1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 105 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 return Visit(GE->getResultExpr()); 107 } 108 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 109 ComplexPairTy 110 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 111 return Visit(PE->getReplacement()); 112 } 113 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 114 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 115 } 116 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 117 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 120 return Visit(E->getSubExpr()); 121 } 122 123 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 124 Expr *E) { 125 assert(Constant && "not a constant"); 126 if (Constant.isReference()) 127 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 128 E->getExprLoc()); 129 130 llvm::Constant *pair = Constant.getValue(); 131 return ComplexPairTy(pair->getAggregateElement(0U), 132 pair->getAggregateElement(1U)); 133 } 134 135 // l-values. 136 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 137 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 138 return emitConstant(Constant, E); 139 return EmitLoadOfLValue(E); 140 } 141 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 142 return EmitLoadOfLValue(E); 143 } 144 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 145 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 146 } 147 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 148 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 149 if (CodeGenFunction::ConstantEmission Constant = 150 CGF.tryEmitAsConstant(ME)) { 151 CGF.EmitIgnoredExpr(ME->getBase()); 152 return emitConstant(Constant, ME); 153 } 154 return EmitLoadOfLValue(ME); 155 } 156 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 157 if (E->isGLValue()) 158 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 159 E->getExprLoc()); 160 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 161 } 162 163 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 164 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 165 } 166 167 // FIXME: CompoundLiteralExpr 168 169 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 170 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 171 // Unlike for scalars, we don't have to worry about function->ptr demotion 172 // here. 173 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 174 } 175 ComplexPairTy VisitCastExpr(CastExpr *E) { 176 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 177 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 178 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 179 } 180 ComplexPairTy VisitCallExpr(const CallExpr *E); 181 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 182 183 // Operators. 184 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 185 bool isInc, bool isPre) { 186 LValue LV = CGF.EmitLValue(E->getSubExpr()); 187 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 188 } 189 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 190 return VisitPrePostIncDec(E, false, false); 191 } 192 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 193 return VisitPrePostIncDec(E, true, false); 194 } 195 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 196 return VisitPrePostIncDec(E, false, true); 197 } 198 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 199 return VisitPrePostIncDec(E, true, true); 200 } 201 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 202 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 203 TestAndClearIgnoreReal(); 204 TestAndClearIgnoreImag(); 205 return Visit(E->getSubExpr()); 206 } 207 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 208 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 209 // LNot,Real,Imag never return complex. 210 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 211 return Visit(E->getSubExpr()); 212 } 213 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 214 return Visit(DAE->getExpr()); 215 } 216 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 217 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 218 return Visit(DIE->getExpr()); 219 } 220 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 221 CGF.enterFullExpression(E); 222 CodeGenFunction::RunCleanupsScope Scope(CGF); 223 ComplexPairTy Vals = Visit(E->getSubExpr()); 224 // Defend against dominance problems caused by jumps out of expression 225 // evaluation through the shared cleanup block. 226 Scope.ForceCleanup({&Vals.first, &Vals.second}); 227 return Vals; 228 } 229 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 230 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 231 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 232 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 233 return ComplexPairTy(Null, Null); 234 } 235 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 236 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 237 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 238 llvm::Constant *Null = 239 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 240 return ComplexPairTy(Null, Null); 241 } 242 243 struct BinOpInfo { 244 ComplexPairTy LHS; 245 ComplexPairTy RHS; 246 QualType Ty; // Computation Type. 247 }; 248 249 BinOpInfo EmitBinOps(const BinaryOperator *E); 250 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 251 ComplexPairTy (ComplexExprEmitter::*Func) 252 (const BinOpInfo &), 253 RValue &Val); 254 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 255 