1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/Metadata.h" 25 #include <algorithm> 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Complex Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 34 35 /// Return the complex type that we are meant to emit. 36 static const ComplexType *getComplexType(QualType type) { 37 type = type.getCanonicalType(); 38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 39 return comp; 40 } else { 41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 42 } 43 } 44 45 namespace { 46 class ComplexExprEmitter 47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 48 CodeGenFunction &CGF; 49 CGBuilderTy &Builder; 50 bool IgnoreReal; 51 bool IgnoreImag; 52 public: 53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 55 } 56 57 58 //===--------------------------------------------------------------------===// 59 // Utilities 60 //===--------------------------------------------------------------------===// 61 62 bool TestAndClearIgnoreReal() { 63 bool I = IgnoreReal; 64 IgnoreReal = false; 65 return I; 66 } 67 bool TestAndClearIgnoreImag() { 68 bool I = IgnoreImag; 69 IgnoreImag = false; 70 return I; 71 } 72 73 /// EmitLoadOfLValue - Given an expression with complex type that represents a 74 /// value l-value, this method emits the address of the l-value, then loads 75 /// and returns the result. 76 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 78 } 79 80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 81 82 /// EmitStoreOfComplex - Store the specified real/imag parts into the 83 /// specified value pointer. 84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit, 85 SourceLocation DbgLoc); 86 87 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 88 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 89 QualType DestType); 90 /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType. 91 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 92 QualType DestType); 93 94 //===--------------------------------------------------------------------===// 95 // Visitor Methods 96 //===--------------------------------------------------------------------===// 97 98 ComplexPairTy Visit(Expr *E) { 99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 100 } 101 102 ComplexPairTy VisitStmt(Stmt *S) { 103 S->dump(CGF.getContext().getSourceManager()); 104 llvm_unreachable("Stmt can't have complex result type!"); 105 } 106 ComplexPairTy VisitExpr(Expr *S); 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 117 // l-values. 118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 120 if (result.isReference()) 121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 122 E->getExprLoc()); 123 124 llvm::Constant *pair = result.getValue(); 125 return ComplexPairTy(pair->getAggregateElement(0U), 126 pair->getAggregateElement(1U)); 127 } 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 131 return EmitLoadOfLValue(E); 132 } 133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 134 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 135 } 136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 139 if (E->isGLValue()) 140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 141 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 142 } 143 144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 145 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 146 } 147 148 // FIXME: CompoundLiteralExpr 149 150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 // Unlike for scalars, we don't have to worry about function->ptr demotion 153 // here. 154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 155 } 156 ComplexPairTy VisitCastExpr(CastExpr *E) { 157 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 158 } 159 ComplexPairTy VisitCallExpr(const CallExpr *E); 160 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 161 162 // Operators. 163 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 164 bool isInc, bool isPre) { 165 LValue LV = CGF.EmitLValue(E->getSubExpr()); 166 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 167 } 168 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 169 return VisitPrePostIncDec(E, false, false); 170 } 171 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 172 return VisitPrePostIncDec(E, true, false); 173 } 174 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 175 return VisitPrePostIncDec(E, false, true); 176 } 177 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 178 return VisitPrePostIncDec(E, true, true); 179 } 180 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 181 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 182 TestAndClearIgnoreReal(); 183 TestAndClearIgnoreImag(); 184 return Visit(E->getSubExpr()); 185 } 186 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 187 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 188 // LNot,Real,Imag never return complex. 