1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/Metadata.h" 25 #include <algorithm> 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Complex Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 34 35 /// Return the complex type that we are meant to emit. 36 static const ComplexType *getComplexType(QualType type) { 37 type = type.getCanonicalType(); 38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 39 return comp; 40 } else { 41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 42 } 43 } 44 45 namespace { 46 class ComplexExprEmitter 47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 48 CodeGenFunction &CGF; 49 CGBuilderTy &Builder; 50 bool IgnoreReal; 51 bool IgnoreImag; 52 public: 53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 55 } 56 57 58 //===--------------------------------------------------------------------===// 59 // Utilities 60 //===--------------------------------------------------------------------===// 61 62 bool TestAndClearIgnoreReal() { 63 bool I = IgnoreReal; 64 IgnoreReal = false; 65 return I; 66 } 67 bool TestAndClearIgnoreImag() { 68 bool I = IgnoreImag; 69 IgnoreImag = false; 70 return I; 71 } 72 73 /// EmitLoadOfLValue - Given an expression with complex type that represents a 74 /// value l-value, this method emits the address of the l-value, then loads 75 /// and returns the result. 76 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 78 } 79 80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 81 82 /// EmitStoreOfComplex - Store the specified real/imag parts into the 83 /// specified value pointer. 84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 85 86 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 88 QualType DestType); 89 /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType. 90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 91 QualType DestType); 92 93 //===--------------------------------------------------------------------===// 94 // Visitor Methods 95 //===--------------------------------------------------------------------===// 96 97 ComplexPairTy Visit(Expr *E) { 98 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 99 } 100 101 ComplexPairTy VisitStmt(Stmt *S) { 102 S->dump(CGF.getContext().getSourceManager()); 103 llvm_unreachable("Stmt can't have complex result type!"); 104 } 105 ComplexPairTy VisitExpr(Expr *S); 106 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 107 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 108 return Visit(GE->getResultExpr()); 109 } 110 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 111 ComplexPairTy 112 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 113 return Visit(PE->getReplacement()); 114 } 115 116 // l-values. 117 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 118 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 119 if (result.isReference()) 120 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 121 E->getExprLoc()); 122 123 llvm::Constant *pair = result.getValue(); 124 return ComplexPairTy(pair->getAggregateElement(0U), 125 pair->getAggregateElement(1U)); 126 } 127 return EmitLoadOfLValue(E); 128 } 129 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 130 return EmitLoadOfLValue(E); 131 } 132 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 133 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 134 } 135 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 136 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 137 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 138 if (E->isGLValue()) 139 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 140 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 141 } 142 143 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 144 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 145 } 146 147 // FIXME: CompoundLiteralExpr 148 149 ComplexPairTy EmitCast(CastExpr::CastKind CK, Expr *Op, QualType DestTy); 150 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 151 // Unlike for scalars, we don't have to worry about function->ptr demotion 152 // here. 153 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 154 } 155 ComplexPairTy VisitCastExpr(CastExpr *E) { 156 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 157 } 158 ComplexPairTy VisitCallExpr(const CallExpr *E); 159 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 160 161 // Operators. 162 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 163 bool isInc, bool isPre) { 164 LValue LV = CGF.EmitLValue(E->getSubExpr()); 165 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 166 } 167 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 168 return VisitPrePostIncDec(E, false, false); 169 } 170 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 171 return VisitPrePostIncDec(E, true, false); 172 } 173 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 174 return VisitPrePostIncDec(E, false, true); 175 } 176 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 177 return VisitPrePostIncDec(E, true, true); 178 } 179 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 180 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 181 TestAndClearIgnoreReal(); 182 TestAndClearIgnoreImag(); 183 return Visit(E->getSubExpr()); 184 } 185 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 186 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 187 // LNot,Real,Imag never return complex. 