1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 105 return Visit(E->getSubExpr()); 106 } 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 117 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 120 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 121 } 122 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 123 return Visit(E->getSubExpr()); 124 } 125 126 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 127 Expr *E) { 128 assert(Constant && "not a constant"); 129 if (Constant.isReference()) 130 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 131 E->getExprLoc()); 132 133 llvm::Constant *pair = Constant.getValue(); 134 return ComplexPairTy(pair->getAggregateElement(0U), 135 pair->getAggregateElement(1U)); 136 } 137 138 // l-values. 139 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 140 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 141 return emitConstant(Constant, E); 142 return EmitLoadOfLValue(E); 143 } 144 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 145 return EmitLoadOfLValue(E); 146 } 147 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 148 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 149 } 150 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 151 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 152 if (CodeGenFunction::ConstantEmission Constant = 153 CGF.tryEmitAsConstant(ME)) { 154 CGF.EmitIgnoredExpr(ME->getBase()); 155 return emitConstant(Constant, ME); 156 } 157 return EmitLoadOfLValue(ME); 158 } 159 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 160 if (E->isGLValue()) 161 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 162 E->getExprLoc()); 163 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 164 } 165 166 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 167 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 168 } 169 170 // FIXME: CompoundLiteralExpr 171 172 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 173 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 174 // Unlike for scalars, we don't have to worry about function->ptr demotion 175 // here. 176 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 177 } 178 ComplexPairTy VisitCastExpr(CastExpr *E) { 179 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 180 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 181 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 182 } 183 ComplexPairTy VisitCallExpr(const CallExpr *E); 184 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 185 186 // Operators. 187 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 188 bool isInc, bool isPre) { 189 LValue LV = CGF.EmitLValue(E->getSubExpr()); 190 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 191 } 192 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 193 return VisitPrePostIncDec(E, false, false); 194 } 195 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 196 return VisitPrePostIncDec(E, true, false); 197 } 198 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 199 return VisitPrePostIncDec(E, false, true); 200 } 201 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 202 return VisitPrePostIncDec(E, true, true); 203 } 204 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 205 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 206 TestAndClearIgnoreReal(); 207 TestAndClearIgnoreImag(); 208 return Visit(E->getSubExpr()); 209 } 210 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 211 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 212 // LNot,Real,Imag never return complex. 213 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 214 return Visit(E->getSubExpr()); 215 } 216 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 217 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 218 return Visit(DAE->getExpr()); 219 } 220 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 221 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 222 return Visit(DIE->getExpr()); 223 } 224 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 225 CGF.enterFullExpression(E); 226 CodeGenFunction::RunCleanupsScope Scope(CGF); 227 ComplexPairTy Vals = Visit(E->getSubExpr()); 228 // Defend against dominance problems caused by jumps out of expression 229 // evaluation through the shared cleanup block. 230 Scope.ForceCleanup({&Vals.first, &Vals.second}); 231 return Vals; 232 } 233 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 234 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 235 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 236 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 237 return ComplexPairTy(Null, Null); 238 } 239 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 240 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 241 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 242 llvm::Constant *Null = 243 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 244 return ComplexPairTy(Null, Null); 245 } 246 247 struct BinOpInfo { 248 ComplexPairTy LHS; 249 ComplexPairTy RHS; 250 QualType Ty; // Computation Type. 251 }; 252 253 BinOpInfo EmitBinOps(const BinaryOperator *E); 254 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 255 ComplexPairTy (ComplexExprEmitter::*Func) 256 (const BinOpInfo &), 257 RValue &Val); 258 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 259 ComplexPairTy (ComplexExprEmitter::*Func) 260 (const BinOpInfo &)); 261 262 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 263 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 264 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 265 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 266 267 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 268 const BinOpInfo &Op); 269 270 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 271 return EmitBinAdd(EmitBinOps(E)); 272 } 273 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 274 return EmitBinSub(EmitBinOps(E)); 275 } 276 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 277 return EmitBinMul(EmitBinOps(E)); 278 } 279 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 280 return EmitBinDiv(EmitBinOps(E)); 281 } 282 283 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 284 return Visit(E->getSemanticForm()); 285 } 286 287 // Compound assignments. 