1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include "llvm/Support/CallSite.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
27                                           SourceLocation CallLoc,
28                                           llvm::Value *Callee,
29                                           ReturnValueSlot ReturnValue,
30                                           llvm::Value *This,
31                                           llvm::Value *VTT,
32                                           CallExpr::const_arg_iterator ArgBeg,
33                                           CallExpr::const_arg_iterator ArgEnd) {
34   assert(MD->isInstance() &&
35          "Trying to emit a member call expr on a static method!");
36 
37   // C++11 [class.mfct.non-static]p2:
38   //   If a non-static member function of a class X is called for an object that
39   //   is not of type X, or of a type derived from X, the behavior is undefined.
40   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
41                                             : TCK_MemberCall,
42                 CallLoc, This, getContext().getRecordType(MD->getParent()));
43 
44   CallArgList Args;
45 
46   // Push the this ptr.
47   Args.add(RValue::get(This), MD->getThisType(getContext()));
48 
49   // If there is a VTT parameter, emit it.
50   if (VTT) {
51     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
52     Args.add(RValue::get(VTT), T);
53   }
54 
55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 
58   // And the rest of the call args.
59   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
60 
61   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
62                   Callee, ReturnValue, Args, MD);
63 }
64 
65 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
66 // quite what we want.
67 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
68   while (true) {
69     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
70       E = PE->getSubExpr();
71       continue;
72     }
73 
74     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
75       if (CE->getCastKind() == CK_NoOp) {
76         E = CE->getSubExpr();
77         continue;
78       }
79     }
80     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
81       if (UO->getOpcode() == UO_Extension) {
82         E = UO->getSubExpr();
83         continue;
84       }
85     }
86     return E;
87   }
88 }
89 
90 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
91 /// expr can be devirtualized.
92 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
93                                                const Expr *Base,
94                                                const CXXMethodDecl *MD) {
95 
96   // When building with -fapple-kext, all calls must go through the vtable since
97   // the kernel linker can do runtime patching of vtables.
98   if (Context.getLangOpts().AppleKext)
99     return false;
100 
101   // If the most derived class is marked final, we know that no subclass can
102   // override this member function and so we can devirtualize it. For example:
103   //
104   // struct A { virtual void f(); }
105   // struct B final : A { };
106   //
107   // void f(B *b) {
108   //   b->f();
109   // }
110   //
111   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
112   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
113     return true;
114 
115   // If the member function is marked 'final', we know that it can't be
116   // overridden and can therefore devirtualize it.
117   if (MD->hasAttr<FinalAttr>())
118     return true;
119 
120   // Similarly, if the class itself is marked 'final' it can't be overridden
121   // and we can therefore devirtualize the member function call.
122   if (MD->getParent()->hasAttr<FinalAttr>())
123     return true;
124 
125   Base = skipNoOpCastsAndParens(Base);
126   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
127     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
128       // This is a record decl. We know the type and can devirtualize it.
129       return VD->getType()->isRecordType();
130     }
131 
132     return false;
133   }
134 
135   // We can devirtualize calls on an object accessed by a class member access
136   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
137   // a derived class object constructed in the same location.
138   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
139     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
140       return VD->getType()->isRecordType();
141 
142   // We can always devirtualize calls on temporary object expressions.
143   if (isa<CXXConstructExpr>(Base))
144     return true;
145 
146   // And calls on bound temporaries.
147   if (isa<CXXBindTemporaryExpr>(Base))
148     return true;
149 
150   // Check if this is a call expr that returns a record type.
151   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
152     return CE->getCallReturnType()->isRecordType();
153 
154   // We can't devirtualize the call.
155   return false;
156 }
157 
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159   QualType T = E->getType();
160   if (const PointerType *PTy = T->getAs<PointerType>())
161     T = PTy->getPointeeType();
162   const RecordType *Ty = T->castAs<RecordType>();
163   return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165 
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169                                               ReturnValueSlot ReturnValue) {
170   const Expr *callee = CE->getCallee()->IgnoreParens();
171 
172   if (isa<BinaryOperator>(callee))
173     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174 
175   const MemberExpr *ME = cast<MemberExpr>(callee);
176   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177 
178   CGDebugInfo *DI = getDebugInfo();
179   if (DI &&
180       CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo &&
181       !isa<CallExpr>(ME->getBase())) {
182     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
183     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
184       DI->getOrCreateRecordType(PTy->getPointeeType(),
185                                 MD->getParent()->getLocation());
186     }
187   }
188 
189   if (MD->isStatic()) {
190     // The method is static, emit it as we would a regular call.
191     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
192     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
193                     ReturnValue, CE->arg_begin(), CE->arg_end());
194   }
195 
196   // Compute the object pointer.
197   const Expr *Base = ME->getBase();
198   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
199 
200   const CXXMethodDecl *DevirtualizedMethod = NULL;
201   if (CanUseVirtualCall &&
202       canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
203     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205     assert(DevirtualizedMethod);
206     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207     const Expr *Inner = Base->ignoreParenBaseCasts();
208     if (getCXXRecord(Inner) == DevirtualizedClass)
209       // If the class of the Inner expression is where the dynamic method
210       // is defined, build the this pointer from it.
211       Base = Inner;
212     else if (getCXXRecord(Base) != DevirtualizedClass) {
213       // If the method is defined in a class that is not the best dynamic
214       // one or the one of the full expression, we would have to build
215       // a derived-to-base cast to compute the correct this pointer, but
216       // we don't have support for that yet, so do a virtual call.
217       DevirtualizedMethod = NULL;
218     }
219     // If the return types are not the same, this might be a case where more
220     // code needs to run to compensate for it. For example, the derived
221     // method might return a type that inherits form from the return
222     // type of MD and has a prefix.
223     // For now we just avoid devirtualizing these covariant cases.