188 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 189 return Visit(E->getSubExpr()); 190 } 191 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 192 return Visit(DAE->getExpr()); 193 } 194 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 195 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 196 return Visit(DIE->getExpr()); 197 } 198 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 199 CGF.enterFullExpression(E); 200 CodeGenFunction::RunCleanupsScope Scope(CGF); 201 return Visit(E->getSubExpr()); 202 } 203 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 204 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 205 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 206 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 207 return ComplexPairTy(Null, Null); 208 } 209 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 210 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 211 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 212 llvm::Constant *Null = 213 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 214 return ComplexPairTy(Null, Null); 215 } 216 217 struct BinOpInfo { 218 ComplexPairTy LHS; 219 ComplexPairTy RHS; 220 QualType Ty; // Computation Type. 221 }; 222 223 BinOpInfo EmitBinOps(const BinaryOperator *E); 224 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 225 ComplexPairTy (ComplexExprEmitter::*Func) 226 (const BinOpInfo &), 227 RValue &Val); 228 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 229 ComplexPairTy (ComplexExprEmitter::*Func) 230 (const BinOpInfo &)); 231 232 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 233 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 234 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 235 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 236 237 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 238 const BinOpInfo &Op); 239 240 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 241 return EmitBinAdd(EmitBinOps(E)); 242 } 243 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 244 return EmitBinSub(EmitBinOps(E)); 245 } 246 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 247 return EmitBinMul(EmitBinOps(E)); 248 } 249 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 250 return EmitBinDiv(EmitBinOps(E)); 251 } 252 253 // Compound assignments. 254 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 255 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 256 } 257 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 259 } 260 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 262 } 263 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 265 } 266 267 // GCC rejects rem/and/or/xor for integer complex. 268 // Logical and/or always return int, never complex. 269 270 // No comparisons produce a complex result. 271 272 LValue EmitBinAssignLValue(const BinaryOperator *E, 273 ComplexPairTy &Val); 274 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 275 ComplexPairTy VisitBinComma (const BinaryOperator *E); 276 277 278 ComplexPairTy 279 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 280 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 281 282 ComplexPairTy VisitInitListExpr(InitListExpr *E); 283 284 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 285 return EmitLoadOfLValue(E); 286 } 287 288 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 289 290 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 291 return CGF.EmitAtomicExpr(E).getComplexVal(); 292 } 293 }; 294 } // end anonymous namespace. 295 296 //===----------------------------------------------------------------------===// 297 // Utilities 298 //===----------------------------------------------------------------------===// 299 300 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 301 /// load the real and imaginary pieces, returning them as Real/Imag. 302 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 303 SourceLocation loc) { 304 assert(lvalue.isSimple() && "non-simple complex l-value?"); 305 if (lvalue.getType()->isAtomicType()) 306 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 307 308 llvm::Value *SrcPtr = lvalue.getAddress(); 309 bool isVolatile = lvalue.isVolatileQualified(); 310 unsigned AlignR = lvalue.getAlignment().getQuantity(); 311 ASTContext &C = CGF.getContext(); 312 QualType ComplexTy = lvalue.getType(); 313 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 314 unsigned AlignI = std::min(AlignR, ComplexAlign); 315 316 llvm::Value *Real=nullptr, *Imag=nullptr; 317 318 if (!IgnoreReal || isVolatile) { 319 llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0, 320 SrcPtr->getName() + ".realp"); 321 Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile, 322 SrcPtr->getName() + ".real"); 323 } 324 325 if (!IgnoreImag || isVolatile) { 326 llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1, 327 SrcPtr->getName() + ".imagp"); 328 Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile, 329 SrcPtr->getName() + ".imag"); 330 } 331 return ComplexPairTy(Real, Imag); 332 } 333 334 /// EmitStoreOfComplex - Store the specified real/imag parts into the 335 /// specified value pointer. 