; 351 352 if (!IgnoreReal || isVolatile) { 353 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 354 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 355 } 356 357 if (!IgnoreImag || isVolatile) { 358 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 359 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 360 } 361 362 return ComplexPairTy(Real, Imag); 363 } 364 365 /// EmitStoreOfComplex - Store the specified real/imag parts into the 366 /// specified value pointer. 367 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 368 bool isInit) { 369 if (lvalue.getType()->isAtomicType() || 370 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 371 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 372 373 Address Ptr = lvalue.getAddress(); 374 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 375 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 376 377 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 378 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 379 } 380 381 382 383 //===----------------------------------------------------------------------===// 384 // Visitor Methods 385 //===----------------------------------------------------------------------===// 386 387 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 388 CGF.ErrorUnsupported(E, "complex expression"); 389 llvm::Type *EltTy = 390 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 391 llvm::Value *U = llvm::UndefValue::get(EltTy); 392 return ComplexPairTy(U, U); 393 } 394 395 ComplexPairTy ComplexExprEmitter:: 396 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 397 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 398 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 399 } 400 401 402 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 403 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 404 return EmitLoadOfLValue(E); 405 406 return CGF.EmitCallExpr(E).getComplexVal(); 407 } 408 409 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 410 CodeGenFunction::StmtExprEvaluation eval(CGF); 411 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 412 assert(RetAlloca.isValid() && "Expected complex return value"); 413 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 414 E->getExprLoc()); 415 } 416 417 /// Emit a cast from complex value Val to DestType. 418 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 419 QualType SrcType, 420 QualType DestType, 421 SourceLocation Loc) { 422 // Get the src/dest element type. 423 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 424 DestType = DestType->castAs<ComplexType>()->getElementType(); 425 426 // C99 6.3.1.6: When a value of complex type is converted to another 427 // complex type, both the real and imaginary parts follow the conversion 428 // rules for the corresponding real types. 429 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 430 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 431 return Val; 432 } 433 434 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 435 QualType SrcType, 436 QualType DestType, 437 SourceLocation Loc) { 438 // Convert the input element to the element type of the complex. 439 DestType = DestType->castAs<ComplexType>()->getElementType(); 440 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 441 442 // Return (realval, 0). 443 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 444 } 445 446 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 447 QualType DestTy) { 448 switch (CK) { 449 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 450 451 // Atomic to non-atomic casts may be more than a no-op for some platforms and 452 // for some types. 453 case CK_AtomicToNonAtomic: 454 case CK_NonAtomicToAtomic: 455 case CK_NoOp: 456 case CK_LValueToRValue: 457 case CK_UserDefinedConversion: 458 return Visit(Op); 459 460 case CK_LValueBitCast: { 461 LValue origLV = CGF.EmitLValue(Op); 462 Address V = origLV.getAddress(); 463 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 464 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 465 } 466 467 case CK_BitCast: 468 case CK_BaseToDerived: 469 case CK_DerivedToBase: 470 case CK_UncheckedDerivedToBase: 471 case CK_Dynamic: 472 case CK_ToUnion: 473 case CK_ArrayToPointerDecay: 474 case CK_FunctionToPointerDecay: 475 case CK_NullToPointer: 476 case CK_NullToMemberPointer: 477 case CK_BaseToDerivedMemberPointer: 478 case CK_DerivedToBaseMemberPointer: 479 case CK_MemberPointerToBoolean: 480 case CK_ReinterpretMemberPointer: 481 case CK_ConstructorConversion: 482 case CK_IntegralToPointer: 483 case CK_PointerToIntegral: 484 case CK_PointerToBoolean: 485 case CK_ToVoid: 486 case CK_VectorSplat: 487 case CK_IntegralCast: 488 case CK_BooleanToSignedIntegral: 489 case CK_IntegralToBoolean: 490 case CK_IntegralToFloating: 491 case CK_FloatingToIntegral: 492 case CK_FloatingToBoolean: 493 case CK_FloatingCast: 494 case CK_CPointerToObjCPointerCast: 495 case