224     if (DevirtualizedMethod &&
225         DevirtualizedMethod->getResultType().getCanonicalType() !=
226         MD->getResultType().getCanonicalType())
227       DevirtualizedMethod = NULL;
228   }
229 
230   llvm::Value *This;
231   if (ME->isArrow())
232     This = EmitScalarExpr(Base);
233   else
234     This = EmitLValue(Base).getAddress();
235 
236 
237   if (MD->isTrivial()) {
238     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
239     if (isa<CXXConstructorDecl>(MD) &&
240         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
241       return RValue::get(0);
242 
243     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
244       // We don't like to generate the trivial copy/move assignment operator
245       // when it isn't necessary; just produce the proper effect here.
246       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
247       EmitAggregateAssign(This, RHS, CE->getType());
248       return RValue::get(This);
249     }
250 
251     if (isa<CXXConstructorDecl>(MD) &&
252         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
253       // Trivial move and copy ctor are the same.
254       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
255       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
256                                      CE->arg_begin(), CE->arg_end());
257       return RValue::get(This);
258     }
259     llvm_unreachable("unknown trivial member function");
260   }
261 
262   // Compute the function type we're calling.
263   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
264   const CGFunctionInfo *FInfo = 0;
265   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
266     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
267                                                  Dtor_Complete);
268   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
269     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
270                                                              Ctor_Complete);
271   else
272     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
273 
274   llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
275 
276   // C++ [class.virtual]p12:
277   //   Explicit qualification with the scope operator (5.1) suppresses the
278   //   virtual call mechanism.
279   //
280   // We also don't emit a virtual call if the base expression has a record type
281   // because then we know what the type is.
282   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
283 
284   llvm::Value *Callee;
285   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
286     if (UseVirtualCall) {
287       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
288     } else {
289       if (getLangOpts().AppleKext &&
290           MD->isVirtual() &&
291           ME->hasQualifier())
292         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
293       else if (!DevirtualizedMethod)
294         Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
295       else {
296         const CXXDestructorDecl *DDtor =
297           cast<CXXDestructorDecl>(DevirtualizedMethod);
298         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
299       }
300     }
301   } else if (const CXXConstructorDecl *Ctor =
302                dyn_cast<CXXConstructorDecl>(MD)) {
303     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
304   } else if (UseVirtualCall) {
305       Callee = BuildVirtualCall(MD, This, Ty);
306   } else {
307     if (getLangOpts().AppleKext &&
308         MD->isVirtual() &&
309         ME->hasQualifier())
310       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
311     else if (!DevirtualizedMethod)
312       Callee = CGM.GetAddrOfFunction(MD, Ty);
313     else {
314       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
315     }
316   }
317 
318   return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
319                            /*VTT=*/0, CE->arg_begin(), CE->arg_end());
320 }
321 
322 RValue
323 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
324                                               ReturnValueSlot ReturnValue) {
325   const BinaryOperator *BO =
326       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
327   const Expr *BaseExpr = BO->getLHS();
328   const Expr *MemFnExpr = BO->getRHS();
329 
330   const MemberPointerType *MPT =
331     MemFnExpr->getType()->castAs<MemberPointerType>();
332 
333   const FunctionProtoType *FPT =
334     MPT->getPointeeType()->castAs<FunctionProtoType>();
335   const CXXRecordDecl *RD =
336     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
337 
338   // Get the member function pointer.
339   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
340 
341   // Emit the 'this' pointer.
342   llvm::Value *This;
343 
344   if (BO->getOpcode() == BO_PtrMemI)
345     This = EmitScalarExpr(BaseExpr);
346   else
347     This = EmitLValue(BaseExpr).getAddress();
348 
349   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
350                 QualType(MPT->getClass(), 0));
351 
352   // Ask the ABI to load the callee.  Note that This is modified.
353   llvm::Value *Callee =
354     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
355 
356   CallArgList Args;
357 
358   QualType ThisType =
359     getContext().getPointerType(getContext().getTagDeclType(RD));
360 
361   // Push the this ptr.
362   Args.add(RValue::get(This), ThisType);
363 
364   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
365 
366   // And the rest of the call args
367   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
368   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
369                   ReturnValue, Args);
370 }
371 
372 RValue
373 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
374                                                const CXXMethodDecl *MD,
375                                                ReturnValueSlot ReturnValue) {
376   assert(MD->isInstance() &&
377          "Trying to emit a member call expr on a static method!");
378   LValue LV = EmitLValue(E->getArg(0));
379   llvm::Value *This = LV.getAddress();
380 
381   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
382       MD->isTrivial()) {
383     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
384     QualType Ty = E->getType();
385     EmitAggregateAssign(This, Src, Ty);
386     return RValue::get(This);
387   }
388 
389   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
390   return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
391                            /*VTT=*/0, E->arg_begin() + 1, E->arg_end());
392 }
393 
394 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
395                                                ReturnValueSlot ReturnValue) {
396   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
397 }
398 
399 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
400                                             llvm::Value *DestPtr,
401                                             const CXXRecordDecl *Base) {
402   if (Base->isEmpty())
403     return;
404 
405   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
406 
407   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
408   CharUnits Size = Layout.getNonVirtualSize();
409   CharUnits Align = Layout.getNonVirtualAlign();
410 
411   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
412 
413   // If the type contains a pointer to data member we can't memset it to zero.
414   // Instead, create a null constant and copy it to the destination.
415   // TODO: there are other patterns besides zero that we can usefully memset,
416   // like -1, which happens to be the pattern used by member-pointers.
417   // TODO: isZeroInitializable can be over-conservative in the case where a
418   // virtual base contains a member pointer.
419   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
420     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
421 
422     llvm::GlobalVariable *NullVariable =
423       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
424                                /*isConstant=*/true,
425                                llvm::GlobalVariable::PrivateLinkage,
426                                NullConstant, Twine());
427     NullVariable->setAlignment(Align.getQuantity());
428     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
429 
430     // Get and call the appropriate llvm.memcpy overload.