288 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 289 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 290 } 291 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 293 } 294 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 295 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 296 } 297 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 298 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 299 } 300 301 // GCC rejects rem/and/or/xor for integer complex. 302 // Logical and/or always return int, never complex. 303 304 // No comparisons produce a complex result. 305 306 LValue EmitBinAssignLValue(const BinaryOperator *E, 307 ComplexPairTy &Val); 308 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 309 ComplexPairTy VisitBinComma (const BinaryOperator *E); 310 311 312 ComplexPairTy 313 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 314 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 315 316 ComplexPairTy VisitInitListExpr(InitListExpr *E); 317 318 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 319 return EmitLoadOfLValue(E); 320 } 321 322 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 323 324 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 325 return CGF.EmitAtomicExpr(E).getComplexVal(); 326 } 327 }; 328 } // end anonymous namespace. 329 330 //===----------------------------------------------------------------------===// 331 // Utilities 332 //===----------------------------------------------------------------------===// 333 334 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 335 QualType complexType) { 336 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 337 } 338 339 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 340 QualType complexType) { 341 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 342 } 343 344 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 345 /// load the real and imaginary pieces, returning them as Real/Imag. 346 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 347 SourceLocation loc) { 348 assert(lvalue.isSimple() && "non-simple complex l-value?"); 349 if (lvalue.getType()->isAtomicType()) 350 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 351 352 Address SrcPtr = lvalue.getAddress(CGF); 353 bool isVolatile = lvalue.isVolatileQualified(); 354 355 llvm::Value *Real = nullptr, *Imag = nullptr; 356 357 if (!IgnoreReal || isVolatile) { 358 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 359 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 360 } 361 362 if (!IgnoreImag || isVolatile) { 363 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 364 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 365 } 366 367 return ComplexPairTy(Real, Imag); 368 } 369 370 /// EmitStoreOfComplex - Store the specified real/imag parts into the 371 /// specified value pointer. 372 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 373 bool isInit) { 374 if (lvalue.getType()->isAtomicType() || 375 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 376 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 377 378 Address Ptr = lvalue.getAddress(CGF); 379 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 380 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 381 382 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 383 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 384 } 385 386 387 388 //===----------------------------------------------------------------------===// 389 // Visitor Methods 390 //===----------------------------------------------------------------------===// 391 392 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 393 CGF.ErrorUnsupported(E, "complex expression"); 394 llvm::Type *EltTy = 395 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 396 llvm::Value *U = llvm::UndefValue::get(EltTy); 397 return ComplexPairTy(U, U); 398 } 399 400 ComplexPairTy ComplexExprEmitter:: 401 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 402 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 403 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 404 } 405 406 407 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 408 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 409 return EmitLoadOfLValue(E); 410 411 return CGF.EmitCallExpr(E).getComplexVal(); 412 } 413 414 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 415 CodeGenFunction::StmtExprEvaluation eval(CGF); 416 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 417 assert(RetAlloca.isValid() && "Expected complex return value"); 418 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 419 E->getExprLoc()); 420 } 421 422 /// Emit a cast from complex value Val to DestType. 