1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36   ASTContext &C = CGF.getContext();
37 
38   // C++11 [class.mfct.non-static]p2:
39   //   If a non-static member function of a class X is called for an object that
40   //   is not of type X, or of a type derived from X, the behavior is undefined.
41   SourceLocation CallLoc;
42   if (CE)
43     CallLoc = CE->getExprLoc();
44   CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD)
45                         ? CodeGenFunction::TCK_ConstructorCall
46                         : CodeGenFunction::TCK_MemberCall,
47                     CallLoc, This, C.getRecordType(MD->getParent()));
48 
49   // Push the this ptr.
50   const CXXRecordDecl *RD =
51       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
52   Args.add(RValue::get(This),
53            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
54 
55   // If there is an implicit parameter (e.g. VTT), emit it.
56   if (ImplicitParam) {
57     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
58   }
59 
60   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
61   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
62 
63   // And the rest of the call args.
64   if (CE) {
65     // Special case: skip first argument of CXXOperatorCall (it is "this").
66     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68                      CE->getDirectCallee());
69   } else {
70     assert(
71         FPT->getNumParams() == 0 &&
72         "No CallExpr specified for function with non-zero number of arguments");
73   }
74   return required;
75 }
76 
77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
78     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
79     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
80     const CallExpr *CE) {
81   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
82   CallArgList Args;
83   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
84       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args);
85   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
86                   Callee, ReturnValue, Args, MD);
87 }
88 
89 RValue CodeGenFunction::EmitCXXDestructorCall(
90     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
91     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
92     StructorType Type) {
93   CallArgList Args;
94   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
95                                     ImplicitParamTy, CE, Args);
96   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
97                   Callee, ReturnValueSlot(), Args, DD);
98 }
99 
100 static CXXRecordDecl *getCXXRecord(const Expr *E) {
101   QualType T = E->getType();
102   if (const PointerType *PTy = T->getAs<PointerType>())
103     T = PTy->getPointeeType();
104   const RecordType *Ty = T->castAs<RecordType>();
105   return cast<CXXRecordDecl>(Ty->getDecl());
106 }
107 
108 // Note: This function also emit constructor calls to support a MSVC
109 // extensions allowing explicit constructor function call.
110 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
111                                               ReturnValueSlot ReturnValue) {
112   const Expr *callee = CE->getCallee()->IgnoreParens();
113 
114   if (isa<BinaryOperator>(callee))
115     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
116 
117   const MemberExpr *ME = cast<MemberExpr>(callee);
118   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
119 
120   if (MD->isStatic()) {
121     // The method is static, emit it as we would a regular call.
122     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
123     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
124                     ReturnValue);
125   }
126 
127   bool HasQualifier = ME->hasQualifier();
128   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
129   bool IsArrow = ME->isArrow();
130   const Expr *Base = ME->getBase();
131 
132   return EmitCXXMemberOrOperatorMemberCallExpr(
133       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
134 }
135 
136 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
137     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
138     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
139     const Expr *Base) {
140   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
141 
142   // Compute the object pointer.
143   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
144 
145   const CXXMethodDecl *DevirtualizedMethod = nullptr;
146   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
147     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
148     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
149     assert(DevirtualizedMethod);
150     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
151     const Expr *Inner = Base->ignoreParenBaseCasts();
152     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
153         MD->getReturnType().getCanonicalType())
154       // If the return types are not the same, this might be a case where more
155       // code needs to run to compensate for it. For example, the derived
156       // method might return a type that inherits form from the return
157       // type of MD and has a prefix.
158       // For now we just avoid devirtualizing these covariant cases.
159       DevirtualizedMethod = nullptr;
160     else if (getCXXRecord(Inner) == DevirtualizedClass)
161       // If the class of the Inner expression is where the dynamic method
162       // is defined, build the this pointer from it.
163       Base = Inner;
164     else if (getCXXRecord(Base) != DevirtualizedClass) {
165       // If the method is defined in a class that is not the best dynamic
166       // one or the one of the full expression, we would have to build
167       // a derived-to-base cast to compute the correct this pointer, but
168       // we don't have support for that yet, so do a virtual call.
169       DevirtualizedMethod = nullptr;
170     }
171   }
172 
173   Address This = Address::invalid();
174   if (IsArrow)
175     This = EmitPointerWithAlignment(Base);
176   else
177     This = EmitLValue(Base).getAddress();
178 
179 
180   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
181     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
182     if (isa<CXXConstructorDecl>(MD) &&
183         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
184       return RValue::get(nullptr);
185 
186     if (!MD->getParent()->mayInsertExtraPadding()) {
187       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
188         // We don't like to generate the trivial copy/move assignment operator
189         // when it isn't necessary; just produce the proper effect here.
190         // Special case: skip first argument of CXXOperatorCall (it is "this").
191         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
192         Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
193         EmitAggregateAssign(This, RHS, CE->getType());
194         return RValue::get(This.getPointer());
195       }
196 
197       if (isa<CXXConstructorDecl>(MD) &&
198           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
199         // Trivial move and copy ctor are the same.
200         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
201         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
202         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
203         return RValue::get(This.getPointer());
204       }
205       llvm_unreachable("unknown trivial member function");
206     }
207   }
208 
209   // Compute the function type we're calling.
210   const CXXMethodDecl *CalleeDecl =
211       DevirtualizedMethod ? DevirtualizedMethod : MD;
212   const CGFunctionInfo *FInfo = nullptr;
213   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
214     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
215         Dtor, StructorType::Complete);
216   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
217     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
218         Ctor, StructorType::Complete);
219   else
220     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
221 
222   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
223 
224   // C++ [class.virtual]p12:
225   //   Explicit qualification with the scope operator (5.1) suppresses the
226   //   virtual call mechanism.
227   //
228   // We also don't emit a virtual call if the base expression has a record type
229   // because then we know what the type is.
230   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
231   llvm::Value *Callee;
232 
233   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
234     assert(CE->arg_begin() == CE->arg_end() &&
235            "Destructor shouldn't have explicit parameters");
236     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
237     if (UseVirtualCall) {
238       CGM.getCXXABI().EmitVirtualDestructorCall(
239           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
240     } else {
241       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
242         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
243       else if (!DevirtualizedMethod)
244         Callee =
245             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
246       else {
247         const CXXDestructorDecl *DDtor =
248           cast<CXXDestructorDecl>(DevirtualizedMethod);
249         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
250       }
251       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
252                                   /*ImplicitParam=*/nullptr, QualType(), CE);
253     }
254     return RValue::get(nullptr);
255   }
256 
257   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
258     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
259   } else if (UseVirtualCall) {
260     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
261                                                        CE->getLocStart());
262   } else {
263     if (SanOpts.has(SanitizerKind::CFINVCall) &&
264         MD->getParent()->isDynamicClass()) {
265       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
266       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
267                                 CE->getLocStart());
268     }
269 
270     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
271       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
272     else if (!DevirtualizedMethod)
273       Callee = CGM.GetAddrOfFunction(MD, Ty);
274     else {
275       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
276     }
277   }
278 
279   if (MD->isVirtual()) {
280     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
281         *this, CalleeDecl, This, UseVirtualCall);
282   }
283 
284   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
285                                      /*ImplicitParam=*/nullptr, QualType(), CE);
286 }
287 
288 RValue
289 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
290                                               ReturnValueSlot ReturnValue) {
291   const BinaryOperator *BO =
292       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
293   const Expr *BaseExpr = BO->getLHS();
294   const Expr *MemFnExpr = BO->getRHS();
295 
296   const MemberPointerType *MPT =
297     MemFnExpr->getType()->castAs<MemberPointerType>();
298 
299   const FunctionProtoType *FPT =
300     MPT->getPointeeType()->castAs<FunctionProtoType>();
301   const CXXRecordDecl *RD =
302     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
303 
304   // Get the member function pointer.