189 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 190 return Visit(E->getSubExpr()); 191 } 192 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 193 return Visit(DAE->getExpr()); 194 } 195 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 196 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 197 return Visit(DIE->getExpr()); 198 } 199 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 200 CGF.enterFullExpression(E); 201 CodeGenFunction::RunCleanupsScope Scope(CGF); 202 return Visit(E->getSubExpr()); 203 } 204 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 205 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 206 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 207 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 208 return ComplexPairTy(Null, Null); 209 } 210 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 211 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 212 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 213 llvm::Constant *Null = 214 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 215 return ComplexPairTy(Null, Null); 216 } 217 218 struct BinOpInfo { 219 ComplexPairTy LHS; 220 ComplexPairTy RHS; 221 QualType Ty; // Computation Type. 222 }; 223 224 BinOpInfo EmitBinOps(const BinaryOperator *E); 225 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 226 ComplexPairTy (ComplexExprEmitter::*Func) 227 (const BinOpInfo &), 228 RValue &Val); 229 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 230 ComplexPairTy (ComplexExprEmitter::*Func) 231 (const BinOpInfo &)); 232 233 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 234 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 235 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 236 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 237 238 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 239 const BinOpInfo &Op); 240 241 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 242 return EmitBinAdd(EmitBinOps(E)); 243 } 244 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 245 return EmitBinSub(EmitBinOps(E)); 246 } 247 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 248 return EmitBinMul(EmitBinOps(E)); 249 } 250 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 251 return EmitBinDiv(EmitBinOps(E)); 252 } 253 254 // Compound assignments. 255 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 256 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 257 } 258 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 259 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 260 } 261 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 262 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 263 } 264 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 265 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 266 } 267 268 // GCC rejects rem/and/or/xor for integer complex. 269 // Logical and/or always return int, never complex. 270 271 // No comparisons produce a complex result. 272 273 LValue EmitBinAssignLValue(const BinaryOperator *E, 274 ComplexPairTy &Val); 275 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 276 ComplexPairTy VisitBinComma (const BinaryOperator *E); 277 278 279 ComplexPairTy 280 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 281 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 282 283 ComplexPairTy VisitInitListExpr(InitListExpr *E); 284 285 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 286 return EmitLoadOfLValue(E); 287 } 288 289 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 290 291 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 292 return CGF.EmitAtomicExpr(E).getComplexVal(); 293 } 294 }; 295 } // end anonymous namespace. 296 297 //===----------------------------------------------------------------------===// 298 // Utilities 299 //===----------------------------------------------------------------------===// 300 301 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 302 /// load the real and imaginary pieces, returning them as Real/Imag. 303 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 304 SourceLocation loc) { 305 assert(lvalue.isSimple() && "non-simple complex l-value?"); 306 if (lvalue.getType()->isAtomicType()) 307 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 308 309 llvm::Value *SrcPtr = lvalue.getAddress(); 310 bool isVolatile = lvalue.isVolatileQualified(); 311 unsigned AlignR = lvalue.getAlignment().getQuantity(); 312 ASTContext &C = CGF.getContext(); 313 QualType ComplexTy = lvalue.getType(); 314 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 315 unsigned AlignI = std::min(AlignR, ComplexAlign); 316 317 llvm::Value *Real=nullptr, *Imag=nullptr; 318 319 if (!IgnoreReal || isVolatile) { 320 llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0, 321 SrcPtr->getName() + ".realp"); 322 Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile, 323 SrcPtr->getName() + ".real"); 324 } 325 326 if (!IgnoreImag || isVolatile) { 327 llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1, 328 SrcPtr->getName() + ".imagp"); 329 Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile, 330 SrcPtr->getName() + ".imag"); 331 } 332 return ComplexPairTy(Real, Imag); 333 } 334 335 /// EmitStoreOfComplex - Store the specified real/imag parts into the 336 /// specified value pointer. 