ComplexPairTy (ComplexExprEmitter::*Func) 256 (const BinOpInfo &)); 257 258 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 259 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 260 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 261 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 262 263 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 264 const BinOpInfo &Op); 265 266 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 267 return EmitBinAdd(EmitBinOps(E)); 268 } 269 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 270 return EmitBinSub(EmitBinOps(E)); 271 } 272 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 273 return EmitBinMul(EmitBinOps(E)); 274 } 275 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 276 return EmitBinDiv(EmitBinOps(E)); 277 } 278 279 // Compound assignments. 280 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 281 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 282 } 283 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 284 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 285 } 286 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 287 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 288 } 289 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 290 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 291 } 292 293 // GCC rejects rem/and/or/xor for integer complex. 294 // Logical and/or always return int, never complex. 295 296 // No comparisons produce a complex result. 297 298 LValue EmitBinAssignLValue(const BinaryOperator *E, 299 ComplexPairTy &Val); 300 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 301 ComplexPairTy VisitBinComma (const BinaryOperator *E); 302 303 304 ComplexPairTy 305 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 306 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 307 308 ComplexPairTy VisitInitListExpr(InitListExpr *E); 309 310 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 311 return EmitLoadOfLValue(E); 312 } 313 314 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 315 316 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 317 return CGF.EmitAtomicExpr(E).getComplexVal(); 318 } 319 }; 320 } // end anonymous namespace. 321 322 //===----------------------------------------------------------------------===// 323 // Utilities 324 //===----------------------------------------------------------------------===// 325 326 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 327 QualType complexType) { 328 CharUnits offset = CharUnits::Zero(); 329 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 330 } 331 332 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 333 QualType complexType) { 334 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 335 CharUnits offset = getContext().getTypeSizeInChars(eltType); 336 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 337 } 338 339 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 340 /// load the real and imaginary pieces, returning them as Real/Imag. 341 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 342 SourceLocation loc) { 343 assert(lvalue.isSimple() && "non-simple complex l-value?"); 344 if (lvalue.getType()->isAtomicType()) 345 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 346 347 Address SrcPtr = lvalue.getAddress(); 348 bool isVolatile = lvalue.isVolatileQualified(); 349 350 llvm::Value *Real = nullptr, *Imag = nullptr; 351 352 if (!IgnoreReal || isVolatile) { 353 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 354 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 355 } 356 357 if (!IgnoreImag || isVolatile) { 358 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 359 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 360 } 361 362 return ComplexPairTy(Real, Imag); 363 } 364 365 /// EmitStoreOfComplex - Store the specified real/imag parts into the 366 /// specified value pointer. 367 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 368 bool isInit) { 369 if (lvalue.getType()->isAtomicType() || 370 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 371 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 372 373 Address Ptr = lvalue.getAddress(); 374 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 375 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 376 377 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 378 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 379 } 380 381 382 383 //===----------------------------------------------------------------------===// 384 // Visitor Methods 385 //===----------------------------------------------------------------------===// 386 387 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 388 CGF.ErrorUnsupported(E, "complex expression"); 389 llvm::Type *EltTy = 390 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 391 llvm::Value *U = llvm::UndefValue::get(EltTy); 392 return ComplexPairTy(U, U); 393 } 394 395 ComplexPairTy ComplexExprEmitter:: 396 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 397 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 398 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 399 } 400 401 402 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 403 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 404 return EmitLoadOfLValue(E); 405 406 return CGF.EmitCallExpr(E).getComplexVal(); 407 } 408 409 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 410 CodeGenFunction::StmtExprEvaluation eval(CGF); 411 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 412 assert(RetAlloca.isValid() && "Expected complex return value"); 413 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 414 E->getExprLoc()); 415 } 416 417 /// Emit a cast from complex value Val to DestType. 