CK_BlockPointerToObjCPointerCast: 496 case CK_AnyPointerToBlockPointerCast: 497 case CK_ObjCObjectLValueCast: 498 case CK_FloatingComplexToReal: 499 case CK_FloatingComplexToBoolean: 500 case CK_IntegralComplexToReal: 501 case CK_IntegralComplexToBoolean: 502 case CK_ARCProduceObject: 503 case CK_ARCConsumeObject: 504 case CK_ARCReclaimReturnedObject: 505 case CK_ARCExtendBlockObject: 506 case CK_CopyAndAutoreleaseBlockObject: 507 case CK_BuiltinFnToFnPtr: 508 case CK_ZeroToOCLEvent: 509 case CK_ZeroToOCLQueue: 510 case CK_AddressSpaceConversion: 511 case CK_IntToOCLSampler: 512 llvm_unreachable("invalid cast kind for complex value"); 513 514 case CK_FloatingRealToComplex: 515 case CK_IntegralRealToComplex: 516 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 517 DestTy, Op->getExprLoc()); 518 519 case CK_FloatingComplexCast: 520 case CK_FloatingComplexToIntegralComplex: 521 case CK_IntegralComplexCast: 522 case CK_IntegralComplexToFloatingComplex: 523 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 524 Op->getExprLoc()); 525 } 526 527 llvm_unreachable("unknown cast resulting in complex value"); 528 } 529 530 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 531 TestAndClearIgnoreReal(); 532 TestAndClearIgnoreImag(); 533 ComplexPairTy Op = Visit(E->getSubExpr()); 534 535 llvm::Value *ResR, *ResI; 536 if (Op.first->getType()->isFloatingPointTy()) { 537 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 538 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 539 } else { 540 ResR = Builder.CreateNeg(Op.first, "neg.r"); 541 ResI = Builder.CreateNeg(Op.second, "neg.i"); 542 } 543 return ComplexPairTy(ResR, ResI); 544 } 545 546 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 547 TestAndClearIgnoreReal(); 548 TestAndClearIgnoreImag(); 549 // ~(a+ib) = a + i*-b 550 ComplexPairTy Op = Visit(E->getSubExpr()); 551 llvm::Value *ResI; 552 if (Op.second->getType()->isFloatingPointTy()) 553 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 554 else 555 ResI = Builder.CreateNeg(Op.second, "conj.i"); 556 557 return ComplexPairTy(Op.first, ResI); 558 } 559 560 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 561 llvm::Value *ResR, *ResI; 562 563 if (Op.LHS.first->getType()->isFloatingPointTy()) { 564 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 565 if (Op.LHS.second && Op.RHS.second) 566 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 567 else 568 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 569 assert(ResI && "Only one operand may be real!"); 570 } else { 571 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 572 assert(Op.LHS.second && Op.RHS.second && 573 "Both operands of integer complex operators must be complex!"); 574 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 575 } 576 return ComplexPairTy(ResR, ResI); 577 } 578 579 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 580 llvm::Value *ResR, *ResI; 581 if (Op.LHS.first->getType()->isFloatingPointTy()) { 582 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 583 if (Op.LHS.second && Op.RHS.second) 584 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 585 else 586 ResI = Op.LHS.second ? Op.LHS.second 587 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 588 assert(ResI && "Only one operand may be real!"); 589 } else { 590 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 591 assert(Op.LHS.second && Op.RHS.second && 592 "Both operands of integer complex operators must be complex!"); 593 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 594 } 595 return ComplexPairTy(ResR, ResI); 596 } 597 598 /// Emit a libcall for a binary operation on complex types. 599 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 600 const BinOpInfo &Op) { 601 CallArgList Args; 602 Args.add(RValue::get(Op.LHS.first), 603 Op.Ty->castAs<ComplexType>()->getElementType()); 604 Args.add(RValue::get(Op.LHS.second), 605 Op.Ty->castAs<ComplexType>()->getElementType()); 606 Args.add(RValue::get(Op.RHS.first), 607 Op.Ty->castAs<ComplexType>()->getElementType()); 608 Args.add(RValue::get(Op.RHS.second), 609 Op.Ty->castAs<ComplexType>()->getElementType()); 610 611 // We *must* use the full CG function call building logic here because the 612 // complex type has special ABI handling. We also should not forget about 613 // special calling convention which may be used for compiler builtins. 614 615 // We create a function qualified type to state that this call does not have 616 // any exceptions. 617 FunctionProtoType::ExtProtoInfo EPI; 618 EPI = EPI.withExceptionSpec( 619 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 620 SmallVector<QualType, 4> ArgsQTys( 621 4, Op.Ty->castAs<ComplexType>()->getElementType()); 622 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 623 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 624 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 625 626 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 627 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 628 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 629 630 llvm::Instruction *Call; 631 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 632 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getRuntimeCC()); 633 return Res.getComplexVal(); 634 } 635 636 /// Lookup the libcall name for a given floating point type complex 637 /// multiply. 