305   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
306 
307   // Emit the 'this' pointer.
308   Address This = Address::invalid();
309   if (BO->getOpcode() == BO_PtrMemI)
310     This = EmitPointerWithAlignment(BaseExpr);
311   else
312     This = EmitLValue(BaseExpr).getAddress();
313 
314   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
315                 QualType(MPT->getClass(), 0));
316 
317   // Ask the ABI to load the callee.  Note that This is modified.
318   llvm::Value *ThisPtrForCall = nullptr;
319   llvm::Value *Callee =
320     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
321                                              ThisPtrForCall, MemFnPtr, MPT);
322 
323   CallArgList Args;
324 
325   QualType ThisType =
326     getContext().getPointerType(getContext().getTagDeclType(RD));
327 
328   // Push the this ptr.
329   Args.add(RValue::get(ThisPtrForCall), ThisType);
330 
331   RequiredArgs required =
332       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
333 
334   // And the rest of the call args
335   EmitCallArgs(Args, FPT, E->arguments());
336   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
337                   Callee, ReturnValue, Args);
338 }
339 
340 RValue
341 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
342                                                const CXXMethodDecl *MD,
343                                                ReturnValueSlot ReturnValue) {
344   assert(MD->isInstance() &&
345          "Trying to emit a member call expr on a static method!");
346   return EmitCXXMemberOrOperatorMemberCallExpr(
347       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
348       /*IsArrow=*/false, E->getArg(0));
349 }
350 
351 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
352                                                ReturnValueSlot ReturnValue) {
353   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
354 }
355 
356 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
357                                             Address DestPtr,
358                                             const CXXRecordDecl *Base) {
359   if (Base->isEmpty())
360     return;
361 
362   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
363 
364   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
365   CharUnits NVSize = Layout.getNonVirtualSize();
366 
367   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
368   // present, they are initialized by the most derived class before calling the
369   // constructor.
370   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
371   Stores.emplace_back(CharUnits::Zero(), NVSize);
372 
373   // Each store is split by the existence of a vbptr.
374   CharUnits VBPtrWidth = CGF.getPointerSize();
375   std::vector<CharUnits> VBPtrOffsets =
376       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
377   for (CharUnits VBPtrOffset : VBPtrOffsets) {
378     // Stop before we hit any virtual base pointers located in virtual bases.
379     if (VBPtrOffset >= NVSize)
380       break;
381     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
382     CharUnits LastStoreOffset = LastStore.first;
383     CharUnits LastStoreSize = LastStore.second;
384 
385     CharUnits SplitBeforeOffset = LastStoreOffset;
386     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
387     assert(!SplitBeforeSize.isNegative() && "negative store size!");
388     if (!SplitBeforeSize.isZero())
389       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
390 
391     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
392     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
393     assert(!SplitAfterSize.isNegative() && "negative store size!");
394     if (!SplitAfterSize.isZero())
395       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
396   }
397 
398   // If the type contains a pointer to data member we can't memset it to zero.
399   // Instead, create a null constant and copy it to the destination.
400   // TODO: there are other patterns besides zero that we can usefully memset,
401   // like -1, which happens to be the pattern used by member-pointers.
402   // TODO: isZeroInitializable can be over-conservative in the case where a
403   // virtual base contains a member pointer.
404   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
405   if (!NullConstantForBase->isNullValue()) {
406     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
407         CGF.CGM.getModule(), NullConstantForBase->getType(),
408         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
409         NullConstantForBase, Twine());
410 
411     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
412                                DestPtr.getAlignment());
413     NullVariable->setAlignment(Align.getQuantity());
414 
415     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
416 
417     // Get and call the appropriate llvm.memcpy overload.
418     for (std::pair<CharUnits, CharUnits> Store : Stores) {
419       CharUnits StoreOffset = Store.first;
420       CharUnits StoreSize = Store.second;
421       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
422       CGF.Builder.CreateMemCpy(
423           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
424           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
425           StoreSizeVal);
426     }
427 
428   // Otherwise, just memset the whole thing to zero.  This is legal
429   // because in LLVM, all default initializers (other than the ones we just
430   // handled above) are guaranteed to have a bit pattern of all zeros.
431   } else {
432     for (std::pair<CharUnits, CharUnits> Store : Stores) {
433       CharUnits StoreOffset = Store.first;
434       CharUnits StoreSize = Store.second;
435       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
436       CGF.Builder.CreateMemSet(
437           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
438           CGF.Builder.getInt8(0), StoreSizeVal);
439     }
440   }
441 }
442 
443 void
444 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
445                                       AggValueSlot Dest) {
446   assert(!Dest.isIgnored() && "Must have a destination!");
447   const CXXConstructorDecl *CD = E->getConstructor();
448 
449   // If we require zero initialization before (or instead of) calling the
450   // constructor, as can be the case with a non-user-provided default
451   // constructor, emit the zero initialization now, unless destination is
452   // already zeroed.
453   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
454     switch (E->getConstructionKind()) {
455     case CXXConstructExpr::CK_Delegating:
456     case CXXConstructExpr::CK_Complete:
457       EmitNullInitialization(Dest.getAddress(), E->getType());
458       break;
459     case CXXConstructExpr::CK_VirtualBase:
460     case CXXConstructExpr::CK_NonVirtualBase:
461       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
462                                       CD->getParent());
463       break;
464     }
465   }
466 
467   // If this is a call to a trivial default constructor, do nothing.
468   if (CD->isTrivial() && CD->isDefaultConstructor())
469     return;
470 
471   // Elide the constructor if we're constructing from a temporary.
472   // The temporary check is required because Sema sets this on NRVO
473   // returns.
474   if (getLangOpts().ElideConstructors && E->isElidable()) {
475     assert(getContext().hasSameUnqualifiedType(E->getType(),
476                                                E->getArg(0)->getType()));
477     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
478       EmitAggExpr(E->getArg(0), Dest);
479       return;
480     }
481   }
482 
483   if (const ArrayType *arrayType
484         = getContext().getAsArrayType(E->getType())) {
485     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
486   } else {
487     CXXCtorType Type = Ctor_Complete;
488     bool ForVirtualBase = false;
489     bool Delegating = false;
490 
491     switch (E->getConstructionKind()) {
492      case CXXConstructExpr::CK_Delegating:
493       // We should be emitting a constructor; GlobalDecl will assert this
494       Type = CurGD.getCtorType();
495       Delegating = true;
496       break;
497 
498      case CXXConstructExpr::CK_Complete:
499       Type = Ctor_Complete;
500       break;
501 
502      case CXXConstructExpr::CK_VirtualBase:
503       ForVirtualBase = true;
504       // fall-through
505 
506      case CXXConstructExpr::CK_NonVirtualBase:
507       Type = Ctor_Base;
508     }
509 
510     // Call the constructor.
511     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
512                            Dest.getAddress(), E);
513   }
514 }
515 
516 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
517                                                  const Expr *Exp) {
518   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
519     Exp = E->getSubExpr();
520   assert(isa<CXXConstructExpr>(Exp) &&
521          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
522   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
523   const CXXConstructorDecl *CD = E->getConstructor();
524   RunCleanupsScope Scope(*this);
525 
526   // If we require zero initialization before (or instead of) calling the
527   // constructor, as can be the case with a non-user-provided default
528   // constructor, emit the zero initialization now.