418 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 419 QualType SrcType, 420 QualType DestType, 421 SourceLocation Loc) { 422 // Get the src/dest element type. 423 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 424 DestType = DestType->castAs<ComplexType>()->getElementType(); 425 426 // C99 6.3.1.6: When a value of complex type is converted to another 427 // complex type, both the real and imaginary parts follow the conversion 428 // rules for the corresponding real types. 429 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 430 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 431 return Val; 432 } 433 434 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 435 QualType SrcType, 436 QualType DestType, 437 SourceLocation Loc) { 438 // Convert the input element to the element type of the complex. 439 DestType = DestType->castAs<ComplexType>()->getElementType(); 440 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 441 442 // Return (realval, 0). 443 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 444 } 445 446 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 447 QualType DestTy) { 448 switch (CK) { 449 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 450 451 // Atomic to non-atomic casts may be more than a no-op for some platforms and 452 // for some types. 453 case CK_AtomicToNonAtomic: 454 case CK_NonAtomicToAtomic: 455 case CK_NoOp: 456 case CK_LValueToRValue: 457 case CK_UserDefinedConversion: 458 return Visit(Op); 459 460 case CK_LValueBitCast: { 461 LValue origLV = CGF.EmitLValue(Op); 462 Address V = origLV.getAddress(); 463 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 464 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 465 } 466 467 case CK_BitCast: 468 case CK_BaseToDerived: 469 case CK_DerivedToBase: 470 case CK_UncheckedDerivedToBase: 471 case CK_Dynamic: 472 case CK_ToUnion: 473 case CK_ArrayToPointerDecay: 474 case CK_FunctionToPointerDecay: 475 case CK_NullToPointer: 476 case CK_NullToMemberPointer: 477 case CK_BaseToDerivedMemberPointer: 478 case CK_DerivedToBaseMemberPointer: 479 case CK_MemberPointerToBoolean: 480 case CK_ReinterpretMemberPointer: 481 case CK_ConstructorConversion: 482 case CK_IntegralToPointer: 483 case CK_PointerToIntegral: 484 case CK_PointerToBoolean: 485 case CK_ToVoid: 486 case CK_VectorSplat: 487 case CK_IntegralCast: 488 case CK_BooleanToSignedIntegral: 489 case CK_IntegralToBoolean: 490 case CK_IntegralToFloating: 491 case CK_FloatingToIntegral: 492 case CK_FloatingToBoolean: 493 case CK_FloatingCast: 494 case CK_CPointerToObjCPointerCast: 495 case CK_BlockPointerToObjCPointerCast: 496 case CK_AnyPointerToBlockPointerCast: 497 case CK_ObjCObjectLValueCast: 498 case CK_FloatingComplexToReal: 499 case CK_FloatingComplexToBoolean: 500 case CK_IntegralComplexToReal: 501 case CK_IntegralComplexToBoolean: 502 case CK_ARCProduceObject: 503 case CK_ARCConsumeObject: 504 case CK_ARCReclaimReturnedObject: 505 case CK_ARCExtendBlockObject: 506 case CK_CopyAndAutoreleaseBlockObject: 507 case CK_BuiltinFnToFnPtr: 508 case CK_ZeroToOCLOpaqueType: 509 case CK_AddressSpaceConversion: 510 case CK_IntToOCLSampler: 511 case CK_FixedPointCast: 512 case CK_FixedPointToBoolean: 513 llvm_unreachable("invalid cast kind for complex value"); 514 515 case CK_FloatingRealToComplex: 516 case CK_IntegralRealToComplex: 517 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 518 DestTy, Op->getExprLoc()); 519 520 case CK_FloatingComplexCast: 521 case CK_FloatingComplexToIntegralComplex: 522 case CK_IntegralComplexCast: 523 case CK_IntegralComplexToFloatingComplex: 524 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 525 Op->getExprLoc()); 526 } 527 528 llvm_unreachable("unknown cast resulting in complex value"); 529 } 530 531 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 532 TestAndClearIgnoreReal(); 533 TestAndClearIgnoreImag(); 534 ComplexPairTy Op = Visit(E->getSubExpr()); 535 536 llvm::Value *ResR, *ResI; 537 if (Op.first->getType()->isFloatingPointTy()) { 538 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 539 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 540 } else { 541 ResR = Builder.CreateNeg(Op.first, "neg.r"); 542 ResI = Builder.CreateNeg(Op.second, "neg.i"); 543 } 544 return ComplexPairTy(ResR, ResI); 545 } 546 547 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 548 TestAndClearIgnoreReal(); 549 TestAndClearIgnoreImag(); 550 // ~(a+ib) = a + i*-b 551 ComplexPairTy Op = Visit(E->getSubExpr()); 552 llvm::Value *ResI; 553 if (Op.second->getType()->isFloatingPointTy()) 554 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 555 else 556 ResI = Builder.CreateNeg(Op.second, "conj.i"); 557 558 return ComplexPairTy(Op.first, ResI); 559 } 560 561 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 562 llvm::Value *ResR, *ResI; 563 564 if (Op.LHS.first->getType()->isFloatingPointTy()) { 565 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 566 if (Op.LHS.second && Op.RHS.second) 567 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 568 else 569 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 570 assert(ResI && "Only one operand may be real!"); 571 } else { 572 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 573 assert(Op.LHS.second && Op.RHS.second && 574 "Both operands of integer complex operators must be complex!"); 575 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 576 } 577 return ComplexPairTy(ResR, ResI); 578 } 579 580 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 581 llvm::Value *ResR, *ResI; 582 if (Op.LHS.first->getType()->isFloatingPointTy()) { 583 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 584 if (Op.LHS.second && Op.RHS.second) 585 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 586 else 587 ResI = Op.LHS.second ? Op.LHS.second 588 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 589 assert(ResI && "Only one operand may be real!"); 590 } else { 591 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 592 assert(Op.LHS.second && Op.RHS.second && 593 "Both operands of integer complex operators must be complex!"); 594 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 595 } 596 return ComplexPairTy(ResR, ResI); 597 } 598 599 /// Emit a libcall for a binary operation on complex types. 600 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 601 const BinOpInfo &Op) { 602 CallArgList Args; 603 Args.add(RValue::get(Op.LHS.first), 604 Op.Ty->castAs<ComplexType>()->getElementType()); 605 Args.add(RValue::get(Op.LHS.second), 606 Op.Ty->castAs<ComplexType>()->getElementType()); 607 Args.add(RValue::get(Op.RHS.first), 608 Op.Ty->castAs<ComplexType>()->getElementType()); 609 Args.add(RValue::get(Op.RHS.second), 610 Op.Ty->castAs<ComplexType>()->getElementType()); 611 612 // We *must* use the full CG function call building logic here because the 613 // complex type has special ABI handling. We also should not forget about 614 // special calling convention which may be used for compiler builtins. 615 616 // We create a function qualified type to state that this call does not have 617 // any exceptions. 618 FunctionProtoType::ExtProtoInfo EPI; 619 EPI = EPI.withExceptionSpec( 620 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 621 SmallVector<QualType, 4> ArgsQTys( 622 4, Op.Ty->castAs<ComplexType>()->getElementType()); 623 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 624 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 625 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 626 627 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 628 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 629 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 630 631 llvm::Instruction *Call; 632 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 633 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getRuntimeCC()); 634 return Res.getComplexVal(); 635 } 636 637 /// Lookup the libcall name for a given floating point type complex 638 /// multiply. 639 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 640 switch (Ty->getTypeID()) { 641 default: 642 llvm_unreachable("Unsupported floating point type!"); 643 case llvm::Type::HalfTyID: 644 return "__mulhc3"; 645 case llvm::Type::FloatTyID: 646 return "__mulsc3"; 647 case llvm::Type::DoubleTyID: 648 return "__muldc3"; 649 case llvm::Type::PPC_FP128TyID: 650 return "__multc3"; 651 case llvm::Type::X86_FP80TyID: 652 return "__mulxc3"; 653 case llvm::Type::FP128TyID: 654 return "__multc3"; 655 } 656 } 657 658 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 659 // typed values. 660 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 661 using llvm::Value; 662 Value *ResR, *ResI; 663 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 664 665 if (Op.LHS.first->getType()->isFloatingPointTy()) { 666 // The general formulation is: 667 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 668 // 669 // But we can fold away components which would be zero due to a real 670 // operand according to C11 Annex G.5.1p2. 671 // FIXME: C11 also provides for imaginary types which would allow folding 672 // still more of this within the type system. 673 674 if (Op.LHS.second && Op.RHS.second) { 675 // If both operands are complex, emit the core math directly, and then 676 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 677 // to carefully re-compute the correct infinity representation if 678 // possible. The expectation is that the presence of NaNs here is 679 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 680 // This is good, because the libcall re-computes the core multiplication 681 // exactly the same as we do here and re-tests for NaNs in order to be 682 // a generic complex*complex libcall. 683 684 // First compute the four products. 685 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 686 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 687 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 688 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 689 690 // The real part is the difference of the first two, the imaginary part is 691 // the sum of the second. 692 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 693 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 694 695 // Emit the test for the real part becoming NaN and create a branch to 696 // handle it. We test for NaN by comparing the number to itself. 697 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 698 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 699 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 700 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 701 llvm::BasicBlock *OrigBB = Branch->getParent(); 702 703 // Give hint that we very much don't expect to see NaNs. 704 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 705 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 706 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 707 708 // Now test the imaginary part and create its branch. 