337 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 338 bool isInit, 339 SourceLocation DbgLoc) { 340 if (auto *DI = CGF.getDebugInfo()) 341 DI->EmitLocation(CGF.Builder, DbgLoc); 342 343 if (lvalue.getType()->isAtomicType()) 344 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 345 346 llvm::Value *Ptr = lvalue.getAddress(); 347 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real"); 348 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag"); 349 unsigned AlignR = lvalue.getAlignment().getQuantity(); 350 ASTContext &C = CGF.getContext(); 351 QualType ComplexTy = lvalue.getType(); 352 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 353 unsigned AlignI = std::min(AlignR, ComplexAlign); 354 355 Builder.CreateAlignedStore(Val.first, RealPtr, AlignR, 356 lvalue.isVolatileQualified()); 357 Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI, 358 lvalue.isVolatileQualified()); 359 } 360 361 362 363 //===----------------------------------------------------------------------===// 364 // Visitor Methods 365 //===----------------------------------------------------------------------===// 366 367 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 368 CGF.ErrorUnsupported(E, "complex expression"); 369 llvm::Type *EltTy = 370 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 371 llvm::Value *U = llvm::UndefValue::get(EltTy); 372 return ComplexPairTy(U, U); 373 } 374 375 ComplexPairTy ComplexExprEmitter:: 376 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 377 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 378 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 379 } 380 381 382 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 383 if (E->getCallReturnType()->isReferenceType()) 384 return EmitLoadOfLValue(E); 385 386 return CGF.EmitCallExpr(E).getComplexVal(); 387 } 388 389 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 390 CodeGenFunction::StmtExprEvaluation eval(CGF); 391 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 392 assert(RetAlloca && "Expected complex return value"); 393 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 394 E->getExprLoc()); 395 } 396 397 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 398 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 399 QualType SrcType, 400 QualType DestType) { 401 // Get the src/dest element type. 402 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 403 DestType = DestType->castAs<ComplexType>()->getElementType(); 404 405 // C99 6.3.1.6: When a value of complex type is converted to another 406 // complex type, both the real and imaginary parts follow the conversion 407 // rules for the corresponding real types. 408 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType); 409 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType); 410 return Val; 411 } 412 413 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 414 QualType SrcType, 415 QualType DestType) { 416 // Convert the input element to the element type of the complex. 417 DestType = DestType->castAs<ComplexType>()->getElementType(); 418 Val = CGF.EmitScalarConversion(Val, SrcType, DestType); 419 420 // Return (realval, 0). 421 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 422 } 423 424 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 425 QualType DestTy) { 426 switch (CK) { 427 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 428 429 // Atomic to non-atomic casts may be more than a no-op for some platforms and 430 // for some types. 431 case CK_AtomicToNonAtomic: 432 case CK_NonAtomicToAtomic: 433 case CK_NoOp: 434 case CK_LValueToRValue: 435 case CK_UserDefinedConversion: 436 return Visit(Op); 437 438 case CK_LValueBitCast: { 439 LValue origLV = CGF.EmitLValue(Op); 440 llvm::Value *V = origLV.getAddress(); 441 V = Builder.CreateBitCast(V, 442 CGF.ConvertType(CGF.getContext().getPointerType(DestTy))); 443 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy, 444 origLV.getAlignment()), 445 Op->getExprLoc()); 446 } 447 448 case CK_BitCast: 449 case CK_BaseToDerived: 450 case CK_DerivedToBase: 451 case CK_UncheckedDerivedToBase: 452 case CK_Dynamic: 453 case CK_ToUnion: 454 case CK_ArrayToPointerDecay: 455 case CK_FunctionToPointerDecay: 456 case CK_NullToPointer: 457 case CK_NullToMemberPointer: 458 case CK_BaseToDerivedMemberPointer: 459 case CK_DerivedToBaseMemberPointer: 460 case CK_MemberPointerToBoolean: 461 case CK_ReinterpretMemberPointer: 462 case CK_ConstructorConversion: 463 case CK_IntegralToPointer: 464 case CK_PointerToIntegral: 465 case CK_PointerToBoolean: 466 case CK_ToVoid: 467 case CK_VectorSplat: 468 case CK_IntegralCast: 469 case CK_IntegralToBoolean: 470 case CK_IntegralToFloating: 471 case CK_FloatingToIntegral: 472 case CK_FloatingToBoolean: 473 case CK_FloatingCast: 474 case CK_CPointerToObjCPointerCast: 475 case CK_BlockPointerToObjCPointerCast: 476 case CK_AnyPointerToBlockPointerCast: 477 case CK_ObjCObjectLValueCast: 478 case CK_FloatingComplexToReal: 479 case CK_FloatingComplexToBoolean: 480 case CK_IntegralComplexToReal: 481 case CK_IntegralComplexToBoolean: 482 case CK_ARCProduceObject: 483 case CK_ARCConsumeObject: 484 case CK_ARCReclaimReturnedObject: 485 case CK_ARCExtendBlockObject: 486 case CK_CopyAndAutoreleaseBlockObject: 487 case CK_BuiltinFnToFnPtr: 488 case CK_ZeroToOCLEvent: 489 case CK_AddressSpaceConversion: 490 llvm_unreachable("invalid cast kind for complex value"); 491 492 case CK_FloatingRealToComplex: 493 case CK_IntegralRealToComplex: 494 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), 495 Op->getType(), DestTy); 496 497 case CK_FloatingComplexCast: 498 case CK_FloatingComplexToIntegralComplex: 499 case CK_IntegralComplexCast: 500 case CK_IntegralComplexToFloatingComplex: 501 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy); 502 } 503 504 llvm_unreachable("unknown cast resulting in complex value"); 505 } 506 507 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 508 TestAndClearIgnoreReal(); 509 TestAndClearIgnoreImag(); 510 ComplexPairTy Op = Visit(E->getSubExpr()); 511 512 llvm::Value *ResR, *ResI; 513 if (Op.first->getType()->isFloatingPointTy()) { 514 