431     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
432     return;
433   }
434 
435   // Otherwise, just memset the whole thing to zero.  This is legal
436   // because in LLVM, all default initializers (other than the ones we just
437   // handled above) are guaranteed to have a bit pattern of all zeros.
438   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
439                            Align.getQuantity());
440 }
441 
442 void
443 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
444                                       AggValueSlot Dest) {
445   assert(!Dest.isIgnored() && "Must have a destination!");
446   const CXXConstructorDecl *CD = E->getConstructor();
447 
448   // If we require zero initialization before (or instead of) calling the
449   // constructor, as can be the case with a non-user-provided default
450   // constructor, emit the zero initialization now, unless destination is
451   // already zeroed.
452   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
453     switch (E->getConstructionKind()) {
454     case CXXConstructExpr::CK_Delegating:
455     case CXXConstructExpr::CK_Complete:
456       EmitNullInitialization(Dest.getAddr(), E->getType());
457       break;
458     case CXXConstructExpr::CK_VirtualBase:
459     case CXXConstructExpr::CK_NonVirtualBase:
460       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
461       break;
462     }
463   }
464 
465   // If this is a call to a trivial default constructor, do nothing.
466   if (CD->isTrivial() && CD->isDefaultConstructor())
467     return;
468 
469   // Elide the constructor if we're constructing from a temporary.
470   // The temporary check is required because Sema sets this on NRVO
471   // returns.
472   if (getLangOpts().ElideConstructors && E->isElidable()) {
473     assert(getContext().hasSameUnqualifiedType(E->getType(),
474                                                E->getArg(0)->getType()));
475     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
476       EmitAggExpr(E->getArg(0), Dest);
477       return;
478     }
479   }
480 
481   if (const ConstantArrayType *arrayType
482         = getContext().getAsConstantArrayType(E->getType())) {
483     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
484                                E->arg_begin(), E->arg_end());
485   } else {
486     CXXCtorType Type = Ctor_Complete;
487     bool ForVirtualBase = false;
488     bool Delegating = false;
489 
490     switch (E->getConstructionKind()) {
491      case CXXConstructExpr::CK_Delegating:
492       // We should be emitting a constructor; GlobalDecl will assert this
493       Type = CurGD.getCtorType();
494       Delegating = true;
495       break;
496 
497      case CXXConstructExpr::CK_Complete:
498       Type = Ctor_Complete;
499       break;
500 
501      case CXXConstructExpr::CK_VirtualBase:
502       ForVirtualBase = true;
503       // fall-through
504 
505      case CXXConstructExpr::CK_NonVirtualBase:
506       Type = Ctor_Base;
507     }
508 
509     // Call the constructor.
510     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
511                            E->arg_begin(), E->arg_end());
512   }
513 }
514 
515 void
516 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
517                                             llvm::Value *Src,
518                                             const Expr *Exp) {
519   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
520     Exp = E->getSubExpr();
521   assert(isa<CXXConstructExpr>(Exp) &&
522          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
523   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
524   const CXXConstructorDecl *CD = E->getConstructor();
525   RunCleanupsScope Scope(*this);
526 
527   // If we require zero initialization before (or instead of) calling the
528   // constructor, as can be the case with a non-user-provided default
529   // constructor, emit the zero initialization now.
530   // FIXME. Do I still need this for a copy ctor synthesis?
531   if (E->requiresZeroInitialization())
532     EmitNullInitialization(Dest, E->getType());
533 
534   assert(!getContext().getAsConstantArrayType(E->getType())
535          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
536   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
537                                  E->arg_begin(), E->arg_end());
538 }
539 
540 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
541                                         const CXXNewExpr *E) {
542   if (!E->isArray())
543     return CharUnits::Zero();
544 
545   // No cookie is required if the operator new[] being used is the
546   // reserved placement operator new[].
547   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
548     return CharUnits::Zero();
549 
550   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
551 }
552 
553 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
554                                         const CXXNewExpr *e,
555                                         unsigned minElements,
556                                         llvm::Value *&numElements,
557                                         llvm::Value *&sizeWithoutCookie) {
558   QualType type = e->getAllocatedType();
559 
560   if (!e->isArray()) {
561     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
562     sizeWithoutCookie
563       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
564     return sizeWithoutCookie;
565   }
566 
567   // The width of size_t.
568   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
569 
570   // Figure out the cookie size.
571   llvm::APInt cookieSize(sizeWidth,
572                          CalculateCookiePadding(CGF, e).getQuantity());
573 
574   // Emit the array size expression.
575   // We multiply the size of all dimensions for NumElements.
576   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
577   numElements = CGF.EmitScalarExpr(e->getArraySize());
578   assert(isa<llvm::IntegerType>(numElements->getType()));
579 
580   // The number of elements can be have an arbitrary integer type;
581   // essentially, we need to multiply it by a constant factor, add a
582   // cookie size, and verify that the result is representable as a
583   // size_t.  That's just a gloss, though, and it's wrong in one
584   // important way: if the count is negative, it's an error even if
585   // the cookie size would bring the total size >= 0.
586   bool isSigned
587     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
588   llvm::IntegerType *numElementsType
589     = cast<llvm::IntegerType>(numElements->getType());
590   unsigned numElementsWidth = numElementsType->getBitWidth();
591 
592   // Compute the constant factor.
593   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
594   while (const ConstantArrayType *CAT
595              = CGF.getContext().getAsConstantArrayType(type)) {
596     type = CAT->getElementType();
597     arraySizeMultiplier *= CAT->getSize();
598   }
599 
600   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
601   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
602   typeSizeMultiplier *= arraySizeMultiplier;
603 
604   // This will be a size_t.
605   llvm::Value *size;
606 
607   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
608   // Don't bloat the -O0 code.
609   if (llvm::ConstantInt *numElementsC =
610         dyn_cast<llvm::ConstantInt>(numElements)) {
611     const llvm::APInt &count = numElementsC->getValue();
612 
613     bool hasAnyOverflow = false;
614 
615     // If 'count' was a negative number, it's an overflow.