336 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, 337 LValue lvalue, 338 bool isInit) { 339 if (lvalue.getType()->isAtomicType()) 340 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 341 342 llvm::Value *Ptr = lvalue.getAddress(); 343 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real"); 344 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag"); 345 unsigned AlignR = lvalue.getAlignment().getQuantity(); 346 ASTContext &C = CGF.getContext(); 347 QualType ComplexTy = lvalue.getType(); 348 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity(); 349 unsigned AlignI = std::min(AlignR, ComplexAlign); 350 351 Builder.CreateAlignedStore(Val.first, RealPtr, AlignR, 352 lvalue.isVolatileQualified()); 353 Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI, 354 lvalue.isVolatileQualified()); 355 } 356 357 358 359 //===----------------------------------------------------------------------===// 360 // Visitor Methods 361 //===----------------------------------------------------------------------===// 362 363 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 364 CGF.ErrorUnsupported(E, "complex expression"); 365 llvm::Type *EltTy = 366 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 367 llvm::Value *U = llvm::UndefValue::get(EltTy); 368 return ComplexPairTy(U, U); 369 } 370 371 ComplexPairTy ComplexExprEmitter:: 372 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 373 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 374 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 375 } 376 377 378 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 379 if (E->getCallReturnType()->isReferenceType()) 380 return EmitLoadOfLValue(E); 381 382 return CGF.EmitCallExpr(E).getComplexVal(); 383 } 384 385 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 386 CodeGenFunction::StmtExprEvaluation eval(CGF); 387 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 388 assert(RetAlloca && "Expected complex return value"); 389 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 390 E->getExprLoc()); 391 } 392 393 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. 394 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 395 QualType SrcType, 396 QualType DestType) { 397 // Get the src/dest element type. 398 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 399 DestType = DestType->castAs<ComplexType>()->getElementType(); 400 401 // C99 6.3.1.6: When a value of complex type is converted to another 402 // complex type, both the real and imaginary parts follow the conversion 403 // rules for the corresponding real types. 404 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType); 405 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType); 406 return Val; 407 } 408 409 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 410 QualType SrcType, 411 QualType DestType) { 412 // Convert the input element to the element type of the complex. 413 DestType = DestType->castAs<ComplexType>()->getElementType(); 414 Val = CGF.EmitScalarConversion(Val, SrcType, DestType); 415 416 // Return (realval, 0). 417 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 418 } 419 420 ComplexPairTy ComplexExprEmitter::EmitCast(CastExpr::CastKind CK, Expr *Op, 421 QualType DestTy) { 422 switch (CK) { 423 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 424 425 // Atomic to non-atomic casts may be more than a no-op for some platforms and 426 // for some types. 427 case CK_AtomicToNonAtomic: 428 case CK_NonAtomicToAtomic: 429 case CK_NoOp: 430 case CK_LValueToRValue: 431 case CK_UserDefinedConversion: 432 return Visit(Op); 433 434 case CK_LValueBitCast: { 435 LValue origLV = CGF.EmitLValue(Op); 436 llvm::Value *V = origLV.getAddress(); 437 V = Builder.CreateBitCast(V, 438 CGF.ConvertType(CGF.getContext().getPointerType(DestTy))); 439 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy, 440 origLV.getAlignment()), 441 Op->getExprLoc()); 442 } 443 444 case CK_BitCast: 445 case CK_BaseToDerived: 446 case CK_DerivedToBase: 447 case CK_UncheckedDerivedToBase: 448 case CK_Dynamic: 449 case CK_ToUnion: 450 case CK_ArrayToPointerDecay: 451 case CK_FunctionToPointerDecay: 452 case CK_NullToPointer: 453 case CK_NullToMemberPointer: 454 case CK_BaseToDerivedMemberPointer: 455 case CK_DerivedToBaseMemberPointer: 456 case CK_MemberPointerToBoolean: 457 case CK_ReinterpretMemberPointer: 458 case CK_ConstructorConversion: 459 case CK_IntegralToPointer: 460 case CK_PointerToIntegral: 461 case CK_PointerToBoolean: 462 case CK_ToVoid: 463 case CK_VectorSplat: 464 case CK_IntegralCast: 465 case CK_IntegralToBoolean: 466 case CK_IntegralToFloating: 467 case CK_FloatingToIntegral: 468 case CK_FloatingToBoolean: 469 case CK_FloatingCast: 470 case CK_CPointerToObjCPointerCast: 471 case CK_BlockPointerToObjCPointerCast: 472 case CK_AnyPointerToBlockPointerCast: 473 case CK_ObjCObjectLValueCast: 474 case CK_FloatingComplexToReal: 475 case CK_FloatingComplexToBoolean: 476 case CK_IntegralComplexToReal: 477 case CK_IntegralComplexToBoolean: 478 case CK_ARCProduceObject: 479 case CK_ARCConsumeObject: 480 case CK_ARCReclaimReturnedObject: 481 case CK_ARCExtendBlockObject: 482 case CK_CopyAndAutoreleaseBlockObject: 483 case CK_BuiltinFnToFnPtr: 484 case CK_ZeroToOCLEvent: 485 case CK_AddressSpaceConversion: 486 llvm_unreachable("invalid cast kind for complex value"); 487 488 case CK_FloatingRealToComplex: 489 case CK_IntegralRealToComplex: 490 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), 491 Op->getType(), DestTy); 492 493 case CK_FloatingComplexCast: 494 case CK_FloatingComplexToIntegralComplex: 495 case CK_IntegralComplexCast: 496 case CK_IntegralComplexToFloatingComplex: 497 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy); 498 } 499 500 llvm_unreachable("unknown cast resulting