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 515 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 516 } else { 517 ResR = Builder.CreateNeg(Op.first, "neg.r"); 518 ResI = Builder.CreateNeg(Op.second, "neg.i"); 519 } 520 return ComplexPairTy(ResR, ResI); 521 } 522 523 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 524 TestAndClearIgnoreReal(); 525 TestAndClearIgnoreImag(); 526 // ~(a+ib) = a + i*-b 527 ComplexPairTy Op = Visit(E->getSubExpr()); 528 llvm::Value *ResI; 529 if (Op.second->getType()->isFloatingPointTy()) 530 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 531 else 532 ResI = Builder.CreateNeg(Op.second, "conj.i"); 533 534 return ComplexPairTy(Op.first, ResI); 535 } 536 537 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 538 llvm::Value *ResR, *ResI; 539 540 if (Op.LHS.first->getType()->isFloatingPointTy()) { 541 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 542 if (Op.LHS.second && Op.RHS.second) 543 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 544 else 545 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 546 assert(ResI && "Only one operand may be real!"); 547 } else { 548 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 549 assert(Op.LHS.second && Op.RHS.second && 550 "Both operands of integer complex operators must be complex!"); 551 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 552 } 553 return ComplexPairTy(ResR, ResI); 554 } 555 556 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 557 llvm::Value *ResR, *ResI; 558 if (Op.LHS.first->getType()->isFloatingPointTy()) { 559 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 560 if (Op.LHS.second && Op.RHS.second) 561 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 562 else 563 ResI = Op.LHS.second ? Op.LHS.second 564 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 565 assert(ResI && "Only one operand may be real!"); 566 } else { 567 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 568 assert(Op.LHS.second && Op.RHS.second && 569 "Both operands of integer complex operators must be complex!"); 570 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 571 } 572 return ComplexPairTy(ResR, ResI); 573 } 574 575 /// \brief Emit a libcall for a binary operation on complex types. 576 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 577 const BinOpInfo &Op) { 578 CallArgList Args; 579 Args.add(RValue::get(Op.LHS.first), 580 Op.Ty->castAs<ComplexType>()->getElementType()); 581 Args.add(RValue::get(Op.LHS.second), 582 Op.Ty->castAs<ComplexType>()->getElementType()); 583 Args.add(RValue::get(Op.RHS.first), 584 Op.Ty->castAs<ComplexType>()->getElementType()); 585 Args.add(RValue::get(Op.RHS.second), 586 Op.Ty->castAs<ComplexType>()->getElementType()); 587 588 // We *must* use the full CG function call building logic here because the 589 // complex type has special ABI handling. We also should not forget about 590 // special calling convention which may be used for compiler builtins. 591 const CGFunctionInfo &FuncInfo = 592 CGF.CGM.getTypes().arrangeFreeFunctionCall( 593 Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */), 594 RequiredArgs::All); 595 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 596 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 597 llvm::Instruction *Call; 598 599 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 600 nullptr, &Call); 601 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 602 cast<llvm::CallInst>(Call)->setDoesNotThrow(); 603 604 return Res.getComplexVal(); 605 } 606 607 /// \brief Lookup the libcall name for a given floating point type complex 608 /// multiply. 609 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 610 switch (Ty->getTypeID()) { 611 default: 612 llvm_unreachable("Unsupported floating point type!"); 613 case llvm::Type::HalfTyID: 614 return "__mulhc3"; 615 case llvm::Type::FloatTyID: 616 return "__mulsc3"; 617 case llvm::Type::DoubleTyID: 618 return "__muldc3"; 619 case llvm::Type::PPC_FP128TyID: 620 return "__multc3"; 621 case llvm::Type::X86_FP80TyID: 622 return "__mulxc3"; 623 case llvm::Type::FP128TyID: 624 return "__multc3"; 625 } 626 } 627 628 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 629 // typed values. 630 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 631 using llvm::Value; 632 Value *ResR, *ResI; 633 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 634 635 if (Op.LHS.first->getType()->isFloatingPointTy()) { 636 // The general formulation is: 637 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 638 // 639 // But we can fold away components which would be zero due to a real 640 // operand according to C11 Annex G.5.1p2. 641 // FIXME: C11 also provides for imaginary types which would allow folding 642 // still more of this within the type system. 643 644 if (Op.LHS.second && Op.RHS.second) { 645 // If both operands are complex, emit the core math directly, and then 646 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 647 // to carefully re-compute the correct infinity representation if 648 // possible. The expectation is that the presence of NaNs here is 649 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 650 // This is good, because the libcall re-computes the core multiplication 651 // exactly the same as we do here and re-tests for NaNs in order to be 652 // a generic complex*complex libcall. 653 654 // First compute the four products. 