529   // FIXME. Do I still need this for a copy ctor synthesis?
530   if (E->requiresZeroInitialization())
531     EmitNullInitialization(Dest, E->getType());
532 
533   assert(!getContext().getAsConstantArrayType(E->getType())
534          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
535   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
536 }
537 
538 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
539                                         const CXXNewExpr *E) {
540   if (!E->isArray())
541     return CharUnits::Zero();
542 
543   // No cookie is required if the operator new[] being used is the
544   // reserved placement operator new[].
545   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
546     return CharUnits::Zero();
547 
548   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
549 }
550 
551 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
552                                         const CXXNewExpr *e,
553                                         unsigned minElements,
554                                         llvm::Value *&numElements,
555                                         llvm::Value *&sizeWithoutCookie) {
556   QualType type = e->getAllocatedType();
557 
558   if (!e->isArray()) {
559     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
560     sizeWithoutCookie
561       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
562     return sizeWithoutCookie;
563   }
564 
565   // The width of size_t.
566   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
567 
568   // Figure out the cookie size.
569   llvm::APInt cookieSize(sizeWidth,
570                          CalculateCookiePadding(CGF, e).getQuantity());
571 
572   // Emit the array size expression.
573   // We multiply the size of all dimensions for NumElements.
574   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
575   numElements = CGF.EmitScalarExpr(e->getArraySize());
576   assert(isa<llvm::IntegerType>(numElements->getType()));
577 
578   // The number of elements can be have an arbitrary integer type;
579   // essentially, we need to multiply it by a constant factor, add a
580   // cookie size, and verify that the result is representable as a
581   // size_t.  That's just a gloss, though, and it's wrong in one
582   // important way: if the count is negative, it's an error even if
583   // the cookie size would bring the total size >= 0.
584   bool isSigned
585     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
586   llvm::IntegerType *numElementsType
587     = cast<llvm::IntegerType>(numElements->getType());
588   unsigned numElementsWidth = numElementsType->getBitWidth();
589 
590   // Compute the constant factor.
591   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
592   while (const ConstantArrayType *CAT
593              = CGF.getContext().getAsConstantArrayType(type)) {
594     type = CAT->getElementType();
595     arraySizeMultiplier *= CAT->getSize();
596   }
597 
598   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
599   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
600   typeSizeMultiplier *= arraySizeMultiplier;
601 
602   // This will be a size_t.
603   llvm::Value *size;
604 
605   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
606   // Don't bloat the -O0 code.
607   if (llvm::ConstantInt *numElementsC =
608         dyn_cast<llvm::ConstantInt>(numElements)) {
609     const llvm::APInt &count = numElementsC->getValue();
610 
611     bool hasAnyOverflow = false;
612 
613     // If 'count' was a negative number, it's an overflow.
614     if (isSigned && count.isNegative())
615       hasAnyOverflow = true;
616 
617     // We want to do all this arithmetic in size_t.  If numElements is
618     // wider than that, check whether it's already too big, and if so,
619     // overflow.
620     else if (numElementsWidth > sizeWidth &&
621              numElementsWidth - sizeWidth > count.countLeadingZeros())
622       hasAnyOverflow = true;
623 
624     // Okay, compute a count at the right width.
625     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
626 
627     // If there is a brace-initializer, we cannot allocate fewer elements than
628     // there are initializers. If we do, that's treated like an overflow.
629     if (adjustedCount.ult(minElements))
630       hasAnyOverflow = true;
631 
632     // Scale numElements by that.  This might overflow, but we don't
633     // care because it only overflows if allocationSize does, too, and
634     // if that overflows then we shouldn't use this.
635     numElements = llvm::ConstantInt::get(CGF.SizeTy,
636                                          adjustedCount * arraySizeMultiplier);
637 
638     // Compute the size before cookie, and track whether it overflowed.
639     bool overflow;
640     llvm::APInt allocationSize
641       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
642     hasAnyOverflow |= overflow;
643 
644     // Add in the cookie, and check whether it's overflowed.
645     if (cookieSize != 0) {
646       // Save the current size without a cookie.  This shouldn't be
647       // used if there was overflow.
648       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
649 
650       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
651       hasAnyOverflow |= overflow;
652     }
653 
654     // On overflow, produce a -1 so operator new will fail.
655     if (hasAnyOverflow) {
656       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
657     } else {
658       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
659     }
660 
661   // Otherwise, we might need to use the overflow intrinsics.
662   } else {
663     // There are up to five conditions we need to test for:
664     // 1) if isSigned, we need to check whether numElements is negative;
665     // 2) if numElementsWidth > sizeWidth, we need to check whether
666     //   numElements is larger than something representable in size_t;
667     // 3) if minElements > 0, we need to check whether numElements is smaller
668     //    than that.
669     // 4) we need to compute
670     //      sizeWithoutCookie := numElements * typeSizeMultiplier
671     //    and check whether it overflows; and
672     // 5) if we need a cookie, we need to compute
673     //      size := sizeWithoutCookie + cookieSize
674     //    and check whether it overflows.
675 
676     llvm::Value *hasOverflow = nullptr;
677 
678     // If numElementsWidth > sizeWidth, then one way or another, we're
679     // going to have to do a comparison for (2), and this happens to
680     // take care of (1), too.
681     if (numElementsWidth > sizeWidth) {
682       llvm::APInt threshold(numElementsWidth, 1);
683       threshold <<= sizeWidth;
684 
685       llvm::Value *thresholdV
686         = llvm::ConstantInt::get(numElementsType, threshold);
687 
688       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
689       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
690 
691     // Otherwise, if we're signed, we want to sext up to size_t.
692     } else if (isSigned) {
693       if (numElementsWidth < sizeWidth)
694         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
695 
696       // If there's a non-1 type size multiplier, then we can do the
697       // signedness check at the same time as we do the multiply
698       // because a negative number times anything will cause an
699       // unsigned overflow.  Otherwise, we have to do it here. But at least
700       // in this case, we can subsume the >= minElements check.
701       if (typeSizeMultiplier == 1)
702         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
703                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
704 
705     // Otherwise, zext up to size_t if necessary.
706     } else if (numElementsWidth < sizeWidth) {
707       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
708     }
709 
710     assert(numElements->getType() == CGF.SizeTy);
711 
712     if (minElements) {
713       // Don't allow allocation of fewer elements than we have initializers.
714       if (!hasOverflow) {
715         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
716                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
717       } else if (numElementsWidth > sizeWidth) {
718         // The other existing overflow subsumes this check.
719         // We do an unsigned comparison, since any signed value < -1 is
720         // taken care of either above or below.
721         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
722                           CGF.Builder.CreateICmpULT(numElements,
723                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
724       }
725     }
726 
727     size = numElements;
728 
729     // Multiply by the type size if necessary.  This multiplier
730     // includes all the factors for nested arrays.
731     //
732     // This step also causes numElements to be scaled up by the
733     // nested-array factor if necessary.  Overflow on this computation
734     // can be ignored because the result shouldn't be used if
735     // allocation fails.
736     if (typeSizeMultiplier != 1) {
737       llvm::Value *umul_with_overflow
738         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
739 
740       llvm::Value *tsmV =
741         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
742       llvm::Value *result =
743           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
744 
745       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
746       if (hasOverflow)
747         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
748       else
749         hasOverflow = overflowed;
750 
751       size = CGF.Builder.CreateExtractValue(result, 0);
752 
753       // Also scale up numElements by the array size multiplier.