423 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 424 QualType SrcType, 425 QualType DestType, 426 SourceLocation Loc) { 427 // Get the src/dest element type. 428 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 429 DestType = DestType->castAs<ComplexType>()->getElementType(); 430 431 // C99 6.3.1.6: When a value of complex type is converted to another 432 // complex type, both the real and imaginary parts follow the conversion 433 // rules for the corresponding real types. 434 if (Val.first) 435 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 436 if (Val.second) 437 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 438 return Val; 439 } 440 441 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 442 QualType SrcType, 443 QualType DestType, 444 SourceLocation Loc) { 445 // Convert the input element to the element type of the complex. 446 DestType = DestType->castAs<ComplexType>()->getElementType(); 447 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 448 449 // Return (realval, 0). 450 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 451 } 452 453 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 454 QualType DestTy) { 455 switch (CK) { 456 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 457 458 // Atomic to non-atomic casts may be more than a no-op for some platforms and 459 // for some types. 460 case CK_AtomicToNonAtomic: 461 case CK_NonAtomicToAtomic: 462 case CK_NoOp: 463 case CK_LValueToRValue: 464 case CK_UserDefinedConversion: 465 return Visit(Op); 466 467 case CK_LValueBitCast: { 468 LValue origLV = CGF.EmitLValue(Op); 469 Address V = origLV.getAddress(CGF); 470 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 471 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 472 } 473 474 case CK_LValueToRValueBitCast: { 475 LValue SourceLVal = CGF.EmitLValue(Op); 476 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 477 CGF.ConvertTypeForMem(DestTy)); 478 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 479 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 480 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 481 } 482 483 case CK_BitCast: 484 case CK_BaseToDerived: 485 case CK_DerivedToBase: 486 case CK_UncheckedDerivedToBase: 487 case CK_Dynamic: 488 case CK_ToUnion: 489 case CK_ArrayToPointerDecay: 490 case CK_FunctionToPointerDecay: 491 case CK_NullToPointer: 492 case CK_NullToMemberPointer: 493 case CK_BaseToDerivedMemberPointer: 494 case CK_DerivedToBaseMemberPointer: 495 case CK_MemberPointerToBoolean: 496 case CK_ReinterpretMemberPointer: 497 case CK_ConstructorConversion: 498 case CK_IntegralToPointer: 499 case CK_PointerToIntegral: 500 case CK_PointerToBoolean: 501 case CK_ToVoid: 502 case CK_VectorSplat: 503 case CK_IntegralCast: 504 case CK_BooleanToSignedIntegral: 505 case CK_IntegralToBoolean: 506 case CK_IntegralToFloating: 507 case CK_FloatingToIntegral: 508 case CK_FloatingToBoolean: 509 case CK_FloatingCast: 510 case CK_CPointerToObjCPointerCast: 511 case CK_BlockPointerToObjCPointerCast: 512 case CK_AnyPointerToBlockPointerCast: 513 case CK_ObjCObjectLValueCast: 514 case CK_FloatingComplexToReal: 515 case CK_FloatingComplexToBoolean: 516 case CK_IntegralComplexToReal: 517 case CK_IntegralComplexToBoolean: 518 case CK_ARCProduceObject: 519 case CK_ARCConsumeObject: 520 case CK_ARCReclaimReturnedObject: 521 case CK_ARCExtendBlockObject: 522 case CK_CopyAndAutoreleaseBlockObject: 523 case CK_BuiltinFnToFnPtr: 524 case CK_ZeroToOCLOpaqueType: 525 case CK_AddressSpaceConversion: 526 case CK_IntToOCLSampler: 527 case CK_FixedPointCast: 528 case CK_FixedPointToBoolean: 529 case CK_FixedPointToIntegral: 530 case CK_IntegralToFixedPoint: 531 llvm_unreachable("invalid cast kind for complex value"); 532 533 case CK_FloatingRealToComplex: 534 case CK_IntegralRealToComplex: 535 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 536 DestTy, Op->getExprLoc()); 537 538 case CK_FloatingComplexCast: 539 case CK_FloatingComplexToIntegralComplex: 540 case CK_IntegralComplexCast: 541 case CK_IntegralComplexToFloatingComplex: 542 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 543 Op->getExprLoc()); 544 } 545 546 llvm_unreachable("unknown cast resulting in complex value"); 547 } 548 549 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 550 TestAndClearIgnoreReal(); 551 TestAndClearIgnoreImag(); 552 ComplexPairTy Op = Visit(E->getSubExpr()); 553 554 llvm::Value *ResR, *ResI; 555 if (Op.first->getType()->isFloatingPointTy()) { 556 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 557 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 558 } else { 559 ResR = Builder.CreateNeg(Op.first, "neg.r"); 560 ResI = Builder.CreateNeg(Op.second, "neg.i"); 561 } 562 return ComplexPairTy(ResR, ResI); 563 } 564 565 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 566 TestAndClearIgnoreReal(); 567 TestAndClearIgnoreImag(); 568 // ~(a+ib) = a + i*-b 569 ComplexPairTy Op = Visit(E->getSubExpr()); 570 llvm::Value *ResI; 571 if (Op.second->getType()->isFloatingPointTy()) 572 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 573 else 574 ResI = Builder.CreateNeg(Op.second, "conj.i"); 575 576 return ComplexPairTy(Op.first, ResI); 577 } 578 579 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 580 llvm::Value *ResR, *ResI; 581 582 if (Op.LHS.first->getType()->isFloatingPointTy()) { 583 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 584 if (Op.LHS.second && Op.RHS.second) 585 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 586 else 587 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 588 assert(ResI && "Only one operand may be real!"); 589 } else { 590 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 