1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 105 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 return Visit(GE->getResultExpr()); 107 } 108 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 109 ComplexPairTy 110 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 111 return Visit(PE->getReplacement()); 112 } 113 114 // l-values. 115 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 116 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 117 if (result.isReference()) 118 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 119 E->getExprLoc()); 120 121 llvm::Constant *pair = result.getValue(); 122 return ComplexPairTy(pair->getAggregateElement(0U), 123 pair->getAggregateElement(1U)); 124 } 125 return EmitLoadOfLValue(E); 126 } 127 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 131 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 132 } 133 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 134 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 135 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 136 if (E->isGLValue()) 137 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 138 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 139 } 140 141 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 142 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 143 } 144 145 // FIXME: CompoundLiteralExpr 146 147 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 148 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 149 // Unlike for scalars, we don't have to worry about function->ptr demotion 150 // here. 151 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 152 } 153 ComplexPairTy VisitCastExpr(CastExpr *E) { 154 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 155 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 156 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 157 } 158 ComplexPairTy VisitCallExpr(const CallExpr *E); 159 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 160 161 // Operators. 162 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 163 bool isInc, bool isPre) { 164 LValue LV = CGF.EmitLValue(E->getSubExpr()); 165 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 166 } 167 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 168 return VisitPrePostIncDec(E, false, false); 169 } 170 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 171 return VisitPrePostIncDec(E, true, false); 172 } 173 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 174 return VisitPrePostIncDec(E, false, true); 175 } 176 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 177 return VisitPrePostIncDec(E, true, true); 178 } 179 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 180 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 181 TestAndClearIgnoreReal(); 182 TestAndClearIgnoreImag(); 183 return Visit(E->getSubExpr()); 184 } 185 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 186 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 187 // LNot,Real,Imag never return complex. 188 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 189 return Visit(E->getSubExpr()); 190 } 191 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 192 return Visit(DAE->getExpr()); 193 } 194 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 195 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 196 return Visit(DIE->getExpr()); 197 } 198 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 199 CGF.enterFullExpression(E); 200 CodeGenFunction::RunCleanupsScope Scope(CGF); 201 return Visit(E->getSubExpr()); 202 } 203 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 204 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 205 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 206 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 207 return ComplexPairTy(Null, Null); 208 } 209 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 210 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 211 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 212 llvm::Constant *Null = 213 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 214 return ComplexPairTy(Null, Null); 215 } 216 217 struct BinOpInfo { 218 ComplexPairTy LHS; 219 ComplexPairTy RHS; 220 QualType Ty; // Computation Type. 221 }; 222 223 BinOpInfo EmitBinOps(const BinaryOperator *E); 224 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 225 ComplexPairTy (ComplexExprEmitter::*Func) 226 (const BinOpInfo &), 227 RValue &Val); 228 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 229 ComplexPairTy (ComplexExprEmitter::*Func) 230 (const BinOpInfo &)); 231 232 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 233 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 234 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 235 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 236 237 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 238 const BinOpInfo &Op); 239 240 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 241 return EmitBinAdd(EmitBinOps(E)); 242 } 243 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 244 return EmitBinSub(EmitBinOps(E)); 245 } 246 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 247 return EmitBinMul(EmitBinOps(E)); 248 } 249 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 250 return EmitBinDiv(EmitBinOps(E)); 251 } 252 253 // Compound assignments. 