709 CGF.EmitBlock(INaNBB); 710 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 711 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 712 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 713 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 714 715 // Now emit the libcall on this slowest of the slow paths. 716 CGF.EmitBlock(LibCallBB); 717 Value *LibCallR, *LibCallI; 718 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 719 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 720 Builder.CreateBr(ContBB); 721 722 // Finally continue execution by phi-ing together the different 723 // computation paths. 724 CGF.EmitBlock(ContBB); 725 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 726 RealPHI->addIncoming(ResR, OrigBB); 727 RealPHI->addIncoming(ResR, INaNBB); 728 RealPHI->addIncoming(LibCallR, LibCallBB); 729 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 730 ImagPHI->addIncoming(ResI, OrigBB); 731 ImagPHI->addIncoming(ResI, INaNBB); 732 ImagPHI->addIncoming(LibCallI, LibCallBB); 733 return ComplexPairTy(RealPHI, ImagPHI); 734 } 735 assert((Op.LHS.second || Op.RHS.second) && 736 "At least one operand must be complex!"); 737 738 // If either of the operands is a real rather than a complex, the 739 // imaginary component is ignored when computing the real component of the 740 // result. 741 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 742 743 ResI = Op.LHS.second 744 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 745 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 746 } else { 747 assert(Op.LHS.second && Op.RHS.second && 748 "Both operands of integer complex operators must be complex!"); 749 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 750 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 751 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 752 753 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 754 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 755 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 756 } 757 return ComplexPairTy(ResR, ResI); 758 } 759 760 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 761 // typed values. 762 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 763 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 764 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 765 766 llvm::Value *DSTr, *DSTi; 767 if (LHSr->getType()->isFloatingPointTy()) { 768 // If we have a complex operand on the RHS and FastMath is not allowed, we 769 // delegate to a libcall to handle all of the complexities and minimize 770 // underflow/overflow cases. When FastMath is allowed we construct the 771 // divide inline using the same algorithm as for integer operands. 772 // 773 // FIXME: We would be able to avoid the libcall in many places if we 774 // supported imaginary types in addition to complex types. 775 if (RHSi && !CGF.getLangOpts().FastMath) { 776 BinOpInfo LibCallOp = Op; 777 // If LHS was a real, supply a null imaginary part. 778 if (!LHSi) 779 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 780 781 switch (LHSr->getType()->getTypeID()) { 782 default: 783 llvm_unreachable("Unsupported floating point type!"); 784 case llvm::Type::HalfTyID: 785 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 786 case llvm::Type::FloatTyID: 787 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 788 case llvm::Type::DoubleTyID: 789 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 790 case llvm::Type::PPC_FP128TyID: 791 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 792 case llvm::Type::X86_FP80TyID: 793 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 794 case llvm::Type::FP128TyID: 795 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 796 } 797 } else if (RHSi) { 798 if (!LHSi) 799 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 800 801 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 802 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 803 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 804 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 805 806 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 807 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 808 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 809 810 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 811 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 812 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 813 814 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 815 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 816 } else { 817 assert(LHSi && "Can have at most one non-complex operand!"); 818 819 DSTr = Builder.CreateFDiv(LHSr, RHSr); 820 DSTi = Builder.CreateFDiv(LHSi, RHSr); 821 } 822 } else { 823 assert(Op.LHS.second && Op.RHS.second && 824 "Both operands of integer complex operators must be complex!"); 825 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 826 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 827 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 828 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 829 830 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 831 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 832 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 833 834 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 835 