591 assert(Op.LHS.second && Op.RHS.second && 592 "Both operands of integer complex operators must be complex!"); 593 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 594 } 595 return ComplexPairTy(ResR, ResI); 596 } 597 598 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 599 llvm::Value *ResR, *ResI; 600 if (Op.LHS.first->getType()->isFloatingPointTy()) { 601 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 602 if (Op.LHS.second && Op.RHS.second) 603 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 604 else 605 ResI = Op.LHS.second ? Op.LHS.second 606 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 607 assert(ResI && "Only one operand may be real!"); 608 } else { 609 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 610 assert(Op.LHS.second && Op.RHS.second && 611 "Both operands of integer complex operators must be complex!"); 612 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 613 } 614 return ComplexPairTy(ResR, ResI); 615 } 616 617 /// Emit a libcall for a binary operation on complex types. 618 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 619 const BinOpInfo &Op) { 620 CallArgList Args; 621 Args.add(RValue::get(Op.LHS.first), 622 Op.Ty->castAs<ComplexType>()->getElementType()); 623 Args.add(RValue::get(Op.LHS.second), 624 Op.Ty->castAs<ComplexType>()->getElementType()); 625 Args.add(RValue::get(Op.RHS.first), 626 Op.Ty->castAs<ComplexType>()->getElementType()); 627 Args.add(RValue::get(Op.RHS.second), 628 Op.Ty->castAs<ComplexType>()->getElementType()); 629 630 // We *must* use the full CG function call building logic here because the 631 // complex type has special ABI handling. We also should not forget about 632 // special calling convention which may be used for compiler builtins. 633 634 // We create a function qualified type to state that this call does not have 635 // any exceptions. 636 FunctionProtoType::ExtProtoInfo EPI; 637 EPI = EPI.withExceptionSpec( 638 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 639 SmallVector<QualType, 4> ArgsQTys( 640 4, Op.Ty->castAs<ComplexType>()->getElementType()); 641 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 642 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 643 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 644 645 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 646 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 647 FTy, LibCallName, llvm::AttributeList(), true); 648 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 649 650 llvm::CallBase *Call; 651 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 652 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 653 return Res.getComplexVal(); 654 } 655 656 /// Lookup the libcall name for a given floating point type complex 657 /// multiply. 658 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 659 switch (Ty->getTypeID()) { 660 default: 661 llvm_unreachable("Unsupported floating point type!"); 662 case llvm::Type::HalfTyID: 663 return "__mulhc3"; 664 case llvm::Type::FloatTyID: 665 return "__mulsc3"; 666 case llvm::Type::DoubleTyID: 667 return "__muldc3"; 668 case llvm::Type::PPC_FP128TyID: 669 return "__multc3"; 670 case llvm::Type::X86_FP80TyID: 671 return "__mulxc3"; 672 case llvm::Type::FP128TyID: 673 return "__multc3"; 674 } 675 } 676 677 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 678 // typed values. 679 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 680 using llvm::Value; 681 Value *ResR, *ResI; 682 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 683 684 if (Op.LHS.first->getType()->isFloatingPointTy()) { 685 // The general formulation is: 686 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 687 // 688 // But we can fold away components which would be zero due to a real 689 // operand according to C11 Annex G.5.1p2. 690 // FIXME: C11 also provides for imaginary types which would allow folding 691 // still more of this within the type system. 692 693 if (Op.LHS.second && Op.RHS.second) { 694 // If both operands are complex, emit the core math directly, and then 695 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 696 // to carefully re-compute the correct infinity representation if 697 // possible. The expectation is that the presence of NaNs here is 698 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 699 // This is good, because the libcall re-computes the core multiplication 700 // exactly the same as we do here and re-tests for NaNs in order to be 701 // a generic complex*complex libcall. 702 703 // First compute the four products. 704 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 705 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 706 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 707 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 708 709 // The real part is the difference of the first two, the imaginary part is 710 // the sum of the second. 711 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 712 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 713 714 // Emit the test for the real part becoming NaN and create a branch to 715 // handle it. We test for NaN by comparing the number to itself. 716 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 717 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 718 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 719 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 720 llvm::BasicBlock *OrigBB = Branch->getParent(); 721 722 // Give hint that we very much don't expect to see NaNs. 723 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 724 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 725 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 726 727 // Now test the imaginary part and create its branch. 