254 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 255 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 256 } 257 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 259 } 260 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 262 } 263 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 265 } 266 267 // GCC rejects rem/and/or/xor for integer complex. 268 // Logical and/or always return int, never complex. 269 270 // No comparisons produce a complex result. 271 272 LValue EmitBinAssignLValue(const BinaryOperator *E, 273 ComplexPairTy &Val); 274 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 275 ComplexPairTy VisitBinComma (const BinaryOperator *E); 276 277 278 ComplexPairTy 279 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 280 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 281 282 ComplexPairTy VisitInitListExpr(InitListExpr *E); 283 284 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 285 return EmitLoadOfLValue(E); 286 } 287 288 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 289 290 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 291 return CGF.EmitAtomicExpr(E).getComplexVal(); 292 } 293 }; 294 } // end anonymous namespace. 295 296 //===----------------------------------------------------------------------===// 297 // Utilities 298 //===----------------------------------------------------------------------===// 299 300 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 301 QualType complexType) { 302 CharUnits offset = CharUnits::Zero(); 303 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 304 } 305 306 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 307 QualType complexType) { 308 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 309 CharUnits offset = getContext().getTypeSizeInChars(eltType); 310 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 311 } 312 313 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 314 /// load the real and imaginary pieces, returning them as Real/Imag. 315 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 316 SourceLocation loc) { 317 assert(lvalue.isSimple() && "non-simple complex l-value?"); 318 if (lvalue.getType()->isAtomicType()) 319 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 320 321 Address SrcPtr = lvalue.getAddress(); 322 bool isVolatile = lvalue.isVolatileQualified(); 323 324 llvm::Value *Real = nullptr, *Imag = nullptr; 325 326 if (!IgnoreReal || isVolatile) { 327 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 328 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 329 } 330 331 if (!IgnoreImag || isVolatile) { 332 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 333 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 334 } 335 336 return ComplexPairTy(Real, Imag); 337 } 338 339 /// EmitStoreOfComplex - Store the specified real/imag parts into the 340 /// specified value pointer. 341 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 342 bool isInit) { 343 if (lvalue.getType()->isAtomicType() || 344 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 345 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 346 347 Address Ptr = lvalue.getAddress(); 348 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 349 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 350 351 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 352 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 353 } 354 355 356 357 //===----------------------------------------------------------------------===// 358 // Visitor Methods 359 //===----------------------------------------------------------------------===// 360 361 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 362 CGF.ErrorUnsupported(E, "complex expression"); 363 llvm::Type *EltTy = 364 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 365 llvm::Value *U = llvm::UndefValue::get(EltTy); 366 return ComplexPairTy(U, U); 367 } 368 369 ComplexPairTy ComplexExprEmitter:: 370 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 371 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 372 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 373 } 374 375 376 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 377 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 378 return EmitLoadOfLValue(E); 379 380 return CGF.EmitCallExpr(E).getComplexVal(); 381 } 382 383 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 384 CodeGenFunction::StmtExprEvaluation eval(CGF); 385 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 386 assert(RetAlloca.isValid() && "Expected complex return value"); 387 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 388 E->getExprLoc()); 389 } 390 391 /// Emit a cast from complex value Val to DestType. 392 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 393 QualType SrcType, 394 QualType DestType, 395 SourceLocation Loc) { 396 // Get the src/dest element type. 397 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 398 DestType = DestType->castAs<ComplexType>()->getElementType(); 399 400 // C99 6.3.1.6: When a value of complex type is converted to another 401 // complex type, both the real and imaginary parts follow the conversion 402 // rules for the corresponding real types. 