638 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 639 switch (Ty->getTypeID()) { 640 default: 641 llvm_unreachable("Unsupported floating point type!"); 642 case llvm::Type::HalfTyID: 643 return "__mulhc3"; 644 case llvm::Type::FloatTyID: 645 return "__mulsc3"; 646 case llvm::Type::DoubleTyID: 647 return "__muldc3"; 648 case llvm::Type::PPC_FP128TyID: 649 return "__multc3"; 650 case llvm::Type::X86_FP80TyID: 651 return "__mulxc3"; 652 case llvm::Type::FP128TyID: 653 return "__multc3"; 654 } 655 } 656 657 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 658 // typed values. 659 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 660 using llvm::Value; 661 Value *ResR, *ResI; 662 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 663 664 if (Op.LHS.first->getType()->isFloatingPointTy()) { 665 // The general formulation is: 666 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 667 // 668 // But we can fold away components which would be zero due to a real 669 // operand according to C11 Annex G.5.1p2. 670 // FIXME: C11 also provides for imaginary types which would allow folding 671 // still more of this within the type system. 672 673 if (Op.LHS.second && Op.RHS.second) { 674 // If both operands are complex, emit the core math directly, and then 675 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 676 // to carefully re-compute the correct infinity representation if 677 // possible. The expectation is that the presence of NaNs here is 678 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 679 // This is good, because the libcall re-computes the core multiplication 680 // exactly the same as we do here and re-tests for NaNs in order to be 681 // a generic complex*complex libcall. 682 683 // First compute the four products. 684 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 685 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 686 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 687 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 688 689 // The real part is the difference of the first two, the imaginary part is 690 // the sum of the second. 691 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 692 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 693 694 // Emit the test for the real part becoming NaN and create a branch to 695 // handle it. We test for NaN by comparing the number to itself. 696 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 697 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 698 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 699 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 700 llvm::BasicBlock *OrigBB = Branch->getParent(); 701 702 // Give hint that we very much don't expect to see NaNs. 703 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 704 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 705 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 706 707 // Now test the imaginary part and create its branch. 708 CGF.EmitBlock(INaNBB); 709 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 710 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 711 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 712 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 713 714 // Now emit the libcall on this slowest of the slow paths. 715 CGF.EmitBlock(LibCallBB); 716 Value *LibCallR, *LibCallI; 717 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 718 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 719 Builder.CreateBr(ContBB); 720 721 // Finally continue execution by phi-ing together the different 722 // computation paths. 723 CGF.EmitBlock(ContBB); 724 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 725 RealPHI->addIncoming(ResR, OrigBB); 726 RealPHI->addIncoming(ResR, INaNBB); 727 RealPHI->addIncoming(LibCallR, LibCallBB); 728 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 729 ImagPHI->addIncoming(ResI, OrigBB); 730 ImagPHI->addIncoming(ResI, INaNBB); 731 ImagPHI->addIncoming(LibCallI, LibCallBB); 732 return ComplexPairTy(RealPHI, ImagPHI); 733 } 734 assert((Op.LHS.second || Op.RHS.second) && 735 "At least one operand must be complex!"); 736 737 // If either of the operands is a real rather than a complex, the 738 // imaginary component is ignored when computing the real component of the 739 // result. 