655 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 656 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 657 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 658 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 659 660 // The real part is the difference of the first two, the imaginary part is 661 // the sum of the second. 662 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 663 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 664 665 // Emit the test for the real part becoming NaN and create a branch to 666 // handle it. We test for NaN by comparing the number to itself. 667 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 668 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 669 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 670 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 671 llvm::BasicBlock *OrigBB = Branch->getParent(); 672 673 // Give hint that we very much don't expect to see NaNs. 674 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 675 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 676 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 677 678 // Now test the imaginary part and create its branch. 679 CGF.EmitBlock(INaNBB); 680 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 681 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 682 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 683 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 684 685 // Now emit the libcall on this slowest of the slow paths. 686 CGF.EmitBlock(LibCallBB); 687 Value *LibCallR, *LibCallI; 688 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 689 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 690 Builder.CreateBr(ContBB); 691 692 // Finally continue execution by phi-ing together the different 693 // computation paths. 694 CGF.EmitBlock(ContBB); 695 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 696 RealPHI->addIncoming(ResR, OrigBB); 697 RealPHI->addIncoming(ResR, INaNBB); 698 RealPHI->addIncoming(LibCallR, LibCallBB); 699 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 700 ImagPHI->addIncoming(ResI, OrigBB); 701 ImagPHI->addIncoming(ResI, INaNBB); 702 ImagPHI->addIncoming(LibCallI, LibCallBB); 703 return ComplexPairTy(RealPHI, ImagPHI); 704 } 705 assert((Op.LHS.second || Op.RHS.second) && 706 "At least one operand must be complex!"); 707 708 // If either of the operands is a real rather than a complex, the 709 // imaginary component is ignored when computing the real component of the 710 // result. 711 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 712 713 ResI = Op.LHS.second 714 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 715 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 716 } else { 717 assert(Op.LHS.second && Op.RHS.second && 718 "Both operands of integer complex operators must be complex!"); 719 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 720 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 721 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 722 723 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 724 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 725 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 726 } 727 return ComplexPairTy(ResR, ResI); 728 } 729 730 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 731 // typed values. 732 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 733 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 734 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 735 736 737 llvm::Value *DSTr, *DSTi; 738 if (LHSr->getType()->isFloatingPointTy()) { 739 // If we have a complex operand on the RHS, we delegate to a libcall to 740 // handle all of the complexities and minimize underflow/overflow cases. 741 // 742 // FIXME: We would be able to avoid the libcall in many places if we 743 // supported imaginary types in addition to complex types. 744 if (RHSi) { 745 BinOpInfo LibCallOp = Op; 746 // If LHS was a real, supply a null imaginary part. 747 if (!LHSi) 748 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 749 750 StringRef LibCallName; 751 switch (LHSr->getType()->getTypeID()) { 752 default: 753 llvm_unreachable("Unsupported floating point type!"); 754 case llvm::Type::HalfTyID: 755 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 756 case llvm::Type::FloatTyID: 757 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 758 case llvm::Type::DoubleTyID: 759 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 760 case llvm::Type::PPC_FP128TyID: 761 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 762 case llvm::Type::X86_FP80TyID: 763 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 764 case llvm::Type::FP128TyID: 765 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 766 } 767 } 768 assert(LHSi && "Can have at most one non-complex operand!"); 769 770 DSTr = Builder.CreateFDiv(LHSr, RHSr); 771 DSTi = Builder.CreateFDiv(LHSi, RHSr); 772 } else { 773 assert(Op.LHS.second && Op.RHS.second && 774 "Both operands of integer complex operators must be complex!"); 775 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 776 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 777 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 778 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 779 780 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 781 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 782 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 783 784 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 