in complex value"); 501 } 502 503 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 504 TestAndClearIgnoreReal(); 505 TestAndClearIgnoreImag(); 506 ComplexPairTy Op = Visit(E->getSubExpr()); 507 508 llvm::Value *ResR, *ResI; 509 if (Op.first->getType()->isFloatingPointTy()) { 510 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 511 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 512 } else { 513 ResR = Builder.CreateNeg(Op.first, "neg.r"); 514 ResI = Builder.CreateNeg(Op.second, "neg.i"); 515 } 516 return ComplexPairTy(ResR, ResI); 517 } 518 519 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 520 TestAndClearIgnoreReal(); 521 TestAndClearIgnoreImag(); 522 // ~(a+ib) = a + i*-b 523 ComplexPairTy Op = Visit(E->getSubExpr()); 524 llvm::Value *ResI; 525 if (Op.second->getType()->isFloatingPointTy()) 526 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 527 else 528 ResI = Builder.CreateNeg(Op.second, "conj.i"); 529 530 return ComplexPairTy(Op.first, ResI); 531 } 532 533 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 534 llvm::Value *ResR, *ResI; 535 536 if (Op.LHS.first->getType()->isFloatingPointTy()) { 537 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 538 if (Op.LHS.second && Op.RHS.second) 539 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 540 else 541 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 542 assert(ResI && "Only one operand may be real!"); 543 } else { 544 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 545 assert(Op.LHS.second && Op.RHS.second && 546 "Both operands of integer complex operators must be complex!"); 547 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 548 } 549 return ComplexPairTy(ResR, ResI); 550 } 551 552 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 553 llvm::Value *ResR, *ResI; 554 if (Op.LHS.first->getType()->isFloatingPointTy()) { 555 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 556 if (Op.LHS.second && Op.RHS.second) 557 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 558 else 559 ResI = Op.LHS.second ? Op.LHS.second 560 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 561 assert(ResI && "Only one operand may be real!"); 562 } else { 563 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 564 assert(Op.LHS.second && Op.RHS.second && 565 "Both operands of integer complex operators must be complex!"); 566 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 567 } 568 return ComplexPairTy(ResR, ResI); 569 } 570 571 /// \brief Emit a libcall for a binary operation on complex types. 572 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 573 const BinOpInfo &Op) { 574 CallArgList Args; 575 Args.add(RValue::get(Op.LHS.first), 576 Op.Ty->castAs<ComplexType>()->getElementType()); 577 Args.add(RValue::get(Op.LHS.second), 578 Op.Ty->castAs<ComplexType>()->getElementType()); 579 Args.add(RValue::get(Op.RHS.first), 580 Op.Ty->castAs<ComplexType>()->getElementType()); 581 Args.add(RValue::get(Op.RHS.second), 582 Op.Ty->castAs<ComplexType>()->getElementType()); 583 584 // We *must* use the full CG function call building logic here because the 585 // complex type has special ABI handling. 586 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 587 Op.Ty, Args, FunctionType::ExtInfo(), RequiredArgs::All); 588 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 589 llvm::Constant *Func = CGF.CGM.CreateRuntimeFunction(FTy, LibCallName); 590 591 return CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args).getComplexVal(); 592 } 593 594 /// \brief Lookup the libcall name for a given floating point type complex 595 /// multiply. 596 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 597 switch (Ty->getTypeID()) { 598 default: 599 llvm_unreachable("Unsupported floating point type!"); 600 case llvm::Type::HalfTyID: 601 return "__mulhc3"; 602 case llvm::Type::FloatTyID: 603 return "__mulsc3"; 604 case llvm::Type::DoubleTyID: 605 return "__muldc3"; 606 case llvm::Type::PPC_FP128TyID: 607 return "__multc3"; 608 case llvm::Type::X86_FP80TyID: 609 return "__mulxc3"; 610 case llvm::Type::FP128TyID: 611 return "__multc3"; 612 } 613 } 614 615 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 616 // typed values. 617 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 618 using llvm::Value; 619 Value *ResR, *ResI; 620 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 621 622 if (Op.LHS.first->getType()->isFloatingPointTy()) { 623 // The general formulation is: 624 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 625 // 626 // But we can fold away components which would be zero due to a real 627 // operand according to C11 Annex G.5.1p2. 628 // FIXME: C11 also provides for imaginary types which would allow folding 629 // still more of this within the type system. 630 631 if (Op.LHS.second && Op.RHS.second) { 632 // If both operands are complex, emit the core math directly, and then 633 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 634 // to carefully re-compute the correct infinity representation if 635 // possible. The expectation is that the presence of NaNs here is 636 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 637 // This is good, because the libcall re-computes the core multiplication 638 // exactly the same as we do here and re-tests for NaNs in order to be 639 // a generic complex*complex libcall. 640 641 // First compute the four products. 