740 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 741 742 ResI = Op.LHS.second 743 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 744 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 745 } else { 746 assert(Op.LHS.second && Op.RHS.second && 747 "Both operands of integer complex operators must be complex!"); 748 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 749 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 750 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 751 752 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 753 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 754 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 755 } 756 return ComplexPairTy(ResR, ResI); 757 } 758 759 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 760 // typed values. 761 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 762 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 763 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 764 765 llvm::Value *DSTr, *DSTi; 766 if (LHSr->getType()->isFloatingPointTy()) { 767 // If we have a complex operand on the RHS and FastMath is not allowed, we 768 // delegate to a libcall to handle all of the complexities and minimize 769 // underflow/overflow cases. When FastMath is allowed we construct the 770 // divide inline using the same algorithm as for integer operands. 771 // 772 // FIXME: We would be able to avoid the libcall in many places if we 773 // supported imaginary types in addition to complex types. 774 if (RHSi && !CGF.getLangOpts().FastMath) { 775 BinOpInfo LibCallOp = Op; 776 // If LHS was a real, supply a null imaginary part. 777 if (!LHSi) 778 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 779 780 switch (LHSr->getType()->getTypeID()) { 781 default: 782 llvm_unreachable("Unsupported floating point type!"); 783 case llvm::Type::HalfTyID: 784 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 785 case llvm::Type::FloatTyID: 786 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 787 case llvm::Type::DoubleTyID: 788 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 789 case llvm::Type::PPC_FP128TyID: 790 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 791 case llvm::Type::X86_FP80TyID: 792 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 793 case llvm::Type::FP128TyID: 794 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 795 } 796 } else if (RHSi) { 797 if (!LHSi) 798 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 799 800 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 801 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 802 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 803 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 804 805 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 806 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 807 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 808 809 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 810 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 811 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 812 813 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 814 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 815 } else { 816 assert(LHSi && "Can have at most one non-complex operand!"); 817 818 DSTr = Builder.CreateFDiv(LHSr, RHSr); 819 DSTi = Builder.CreateFDiv(LHSi, RHSr); 820 } 821 } else { 822 assert(Op.LHS.second && Op.RHS.second && 823 "Both operands of integer complex operators must be complex!"); 824 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 825 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 826 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 827 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 828 829 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 830 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 831 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 832 833 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 834 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 835 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 836 837 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 838 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 839 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 840 } else { 841 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 842 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 843 } 844 } 845 846 return ComplexPairTy(DSTr, DSTi); 847 } 848 849 ComplexExprEmitter::BinOpInfo 850 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 851 TestAndClearIgnoreReal(); 852 TestAndClearIgnoreImag(); 853 BinOpInfo Ops; 854 if (E->getLHS()->getType()->isRealFloatingType()) 855 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 856 else 857 Ops.LHS = Visit(E->getLHS()); 858 if (E->getRHS()->getType()->isRealFloatingType()) 859 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 860 else 861 Ops.RHS = Visit(E->getRHS()); 862 863 Ops.Ty = E->getType(); 864 return Ops; 865 } 866 867 868 LValue ComplexExprEmitter:: 869 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 870 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 871 RValue &Val) { 872 TestAndClearIgnoreReal(); 873 TestAndClearIgnoreImag(); 874 QualType LHSTy = E->getLHS()->getType(); 875 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 876 LHSTy = AT->getValueType(); 877 878 BinOpInfo OpInfo; 879 880 // Load the RHS and LHS operands. 