754       if (arraySizeMultiplier != 1) {
755         // If the base element type size is 1, then we can re-use the
756         // multiply we just did.
757         if (typeSize.isOne()) {
758           assert(arraySizeMultiplier == typeSizeMultiplier);
759           numElements = size;
760 
761         // Otherwise we need a separate multiply.
762         } else {
763           llvm::Value *asmV =
764             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
765           numElements = CGF.Builder.CreateMul(numElements, asmV);
766         }
767       }
768     } else {
769       // numElements doesn't need to be scaled.
770       assert(arraySizeMultiplier == 1);
771     }
772 
773     // Add in the cookie size if necessary.
774     if (cookieSize != 0) {
775       sizeWithoutCookie = size;
776 
777       llvm::Value *uadd_with_overflow
778         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
779 
780       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
781       llvm::Value *result =
782           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
783 
784       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
785       if (hasOverflow)
786         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
787       else
788         hasOverflow = overflowed;
789 
790       size = CGF.Builder.CreateExtractValue(result, 0);
791     }
792 
793     // If we had any possibility of dynamic overflow, make a select to
794     // overwrite 'size' with an all-ones value, which should cause
795     // operator new to throw.
796     if (hasOverflow)
797       size = CGF.Builder.CreateSelect(hasOverflow,
798                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
799                                       size);
800   }
801 
802   if (cookieSize == 0)
803     sizeWithoutCookie = size;
804   else
805     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
806 
807   return size;
808 }
809 
810 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
811                                     QualType AllocType, Address NewPtr) {
812   // FIXME: Refactor with EmitExprAsInit.
813   switch (CGF.getEvaluationKind(AllocType)) {
814   case TEK_Scalar:
815     CGF.EmitScalarInit(Init, nullptr,
816                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
817     return;
818   case TEK_Complex:
819     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
820                                   /*isInit*/ true);
821     return;
822   case TEK_Aggregate: {
823     AggValueSlot Slot
824       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
825                               AggValueSlot::IsDestructed,
826                               AggValueSlot::DoesNotNeedGCBarriers,
827                               AggValueSlot::IsNotAliased);
828     CGF.EmitAggExpr(Init, Slot);
829     return;
830   }
831   }
832   llvm_unreachable("bad evaluation kind");
833 }
834 
835 void CodeGenFunction::EmitNewArrayInitializer(
836     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
837     Address BeginPtr, llvm::Value *NumElements,
838     llvm::Value *AllocSizeWithoutCookie) {
839   // If we have a type with trivial initialization and no initializer,
840   // there's nothing to do.
841   if (!E->hasInitializer())
842     return;
843 
844   Address CurPtr = BeginPtr;
845 
846   unsigned InitListElements = 0;
847 
848   const Expr *Init = E->getInitializer();
849   Address EndOfInit = Address::invalid();
850   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
851   EHScopeStack::stable_iterator Cleanup;
852   llvm::Instruction *CleanupDominator = nullptr;
853 
854   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
855   CharUnits ElementAlign =
856     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
857 
858   // If the initializer is an initializer list, first do the explicit elements.
859   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
860     InitListElements = ILE->getNumInits();
861 
862     // If this is a multi-dimensional array new, we will initialize multiple
863     // elements with each init list element.
864     QualType AllocType = E->getAllocatedType();
865     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
866             AllocType->getAsArrayTypeUnsafe())) {
867       ElementTy = ConvertTypeForMem(AllocType);
868       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
869       InitListElements *= getContext().getConstantArrayElementCount(CAT);
870     }
871 
872     // Enter a partial-destruction Cleanup if necessary.
873     if (needsEHCleanup(DtorKind)) {
874       // In principle we could tell the Cleanup where we are more
875       // directly, but the control flow can get so varied here that it
876       // would actually be quite complex.  Therefore we go through an
877       // alloca.
878       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
879                                    "array.init.end");
880       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
881       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
882                                        ElementType, ElementAlign,
883                                        getDestroyer(DtorKind));
884       Cleanup = EHStack.stable_begin();
885     }
886 
887     CharUnits StartAlign = CurPtr.getAlignment();
888     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
889       // Tell the cleanup that it needs to destroy up to this
890       // element.  TODO: some of these stores can be trivially
891       // observed to be unnecessary.
892       if (EndOfInit.isValid()) {
893         auto FinishedPtr =
894           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
895         Builder.CreateStore(FinishedPtr, EndOfInit);
896       }
897       // FIXME: If the last initializer is an incomplete initializer list for
898       // an array, and we have an array filler, we can fold together the two
899       // initialization loops.
900       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
901                               ILE->getInit(i)->getType(), CurPtr);
902       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
903                                                  Builder.getSize(1),
904                                                  "array.exp.next"),
905                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
906     }
907 
908     // The remaining elements are filled with the array filler expression.
909     Init = ILE->getArrayFiller();
910 
911     // Extract the initializer for the individual array elements by pulling
912     // out the array filler from all the nested initializer lists. This avoids
913     // generating a nested loop for the initialization.
914     while (Init && Init->getType()->isConstantArrayType()) {
915       auto *SubILE = dyn_cast<InitListExpr>(Init);
916       if (!SubILE)
917         break;
918       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
919       Init = SubILE->getArrayFiller();
920     }
921 
922     // Switch back to initializing one base element at a time.
923     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
924   }
925 
926   // Attempt to perform zero-initialization using memset.
927   auto TryMemsetInitialization = [&]() -> bool {
928     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
929     // we can initialize with a memset to -1.
930     if (!CGM.getTypes().isZeroInitializable(ElementType))
931       return false;
932 
933     // Optimization: since zero initialization will just set the memory
934     // to all zeroes, generate a single memset to do it in one shot.
935 
936     // Subtract out the size of any elements we've already initialized.
937     auto *RemainingSize = AllocSizeWithoutCookie;
938     if (InitListElements) {
939       // We know this can't overflow; we check this when doing the allocation.
940       auto *InitializedSize = llvm::ConstantInt::get(
941           RemainingSize->getType(),
942           getContext().getTypeSizeInChars(ElementType).getQuantity() *
943               InitListElements);
944       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
945     }
946 
947     // Create the memset.
948     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
949     return true;
950   };
951 
952   // If all elements have already been initialized, skip any further
953   // initialization.
954   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
955   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
956     // If there was a Cleanup, deactivate it.
957     if (CleanupDominator)
958       DeactivateCleanupBlock(Cleanup, CleanupDominator);
959     return;
960   }
961 
962   assert(Init && "have trailing elements to initialize but no initializer");
963 
964   // If this is a constructor call, try to optimize it out, and failing that
965   // emit a single loop to initialize all remaining elements.
966   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
967     CXXConstructorDecl *Ctor = CCE->getConstructor();
968     if (Ctor->isTrivial()) {
969       // If new expression did not specify value-initialization, then there
970       // is no initialization.
971       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
972         return;
973 
974       if (TryMemsetInitialization())
975         return;
976     }
977 
978     // Store the new Cleanup position for irregular Cleanups.
979     //
980     // FIXME: Share this cleanup with the constructor call emission rather than
981     // having it create a cleanup of its own.
982     if (EndOfInit.isValid())
983       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
984 
985     // Emit a constructor call loop to initialize the remaining elements.
986     if (InitListElements)
987       NumElements = Builder.CreateSub(
988           NumElements,
989           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
990     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
991                                CCE->requiresZeroInitialization());
992     return;
993   }
994 
995   // If this is value-initialization, we can usually use memset.