616     if (isSigned && count.isNegative())
617       hasAnyOverflow = true;
618 
619     // We want to do all this arithmetic in size_t.  If numElements is
620     // wider than that, check whether it's already too big, and if so,
621     // overflow.
622     else if (numElementsWidth > sizeWidth &&
623              numElementsWidth - sizeWidth > count.countLeadingZeros())
624       hasAnyOverflow = true;
625 
626     // Okay, compute a count at the right width.
627     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
628 
629     // If there is a brace-initializer, we cannot allocate fewer elements than
630     // there are initializers. If we do, that's treated like an overflow.
631     if (adjustedCount.ult(minElements))
632       hasAnyOverflow = true;
633 
634     // Scale numElements by that.  This might overflow, but we don't
635     // care because it only overflows if allocationSize does, too, and
636     // if that overflows then we shouldn't use this.
637     numElements = llvm::ConstantInt::get(CGF.SizeTy,
638                                          adjustedCount * arraySizeMultiplier);
639 
640     // Compute the size before cookie, and track whether it overflowed.
641     bool overflow;
642     llvm::APInt allocationSize
643       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
644     hasAnyOverflow |= overflow;
645 
646     // Add in the cookie, and check whether it's overflowed.
647     if (cookieSize != 0) {
648       // Save the current size without a cookie.  This shouldn't be
649       // used if there was overflow.
650       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
651 
652       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
653       hasAnyOverflow |= overflow;
654     }
655 
656     // On overflow, produce a -1 so operator new will fail.
657     if (hasAnyOverflow) {
658       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
659     } else {
660       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
661     }
662 
663   // Otherwise, we might need to use the overflow intrinsics.
664   } else {
665     // There are up to five conditions we need to test for:
666     // 1) if isSigned, we need to check whether numElements is negative;
667     // 2) if numElementsWidth > sizeWidth, we need to check whether
668     //   numElements is larger than something representable in size_t;
669     // 3) if minElements > 0, we need to check whether numElements is smaller
670     //    than that.
671     // 4) we need to compute
672     //      sizeWithoutCookie := numElements * typeSizeMultiplier
673     //    and check whether it overflows; and
674     // 5) if we need a cookie, we need to compute
675     //      size := sizeWithoutCookie + cookieSize
676     //    and check whether it overflows.
677 
678     llvm::Value *hasOverflow = 0;
679 
680     // If numElementsWidth > sizeWidth, then one way or another, we're
681     // going to have to do a comparison for (2), and this happens to
682     // take care of (1), too.
683     if (numElementsWidth > sizeWidth) {
684       llvm::APInt threshold(numElementsWidth, 1);
685       threshold <<= sizeWidth;
686 
687       llvm::Value *thresholdV
688         = llvm::ConstantInt::get(numElementsType, threshold);
689 
690       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
691       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
692 
693     // Otherwise, if we're signed, we want to sext up to size_t.
694     } else if (isSigned) {
695       if (numElementsWidth < sizeWidth)
696         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
697 
698       // If there's a non-1 type size multiplier, then we can do the
699       // signedness check at the same time as we do the multiply
700       // because a negative number times anything will cause an
701       // unsigned overflow.  Otherwise, we have to do it here. But at least
702       // in this case, we can subsume the >= minElements check.
703       if (typeSizeMultiplier == 1)
704         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
705                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
706 
707     // Otherwise, zext up to size_t if necessary.
708     } else if (numElementsWidth < sizeWidth) {
709       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
710     }
711 
712     assert(numElements->getType() == CGF.SizeTy);
713 
714     if (minElements) {
715       // Don't allow allocation of fewer elements than we have initializers.
716       if (!hasOverflow) {
717         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
718                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
719       } else if (numElementsWidth > sizeWidth) {
720         // The other existing overflow subsumes this check.
721         // We do an unsigned comparison, since any signed value < -1 is
722         // taken care of either above or below.
723         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
724                           CGF.Builder.CreateICmpULT(numElements,
725                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
726       }
727     }
728 
729     size = numElements;
730 
731     // Multiply by the type size if necessary.  This multiplier
732     // includes all the factors for nested arrays.
733     //
734     // This step also causes numElements to be scaled up by the
735     // nested-array factor if necessary.  Overflow on this computation
736     // can be ignored because the result shouldn't be used if
737     // allocation fails.
738     if (typeSizeMultiplier != 1) {
739       llvm::Value *umul_with_overflow
740         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
741 
742       llvm::Value *tsmV =
743         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
744       llvm::Value *result =
745         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
746 
747       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
748       if (hasOverflow)
749         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
750       else
751         hasOverflow = overflowed;
752 
753       size = CGF.Builder.CreateExtractValue(result, 0);
754 
755       // Also scale up numElements by the array size multiplier.
756       if (arraySizeMultiplier != 1) {
757         // If the base element type size is 1, then we can re-use the
758         // multiply we just did.
759         if (typeSize.isOne()) {
760           assert(arraySizeMultiplier == typeSizeMultiplier);
761           numElements = size;
762 
763         // Otherwise we need a separate multiply.
764         } else {
765           llvm::Value *asmV =
766             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
767           numElements = CGF.Builder.CreateMul(numElements, asmV);
768         }
769       }
770     } else {
771       // numElements doesn't need to be scaled.
772       assert(arraySizeMultiplier == 1);
773     }
774 
775     // Add in the cookie size if necessary.
776     if (cookieSize != 0) {
777       sizeWithoutCookie = size;
778 
779       llvm::Value *uadd_with_overflow
780         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
781 
782       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
783       llvm::Value *result =
784         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
785 
786       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
787       if (hasOverflow)
788         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
789       else
790         hasOverflow = overflowed;
791 
792       size = CGF.Builder.CreateExtractValue(result, 0);
793     }
794 
795     // If we had any possibility of dynamic overflow, make a select to
796     // overwrite 'size' with an all-ones value, which should cause
797     // operator new to throw.