728 CGF.EmitBlock(INaNBB); 729 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 730 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 731 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 732 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 733 734 // Now emit the libcall on this slowest of the slow paths. 735 CGF.EmitBlock(LibCallBB); 736 Value *LibCallR, *LibCallI; 737 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 738 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 739 Builder.CreateBr(ContBB); 740 741 // Finally continue execution by phi-ing together the different 742 // computation paths. 743 CGF.EmitBlock(ContBB); 744 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 745 RealPHI->addIncoming(ResR, OrigBB); 746 RealPHI->addIncoming(ResR, INaNBB); 747 RealPHI->addIncoming(LibCallR, LibCallBB); 748 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 749 ImagPHI->addIncoming(ResI, OrigBB); 750 ImagPHI->addIncoming(ResI, INaNBB); 751 ImagPHI->addIncoming(LibCallI, LibCallBB); 752 return ComplexPairTy(RealPHI, ImagPHI); 753 } 754 assert((Op.LHS.second || Op.RHS.second) && 755 "At least one operand must be complex!"); 756 757 // If either of the operands is a real rather than a complex, the 758 // imaginary component is ignored when computing the real component of the 759 // result. 760 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 761 762 ResI = Op.LHS.second 763 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 764 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 765 } else { 766 assert(Op.LHS.second && Op.RHS.second && 767 "Both operands of integer complex operators must be complex!"); 768 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 769 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 770 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 771 772 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 773 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 774 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 775 } 776 return ComplexPairTy(ResR, ResI); 777 } 778 779 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 780 // typed values. 781 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 782 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 783 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 784 785 llvm::Value *DSTr, *DSTi; 786 if (LHSr->getType()->isFloatingPointTy()) { 787 // If we have a complex operand on the RHS and FastMath is not allowed, we 788 // delegate to a libcall to handle all of the complexities and minimize 789 // underflow/overflow cases. When FastMath is allowed we construct the 790 // divide inline using the same algorithm as for integer operands. 791 // 792 // FIXME: We would be able to avoid the libcall in many places if we 793 // supported imaginary types in addition to complex types. 794 if (RHSi && !CGF.getLangOpts().FastMath) { 795 BinOpInfo LibCallOp = Op; 796 // If LHS was a real, supply a null imaginary part. 797 if (!LHSi) 798 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 799 800 switch (LHSr->getType()->getTypeID()) { 801 default: 802 llvm_unreachable("Unsupported floating point type!"); 803 case llvm::Type::HalfTyID: 804 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 805 case llvm::Type::FloatTyID: 806 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 807 case llvm::Type::DoubleTyID: 808 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 809 case llvm::Type::PPC_FP128TyID: 810 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 811 case llvm::Type::X86_FP80TyID: 812 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 813 case llvm::Type::FP128TyID: 814 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 815 } 816 } else if (RHSi) { 817 if (!LHSi) 818 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 819 820 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 821 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 822 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 823 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 824 825 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 826 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 827 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 828 829 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 830 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 831 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 832 833 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 834 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 835 } else { 836 assert(LHSi && "Can have at most one non-complex operand!"); 837 838 DSTr = Builder.CreateFDiv(LHSr, RHSr); 839 DSTi = Builder.CreateFDiv(LHSi, RHSr); 840 } 841 } else { 842 assert(Op.LHS.second && Op.RHS.second && 843 "Both operands of integer complex operators must be complex!"); 844 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 845 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 846 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 847 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 848 849 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 850 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 851 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 852 853 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 854 