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 836 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 837 838 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 839 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 840 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 841 } else { 842 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 843 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 844 } 845 } 846 847 return ComplexPairTy(DSTr, DSTi); 848 } 849 850 ComplexExprEmitter::BinOpInfo 851 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 852 TestAndClearIgnoreReal(); 853 TestAndClearIgnoreImag(); 854 BinOpInfo Ops; 855 if (E->getLHS()->getType()->isRealFloatingType()) 856 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 857 else 858 Ops.LHS = Visit(E->getLHS()); 859 if (E->getRHS()->getType()->isRealFloatingType()) 860 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 861 else 862 Ops.RHS = Visit(E->getRHS()); 863 864 Ops.Ty = E->getType(); 865 return Ops; 866 } 867 868 869 LValue ComplexExprEmitter:: 870 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 871 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 872 RValue &Val) { 873 TestAndClearIgnoreReal(); 874 TestAndClearIgnoreImag(); 875 QualType LHSTy = E->getLHS()->getType(); 876 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 877 LHSTy = AT->getValueType(); 878 879 BinOpInfo OpInfo; 880 881 // Load the RHS and LHS operands. 882 // __block variables need to have the rhs evaluated first, plus this should 883 // improve codegen a little. 884 OpInfo.Ty = E->getComputationResultType(); 885 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 886 887 // The RHS should have been converted to the computation type. 888 if (E->getRHS()->getType()->isRealFloatingType()) { 889 assert( 890 CGF.getContext() 891 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 892 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 893 } else { 894 assert(CGF.getContext() 895 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 896 OpInfo.RHS = Visit(E->getRHS()); 897 } 898 899 LValue LHS = CGF.EmitLValue(E->getLHS()); 900 901 // Load from the l-value and convert it. 902 SourceLocation Loc = E->getExprLoc(); 903 if (LHSTy->isAnyComplexType()) { 904 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 905 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 906 } else { 907 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 908 // For floating point real operands we can directly pass the scalar form 909 // to the binary operator emission and potentially get more efficient code. 910 if (LHSTy->isRealFloatingType()) { 911 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 912 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 913 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 914 } else { 915 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 916 } 917 } 918 919 // Expand the binary operator. 920 ComplexPairTy Result = (this->*Func)(OpInfo); 921 922 // Truncate the result and store it into the LHS lvalue. 923 if (LHSTy->isAnyComplexType()) { 924 ComplexPairTy ResVal = 925 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 926 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 927 Val = RValue::getComplex(ResVal); 928 } else { 929 llvm::Value *ResVal = 930 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 931 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 932 Val = RValue::get(ResVal); 933 } 934 935 return LHS; 936 } 937 938 // Compound assignments. 939 ComplexPairTy ComplexExprEmitter:: 940 EmitCompoundAssign(const CompoundAssignOperator *E, 941 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 942 RValue Val; 943 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 944 945 // The result of an assignment in C is the assigned r-value. 946 if (!CGF.getLangOpts().CPlusPlus) 947 return Val.getComplexVal(); 948 949 // If the lvalue is non-volatile, return the computed value of the assignment. 950 if (!LV.isVolatileQualified()) 951 return Val.getComplexVal(); 952 953 return EmitLoadOfLValue(LV, E->getExprLoc()); 954 } 955 956 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 957 ComplexPairTy &Val) { 958 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 959 E->getRHS()->getType()) && 960 "Invalid assignment"); 961 TestAndClearIgnoreReal(); 962 TestAndClearIgnoreImag(); 963 964 // Emit the RHS. __block variables need the RHS evaluated first. 965 Val = Visit(E->getRHS()); 966 967 // Compute the address to store into. 968 LValue LHS = CGF.EmitLValue(E->getLHS()); 969 970 // Store the result value into the LHS lvalue. 971 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 972 973 return LHS; 974 } 975 976 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 977 ComplexPairTy Val; 978 LValue LV = EmitBinAssignLValue(E, Val); 979 980 // The result of an assignment in C is the assigned r-value. 981 if (!CGF.getLangOpts().CPlusPlus) 982 return Val; 983 984 // If the lvalue is non-volatile, return the computed value of the assignment. 985 if (!LV.isVolatileQualified()) 986 return Val; 987 988 return EmitLoadOfLValue(LV, E->getExprLoc()); 989 } 990 991 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 992 CGF.EmitIgnoredExpr(E->getLHS()); 993 return Visit(E->getRHS()); 994 } 995 996 ComplexPairTy ComplexExprEmitter:: 997 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 998 TestAndClearIgnoreReal(); 999 TestAndClearIgnoreImag(); 1000 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1001 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1002 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1003 1004 // Bind the common expression if necessary. 