785 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 786 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 787 788 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 789 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 790 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 791 } else { 792 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 793 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 794 } 795 } 796 797 return ComplexPairTy(DSTr, DSTi); 798 } 799 800 ComplexExprEmitter::BinOpInfo 801 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 802 TestAndClearIgnoreReal(); 803 TestAndClearIgnoreImag(); 804 BinOpInfo Ops; 805 if (E->getLHS()->getType()->isRealFloatingType()) 806 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 807 else 808 Ops.LHS = Visit(E->getLHS()); 809 if (E->getRHS()->getType()->isRealFloatingType()) 810 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 811 else 812 Ops.RHS = Visit(E->getRHS()); 813 814 Ops.Ty = E->getType(); 815 return Ops; 816 } 817 818 819 LValue ComplexExprEmitter:: 820 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 821 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 822 RValue &Val) { 823 TestAndClearIgnoreReal(); 824 TestAndClearIgnoreImag(); 825 QualType LHSTy = E->getLHS()->getType(); 826 827 BinOpInfo OpInfo; 828 829 // Load the RHS and LHS operands. 830 // __block variables need to have the rhs evaluated first, plus this should 831 // improve codegen a little. 832 OpInfo.Ty = E->getComputationResultType(); 833 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 834 835 // The RHS should have been converted to the computation type. 836 if (E->getRHS()->getType()->isRealFloatingType()) { 837 assert( 838 CGF.getContext() 839 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 840 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 841 } else { 842 assert(CGF.getContext() 843 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 844 OpInfo.RHS = Visit(E->getRHS()); 845 } 846 847 LValue LHS = CGF.EmitLValue(E->getLHS()); 848 849 // Load from the l-value and convert it. 850 if (LHSTy->isAnyComplexType()) { 851 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc()); 852 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 853 } else { 854 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc()); 855 // For floating point real operands we can directly pass the scalar form 856 // to the binary operator emission and potentially get more efficient code. 857 if (LHSTy->isRealFloatingType()) { 858 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 859 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy); 860 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 861 } else { 862 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 863 } 864 } 865 866 // Expand the binary operator. 867 ComplexPairTy Result = (this->*Func)(OpInfo); 868 869 // Truncate the result and store it into the LHS lvalue. 870 if (LHSTy->isAnyComplexType()) { 871 ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); 872 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false, E->getLocStart()); 873 Val = RValue::getComplex(ResVal); 874 } else { 875 llvm::Value *ResVal = 876 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy); 877 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 878 Val = RValue::get(ResVal); 879 } 880 881 return LHS; 882 } 883 884 // Compound assignments. 885 ComplexPairTy ComplexExprEmitter:: 886 EmitCompoundAssign(const CompoundAssignOperator *E, 887 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 888 RValue Val; 889 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 890 891 // The result of an assignment in C is the assigned r-value. 892 if (!CGF.getLangOpts().CPlusPlus) 893 return Val.getComplexVal(); 894 895 // If the lvalue is non-volatile, return the computed value of the assignment. 896 if (!LV.isVolatileQualified()) 897 return Val.getComplexVal(); 898 899 return EmitLoadOfLValue(LV, E->getExprLoc()); 900 } 901 902 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 903 ComplexPairTy &Val) { 904 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 905 E->getRHS()->getType()) && 906 "Invalid assignment"); 907 TestAndClearIgnoreReal(); 908 TestAndClearIgnoreImag(); 909 910 // Emit the RHS. __block variables need the RHS evaluated first. 911 Val = Visit(E->getRHS()); 912 913 // Compute the address to store into. 914 LValue LHS = CGF.EmitLValue(E->getLHS()); 915 916 // Store the result value into the LHS lvalue. 917 EmitStoreOfComplex(Val, LHS, /*isInit*/ false, E->getLocStart()); 918 919 return LHS; 920 } 921 922 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 923 ComplexPairTy Val; 924 LValue LV = EmitBinAssignLValue(E, Val); 925 926 // The result of an assignment in C is the assigned r-value. 927 if (!CGF.getLangOpts().CPlusPlus) 928 return Val; 929 930 // If the lvalue is non-volatile, return the computed value of the assignment. 931 if (!LV.isVolatileQualified()) 932 return Val; 933 934 return EmitLoadOfLValue(LV, E->getExprLoc()); 935 } 936 937 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 938 CGF.EmitIgnoredExpr(E->getLHS()); 939 return Visit(E->getRHS()); 940 } 941 942 ComplexPairTy ComplexExprEmitter:: 943 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 944 TestAndClearIgnoreReal(); 945 TestAndClearIgnoreImag(); 946 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 947 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 948 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 949 950 // Bind the common expression if necessary. 