403 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 404 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 405 return Val; 406 } 407 408 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 409 QualType SrcType, 410 QualType DestType, 411 SourceLocation Loc) { 412 // Convert the input element to the element type of the complex. 413 DestType = DestType->castAs<ComplexType>()->getElementType(); 414 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 415 416 // Return (realval, 0). 417 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 418 } 419 420 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 421 QualType DestTy) { 422 switch (CK) { 423 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 424 425 // Atomic to non-atomic casts may be more than a no-op for some platforms and 426 // for some types. 427 case CK_AtomicToNonAtomic: 428 case CK_NonAtomicToAtomic: 429 case CK_NoOp: 430 case CK_LValueToRValue: 431 case CK_UserDefinedConversion: 432 return Visit(Op); 433 434 case CK_LValueBitCast: { 435 LValue origLV = CGF.EmitLValue(Op); 436 Address V = origLV.getAddress(); 437 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 438 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 439 } 440 441 case CK_BitCast: 442 case CK_BaseToDerived: 443 case CK_DerivedToBase: 444 case CK_UncheckedDerivedToBase: 445 case CK_Dynamic: 446 case CK_ToUnion: 447 case CK_ArrayToPointerDecay: 448 case CK_FunctionToPointerDecay: 449 case CK_NullToPointer: 450 case CK_NullToMemberPointer: 451 case CK_BaseToDerivedMemberPointer: 452 case CK_DerivedToBaseMemberPointer: 453 case CK_MemberPointerToBoolean: 454 case CK_ReinterpretMemberPointer: 455 case CK_ConstructorConversion: 456 case CK_IntegralToPointer: 457 case CK_PointerToIntegral: 458 case CK_PointerToBoolean: 459 case CK_ToVoid: 460 case CK_VectorSplat: 461 case CK_IntegralCast: 462 case CK_BooleanToSignedIntegral: 463 case CK_IntegralToBoolean: 464 case CK_IntegralToFloating: 465 case CK_FloatingToIntegral: 466 case CK_FloatingToBoolean: 467 case CK_FloatingCast: 468 case CK_CPointerToObjCPointerCast: 469 case CK_BlockPointerToObjCPointerCast: 470 case CK_AnyPointerToBlockPointerCast: 471 case CK_ObjCObjectLValueCast: 472 case CK_FloatingComplexToReal: 473 case CK_FloatingComplexToBoolean: 474 case CK_IntegralComplexToReal: 475 case CK_IntegralComplexToBoolean: 476 case CK_ARCProduceObject: 477 case CK_ARCConsumeObject: 478 case CK_ARCReclaimReturnedObject: 479 case CK_ARCExtendBlockObject: 480 case CK_CopyAndAutoreleaseBlockObject: 481 case CK_BuiltinFnToFnPtr: 482 case CK_ZeroToOCLEvent: 483 case CK_AddressSpaceConversion: 484 llvm_unreachable("invalid cast kind for complex value"); 485 486 case CK_FloatingRealToComplex: 487 case CK_IntegralRealToComplex: 488 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 489 DestTy, Op->getExprLoc()); 490 491 case CK_FloatingComplexCast: 492 case CK_FloatingComplexToIntegralComplex: 493 case CK_IntegralComplexCast: 494 case CK_IntegralComplexToFloatingComplex: 495 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 496 Op->getExprLoc()); 497 } 498 499 llvm_unreachable("unknown cast resulting in complex value"); 500 } 501 502 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 503 TestAndClearIgnoreReal(); 504 TestAndClearIgnoreImag(); 505 ComplexPairTy Op = Visit(E->getSubExpr()); 506 507 llvm::Value *ResR, *ResI; 508 if (Op.first->getType()->isFloatingPointTy()) { 509 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 510 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 511 } else { 512 ResR = Builder.CreateNeg(Op.first, "neg.r"); 513 ResI = Builder.CreateNeg(Op.second, "neg.i"); 514 } 515 return ComplexPairTy(ResR, ResI); 516 } 517 518 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 519 TestAndClearIgnoreReal(); 520 TestAndClearIgnoreImag(); 521 // ~(a+ib) = a + i*-b 522 ComplexPairTy Op = Visit(E->getSubExpr()); 523 llvm::Value *ResI; 524 if (Op.second->getType()->isFloatingPointTy()) 525 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 526 else 527 ResI = Builder.CreateNeg(Op.second, "conj.i"); 528 529 return ComplexPairTy(Op.first, ResI); 530 } 531 532 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 533 llvm::Value *ResR, *ResI; 534 535 if (Op.LHS.first->getType()->isFloatingPointTy()) { 536 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 537 if (Op.LHS.second && Op.RHS.second) 538 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 539 else 540 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 541 assert(ResI && "Only one operand may be real!"); 542 } else { 543 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 544 assert(Op.LHS.second && Op.RHS.second && 545 "Both operands of integer complex operators must be complex!"); 546 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 547 } 548 return ComplexPairTy(ResR, ResI); 549 } 550 551 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 552 llvm::Value *ResR, *ResI; 553 if (Op.LHS.first->getType()->isFloatingPointTy()) { 554 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 555 if (Op.LHS.second && Op.RHS.second) 556 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 557 else 558 ResI = Op.LHS.second ? Op.LHS.second 559 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 560 assert(ResI && "Only one operand may be real!"); 561 } else { 562 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 563 assert(Op.LHS.second && Op.RHS.second && 564 "Both operands of integer complex operators must be complex!"); 565 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 566 } 567 return ComplexPairTy(ResR, ResI); 568 } 569 570 /// \brief Emit a libcall for a binary operation on complex types. 