996   ImplicitValueInitExpr IVIE(ElementType);
997   if (isa<ImplicitValueInitExpr>(Init)) {
998     if (TryMemsetInitialization())
999       return;
1000 
1001     // Switch to an ImplicitValueInitExpr for the element type. This handles
1002     // only one case: multidimensional array new of pointers to members. In
1003     // all other cases, we already have an initializer for the array element.
1004     Init = &IVIE;
1005   }
1006 
1007   // At this point we should have found an initializer for the individual
1008   // elements of the array.
1009   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1010          "got wrong type of element to initialize");
1011 
1012   // If we have an empty initializer list, we can usually use memset.
1013   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1014     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1015       return;
1016 
1017   // If we have a struct whose every field is value-initialized, we can
1018   // usually use memset.
1019   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1020     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1021       if (RType->getDecl()->isStruct()) {
1022         unsigned NumElements = 0;
1023         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1024           NumElements = CXXRD->getNumBases();
1025         for (auto *Field : RType->getDecl()->fields())
1026           if (!Field->isUnnamedBitfield())
1027             ++NumElements;
1028         // FIXME: Recurse into nested InitListExprs.
1029         if (ILE->getNumInits() == NumElements)
1030           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1031             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1032               --NumElements;
1033         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1034           return;
1035       }
1036     }
1037   }
1038 
1039   // Create the loop blocks.
1040   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1041   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1042   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1043 
1044   // Find the end of the array, hoisted out of the loop.
1045   llvm::Value *EndPtr =
1046     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1047 
1048   // If the number of elements isn't constant, we have to now check if there is
1049   // anything left to initialize.
1050   if (!ConstNum) {
1051     llvm::Value *IsEmpty =
1052       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1053     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1054   }
1055 
1056   // Enter the loop.
1057   EmitBlock(LoopBB);
1058 
1059   // Set up the current-element phi.
1060   llvm::PHINode *CurPtrPhi =
1061     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1062   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1063 
1064   CurPtr = Address(CurPtrPhi, ElementAlign);
1065 
1066   // Store the new Cleanup position for irregular Cleanups.
1067   if (EndOfInit.isValid())
1068     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1069 
1070   // Enter a partial-destruction Cleanup if necessary.
1071   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1072     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1073                                    ElementType, ElementAlign,
1074                                    getDestroyer(DtorKind));
1075     Cleanup = EHStack.stable_begin();
1076     CleanupDominator = Builder.CreateUnreachable();
1077   }
1078 
1079   // Emit the initializer into this element.
1080   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1081 
1082   // Leave the Cleanup if we entered one.
1083   if (CleanupDominator) {
1084     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1085     CleanupDominator->eraseFromParent();
1086   }
1087 
1088   // Advance to the next element by adjusting the pointer type as necessary.
1089   llvm::Value *NextPtr =
1090     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1091                                        "array.next");
1092 
1093   // Check whether we've gotten to the end of the array and, if so,
1094   // exit the loop.
1095   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1096   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1097   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1098 
1099   EmitBlock(ContBB);
1100 }
1101 
1102 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1103                                QualType ElementType, llvm::Type *ElementTy,
1104                                Address NewPtr, llvm::Value *NumElements,
1105                                llvm::Value *AllocSizeWithoutCookie) {
1106   ApplyDebugLocation DL(CGF, E);
1107   if (E->isArray())
1108     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1109                                 AllocSizeWithoutCookie);
1110   else if (const Expr *Init = E->getInitializer())
1111     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1112 }
1113 
1114 /// Emit a call to an operator new or operator delete function, as implicitly
1115 /// created by new-expressions and delete-expressions.
1116 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1117                                 const FunctionDecl *Callee,
1118                                 const FunctionProtoType *CalleeType,
1119                                 const CallArgList &Args) {
1120   llvm::Instruction *CallOrInvoke;
1121   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1122   RValue RV =
1123       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1124                        Args, CalleeType, /*chainCall=*/false),
1125                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1126 
1127   /// C++1y [expr.new]p10:
1128   ///   [In a new-expression,] an implementation is allowed to omit a call
1129   ///   to a replaceable global allocation function.
1130   ///
1131   /// We model such elidable calls with the 'builtin' attribute.
1132   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1133   if (Callee->isReplaceableGlobalAllocationFunction() &&
1134       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1135     // FIXME: Add addAttribute to CallSite.
1136     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1137       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1138                        llvm::Attribute::Builtin);
1139     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1140       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1141                        llvm::Attribute::Builtin);
1142     else
1143       llvm_unreachable("unexpected kind of call instruction");
1144   }
1145 
1146   return RV;
1147 }
1148 
1149 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1150                                                  const Expr *Arg,
1151                                                  bool IsDelete) {
1152   CallArgList Args;
1153   const Stmt *ArgS = Arg;
1154   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1155   // Find the allocation or deallocation function that we're calling.
1156   ASTContext &Ctx = getContext();
1157   DeclarationName Name = Ctx.DeclarationNames
1158       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1159   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1160     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1161       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1162         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1163   llvm_unreachable("predeclared global operator new/delete is missing");
1164 }
1165 
1166 namespace {
1167   /// A cleanup to call the given 'operator delete' function upon
1168   /// abnormal exit from a new expression.
1169   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1170     size_t NumPlacementArgs;
1171     const FunctionDecl *OperatorDelete;
1172     llvm::Value *Ptr;
1173     llvm::Value *AllocSize;
1174 
1175     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1176 
1177   public:
1178     static size_t getExtraSize(size_t NumPlacementArgs) {
1179       return NumPlacementArgs * sizeof(RValue);
1180     }
1181 
1182     CallDeleteDuringNew(size_t NumPlacementArgs,
1183                         const FunctionDecl *OperatorDelete,
1184                         llvm::Value *Ptr,
1185                         llvm::Value *AllocSize)
1186       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1187         Ptr(Ptr), AllocSize(AllocSize) {}
1188 
1189     void setPlacementArg(unsigned I, RValue Arg) {
1190       assert(I < NumPlacementArgs && "index out of range");
1191       getPlacementArgs()[I] = Arg;
1192     }
1193 
1194     void Emit(CodeGenFunction &CGF, Flags flags) override {
1195       const FunctionProtoType *FPT
1196         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1197       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1198              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1199 
1200       CallArgList DeleteArgs;
1201 
1202       // The first argument is always a void*.
1203       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1204       DeleteArgs.add(RValue::get(Ptr), *AI++);
1205 
1206       // A member 'operator delete' can take an extra 'size_t' argument.
1207       if (FPT->getNumParams() == NumPlacementArgs + 2)
1208         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1209 
1210       // Pass the rest of the arguments, which must match exactly.
1211       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1212         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1213 
1214       // Call 'operator delete'.
1215       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1216     }
1217   };
1218 
1219   /// A cleanup to call the given 'operator delete' function upon
1220   /// abnormal exit from a new expression when the new expression is
1221   /// conditional.
1222   class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
1223     size_t NumPlacementArgs;
1224     const FunctionDecl *OperatorDelete;
1225     DominatingValue<RValue>::saved_type Ptr;
1226     DominatingValue<RValue>::saved_type AllocSize;
1227 
1228     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1229       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1230     }
1231 
1232   public:
1233     static size_t getExtraSize(size_t NumPlacementArgs) {
1234       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1235     }
1236 
1237     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1238                                    const FunctionDecl *OperatorDelete,
1239                                    DominatingValue<RValue>::saved_type Ptr,
1240                               DominatingValue<RValue>::saved_type AllocSize)
1241       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1242         Ptr(Ptr), AllocSize(AllocSize) {}
1243 
1244     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1245       assert(I < NumPlacementArgs && "index out of range");
1246       getPlacementArgs()[I] = Arg;
1247     }
1248 
1249     void Emit(CodeGenFunction &CGF, Flags flags) override {
1250       const FunctionProtoType *FPT
1251         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1252       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1253              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1254 
1255       CallArgList DeleteArgs;
1256 
1257       // The first argument is always a void*.