951 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 952 953 RegionCounter Cnt = CGF.getPGORegionCounter(E); 954 CodeGenFunction::ConditionalEvaluation eval(CGF); 955 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 956 957 eval.begin(CGF); 958 CGF.EmitBlock(LHSBlock); 959 Cnt.beginRegion(Builder); 960 ComplexPairTy LHS = Visit(E->getTrueExpr()); 961 LHSBlock = Builder.GetInsertBlock(); 962 CGF.EmitBranch(ContBlock); 963 eval.end(CGF); 964 965 eval.begin(CGF); 966 CGF.EmitBlock(RHSBlock); 967 ComplexPairTy RHS = Visit(E->getFalseExpr()); 968 RHSBlock = Builder.GetInsertBlock(); 969 CGF.EmitBlock(ContBlock); 970 eval.end(CGF); 971 972 // Create a PHI node for the real part. 973 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 974 RealPN->addIncoming(LHS.first, LHSBlock); 975 RealPN->addIncoming(RHS.first, RHSBlock); 976 977 // Create a PHI node for the imaginary part. 978 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 979 ImagPN->addIncoming(LHS.second, LHSBlock); 980 ImagPN->addIncoming(RHS.second, RHSBlock); 981 982 return ComplexPairTy(RealPN, ImagPN); 983 } 984 985 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 986 return Visit(E->getChosenSubExpr()); 987 } 988 989 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 990 bool Ignore = TestAndClearIgnoreReal(); 991 (void)Ignore; 992 assert (Ignore == false && "init list ignored"); 993 Ignore = TestAndClearIgnoreImag(); 994 (void)Ignore; 995 assert (Ignore == false && "init list ignored"); 996 997 if (E->getNumInits() == 2) { 998 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 999 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1000 return ComplexPairTy(Real, Imag); 1001 } else if (E->getNumInits() == 1) { 1002 return Visit(E->getInit(0)); 1003 } 1004 1005 // Empty init list intializes to null 1006 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1007 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1008 llvm::Type* LTy = CGF.ConvertType(Ty); 1009 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1010 return ComplexPairTy(zeroConstant, zeroConstant); 1011 } 1012 1013 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1014 llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr()); 1015 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType()); 1016 1017 if (!ArgPtr) { 1018 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1019 llvm::Type *EltTy = 1020 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1021 llvm::Value *U = llvm::UndefValue::get(EltTy); 1022 return ComplexPairTy(U, U); 1023 } 1024 1025 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()), 1026 E->getExprLoc()); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // Entry Point into this File 1031 //===----------------------------------------------------------------------===// 1032 1033 /// EmitComplexExpr - Emit the computation of the specified expression of 1034 /// complex type, ignoring the result. 1035 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1036 bool IgnoreImag) { 1037 assert(E && getComplexType(E->getType()) && 1038 "Invalid complex expression to emit"); 1039 1040 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1041 .Visit(const_cast<Expr*>(E)); 1042 } 1043 1044 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1045 bool isInit, 1046 SourceLocation DbgLoc) { 1047 assert(E && getComplexType(E->getType()) && 1048 "Invalid complex expression to emit"); 1049 ComplexExprEmitter Emitter(*this); 1050 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1051 Emitter.EmitStoreOfComplex(Val, dest, isInit, DbgLoc); 1052 } 1053 1054 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1055 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1056 bool isInit, SourceLocation DbgLoc) { 1057 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit, DbgLoc); 1058 } 1059 1060 /// EmitLoadOfComplex - Load a complex number from the specified address. 1061 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1062 SourceLocation loc) { 1063 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1064 } 1065 1066 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1067 assert(E->getOpcode() == BO_Assign); 1068 ComplexPairTy Val; // ignored 1069 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1070 } 1071 1072 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1073 const ComplexExprEmitter::BinOpInfo &); 1074 1075 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1076 switch (Op) { 1077 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1078 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1079 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1080 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1081 default: 1082 llvm_unreachable("unexpected complex compound assignment"); 1083 } 1084 } 1085 1086 LValue CodeGenFunction:: 1087 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1088 CompoundFunc Op = getComplexOp(E->getOpcode()); 1089 RValue Val; 1090 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1091 } 1092 1093 LValue CodeGenFunction:: 1094 EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 1095 llvm::Value *&Result) { 1096 CompoundFunc Op = getComplexOp(E->getOpcode()); 1097 RValue Val; 1098 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1099 Result = Val.getScalarVal(); 1100 return Ret; 1101 } 1102