571 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 572 const BinOpInfo &Op) { 573 CallArgList Args; 574 Args.add(RValue::get(Op.LHS.first), 575 Op.Ty->castAs<ComplexType>()->getElementType()); 576 Args.add(RValue::get(Op.LHS.second), 577 Op.Ty->castAs<ComplexType>()->getElementType()); 578 Args.add(RValue::get(Op.RHS.first), 579 Op.Ty->castAs<ComplexType>()->getElementType()); 580 Args.add(RValue::get(Op.RHS.second), 581 Op.Ty->castAs<ComplexType>()->getElementType()); 582 583 // We *must* use the full CG function call building logic here because the 584 // complex type has special ABI handling. We also should not forget about 585 // special calling convention which may be used for compiler builtins. 586 587 // We create a function qualified type to state that this call does not have 588 // any exceptions. 589 FunctionProtoType::ExtProtoInfo EPI; 590 EPI = EPI.withExceptionSpec( 591 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 592 SmallVector<QualType, 4> ArgsQTys( 593 4, Op.Ty->castAs<ComplexType>()->getElementType()); 594 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 595 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 596 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 597 598 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 599 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 600 llvm::Instruction *Call; 601 602 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 603 FQTy->getAs<FunctionProtoType>(), &Call); 604 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 605 return Res.getComplexVal(); 606 } 607 608 /// \brief Lookup the libcall name for a given floating point type complex 609 /// multiply. 610 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 611 switch (Ty->getTypeID()) { 612 default: 613 llvm_unreachable("Unsupported floating point type!"); 614 case llvm::Type::HalfTyID: 615 return "__mulhc3"; 616 case llvm::Type::FloatTyID: 617 return "__mulsc3"; 618 case llvm::Type::DoubleTyID: 619 return "__muldc3"; 620 case llvm::Type::PPC_FP128TyID: 621 return "__multc3"; 622 case llvm::Type::X86_FP80TyID: 623 return "__mulxc3"; 624 case llvm::Type::FP128TyID: 625 return "__multc3"; 626 } 627 } 628 629 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 630 // typed values. 631 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 632 using llvm::Value; 633 Value *ResR, *ResI; 634 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 635 636 if (Op.LHS.first->getType()->isFloatingPointTy()) { 637 // The general formulation is: 638 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 639 // 640 // But we can fold away components which would be zero due to a real 641 // operand according to C11 Annex G.5.1p2. 642 // FIXME: C11 also provides for imaginary types which would allow folding 643 // still more of this within the type system. 644 645 if (Op.LHS.second && Op.RHS.second) { 646 // If both operands are complex, emit the core math directly, and then 647 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 648 // to carefully re-compute the correct infinity representation if 649 // possible. The expectation is that the presence of NaNs here is 650 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 651 // This is good, because the libcall re-computes the core multiplication 652 // exactly the same as we do here and re-tests for NaNs in order to be 653 // a generic complex*complex libcall. 654 655 // First compute the four products. 656 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 657 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 658 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 659 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 660 661 // The real part is the difference of the first two, the imaginary part is 662 // the sum of the second. 663 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 664 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 665 666 // Emit the test for the real part becoming NaN and create a branch to 667 // handle it. We test for NaN by comparing the number to itself. 668 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 669 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 670 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 671 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 672 llvm::BasicBlock *OrigBB = Branch->getParent(); 673 674 // Give hint that we very much don't expect to see NaNs. 675 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 676 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 677 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 678 679 // Now test the imaginary part and create its branch. 