1258       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1259       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1260 
1261       // A member 'operator delete' can take an extra 'size_t' argument.
1262       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1263         RValue RV = AllocSize.restore(CGF);
1264         DeleteArgs.add(RV, *AI++);
1265       }
1266 
1267       // Pass the rest of the arguments, which must match exactly.
1268       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1269         RValue RV = getPlacementArgs()[I].restore(CGF);
1270         DeleteArgs.add(RV, *AI++);
1271       }
1272 
1273       // Call 'operator delete'.
1274       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1275     }
1276   };
1277 }
1278 
1279 /// Enter a cleanup to call 'operator delete' if the initializer in a
1280 /// new-expression throws.
1281 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1282                                   const CXXNewExpr *E,
1283                                   Address NewPtr,
1284                                   llvm::Value *AllocSize,
1285                                   const CallArgList &NewArgs) {
1286   // If we're not inside a conditional branch, then the cleanup will
1287   // dominate and we can do the easier (and more efficient) thing.
1288   if (!CGF.isInConditionalBranch()) {
1289     CallDeleteDuringNew *Cleanup = CGF.EHStack
1290       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1291                                                  E->getNumPlacementArgs(),
1292                                                  E->getOperatorDelete(),
1293                                                  NewPtr.getPointer(),
1294                                                  AllocSize);
1295     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1296       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1297 
1298     return;
1299   }
1300 
1301   // Otherwise, we need to save all this stuff.
1302   DominatingValue<RValue>::saved_type SavedNewPtr =
1303     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1304   DominatingValue<RValue>::saved_type SavedAllocSize =
1305     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1306 
1307   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1308     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1309                                                  E->getNumPlacementArgs(),
1310                                                  E->getOperatorDelete(),
1311                                                  SavedNewPtr,
1312                                                  SavedAllocSize);
1313   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1314     Cleanup->setPlacementArg(I,
1315                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1316 
1317   CGF.initFullExprCleanup();
1318 }
1319 
1320 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1321   // The element type being allocated.
1322   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1323 
1324   // 1. Build a call to the allocation function.
1325   FunctionDecl *allocator = E->getOperatorNew();
1326 
1327   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1328   unsigned minElements = 0;
1329   if (E->isArray() && E->hasInitializer()) {
1330     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1331       minElements = ILE->getNumInits();
1332   }
1333 
1334   llvm::Value *numElements = nullptr;
1335   llvm::Value *allocSizeWithoutCookie = nullptr;
1336   llvm::Value *allocSize =
1337     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1338                         allocSizeWithoutCookie);
1339 
1340   // Emit the allocation call.  If the allocator is a global placement
1341   // operator, just "inline" it directly.
1342   Address allocation = Address::invalid();
1343   CallArgList allocatorArgs;
1344   if (allocator->isReservedGlobalPlacementOperator()) {
1345     assert(E->getNumPlacementArgs() == 1);
1346     const Expr *arg = *E->placement_arguments().begin();
1347 
1348     AlignmentSource alignSource;
1349     allocation = EmitPointerWithAlignment(arg, &alignSource);
1350 
1351     // The pointer expression will, in many cases, be an opaque void*.
1352     // In these cases, discard the computed alignment and use the
1353     // formal alignment of the allocated type.
1354     if (alignSource != AlignmentSource::Decl) {
1355       allocation = Address(allocation.getPointer(),
1356                            getContext().getTypeAlignInChars(allocType));
1357     }
1358 
1359     // Set up allocatorArgs for the call to operator delete if it's not
1360     // the reserved global operator.
1361     if (E->getOperatorDelete() &&
1362         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1363       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1364       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1365     }
1366 
1367   } else {
1368     const FunctionProtoType *allocatorType =
1369       allocator->getType()->castAs<FunctionProtoType>();
1370 
1371     // The allocation size is the first argument.
1372     QualType sizeType = getContext().getSizeType();
1373     allocatorArgs.add(RValue::get(allocSize), sizeType);
1374 
1375     // We start at 1 here because the first argument (the allocation size)
1376     // has already been emitted.
1377     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1378                  /* CalleeDecl */ nullptr,
1379                  /*ParamsToSkip*/ 1);
1380 
1381     RValue RV =
1382       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1383 
1384     // For now, only assume that the allocation function returns
1385     // something satisfactorily aligned for the element type, plus
1386     // the cookie if we have one.
1387     CharUnits allocationAlign =
1388       getContext().getTypeAlignInChars(allocType);
1389     if (allocSize != allocSizeWithoutCookie) {
1390       CharUnits cookieAlign = getSizeAlign(); // FIXME?
1391       allocationAlign = std::max(allocationAlign, cookieAlign);
1392     }
1393 
1394     allocation = Address(RV.getScalarVal(), allocationAlign);
1395   }
1396 
1397   // Emit a null check on the allocation result if the allocation
1398   // function is allowed to return null (because it has a non-throwing
1399   // exception spec or is the reserved placement new) and we have an
1400   // interesting initializer.
1401   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1402     (!allocType.isPODType(getContext()) || E->hasInitializer());
1403 
1404   llvm::BasicBlock *nullCheckBB = nullptr;
1405   llvm::BasicBlock *contBB = nullptr;
1406 
1407   // The null-check means that the initializer is conditionally
1408   // evaluated.
1409   ConditionalEvaluation conditional(*this);
1410 
1411   if (nullCheck) {
1412     conditional.begin(*this);
1413 
1414     nullCheckBB = Builder.GetInsertBlock();
1415     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1416     contBB = createBasicBlock("new.cont");
1417 
1418     llvm::Value *isNull =
1419       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1420     Builder.CreateCondBr(isNull, contBB, notNullBB);
1421     EmitBlock(notNullBB);
1422   }
1423 
1424   // If there's an operator delete, enter a cleanup to call it if an
1425   // exception is thrown.
1426   EHScopeStack::stable_iterator operatorDeleteCleanup;
1427   llvm::Instruction *cleanupDominator = nullptr;
1428   if (E->getOperatorDelete() &&
1429       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1430     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1431     operatorDeleteCleanup = EHStack.stable_begin();
1432     cleanupDominator = Builder.CreateUnreachable();
1433   }
1434 
1435   assert((allocSize == allocSizeWithoutCookie) ==
1436          CalculateCookiePadding(*this, E).isZero());
1437   if (allocSize != allocSizeWithoutCookie) {
1438     assert(E->isArray());
1439     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1440                                                        numElements,
1441                                                        E, allocType);
1442   }
1443 
1444   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1445   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1446 
1447   // Passing pointer through invariant.group.barrier to avoid propagation of
1448   // vptrs information which may be included in previous type.
1449   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1450       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1451       allocator->isReservedGlobalPlacementOperator())
1452     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1453                      result.getAlignment());
1454 
1455   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1456                      allocSizeWithoutCookie);
1457   if (E->isArray()) {
1458     // NewPtr is a pointer to the base element type.  If we're
1459     // allocating an array of arrays, we'll need to cast back to the
1460     // array pointer type.