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 855 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 856 857 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 858 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 859 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 860 } else { 861 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 862 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 863 } 864 } 865 866 return ComplexPairTy(DSTr, DSTi); 867 } 868 869 ComplexExprEmitter::BinOpInfo 870 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 871 TestAndClearIgnoreReal(); 872 TestAndClearIgnoreImag(); 873 BinOpInfo Ops; 874 if (E->getLHS()->getType()->isRealFloatingType()) 875 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 876 else 877 Ops.LHS = Visit(E->getLHS()); 878 if (E->getRHS()->getType()->isRealFloatingType()) 879 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 880 else 881 Ops.RHS = Visit(E->getRHS()); 882 883 Ops.Ty = E->getType(); 884 return Ops; 885 } 886 887 888 LValue ComplexExprEmitter:: 889 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 890 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 891 RValue &Val) { 892 TestAndClearIgnoreReal(); 893 TestAndClearIgnoreImag(); 894 QualType LHSTy = E->getLHS()->getType(); 895 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 896 LHSTy = AT->getValueType(); 897 898 BinOpInfo OpInfo; 899 900 // Load the RHS and LHS operands. 901 // __block variables need to have the rhs evaluated first, plus this should 902 // improve codegen a little. 903 OpInfo.Ty = E->getComputationResultType(); 904 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 905 906 // The RHS should have been converted to the computation type. 907 if (E->getRHS()->getType()->isRealFloatingType()) { 908 assert( 909 CGF.getContext() 910 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 911 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 912 } else { 913 assert(CGF.getContext() 914 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 915 OpInfo.RHS = Visit(E->getRHS()); 916 } 917 918 LValue LHS = CGF.EmitLValue(E->getLHS()); 919 920 // Load from the l-value and convert it. 921 SourceLocation Loc = E->getExprLoc(); 922 if (LHSTy->isAnyComplexType()) { 923 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 924 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 925 } else { 926 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 927 // For floating point real operands we can directly pass the scalar form 928 // to the binary operator emission and potentially get more efficient code. 929 if (LHSTy->isRealFloatingType()) { 930 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 931 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 932 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 933 } else { 934 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 935 } 936 } 937 938 // Expand the binary operator. 939 ComplexPairTy Result = (this->*Func)(OpInfo); 940 941 // Truncate the result and store it into the LHS lvalue. 942 if (LHSTy->isAnyComplexType()) { 943 ComplexPairTy ResVal = 944 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 945 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 946 Val = RValue::getComplex(ResVal); 947 } else { 948 llvm::Value *ResVal = 949 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 950 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 951 Val = RValue::get(ResVal); 952 } 953 954 return LHS; 955 } 956 957 // Compound assignments. 958 ComplexPairTy ComplexExprEmitter:: 959 EmitCompoundAssign(const CompoundAssignOperator *E, 960 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 961 RValue Val; 962 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 963 964 // The result of an assignment in C is the assigned r-value. 965 if (!CGF.getLangOpts().CPlusPlus) 966 return Val.getComplexVal(); 967 968 // If the lvalue is non-volatile, return the computed value of the assignment. 969 if (!LV.isVolatileQualified()) 970 return Val.getComplexVal(); 971 972 return EmitLoadOfLValue(LV, E->getExprLoc()); 973 } 974 975 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 976 ComplexPairTy &Val) { 977 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 978 E->getRHS()->getType()) && 979 "Invalid assignment"); 980 TestAndClearIgnoreReal(); 981 TestAndClearIgnoreImag(); 982 983 // Emit the RHS. __block variables need the RHS evaluated first. 984 Val = Visit(E->getRHS()); 985 986 // Compute the address to store into. 987 LValue LHS = CGF.EmitLValue(E->getLHS()); 988 989 // Store the result value into the LHS lvalue. 990 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 991 992 return LHS; 993 } 994 995 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 996 ComplexPairTy Val; 997 LValue LV = EmitBinAssignLValue(E, Val); 998 999 // The result of an assignment in C is the assigned r-value. 1000 if (!CGF.getLangOpts().CPlusPlus) 1001 return Val; 1002 1003 // If the lvalue is non-volatile, return the computed value of the assignment. 1004 if (!LV.isVolatileQualified()) 1005 return Val; 1006 1007 return EmitLoadOfLValue(LV, E->getExprLoc()); 1008 } 1009 1010 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1011 CGF.EmitIgnoredExpr(E->getLHS()); 1012 return Visit(E->getRHS()); 1013 } 1014 1015 ComplexPairTy ComplexExprEmitter:: 1016 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1017 TestAndClearIgnoreReal(); 1018 TestAndClearIgnoreImag(); 1019 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1020 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1021 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1022 1023 // Bind the common expression if necessary. 