680 CGF.EmitBlock(INaNBB); 681 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 682 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 683 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 684 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 685 686 // Now emit the libcall on this slowest of the slow paths. 687 CGF.EmitBlock(LibCallBB); 688 Value *LibCallR, *LibCallI; 689 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 690 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 691 Builder.CreateBr(ContBB); 692 693 // Finally continue execution by phi-ing together the different 694 // computation paths. 695 CGF.EmitBlock(ContBB); 696 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 697 RealPHI->addIncoming(ResR, OrigBB); 698 RealPHI->addIncoming(ResR, INaNBB); 699 RealPHI->addIncoming(LibCallR, LibCallBB); 700 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 701 ImagPHI->addIncoming(ResI, OrigBB); 702 ImagPHI->addIncoming(ResI, INaNBB); 703 ImagPHI->addIncoming(LibCallI, LibCallBB); 704 return ComplexPairTy(RealPHI, ImagPHI); 705 } 706 assert((Op.LHS.second || Op.RHS.second) && 707 "At least one operand must be complex!"); 708 709 // If either of the operands is a real rather than a complex, the 710 // imaginary component is ignored when computing the real component of the 711 // result. 712 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 713 714 ResI = Op.LHS.second 715 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 716 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 717 } else { 718 assert(Op.LHS.second && Op.RHS.second && 719 "Both operands of integer complex operators must be complex!"); 720 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 721 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 722 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 723 724 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 725 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 726 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 727 } 728 return ComplexPairTy(ResR, ResI); 729 } 730 731 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 732 // typed values. 733 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 734 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 735 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 736 737 738 llvm::Value *DSTr, *DSTi; 739 if (LHSr->getType()->isFloatingPointTy()) { 740 // If we have a complex operand on the RHS, we delegate to a libcall to 741 // handle all of the complexities and minimize underflow/overflow cases. 742 // 743 // FIXME: We would be able to avoid the libcall in many places if we 744 // supported imaginary types in addition to complex types. 745 if (RHSi) { 746 BinOpInfo LibCallOp = Op; 747 // If LHS was a real, supply a null imaginary part. 748 if (!LHSi) 749 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 750 751 StringRef LibCallName; 752 switch (LHSr->getType()->getTypeID()) { 753 default: 754 llvm_unreachable("Unsupported floating point type!"); 755 case llvm::Type::HalfTyID: 756 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 757 case llvm::Type::FloatTyID: 758 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 759 case llvm::Type::DoubleTyID: 760 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 761 case llvm::Type::PPC_FP128TyID: 762 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 763 case llvm::Type::X86_FP80TyID: 764 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 765 case llvm::Type::FP128TyID: 766 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 767 } 768 } 769 assert(LHSi && "Can have at most one non-complex operand!"); 770 771 DSTr = Builder.CreateFDiv(LHSr, RHSr); 772 DSTi = Builder.CreateFDiv(LHSi, RHSr); 773 } else { 774 assert(Op.LHS.second && Op.RHS.second && 775 "Both operands of integer complex operators must be complex!"); 776 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 777 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 778 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 779 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 780 781 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 782 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 783 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 784 785 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 786 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 787 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 788 789 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 790 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 791 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 792 } else { 793 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 794 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 795 } 796 } 797 798 return ComplexPairTy(DSTr, DSTi); 799 } 800 801 ComplexExprEmitter::BinOpInfo 802 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 