1461     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1462     if (result.getType() != resultType)
1463       result = Builder.CreateBitCast(result, resultType);
1464   }
1465 
1466   // Deactivate the 'operator delete' cleanup if we finished
1467   // initialization.
1468   if (operatorDeleteCleanup.isValid()) {
1469     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1470     cleanupDominator->eraseFromParent();
1471   }
1472 
1473   llvm::Value *resultPtr = result.getPointer();
1474   if (nullCheck) {
1475     conditional.end(*this);
1476 
1477     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1478     EmitBlock(contBB);
1479 
1480     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1481     PHI->addIncoming(resultPtr, notNullBB);
1482     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1483                      nullCheckBB);
1484 
1485     resultPtr = PHI;
1486   }
1487 
1488   return resultPtr;
1489 }
1490 
1491 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1492                                      llvm::Value *Ptr,
1493                                      QualType DeleteTy) {
1494   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1495 
1496   const FunctionProtoType *DeleteFTy =
1497     DeleteFD->getType()->getAs<FunctionProtoType>();
1498 
1499   CallArgList DeleteArgs;
1500 
1501   // Check if we need to pass the size to the delete operator.
1502   llvm::Value *Size = nullptr;
1503   QualType SizeTy;
1504   if (DeleteFTy->getNumParams() == 2) {
1505     SizeTy = DeleteFTy->getParamType(1);
1506     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1507     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1508                                   DeleteTypeSize.getQuantity());
1509   }
1510 
1511   QualType ArgTy = DeleteFTy->getParamType(0);
1512   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1513   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1514 
1515   if (Size)
1516     DeleteArgs.add(RValue::get(Size), SizeTy);
1517 
1518   // Emit the call to delete.
1519   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1520 }
1521 
1522 namespace {
1523   /// Calls the given 'operator delete' on a single object.
1524   struct CallObjectDelete final : EHScopeStack::Cleanup {
1525     llvm::Value *Ptr;
1526     const FunctionDecl *OperatorDelete;
1527     QualType ElementType;
1528 
1529     CallObjectDelete(llvm::Value *Ptr,
1530                      const FunctionDecl *OperatorDelete,
1531                      QualType ElementType)
1532       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1533 
1534     void Emit(CodeGenFunction &CGF, Flags flags) override {
1535       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1536     }
1537   };
1538 }
1539 
1540 void
1541 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1542                                              llvm::Value *CompletePtr,
1543                                              QualType ElementType) {
1544   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1545                                         OperatorDelete, ElementType);
1546 }
1547 
1548 /// Emit the code for deleting a single object.
1549 static void EmitObjectDelete(CodeGenFunction &CGF,
1550                              const CXXDeleteExpr *DE,
1551                              Address Ptr,
1552                              QualType ElementType) {
1553   // Find the destructor for the type, if applicable.  If the
1554   // destructor is virtual, we'll just emit the vcall and return.
1555   const CXXDestructorDecl *Dtor = nullptr;
1556   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1557     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1558     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1559       Dtor = RD->getDestructor();
1560 
1561       if (Dtor->isVirtual()) {
1562         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1563                                                     Dtor);
1564         return;
1565       }
1566     }
1567   }
1568 
1569   // Make sure that we call delete even if the dtor throws.
1570   // This doesn't have to a conditional cleanup because we're going
1571   // to pop it off in a second.
1572   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1573   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1574                                             Ptr.getPointer(),
1575                                             OperatorDelete, ElementType);
1576 
1577   if (Dtor)
1578     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1579                               /*ForVirtualBase=*/false,
1580                               /*Delegating=*/false,
1581                               Ptr);
1582   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1583     switch (Lifetime) {
1584     case Qualifiers::OCL_None:
1585     case Qualifiers::OCL_ExplicitNone:
1586     case Qualifiers::OCL_Autoreleasing:
1587       break;
1588 
1589     case Qualifiers::OCL_Strong:
1590       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1591       break;
1592 
1593     case Qualifiers::OCL_Weak:
1594       CGF.EmitARCDestroyWeak(Ptr);
1595       break;
1596     }
1597   }
1598 
1599   CGF.PopCleanupBlock();
1600 }
1601 
1602 namespace {
1603   /// Calls the given 'operator delete' on an array of objects.
1604   struct CallArrayDelete final : EHScopeStack::Cleanup {
1605     llvm::Value *Ptr;
1606     const FunctionDecl *OperatorDelete;
1607     llvm::Value *NumElements;
1608     QualType ElementType;
1609     CharUnits CookieSize;
1610 
1611     CallArrayDelete(llvm::Value *Ptr,
1612                     const FunctionDecl *OperatorDelete,
1613                     llvm::Value *NumElements,
1614                     QualType ElementType,
1615                     CharUnits CookieSize)
1616       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1617         ElementType(ElementType), CookieSize(CookieSize) {}
1618 
1619     void Emit(CodeGenFunction &CGF, Flags flags) override {
1620       const FunctionProtoType *DeleteFTy =
1621         OperatorDelete->getType()->getAs<FunctionProtoType>();
1622       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1623 
1624       CallArgList Args;
1625 
1626       // Pass the pointer as the first argument.
1627       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1628       llvm::Value *DeletePtr
1629         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1630       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1631 
1632       // Pass the original requested size as the second argument.
1633       if (DeleteFTy->getNumParams() == 2) {
1634         QualType size_t = DeleteFTy->getParamType(1);
1635         llvm::IntegerType *SizeTy
1636           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1637 
1638         CharUnits ElementTypeSize =
1639           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1640 
1641         // The size of an element, multiplied by the number of elements.
1642         llvm::Value *Size
1643           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1644         if (NumElements)
1645           Size = CGF.Builder.CreateMul(Size, NumElements);
1646 
1647         // Plus the size of the cookie if applicable.
1648         if (!CookieSize.isZero()) {
1649           llvm::Value *CookieSizeV
1650             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1651           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1652         }
1653 
1654         Args.add(RValue::get(Size), size_t);
1655       }
1656 
1657       // Emit the call to delete.
1658       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1659     }
1660   };
1661 }
1662 
1663 /// Emit the code for deleting an array of objects.
1664 static void EmitArrayDelete(CodeGenFunction &CGF,
1665                             const CXXDeleteExpr *E,
1666                             Address deletedPtr,
1667                             QualType elementType) {
1668   llvm::Value *numElements = nullptr;
1669   llvm::Value *allocatedPtr = nullptr;
1670   CharUnits cookieSize;
1671   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1672                                       numElements, allocatedPtr, cookieSize);
1673 
1674   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1675 
1676   // Make sure that we call delete even if one of the dtors throws.
1677   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1678   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1679                                            allocatedPtr, operatorDelete,
1680                                            numElements, elementType,
1681                                            cookieSize);
1682 
1683   // Destroy the elements.
1684   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1685     assert(numElements && "no element count for a type with a destructor!");
1686 
1687     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1688     CharUnits elementAlign =
1689       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1690 
1691     llvm::Value *arrayBegin = deletedPtr.getPointer();
1692     llvm::Value *arrayEnd =
1693       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1694 
1695     // Note that it is legal to allocate a zero-length array, and we
1696     // can never fold the check away because the length should always
1697     // come from a cookie.
1698     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1699                          CGF.getDestroyer(dtorKind),
1700                          /*checkZeroLength*/ true,
1701                          CGF.needsEHCleanup(dtorKind));
1702   }
1703 
1704   // Pop the cleanup block.
1705   CGF.PopCleanupBlock();
1706 }
1707 
1708 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1709   const Expr *Arg = E->getArgument();
1710   Address Ptr = EmitPointerWithAlignment(Arg);
1711 
1712   // Null check the pointer.