1005 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1006 1007 1008 CodeGenFunction::ConditionalEvaluation eval(CGF); 1009 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1010 CGF.getProfileCount(E)); 1011 1012 eval.begin(CGF); 1013 CGF.EmitBlock(LHSBlock); 1014 CGF.incrementProfileCounter(E); 1015 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1016 LHSBlock = Builder.GetInsertBlock(); 1017 CGF.EmitBranch(ContBlock); 1018 eval.end(CGF); 1019 1020 eval.begin(CGF); 1021 CGF.EmitBlock(RHSBlock); 1022 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1023 RHSBlock = Builder.GetInsertBlock(); 1024 CGF.EmitBlock(ContBlock); 1025 eval.end(CGF); 1026 1027 // Create a PHI node for the real part. 1028 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1029 RealPN->addIncoming(LHS.first, LHSBlock); 1030 RealPN->addIncoming(RHS.first, RHSBlock); 1031 1032 // Create a PHI node for the imaginary part. 1033 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1034 ImagPN->addIncoming(LHS.second, LHSBlock); 1035 ImagPN->addIncoming(RHS.second, RHSBlock); 1036 1037 return ComplexPairTy(RealPN, ImagPN); 1038 } 1039 1040 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1041 return Visit(E->getChosenSubExpr()); 1042 } 1043 1044 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1045 bool Ignore = TestAndClearIgnoreReal(); 1046 (void)Ignore; 1047 assert (Ignore == false && "init list ignored"); 1048 Ignore = TestAndClearIgnoreImag(); 1049 (void)Ignore; 1050 assert (Ignore == false && "init list ignored"); 1051 1052 if (E->getNumInits() == 2) { 1053 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1054 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1055 return ComplexPairTy(Real, Imag); 1056 } else if (E->getNumInits() == 1) { 1057 return Visit(E->getInit(0)); 1058 } 1059 1060 // Empty init list initializes to null 1061 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1062 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1063 llvm::Type* LTy = CGF.ConvertType(Ty); 1064 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1065 return ComplexPairTy(zeroConstant, zeroConstant); 1066 } 1067 1068 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1069 Address ArgValue = Address::invalid(); 1070 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1071 1072 if (!ArgPtr.isValid()) { 1073 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1074 llvm::Type *EltTy = 1075 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1076 llvm::Value *U = llvm::UndefValue::get(EltTy); 1077 return ComplexPairTy(U, U); 1078 } 1079 1080 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1081 E->getExprLoc()); 1082 } 1083 1084 //===----------------------------------------------------------------------===// 1085 // Entry Point into this File 1086 //===----------------------------------------------------------------------===// 1087 1088 /// EmitComplexExpr - Emit the computation of the specified expression of 1089 /// complex type, ignoring the result. 1090 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1091 bool IgnoreImag) { 1092 assert(E && getComplexType(E->getType()) && 1093 "Invalid complex expression to emit"); 1094 1095 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1096 .Visit(const_cast<Expr *>(E)); 1097 } 1098 1099 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1100 bool isInit) { 1101 assert(E && getComplexType(E->getType()) && 1102 "Invalid complex expression to emit"); 1103 ComplexExprEmitter Emitter(*this); 1104 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1105 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1106 } 1107 1108 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1109 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1110 bool isInit) { 1111 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1112 } 1113 1114 /// EmitLoadOfComplex - Load a complex number from the specified address. 1115 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1116 SourceLocation loc) { 1117 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1118 } 1119 1120 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1121 assert(E->getOpcode() == BO_Assign); 1122 ComplexPairTy Val; // ignored 1123 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1124 } 1125 1126 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1127 const ComplexExprEmitter::BinOpInfo &); 1128 1129 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1130 switch (Op) { 1131 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1132 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1133 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1134 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1135 default: 1136 llvm_unreachable("unexpected complex compound assignment"); 1137 } 1138 } 1139 1140 LValue CodeGenFunction:: 1141 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1142 CompoundFunc Op = getComplexOp(E->getOpcode()); 1143 RValue Val; 1144 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1145 } 1146 1147 LValue CodeGenFunction:: 1148 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1149 llvm::Value *&Result) { 1150 CompoundFunc Op = getComplexOp(E->getOpcode()); 1151 RValue Val; 1152 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1153 Result = Val.getScalarVal(); 1154 return Ret; 1155 } 1156