803 TestAndClearIgnoreReal(); 804 TestAndClearIgnoreImag(); 805 BinOpInfo Ops; 806 if (E->getLHS()->getType()->isRealFloatingType()) 807 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 808 else 809 Ops.LHS = Visit(E->getLHS()); 810 if (E->getRHS()->getType()->isRealFloatingType()) 811 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 812 else 813 Ops.RHS = Visit(E->getRHS()); 814 815 Ops.Ty = E->getType(); 816 return Ops; 817 } 818 819 820 LValue ComplexExprEmitter:: 821 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 822 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 823 RValue &Val) { 824 TestAndClearIgnoreReal(); 825 TestAndClearIgnoreImag(); 826 QualType LHSTy = E->getLHS()->getType(); 827 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 828 LHSTy = AT->getValueType(); 829 830 BinOpInfo OpInfo; 831 832 // Load the RHS and LHS operands. 833 // __block variables need to have the rhs evaluated first, plus this should 834 // improve codegen a little. 835 OpInfo.Ty = E->getComputationResultType(); 836 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 837 838 // The RHS should have been converted to the computation type. 839 if (E->getRHS()->getType()->isRealFloatingType()) { 840 assert( 841 CGF.getContext() 842 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 843 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 844 } else { 845 assert(CGF.getContext() 846 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 847 OpInfo.RHS = Visit(E->getRHS()); 848 } 849 850 LValue LHS = CGF.EmitLValue(E->getLHS()); 851 852 // Load from the l-value and convert it. 853 SourceLocation Loc = E->getExprLoc(); 854 if (LHSTy->isAnyComplexType()) { 855 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 856 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 857 } else { 858 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 859 // For floating point real operands we can directly pass the scalar form 860 // to the binary operator emission and potentially get more efficient code. 861 if (LHSTy->isRealFloatingType()) { 862 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 863 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 864 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 865 } else { 866 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 867 } 868 } 869 870 // Expand the binary operator. 871 ComplexPairTy Result = (this->*Func)(OpInfo); 872 873 // Truncate the result and store it into the LHS lvalue. 874 if (LHSTy->isAnyComplexType()) { 875 ComplexPairTy ResVal = 876 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 877 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 878 Val = RValue::getComplex(ResVal); 879 } else { 880 llvm::Value *ResVal = 881 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 882 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 883 Val = RValue::get(ResVal); 884 } 885 886 return LHS; 887 } 888 889 // Compound assignments. 890 ComplexPairTy ComplexExprEmitter:: 891 EmitCompoundAssign(const CompoundAssignOperator *E, 892 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 893 RValue Val; 894 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 895 896 // The result of an assignment in C is the assigned r-value. 897 if (!CGF.getLangOpts().CPlusPlus) 898 return Val.getComplexVal(); 899 900 // If the lvalue is non-volatile, return the computed value of the assignment. 901 if (!LV.isVolatileQualified()) 902 return Val.getComplexVal(); 903 904 return EmitLoadOfLValue(LV, E->getExprLoc()); 905 } 906 907 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 908 ComplexPairTy &Val) { 909 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 910 E->getRHS()->getType()) && 911 "Invalid assignment"); 912 TestAndClearIgnoreReal(); 913 TestAndClearIgnoreImag(); 914 915 // Emit the RHS. __block variables need the RHS evaluated first. 916 Val = Visit(E->getRHS()); 917 918 // Compute the address to store into. 919 LValue LHS = CGF.EmitLValue(E->getLHS()); 920 921 // Store the result value into the LHS lvalue. 922 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 923 924 return LHS; 925 } 926 927 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 928 ComplexPairTy Val; 929 LValue LV = EmitBinAssignLValue(E, Val); 930 931 // The result of an assignment in C is the assigned r-value. 932 if (!CGF.getLangOpts().CPlusPlus) 933 return Val; 934 935 // If the lvalue is non-volatile, return the computed value of the assignment. 936 if (!LV.isVolatileQualified()) 937 return Val; 938 939 return EmitLoadOfLValue(LV, E->getExprLoc()); 940 } 941 942 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 943 CGF.EmitIgnoredExpr(E->getLHS()); 944 return Visit(E->getRHS()); 945 } 946 947 ComplexPairTy ComplexExprEmitter:: 948 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 949 TestAndClearIgnoreReal(); 950 TestAndClearIgnoreImag(); 951 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 952 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 953 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 954 955 // Bind the common expression if necessary. 