1713   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1714   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1715 
1716   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1717 
1718   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1719   EmitBlock(DeleteNotNull);
1720 
1721   // We might be deleting a pointer to array.  If so, GEP down to the
1722   // first non-array element.
1723   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1724   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1725   if (DeleteTy->isConstantArrayType()) {
1726     llvm::Value *Zero = Builder.getInt32(0);
1727     SmallVector<llvm::Value*,8> GEP;
1728 
1729     GEP.push_back(Zero); // point at the outermost array
1730 
1731     // For each layer of array type we're pointing at:
1732     while (const ConstantArrayType *Arr
1733              = getContext().getAsConstantArrayType(DeleteTy)) {
1734       // 1. Unpeel the array type.
1735       DeleteTy = Arr->getElementType();
1736 
1737       // 2. GEP to the first element of the array.
1738       GEP.push_back(Zero);
1739     }
1740 
1741     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1742                   Ptr.getAlignment());
1743   }
1744 
1745   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1746 
1747   if (E->isArrayForm()) {
1748     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1749   } else {
1750     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1751   }
1752 
1753   EmitBlock(DeleteEnd);
1754 }
1755 
1756 static bool isGLValueFromPointerDeref(const Expr *E) {
1757   E = E->IgnoreParens();
1758 
1759   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1760     if (!CE->getSubExpr()->isGLValue())
1761       return false;
1762     return isGLValueFromPointerDeref(CE->getSubExpr());
1763   }
1764 
1765   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1766     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1767 
1768   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1769     if (BO->getOpcode() == BO_Comma)
1770       return isGLValueFromPointerDeref(BO->getRHS());
1771 
1772   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1773     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1774            isGLValueFromPointerDeref(ACO->getFalseExpr());
1775 
1776   // C++11 [expr.sub]p1:
1777   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1778   if (isa<ArraySubscriptExpr>(E))
1779     return true;
1780 
1781   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1782     if (UO->getOpcode() == UO_Deref)
1783       return true;
1784 
1785   return false;
1786 }
1787 
1788 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1789                                          llvm::Type *StdTypeInfoPtrTy) {
1790   // Get the vtable pointer.
1791   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1792 
1793   // C++ [expr.typeid]p2:
1794   //   If the glvalue expression is obtained by applying the unary * operator to
1795   //   a pointer and the pointer is a null pointer value, the typeid expression
1796   //   throws the std::bad_typeid exception.
1797   //
1798   // However, this paragraph's intent is not clear.  We choose a very generous
1799   // interpretation which implores us to consider comma operators, conditional
1800   // operators, parentheses and other such constructs.
1801   QualType SrcRecordTy = E->getType();
1802   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1803           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1804     llvm::BasicBlock *BadTypeidBlock =
1805         CGF.createBasicBlock("typeid.bad_typeid");
1806     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1807 
1808     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1809     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1810 
1811     CGF.EmitBlock(BadTypeidBlock);
1812     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1813     CGF.EmitBlock(EndBlock);
1814   }
1815 
1816   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1817                                         StdTypeInfoPtrTy);
1818 }
1819 
1820 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1821   llvm::Type *StdTypeInfoPtrTy =
1822     ConvertType(E->getType())->getPointerTo();
1823 
1824   if (E->isTypeOperand()) {
1825     llvm::Constant *TypeInfo =
1826         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1827     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1828   }
1829 
1830   // C++ [expr.typeid]p2:
1831   //   When typeid is applied to a glvalue expression whose type is a
1832   //   polymorphic class type, the result refers to a std::type_info object
1833   //   representing the type of the most derived object (that is, the dynamic
1834   //   type) to which the glvalue refers.
1835   if (E->isPotentiallyEvaluated())
1836     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1837                                 StdTypeInfoPtrTy);
1838 
1839   QualType OperandTy = E->getExprOperand()->getType();
1840   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1841                                StdTypeInfoPtrTy);
1842 }
1843 
1844 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1845                                           QualType DestTy) {
1846   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1847   if (DestTy->isPointerType())
1848     return llvm::Constant::getNullValue(DestLTy);
1849 
1850   /// C++ [expr.dynamic.cast]p9:
1851   ///   A failed cast to reference type throws std::bad_cast
1852   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1853     return nullptr;
1854 
1855   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1856   return llvm::UndefValue::get(DestLTy);
1857 }
1858 
1859 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1860                                               const CXXDynamicCastExpr *DCE) {
1861   CGM.EmitExplicitCastExprType(DCE, this);
1862   QualType DestTy = DCE->getTypeAsWritten();
1863 
1864   if (DCE->isAlwaysNull())
1865     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1866       return T;
1867 
1868   QualType SrcTy = DCE->getSubExpr()->getType();
1869 
1870   // C++ [expr.dynamic.cast]p7:
1871   //   If T is "pointer to cv void," then the result is a pointer to the most
1872   //   derived object pointed to by v.
1873   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1874 
1875   bool isDynamicCastToVoid;
1876   QualType SrcRecordTy;
1877   QualType DestRecordTy;
1878   if (DestPTy) {
1879     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1880     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1881     DestRecordTy = DestPTy->getPointeeType();
1882   } else {
1883     isDynamicCastToVoid = false;
1884     SrcRecordTy = SrcTy;
1885     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1886   }
1887 
1888   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1889 
1890   // C++ [expr.dynamic.cast]p4:
1891   //   If the value of v is a null pointer value in the pointer case, the result
1892   //   is the null pointer value of type T.
1893   bool ShouldNullCheckSrcValue =
1894       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1895                                                          SrcRecordTy);
1896 
1897   llvm::BasicBlock *CastNull = nullptr;
1898   llvm::BasicBlock *CastNotNull = nullptr;
1899   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1900 
1901   if (ShouldNullCheckSrcValue) {
1902     CastNull = createBasicBlock("dynamic_cast.null");
1903     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1904 
1905     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
1906     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1907     EmitBlock(CastNotNull);
1908   }
1909 
1910   llvm::Value *Value;
1911   if (isDynamicCastToVoid) {
1912     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
1913                                                   DestTy);
1914   } else {
1915     assert(DestRecordTy->isRecordType() &&
1916            "destination type must be a record type!");
1917     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
1918                                                 DestTy, DestRecordTy, CastEnd);
1919     CastNotNull = Builder.GetInsertBlock();
1920   }
1921 
1922   if (ShouldNullCheckSrcValue) {
1923     EmitBranch(CastEnd);
1924 
1925     EmitBlock(CastNull);
1926     EmitBranch(CastEnd);
1927   }
1928 
1929   EmitBlock(CastEnd);
1930 
1931   if (ShouldNullCheckSrcValue) {
1932     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1933     PHI->addIncoming(Value, CastNotNull);
1934     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1935 
1936     Value = PHI;
1937   }
1938 
1939   return Value;
1940 }
1941 
1942 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1943   RunCleanupsScope Scope(*this);
1944   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
1945 
1946   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1947   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1948                                                e = E->capture_init_end();
1949        i != e; ++i, ++CurField) {
1950     // Emit initialization
1951     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1952     if (CurField->hasCapturedVLAType()) {
1953       auto VAT = CurField->getCapturedVLAType();
1954       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1955     } else {
1956       ArrayRef<VarDecl *> ArrayIndexes;
1957       if (CurField->getType()->isArrayType())
1958         ArrayIndexes = E->getCaptureInitIndexVars(i);
1959       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1960     }
1961   }
1962 }
1963