881 // __block variables need to have the rhs evaluated first, plus this should 882 // improve codegen a little. 883 OpInfo.Ty = E->getComputationResultType(); 884 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 885 886 // The RHS should have been converted to the computation type. 887 if (E->getRHS()->getType()->isRealFloatingType()) { 888 assert( 889 CGF.getContext() 890 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 891 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 892 } else { 893 assert(CGF.getContext() 894 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 895 OpInfo.RHS = Visit(E->getRHS()); 896 } 897 898 LValue LHS = CGF.EmitLValue(E->getLHS()); 899 900 // Load from the l-value and convert it. 901 SourceLocation Loc = E->getExprLoc(); 902 if (LHSTy->isAnyComplexType()) { 903 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 904 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 905 } else { 906 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 907 // For floating point real operands we can directly pass the scalar form 908 // to the binary operator emission and potentially get more efficient code. 909 if (LHSTy->isRealFloatingType()) { 910 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 911 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 912 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 913 } else { 914 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 915 } 916 } 917 918 // Expand the binary operator. 919 ComplexPairTy Result = (this->*Func)(OpInfo); 920 921 // Truncate the result and store it into the LHS lvalue. 922 if (LHSTy->isAnyComplexType()) { 923 ComplexPairTy ResVal = 924 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 925 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 926 Val = RValue::getComplex(ResVal); 927 } else { 928 llvm::Value *ResVal = 929 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 930 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 931 Val = RValue::get(ResVal); 932 } 933 934 return LHS; 935 } 936 937 // Compound assignments. 938 ComplexPairTy ComplexExprEmitter:: 939 EmitCompoundAssign(const CompoundAssignOperator *E, 940 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 941 RValue Val; 942 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 943 944 // The result of an assignment in C is the assigned r-value. 945 if (!CGF.getLangOpts().CPlusPlus) 946 return Val.getComplexVal(); 947 948 // If the lvalue is non-volatile, return the computed value of the assignment. 949 if (!LV.isVolatileQualified()) 950 return Val.getComplexVal(); 951 952 return EmitLoadOfLValue(LV, E->getExprLoc()); 953 } 954 955 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 956 ComplexPairTy &Val) { 957 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 958 E->getRHS()->getType()) && 959 "Invalid assignment"); 960 TestAndClearIgnoreReal(); 961 TestAndClearIgnoreImag(); 962 963 // Emit the RHS. __block variables need the RHS evaluated first. 964 Val = Visit(E->getRHS()); 965 966 // Compute the address to store into. 967 LValue LHS = CGF.EmitLValue(E->getLHS()); 968 969 // Store the result value into the LHS lvalue. 970 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 971 972 return LHS; 973 } 974 975 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 976 ComplexPairTy Val; 977 LValue LV = EmitBinAssignLValue(E, Val); 978 979 // The result of an assignment in C is the assigned r-value. 980 if (!CGF.getLangOpts().CPlusPlus) 981 return Val; 982 983 // If the lvalue is non-volatile, return the computed value of the assignment. 984 if (!LV.isVolatileQualified()) 985 return Val; 986 987 return EmitLoadOfLValue(LV, E->getExprLoc()); 988 } 989 990 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 991 CGF.EmitIgnoredExpr(E->getLHS()); 992 return Visit(E->getRHS()); 993 } 994 995 ComplexPairTy ComplexExprEmitter:: 996 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 997 TestAndClearIgnoreReal(); 998 TestAndClearIgnoreImag(); 999 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1000 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1001 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1002 1003 // Bind the common expression if necessary. 