798     if (hasOverflow)
799       size = CGF.Builder.CreateSelect(hasOverflow,
800                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
801                                       size);
802   }
803 
804   if (cookieSize == 0)
805     sizeWithoutCookie = size;
806   else
807     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
808 
809   return size;
810 }
811 
812 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
813                                     QualType AllocType, llvm::Value *NewPtr) {
814 
815   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
816   if (!CGF.hasAggregateLLVMType(AllocType))
817     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
818                                                    Alignment),
819                        false);
820   else if (AllocType->isAnyComplexType())
821     CGF.EmitComplexExprIntoAddr(Init, NewPtr,
822                                 AllocType.isVolatileQualified());
823   else {
824     AggValueSlot Slot
825       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
826                               AggValueSlot::IsDestructed,
827                               AggValueSlot::DoesNotNeedGCBarriers,
828                               AggValueSlot::IsNotAliased);
829     CGF.EmitAggExpr(Init, Slot);
830 
831     CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
832   }
833 }
834 
835 void
836 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
837                                          QualType elementType,
838                                          llvm::Value *beginPtr,
839                                          llvm::Value *numElements) {
840   if (!E->hasInitializer())
841     return; // We have a POD type.
842 
843   llvm::Value *explicitPtr = beginPtr;
844   // Find the end of the array, hoisted out of the loop.
845   llvm::Value *endPtr =
846     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
847 
848   unsigned initializerElements = 0;
849 
850   const Expr *Init = E->getInitializer();
851   llvm::AllocaInst *endOfInit = 0;
852   QualType::DestructionKind dtorKind = elementType.isDestructedType();
853   EHScopeStack::stable_iterator cleanup;
854   llvm::Instruction *cleanupDominator = 0;
855   // If the initializer is an initializer list, first do the explicit elements.
856   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
857     initializerElements = ILE->getNumInits();
858 
859     // Enter a partial-destruction cleanup if necessary.
860     if (needsEHCleanup(dtorKind)) {
861       // In principle we could tell the cleanup where we are more
862       // directly, but the control flow can get so varied here that it
863       // would actually be quite complex.  Therefore we go through an
864       // alloca.
865       endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
866       cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
867       pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
868                                        getDestroyer(dtorKind));
869       cleanup = EHStack.stable_begin();
870     }
871 
872     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
873       // Tell the cleanup that it needs to destroy up to this
874       // element.  TODO: some of these stores can be trivially
875       // observed to be unnecessary.
876       if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
877       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
878       explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
879     }
880 
881     // The remaining elements are filled with the array filler expression.
882     Init = ILE->getArrayFiller();
883   }
884 
885   // Create the continuation block.
886   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
887 
888   // If the number of elements isn't constant, we have to now check if there is
889   // anything left to initialize.
890   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
891     // If all elements have already been initialized, skip the whole loop.
892     if (constNum->getZExtValue() <= initializerElements) {
893       // If there was a cleanup, deactivate it.
894       if (cleanupDominator)
895         DeactivateCleanupBlock(cleanup, cleanupDominator);
896       return;
897     }
898   } else {
899     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
900     llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
901                                                 "array.isempty");
902     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
903     EmitBlock(nonEmptyBB);
904   }
905 
906   // Enter the loop.
907   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
908   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
909 
910   EmitBlock(loopBB);
911 
912   // Set up the current-element phi.
913   llvm::PHINode *curPtr =
914     Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
915   curPtr->addIncoming(explicitPtr, entryBB);
916 
917   // Store the new cleanup position for irregular cleanups.
918   if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
919 
920   // Enter a partial-destruction cleanup if necessary.
921   if (!cleanupDominator && needsEHCleanup(dtorKind)) {
922     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
923                                    getDestroyer(dtorKind));
924     cleanup = EHStack.stable_begin();
925     cleanupDominator = Builder.CreateUnreachable();
926   }
927 
928   // Emit the initializer into this element.
929   StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
930 
931   // Leave the cleanup if we entered one.
932   if (cleanupDominator) {
933     DeactivateCleanupBlock(cleanup, cleanupDominator);
934     cleanupDominator->eraseFromParent();
935   }
936 
937   // Advance to the next element.
938   llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
939 
940   // Check whether we've gotten to the end of the array and, if so,
941   // exit the loop.
942   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
943   Builder.CreateCondBr(isEnd, contBB, loopBB);
944   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
945 
946   EmitBlock(contBB);
947 }
948 
949 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
950                            llvm::Value *NewPtr, llvm::Value *Size) {
951   CGF.EmitCastToVoidPtr(NewPtr);
952   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
953   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
954                            Alignment.getQuantity(), false);
955 }
956 
957 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
958                                QualType ElementType,
959                                llvm::Value *NewPtr,
960                                llvm::Value *NumElements,
961                                llvm::Value *AllocSizeWithoutCookie) {
962   const Expr *Init = E->getInitializer();
963   if (E->isArray()) {
964     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
965       CXXConstructorDecl *Ctor = CCE->getConstructor();
966       if (Ctor->isTrivial()) {
967         // If new expression did not specify value-initialization, then there
968         // is no initialization.
969         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
970           return;
971 
972         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
973           // Optimization: since zero initialization will just set the memory
974           // to all zeroes, generate a single memset to do it in one shot.
975           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
976           return;
977         }
978       }
979 
980       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
981                                      CCE->arg_begin(),  CCE->arg_end(),
982                                      CCE->requiresZeroInitialization());
983       return;
984     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
985                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
986       // Optimization: since zero initialization will just set the memory
987       // to all zeroes, generate a single memset to do it in one shot.
988       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
989       return;
990     }
991     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
992     return;
993   }
994 
995   if (!Init)
996     return;
997 
998   StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
999 }
1000 
1001 namespace {
1002   /// A cleanup to call the given 'operator delete' function upon
1003   /// abnormal exit from a new expression.