642 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 643 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 644 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 645 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 646 647 // The real part is the difference of the first two, the imaginary part is 648 // the sum of the second. 649 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 650 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 651 652 // Emit the test for the real part becoming NaN and create a branch to 653 // handle it. We test for NaN by comparing the number to itself. 654 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 655 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 656 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 657 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 658 llvm::BasicBlock *OrigBB = Branch->getParent(); 659 660 // Give hint that we very much don't expect to see NaNs. 661 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 662 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 663 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 664 665 // Now test the imaginary part and create its branch. 666 CGF.EmitBlock(INaNBB); 667 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 668 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 669 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 670 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 671 672 // Now emit the libcall on this slowest of the slow paths. 673 CGF.EmitBlock(LibCallBB); 674 Value *LibCallR, *LibCallI; 675 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 676 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 677 Builder.CreateBr(ContBB); 678 679 // Finally continue execution by phi-ing together the different 680 // computation paths. 681 CGF.EmitBlock(ContBB); 682 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 683 RealPHI->addIncoming(ResR, OrigBB); 684 RealPHI->addIncoming(ResR, INaNBB); 685 RealPHI->addIncoming(LibCallR, LibCallBB); 686 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 687 ImagPHI->addIncoming(ResI, OrigBB); 688 ImagPHI->addIncoming(ResI, INaNBB); 689 ImagPHI->addIncoming(LibCallI, LibCallBB); 690 return ComplexPairTy(RealPHI, ImagPHI); 691 } 692 assert((Op.LHS.second || Op.RHS.second) && 693 "At least one operand must be complex!"); 694 695 // If either of the operands is a real rather than a complex, the 696 // imaginary component is ignored when computing the real component of the 697 // result. 698 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 699 700 ResI = Op.LHS.second 701 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 702 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 703 } else { 704 assert(Op.LHS.second && Op.RHS.second && 705 "Both operands of integer complex operators must be complex!"); 706 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 707 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 708 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 709 710 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 711 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 712 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 713 } 714 return ComplexPairTy(ResR, ResI); 715 } 716 717 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 718 // typed values. 719 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 720 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 721 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 722 723 724 llvm::Value *DSTr, *DSTi; 725 if (LHSr->getType()->isFloatingPointTy()) { 726 // If we have a complex operand on the RHS, we delegate to a libcall to 727 // handle all of the complexities and minimize underflow/overflow cases. 728 // 729 // FIXME: We would be able to avoid the libcall in many places if we 730 // supported imaginary types in addition to complex types. 731 if (RHSi) { 732 BinOpInfo LibCallOp = Op; 733 // If LHS was a real, supply a null imaginary part. 734 if (!LHSi) 735 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 736 737 StringRef LibCallName; 738 switch (LHSr->getType()->getTypeID()) { 739 default: 740 llvm_unreachable("Unsupported floating point type!"); 741 case llvm::Type::HalfTyID: 742 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 743 case llvm::Type::FloatTyID: 744 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 745 case llvm::Type::DoubleTyID: 746 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 747 case llvm::Type::PPC_FP128TyID: 748 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 749 case llvm::Type::X86_FP80TyID: 750 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 751 case llvm::Type::FP128TyID: 752 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 753 } 754 } 755 assert(LHSi && "Can have at most one non-complex operand!"); 756 757 DSTr = Builder.CreateFDiv(LHSr, RHSr); 758 DSTi = Builder.CreateFDiv(LHSi, RHSr); 759 } else { 760 assert(Op.LHS.second && Op.RHS.second && 761 "Both operands of integer complex operators must be complex!"); 762 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 763 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 764 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 765 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 766 767 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 768 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 769 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 770 771 