956 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 957 958 959 CodeGenFunction::ConditionalEvaluation eval(CGF); 960 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 961 CGF.getProfileCount(E)); 962 963 eval.begin(CGF); 964 CGF.EmitBlock(LHSBlock); 965 CGF.incrementProfileCounter(E); 966 ComplexPairTy LHS = Visit(E->getTrueExpr()); 967 LHSBlock = Builder.GetInsertBlock(); 968 CGF.EmitBranch(ContBlock); 969 eval.end(CGF); 970 971 eval.begin(CGF); 972 CGF.EmitBlock(RHSBlock); 973 ComplexPairTy RHS = Visit(E->getFalseExpr()); 974 RHSBlock = Builder.GetInsertBlock(); 975 CGF.EmitBlock(ContBlock); 976 eval.end(CGF); 977 978 // Create a PHI node for the real part. 979 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 980 RealPN->addIncoming(LHS.first, LHSBlock); 981 RealPN->addIncoming(RHS.first, RHSBlock); 982 983 // Create a PHI node for the imaginary part. 984 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 985 ImagPN->addIncoming(LHS.second, LHSBlock); 986 ImagPN->addIncoming(RHS.second, RHSBlock); 987 988 return ComplexPairTy(RealPN, ImagPN); 989 } 990 991 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 992 return Visit(E->getChosenSubExpr()); 993 } 994 995 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 996 bool Ignore = TestAndClearIgnoreReal(); 997 (void)Ignore; 998 assert (Ignore == false && "init list ignored"); 999 Ignore = TestAndClearIgnoreImag(); 1000 (void)Ignore; 1001 assert (Ignore == false && "init list ignored"); 1002 1003 if (E->getNumInits() == 2) { 1004 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1005 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1006 return ComplexPairTy(Real, Imag); 1007 } else if (E->getNumInits() == 1) { 1008 return Visit(E->getInit(0)); 1009 } 1010 1011 // Empty init list intializes to null 1012 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1013 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1014 llvm::Type* LTy = CGF.ConvertType(Ty); 1015 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1016 return ComplexPairTy(zeroConstant, zeroConstant); 1017 } 1018 1019 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1020 Address ArgValue = Address::invalid(); 1021 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1022 1023 if (!ArgPtr.isValid()) { 1024 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1025 llvm::Type *EltTy = 1026 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1027 llvm::Value *U = llvm::UndefValue::get(EltTy); 1028 return ComplexPairTy(U, U); 1029 } 1030 1031 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1032 E->getExprLoc()); 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Entry Point into this File 1037 //===----------------------------------------------------------------------===// 1038 1039 /// EmitComplexExpr - Emit the computation of the specified expression of 1040 /// complex type, ignoring the result. 1041 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1042 bool IgnoreImag) { 1043 assert(E && getComplexType(E->getType()) && 1044 "Invalid complex expression to emit"); 1045 1046 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1047 .Visit(const_cast<Expr *>(E)); 1048 } 1049 1050 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1051 bool isInit) { 1052 assert(E && getComplexType(E->getType()) && 1053 "Invalid complex expression to emit"); 1054 ComplexExprEmitter Emitter(*this); 1055 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1056 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1057 } 1058 1059 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1060 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1061 bool isInit) { 1062 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1063 } 1064 1065 /// EmitLoadOfComplex - Load a complex number from the specified address. 1066 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1067 SourceLocation loc) { 1068 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1069 } 1070 1071 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1072 assert(E->getOpcode() == BO_Assign); 1073 ComplexPairTy Val; // ignored 1074 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1075 } 1076 1077 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1078 const ComplexExprEmitter::BinOpInfo &); 1079 1080 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1081 switch (Op) { 1082 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1083 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1084 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1085 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1086 default: 1087 llvm_unreachable("unexpected complex compound assignment"); 1088 } 1089 } 1090 1091 LValue CodeGenFunction:: 1092 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1093 CompoundFunc Op = getComplexOp(E->getOpcode()); 1094 RValue Val; 1095 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1096 } 1097 1098 LValue CodeGenFunction:: 1099 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1100 llvm::Value *&Result) { 1101 CompoundFunc Op = getComplexOp(E->getOpcode()); 1102 RValue Val; 1103 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1104 Result = Val.getScalarVal(); 1105 return Ret; 1106 } 1107