1004   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1005     size_t NumPlacementArgs;
1006     const FunctionDecl *OperatorDelete;
1007     llvm::Value *Ptr;
1008     llvm::Value *AllocSize;
1009 
1010     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1011 
1012   public:
1013     static size_t getExtraSize(size_t NumPlacementArgs) {
1014       return NumPlacementArgs * sizeof(RValue);
1015     }
1016 
1017     CallDeleteDuringNew(size_t NumPlacementArgs,
1018                         const FunctionDecl *OperatorDelete,
1019                         llvm::Value *Ptr,
1020                         llvm::Value *AllocSize)
1021       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1022         Ptr(Ptr), AllocSize(AllocSize) {}
1023 
1024     void setPlacementArg(unsigned I, RValue Arg) {
1025       assert(I < NumPlacementArgs && "index out of range");
1026       getPlacementArgs()[I] = Arg;
1027     }
1028 
1029     void Emit(CodeGenFunction &CGF, Flags flags) {
1030       const FunctionProtoType *FPT
1031         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1032       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1033              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1034 
1035       CallArgList DeleteArgs;
1036 
1037       // The first argument is always a void*.
1038       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1039       DeleteArgs.add(RValue::get(Ptr), *AI++);
1040 
1041       // A member 'operator delete' can take an extra 'size_t' argument.
1042       if (FPT->getNumArgs() == NumPlacementArgs + 2)
1043         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1044 
1045       // Pass the rest of the arguments, which must match exactly.
1046       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1047         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1048 
1049       // Call 'operator delete'.
1050       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1051                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1052                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
1053     }
1054   };
1055 
1056   /// A cleanup to call the given 'operator delete' function upon
1057   /// abnormal exit from a new expression when the new expression is
1058   /// conditional.
1059   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1060     size_t NumPlacementArgs;
1061     const FunctionDecl *OperatorDelete;
1062     DominatingValue<RValue>::saved_type Ptr;
1063     DominatingValue<RValue>::saved_type AllocSize;
1064 
1065     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1066       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1067     }
1068 
1069   public:
1070     static size_t getExtraSize(size_t NumPlacementArgs) {
1071       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1072     }
1073 
1074     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1075                                    const FunctionDecl *OperatorDelete,
1076                                    DominatingValue<RValue>::saved_type Ptr,
1077                               DominatingValue<RValue>::saved_type AllocSize)
1078       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1079         Ptr(Ptr), AllocSize(AllocSize) {}
1080 
1081     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1082       assert(I < NumPlacementArgs && "index out of range");
1083       getPlacementArgs()[I] = Arg;
1084     }
1085 
1086     void Emit(CodeGenFunction &CGF, Flags flags) {
1087       const FunctionProtoType *FPT
1088         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1089       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1090              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1091 
1092       CallArgList DeleteArgs;
1093 
1094       // The first argument is always a void*.
1095       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1096       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1097 
1098       // A member 'operator delete' can take an extra 'size_t' argument.
1099       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1100         RValue RV = AllocSize.restore(CGF);
1101         DeleteArgs.add(RV, *AI++);
1102       }
1103 
1104       // Pass the rest of the arguments, which must match exactly.
1105       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1106         RValue RV = getPlacementArgs()[I].restore(CGF);
1107         DeleteArgs.add(RV, *AI++);
1108       }
1109 
1110       // Call 'operator delete'.
1111       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1112                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1113                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
1114     }
1115   };
1116 }
1117 
1118 /// Enter a cleanup to call 'operator delete' if the initializer in a
1119 /// new-expression throws.
1120 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1121                                   const CXXNewExpr *E,
1122                                   llvm::Value *NewPtr,
1123                                   llvm::Value *AllocSize,
1124                                   const CallArgList &NewArgs) {
1125   // If we're not inside a conditional branch, then the cleanup will
1126   // dominate and we can do the easier (and more efficient) thing.
1127   if (!CGF.isInConditionalBranch()) {
1128     CallDeleteDuringNew *Cleanup = CGF.EHStack
1129       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1130                                                  E->getNumPlacementArgs(),
1131                                                  E->getOperatorDelete(),
1132                                                  NewPtr, AllocSize);
1133     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1134       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1135 
1136     return;
1137   }
1138 
1139   // Otherwise, we need to save all this stuff.
1140   DominatingValue<RValue>::saved_type SavedNewPtr =
1141     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1142   DominatingValue<RValue>::saved_type SavedAllocSize =
1143     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1144 
1145   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1146     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1147                                                  E->getNumPlacementArgs(),
1148                                                  E->getOperatorDelete(),
1149                                                  SavedNewPtr,
1150                                                  SavedAllocSize);
1151   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1152     Cleanup->setPlacementArg(I,
1153                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1154 
1155   CGF.initFullExprCleanup();
1156 }
1157 
1158 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1159   // The element type being allocated.
1160   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1161 
1162   // 1. Build a call to the allocation function.
1163   FunctionDecl *allocator = E->getOperatorNew();
1164   const FunctionProtoType *allocatorType =
1165     allocator->getType()->castAs<FunctionProtoType>();
1166 
1167   CallArgList allocatorArgs;
1168 
1169   // The allocation size is the first argument.
1170   QualType sizeType = getContext().getSizeType();
1171 
1172   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1173   unsigned minElements = 0;
1174   if (E->isArray() && E->hasInitializer()) {
1175     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1176       minElements = ILE->getNumInits();
1177   }
1178 
1179   llvm::Value *numElements = 0;
1180   llvm::Value *allocSizeWithoutCookie = 0;
1181   llvm::Value *allocSize =
1182     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1183                         allocSizeWithoutCookie);
1184 
1185   allocatorArgs.add(RValue::get(allocSize), sizeType);
1186 
1187   // Emit the rest of the arguments.
1188   // FIXME: Ideally, this should just use EmitCallArgs.