1004 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1005 1006 1007 CodeGenFunction::ConditionalEvaluation eval(CGF); 1008 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1009 CGF.getProfileCount(E)); 1010 1011 eval.begin(CGF); 1012 CGF.EmitBlock(LHSBlock); 1013 CGF.incrementProfileCounter(E); 1014 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1015 LHSBlock = Builder.GetInsertBlock(); 1016 CGF.EmitBranch(ContBlock); 1017 eval.end(CGF); 1018 1019 eval.begin(CGF); 1020 CGF.EmitBlock(RHSBlock); 1021 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1022 RHSBlock = Builder.GetInsertBlock(); 1023 CGF.EmitBlock(ContBlock); 1024 eval.end(CGF); 1025 1026 // Create a PHI node for the real part. 1027 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1028 RealPN->addIncoming(LHS.first, LHSBlock); 1029 RealPN->addIncoming(RHS.first, RHSBlock); 1030 1031 // Create a PHI node for the imaginary part. 1032 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1033 ImagPN->addIncoming(LHS.second, LHSBlock); 1034 ImagPN->addIncoming(RHS.second, RHSBlock); 1035 1036 return ComplexPairTy(RealPN, ImagPN); 1037 } 1038 1039 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1040 return Visit(E->getChosenSubExpr()); 1041 } 1042 1043 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1044 bool Ignore = TestAndClearIgnoreReal(); 1045 (void)Ignore; 1046 assert (Ignore == false && "init list ignored"); 1047 Ignore = TestAndClearIgnoreImag(); 1048 (void)Ignore; 1049 assert (Ignore == false && "init list ignored"); 1050 1051 if (E->getNumInits() == 2) { 1052 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1053 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1054 return ComplexPairTy(Real, Imag); 1055 } else if (E->getNumInits() == 1) { 1056 return Visit(E->getInit(0)); 1057 } 1058 1059 // Empty init list initializes to null 1060 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1061 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1062 llvm::Type* LTy = CGF.ConvertType(Ty); 1063 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1064 return ComplexPairTy(zeroConstant, zeroConstant); 1065 } 1066 1067 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1068 Address ArgValue = Address::invalid(); 1069 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1070 1071 if (!ArgPtr.isValid()) { 1072 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1073 llvm::Type *EltTy = 1074 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1075 llvm::Value *U = llvm::UndefValue::get(EltTy); 1076 return ComplexPairTy(U, U); 1077 } 1078 1079 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1080 E->getExprLoc()); 1081 } 1082 1083 //===----------------------------------------------------------------------===// 1084 // Entry Point into this File 1085 //===----------------------------------------------------------------------===// 1086 1087 /// EmitComplexExpr - Emit the computation of the specified expression of 1088 /// complex type, ignoring the result. 1089 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1090 bool IgnoreImag) { 1091 assert(E && getComplexType(E->getType()) && 1092 "Invalid complex expression to emit"); 1093 1094 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1095 .Visit(const_cast<Expr *>(E)); 1096 } 1097 1098 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1099 bool isInit) { 1100 assert(E && getComplexType(E->getType()) && 1101 "Invalid complex expression to emit"); 1102 ComplexExprEmitter Emitter(*this); 1103 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1104 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1105 } 1106 1107 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1108 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1109 bool isInit) { 1110 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1111 } 1112 1113 /// EmitLoadOfComplex - Load a complex number from the specified address. 1114 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1115 SourceLocation loc) { 1116 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1117 } 1118 1119 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1120 assert(E->getOpcode() == BO_Assign); 1121 ComplexPairTy Val; // ignored 1122 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1123 } 1124 1125 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1126 const ComplexExprEmitter::BinOpInfo &); 1127 1128 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1129 switch (Op) { 1130 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1131 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1132 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1133 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1134 default: 1135 llvm_unreachable("unexpected complex compound assignment"); 1136 } 1137 } 1138 1139 LValue CodeGenFunction:: 1140 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1141 CompoundFunc Op = getComplexOp(E->getOpcode()); 1142 RValue Val; 1143 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1144 } 1145 1146 LValue CodeGenFunction:: 1147 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1148 llvm::Value *&Result) { 1149 CompoundFunc Op = getComplexOp(E->getOpcode()); 1150 RValue Val; 1151 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1152 Result = Val.getScalarVal(); 1153 return Ret; 1154 } 1155