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 772 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 773 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 774 775 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 776 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 777 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 778 } else { 779 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 780 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 781 } 782 } 783 784 return ComplexPairTy(DSTr, DSTi); 785 } 786 787 ComplexExprEmitter::BinOpInfo 788 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 789 TestAndClearIgnoreReal(); 790 TestAndClearIgnoreImag(); 791 BinOpInfo Ops; 792 if (E->getLHS()->getType()->isRealFloatingType()) 793 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 794 else 795 Ops.LHS = Visit(E->getLHS()); 796 if (E->getRHS()->getType()->isRealFloatingType()) 797 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 798 else 799 Ops.RHS = Visit(E->getRHS()); 800 801 Ops.Ty = E->getType(); 802 return Ops; 803 } 804 805 806 LValue ComplexExprEmitter:: 807 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 808 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 809 RValue &Val) { 810 TestAndClearIgnoreReal(); 811 TestAndClearIgnoreImag(); 812 QualType LHSTy = E->getLHS()->getType(); 813 814 BinOpInfo OpInfo; 815 816 // Load the RHS and LHS operands. 817 // __block variables need to have the rhs evaluated first, plus this should 818 // improve codegen a little. 819 OpInfo.Ty = E->getComputationResultType(); 820 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 821 822 // The RHS should have been converted to the computation type. 823 if (E->getRHS()->getType()->isRealFloatingType()) { 824 assert( 825 CGF.getContext() 826 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 827 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 828 } else { 829 assert(CGF.getContext() 830 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 831 OpInfo.RHS = Visit(E->getRHS()); 832 } 833 834 LValue LHS = CGF.EmitLValue(E->getLHS()); 835 836 // Load from the l-value and convert it. 837 if (LHSTy->isAnyComplexType()) { 838 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc()); 839 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 840 } else { 841 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc()); 842 // For floating point real operands we can directly pass the scalar form 843 // to the binary operator emission and potentially get more efficient code. 844 if (LHSTy->isRealFloatingType()) { 845 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 846 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy); 847 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 848 } else { 849 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty); 850 } 851 } 852 853 // Expand the binary operator. 854 ComplexPairTy Result = (this->*Func)(OpInfo); 855 856 // Truncate the result and store it into the LHS lvalue. 857 if (LHSTy->isAnyComplexType()) { 858 ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); 859 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 860 Val = RValue::getComplex(ResVal); 861 } else { 862 llvm::Value *ResVal = 863 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy); 864 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 865 Val = RValue::get(ResVal); 866 } 867 868 return LHS; 869 } 870 871 // Compound assignments. 872 ComplexPairTy ComplexExprEmitter:: 873 EmitCompoundAssign(const CompoundAssignOperator *E, 874 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 875 RValue Val; 876 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 877 878 // The result of an assignment in C is the assigned r-value. 879 if (!CGF.getLangOpts().CPlusPlus) 880 return Val.getComplexVal(); 881 882 // If the lvalue is non-volatile, return the computed value of the assignment. 883 if (!LV.isVolatileQualified()) 884 return Val.getComplexVal(); 885 886 return EmitLoadOfLValue(LV, E->getExprLoc()); 887 } 888 889 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 890 ComplexPairTy &Val) { 891 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 892 E->getRHS()->getType()) && 893 "Invalid assignment"); 894 TestAndClearIgnoreReal(); 895 TestAndClearIgnoreImag(); 896 897 // Emit the RHS. __block variables need the RHS evaluated first. 898 Val = Visit(E->getRHS()); 899 900 // Compute the address to store into. 901 LValue LHS = CGF.EmitLValue(E->getLHS()); 902 903 // Store the result value into the LHS lvalue. 904 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 905 906 return LHS; 907 } 908 909 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 910 ComplexPairTy Val; 911 LValue LV = EmitBinAssignLValue(E, Val); 912 913 // The result of an assignment in C is the assigned r-value. 914 if (!CGF.getLangOpts().CPlusPlus) 915 return Val; 916 917 // If the lvalue is non-volatile, return the computed value of the assignment. 918 if (!LV.isVolatileQualified()) 919 return Val; 920 921 return EmitLoadOfLValue(LV, E->getExprLoc()); 922 } 923 924 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 925 CGF.EmitIgnoredExpr(E->getLHS()); 926 return Visit(E->getRHS()); 927 } 928 929 ComplexPairTy ComplexExprEmitter:: 930 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 931 TestAndClearIgnoreReal(); 932 TestAndClearIgnoreImag(); 933 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 934 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 935 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 936 937 // Bind the common expression if necessary. 