1189   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1190 
1191   // First, use the types from the function type.
1192   // We start at 1 here because the first argument (the allocation size)
1193   // has already been emitted.
1194   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1195        ++i, ++placementArg) {
1196     QualType argType = allocatorType->getArgType(i);
1197 
1198     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1199                                                placementArg->getType()) &&
1200            "type mismatch in call argument!");
1201 
1202     EmitCallArg(allocatorArgs, *placementArg, argType);
1203   }
1204 
1205   // Either we've emitted all the call args, or we have a call to a
1206   // variadic function.
1207   assert((placementArg == E->placement_arg_end() ||
1208           allocatorType->isVariadic()) &&
1209          "Extra arguments to non-variadic function!");
1210 
1211   // If we still have any arguments, emit them using the type of the argument.
1212   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1213        placementArg != placementArgsEnd; ++placementArg) {
1214     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1215   }
1216 
1217   // Emit the allocation call.  If the allocator is a global placement
1218   // operator, just "inline" it directly.
1219   RValue RV;
1220   if (allocator->isReservedGlobalPlacementOperator()) {
1221     assert(allocatorArgs.size() == 2);
1222     RV = allocatorArgs[1].RV;
1223     // TODO: kill any unnecessary computations done for the size
1224     // argument.
1225   } else {
1226     RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs,
1227                                                          allocatorType),
1228                   CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1229                   allocatorArgs, allocator);
1230   }
1231 
1232   // Emit a null check on the allocation result if the allocation
1233   // function is allowed to return null (because it has a non-throwing
1234   // exception spec; for this part, we inline
1235   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1236   // interesting initializer.
1237   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1238     (!allocType.isPODType(getContext()) || E->hasInitializer());
1239 
1240   llvm::BasicBlock *nullCheckBB = 0;
1241   llvm::BasicBlock *contBB = 0;
1242 
1243   llvm::Value *allocation = RV.getScalarVal();
1244   unsigned AS = allocation->getType()->getPointerAddressSpace();
1245 
1246   // The null-check means that the initializer is conditionally
1247   // evaluated.
1248   ConditionalEvaluation conditional(*this);
1249 
1250   if (nullCheck) {
1251     conditional.begin(*this);
1252 
1253     nullCheckBB = Builder.GetInsertBlock();
1254     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1255     contBB = createBasicBlock("new.cont");
1256 
1257     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1258     Builder.CreateCondBr(isNull, contBB, notNullBB);
1259     EmitBlock(notNullBB);
1260   }
1261 
1262   // If there's an operator delete, enter a cleanup to call it if an
1263   // exception is thrown.
1264   EHScopeStack::stable_iterator operatorDeleteCleanup;
1265   llvm::Instruction *cleanupDominator = 0;
1266   if (E->getOperatorDelete() &&
1267       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1268     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1269     operatorDeleteCleanup = EHStack.stable_begin();
1270     cleanupDominator = Builder.CreateUnreachable();
1271   }
1272 
1273   assert((allocSize == allocSizeWithoutCookie) ==
1274          CalculateCookiePadding(*this, E).isZero());
1275   if (allocSize != allocSizeWithoutCookie) {
1276     assert(E->isArray());
1277     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1278                                                        numElements,
1279                                                        E, allocType);
1280   }
1281 
1282   llvm::Type *elementPtrTy
1283     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1284   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1285 
1286   EmitNewInitializer(*this, E, allocType, result, numElements,
1287                      allocSizeWithoutCookie);
1288   if (E->isArray()) {
1289     // NewPtr is a pointer to the base element type.  If we're
1290     // allocating an array of arrays, we'll need to cast back to the
1291     // array pointer type.
1292     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1293     if (result->getType() != resultType)
1294       result = Builder.CreateBitCast(result, resultType);
1295   }
1296 
1297   // Deactivate the 'operator delete' cleanup if we finished
1298   // initialization.
1299   if (operatorDeleteCleanup.isValid()) {
1300     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1301     cleanupDominator->eraseFromParent();
1302   }
1303 
1304   if (nullCheck) {
1305     conditional.end(*this);
1306 
1307     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1308     EmitBlock(contBB);
1309 
1310     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1311     PHI->addIncoming(result, notNullBB);
1312     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1313                      nullCheckBB);
1314 
1315     result = PHI;
1316   }
1317 
1318   return result;
1319 }
1320 
1321 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1322                                      llvm::Value *Ptr,
1323                                      QualType DeleteTy) {
1324   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1325 
1326   const FunctionProtoType *DeleteFTy =
1327     DeleteFD->getType()->getAs<FunctionProtoType>();
1328 
1329   CallArgList DeleteArgs;
1330 
1331   // Check if we need to pass the size to the delete operator.
1332   llvm::Value *Size = 0;
1333   QualType SizeTy;
1334   if (DeleteFTy->getNumArgs() == 2) {
1335     SizeTy = DeleteFTy->getArgType(1);
1336     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1337     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1338                                   DeleteTypeSize.getQuantity());
1339   }
1340 
1341   QualType ArgTy = DeleteFTy->getArgType(0);
1342   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1343   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1344 
1345   if (Size)
1346     DeleteArgs.add(RValue::get(Size), SizeTy);
1347 
1348   // Emit the call to delete.
1349   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy),
1350            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1351            DeleteArgs, DeleteFD);
1352 }
1353 
1354 namespace {
1355   /// Calls the given 'operator delete' on a single object.
1356   struct CallObjectDelete : EHScopeStack::Cleanup {
1357     llvm::Value *Ptr;
1358     const FunctionDecl *OperatorDelete;
1359     QualType ElementType;
1360 
1361     CallObjectDelete(llvm::Value *Ptr,
1362                      const FunctionDecl *OperatorDelete,
1363                      QualType ElementType)
1364       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1365 
1366     void Emit(CodeGenFunction &CGF, Flags flags) {
1367       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1368     }
1369   };
1370 }
1371 
1372 /// Emit the code for deleting a single object.