1024 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1025 1026 1027 CodeGenFunction::ConditionalEvaluation eval(CGF); 1028 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1029 CGF.getProfileCount(E)); 1030 1031 eval.begin(CGF); 1032 CGF.EmitBlock(LHSBlock); 1033 CGF.incrementProfileCounter(E); 1034 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1035 LHSBlock = Builder.GetInsertBlock(); 1036 CGF.EmitBranch(ContBlock); 1037 eval.end(CGF); 1038 1039 eval.begin(CGF); 1040 CGF.EmitBlock(RHSBlock); 1041 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1042 RHSBlock = Builder.GetInsertBlock(); 1043 CGF.EmitBlock(ContBlock); 1044 eval.end(CGF); 1045 1046 // Create a PHI node for the real part. 1047 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1048 RealPN->addIncoming(LHS.first, LHSBlock); 1049 RealPN->addIncoming(RHS.first, RHSBlock); 1050 1051 // Create a PHI node for the imaginary part. 1052 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1053 ImagPN->addIncoming(LHS.second, LHSBlock); 1054 ImagPN->addIncoming(RHS.second, RHSBlock); 1055 1056 return ComplexPairTy(RealPN, ImagPN); 1057 } 1058 1059 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1060 return Visit(E->getChosenSubExpr()); 1061 } 1062 1063 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1064 bool Ignore = TestAndClearIgnoreReal(); 1065 (void)Ignore; 1066 assert (Ignore == false && "init list ignored"); 1067 Ignore = TestAndClearIgnoreImag(); 1068 (void)Ignore; 1069 assert (Ignore == false && "init list ignored"); 1070 1071 if (E->getNumInits() == 2) { 1072 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1073 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1074 return ComplexPairTy(Real, Imag); 1075 } else if (E->getNumInits() == 1) { 1076 return Visit(E->getInit(0)); 1077 } 1078 1079 // Empty init list initializes to null 1080 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1081 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1082 llvm::Type* LTy = CGF.ConvertType(Ty); 1083 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1084 return ComplexPairTy(zeroConstant, zeroConstant); 1085 } 1086 1087 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1088 Address ArgValue = Address::invalid(); 1089 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1090 1091 if (!ArgPtr.isValid()) { 1092 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1093 llvm::Type *EltTy = 1094 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1095 llvm::Value *U = llvm::UndefValue::get(EltTy); 1096 return ComplexPairTy(U, U); 1097 } 1098 1099 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1100 E->getExprLoc()); 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // Entry Point into this File 1105 //===----------------------------------------------------------------------===// 1106 1107 /// EmitComplexExpr - Emit the computation of the specified expression of 1108 /// complex type, ignoring the result. 1109 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1110 bool IgnoreImag) { 1111 assert(E && getComplexType(E->getType()) && 1112 "Invalid complex expression to emit"); 1113 1114 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1115 .Visit(const_cast<Expr *>(E)); 1116 } 1117 1118 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1119 bool isInit) { 1120 assert(E && getComplexType(E->getType()) && 1121 "Invalid complex expression to emit"); 1122 ComplexExprEmitter Emitter(*this); 1123 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1124 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1125 } 1126 1127 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1128 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1129 bool isInit) { 1130 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1131 } 1132 1133 /// EmitLoadOfComplex - Load a complex number from the specified address. 1134 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1135 SourceLocation loc) { 1136 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1137 } 1138 1139 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1140 assert(E->getOpcode() == BO_Assign); 1141 ComplexPairTy Val; // ignored 1142 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1143 if (getLangOpts().OpenMP) 1144 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1145 E->getLHS()); 1146 return LVal; 1147 } 1148 1149 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1150 const ComplexExprEmitter::BinOpInfo &); 1151 1152 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1153 switch (Op) { 1154 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1155 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1156 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1157 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1158 default: 1159 llvm_unreachable("unexpected complex compound assignment"); 1160 } 1161 } 1162 1163 LValue CodeGenFunction:: 1164 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1165 CompoundFunc Op = getComplexOp(E->getOpcode()); 1166 RValue Val; 1167 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1168 } 1169 1170 LValue CodeGenFunction:: 1171 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1172 llvm::Value *&Result) { 1173 CompoundFunc Op = getComplexOp(E->getOpcode()); 1174 RValue Val; 1175 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1176 Result = Val.getScalarVal(); 1177 return Ret; 1178 } 1179