938 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 939 940 RegionCounter Cnt = CGF.getPGORegionCounter(E); 941 CodeGenFunction::ConditionalEvaluation eval(CGF); 942 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 943 944 eval.begin(CGF); 945 CGF.EmitBlock(LHSBlock); 946 Cnt.beginRegion(Builder); 947 ComplexPairTy LHS = Visit(E->getTrueExpr()); 948 LHSBlock = Builder.GetInsertBlock(); 949 CGF.EmitBranch(ContBlock); 950 eval.end(CGF); 951 952 eval.begin(CGF); 953 CGF.EmitBlock(RHSBlock); 954 ComplexPairTy RHS = Visit(E->getFalseExpr()); 955 RHSBlock = Builder.GetInsertBlock(); 956 CGF.EmitBlock(ContBlock); 957 eval.end(CGF); 958 959 // Create a PHI node for the real part. 960 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 961 RealPN->addIncoming(LHS.first, LHSBlock); 962 RealPN->addIncoming(RHS.first, RHSBlock); 963 964 // Create a PHI node for the imaginary part. 965 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 966 ImagPN->addIncoming(LHS.second, LHSBlock); 967 ImagPN->addIncoming(RHS.second, RHSBlock); 968 969 return ComplexPairTy(RealPN, ImagPN); 970 } 971 972 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 973 return Visit(E->getChosenSubExpr()); 974 } 975 976 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 977 bool Ignore = TestAndClearIgnoreReal(); 978 (void)Ignore; 979 assert (Ignore == false && "init list ignored"); 980 Ignore = TestAndClearIgnoreImag(); 981 (void)Ignore; 982 assert (Ignore == false && "init list ignored"); 983 984 if (E->getNumInits() == 2) { 985 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 986 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 987 return ComplexPairTy(Real, Imag); 988 } else if (E->getNumInits() == 1) { 989 return Visit(E->getInit(0)); 990 } 991 992 // Empty init list intializes to null 993 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 994 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 995 llvm::Type* LTy = CGF.ConvertType(Ty); 996 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 997 return ComplexPairTy(zeroConstant, zeroConstant); 998 } 999 1000 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1001 llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr()); 1002 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType()); 1003 1004 if (!ArgPtr) { 1005 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1006 llvm::Type *EltTy = 1007 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1008 llvm::Value *U = llvm::UndefValue::get(EltTy); 1009 return ComplexPairTy(U, U); 1010 } 1011 1012 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()), 1013 E->getExprLoc()); 1014 } 1015 1016 //===----------------------------------------------------------------------===// 1017 // Entry Point into this File 1018 //===----------------------------------------------------------------------===// 1019 1020 /// EmitComplexExpr - Emit the computation of the specified expression of 1021 /// complex type, ignoring the result. 1022 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1023 bool IgnoreImag) { 1024 assert(E && getComplexType(E->getType()) && 1025 "Invalid complex expression to emit"); 1026 1027 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1028 .Visit(const_cast<Expr*>(E)); 1029 } 1030 1031 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1032 bool isInit) { 1033 assert(E && getComplexType(E->getType()) && 1034 "Invalid complex expression to emit"); 1035 ComplexExprEmitter Emitter(*this); 1036 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1037 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1038 } 1039 1040 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1041 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1042 bool isInit) { 1043 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1044 } 1045 1046 /// EmitLoadOfComplex - Load a complex number from the specified address. 1047 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1048 SourceLocation loc) { 1049 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1050 } 1051 1052 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1053 assert(E->getOpcode() == BO_Assign); 1054 ComplexPairTy Val; // ignored 1055 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1056 } 1057 1058 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1059 const ComplexExprEmitter::BinOpInfo &); 1060 1061 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1062 switch (Op) { 1063 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1064 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1065 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1066 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1067 default: 1068 llvm_unreachable("unexpected complex compound assignment"); 1069 } 1070 } 1071 1072 LValue CodeGenFunction:: 1073 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1074 CompoundFunc Op = getComplexOp(E->getOpcode()); 1075 RValue Val; 1076 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1077 } 1078 1079 LValue CodeGenFunction:: 1080 EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 1081 llvm::Value *&Result) { 1082 CompoundFunc Op = getComplexOp(E->getOpcode()); 1083 RValue Val; 1084 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1085 Result = Val.getScalarVal(); 1086 return Ret; 1087 } 1088