1373 static void EmitObjectDelete(CodeGenFunction &CGF,
1374                              const FunctionDecl *OperatorDelete,
1375                              llvm::Value *Ptr,
1376                              QualType ElementType,
1377                              bool UseGlobalDelete) {
1378   // Find the destructor for the type, if applicable.  If the
1379   // destructor is virtual, we'll just emit the vcall and return.
1380   const CXXDestructorDecl *Dtor = 0;
1381   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1382     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1383     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1384       Dtor = RD->getDestructor();
1385 
1386       if (Dtor->isVirtual()) {
1387         if (UseGlobalDelete) {
1388           // If we're supposed to call the global delete, make sure we do so
1389           // even if the destructor throws.
1390 
1391           // Derive the complete-object pointer, which is what we need
1392           // to pass to the deallocation function.
1393           llvm::Value *completePtr =
1394             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1395 
1396           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1397                                                     completePtr, OperatorDelete,
1398                                                     ElementType);
1399         }
1400 
1401         llvm::Type *Ty =
1402           CGF.getTypes().GetFunctionType(
1403                          CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
1404 
1405         llvm::Value *Callee
1406           = CGF.BuildVirtualCall(Dtor,
1407                                  UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
1408                                  Ptr, Ty);
1409         // FIXME: Provide a source location here.
1410         CGF.EmitCXXMemberCall(Dtor, SourceLocation(), Callee, ReturnValueSlot(),
1411                               Ptr, /*VTT=*/0, 0, 0);
1412 
1413         if (UseGlobalDelete) {
1414           CGF.PopCleanupBlock();
1415         }
1416 
1417         return;
1418       }
1419     }
1420   }
1421 
1422   // Make sure that we call delete even if the dtor throws.
1423   // This doesn't have to a conditional cleanup because we're going
1424   // to pop it off in a second.
1425   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1426                                             Ptr, OperatorDelete, ElementType);
1427 
1428   if (Dtor)
1429     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1430                               /*ForVirtualBase=*/false,
1431                               /*Delegating=*/false,
1432                               Ptr);
1433   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1434            ElementType->isObjCLifetimeType()) {
1435     switch (ElementType.getObjCLifetime()) {
1436     case Qualifiers::OCL_None:
1437     case Qualifiers::OCL_ExplicitNone:
1438     case Qualifiers::OCL_Autoreleasing:
1439       break;
1440 
1441     case Qualifiers::OCL_Strong: {
1442       // Load the pointer value.
1443       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1444                                              ElementType.isVolatileQualified());
1445 
1446       CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1447       break;
1448     }
1449 
1450     case Qualifiers::OCL_Weak:
1451       CGF.EmitARCDestroyWeak(Ptr);
1452       break;
1453     }
1454   }
1455 
1456   CGF.PopCleanupBlock();
1457 }
1458 
1459 namespace {
1460   /// Calls the given 'operator delete' on an array of objects.
1461   struct CallArrayDelete : EHScopeStack::Cleanup {
1462     llvm::Value *Ptr;
1463     const FunctionDecl *OperatorDelete;
1464     llvm::Value *NumElements;
1465     QualType ElementType;
1466     CharUnits CookieSize;
1467 
1468     CallArrayDelete(llvm::Value *Ptr,
1469                     const FunctionDecl *OperatorDelete,
1470                     llvm::Value *NumElements,
1471                     QualType ElementType,
1472                     CharUnits CookieSize)
1473       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1474         ElementType(ElementType), CookieSize(CookieSize) {}
1475 
1476     void Emit(CodeGenFunction &CGF, Flags flags) {
1477       const FunctionProtoType *DeleteFTy =
1478         OperatorDelete->getType()->getAs<FunctionProtoType>();
1479       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1480 
1481       CallArgList Args;
1482 
1483       // Pass the pointer as the first argument.
1484       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1485       llvm::Value *DeletePtr
1486         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1487       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1488 
1489       // Pass the original requested size as the second argument.
1490       if (DeleteFTy->getNumArgs() == 2) {
1491         QualType size_t = DeleteFTy->getArgType(1);
1492         llvm::IntegerType *SizeTy
1493           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1494 
1495         CharUnits ElementTypeSize =
1496           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1497 
1498         // The size of an element, multiplied by the number of elements.
1499         llvm::Value *Size
1500           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1501         Size = CGF.Builder.CreateMul(Size, NumElements);
1502 
1503         // Plus the size of the cookie if applicable.
1504         if (!CookieSize.isZero()) {
1505           llvm::Value *CookieSizeV
1506             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1507           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1508         }
1509 
1510         Args.add(RValue::get(Size), size_t);
1511       }
1512 
1513       // Emit the call to delete.
1514       CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy),
1515                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1516                    ReturnValueSlot(), Args, OperatorDelete);
1517     }
1518   };
1519 }
1520 
1521 /// Emit the code for deleting an array of objects.
1522 static void EmitArrayDelete(CodeGenFunction &CGF,
1523                             const CXXDeleteExpr *E,
1524                             llvm::Value *deletedPtr,
1525                             QualType elementType) {
1526   llvm::Value *numElements = 0;
1527   llvm::Value *allocatedPtr = 0;
1528   CharUnits cookieSize;
1529   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1530                                       numElements, allocatedPtr, cookieSize);
1531 
1532   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1533 
1534   // Make sure that we call delete even if one of the dtors throws.
1535   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1536   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1537                                            allocatedPtr, operatorDelete,
1538                                            numElements, elementType,
1539                                            cookieSize);
1540 
1541   // Destroy the elements.
1542   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1543     assert(numElements && "no element count for a type with a destructor!");
1544 
1545     llvm::Value *arrayEnd =
1546       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1547 
1548     // Note that it is legal to allocate a zero-length array, and we
1549     // can never fold the check away because the length should always
1550     // come from a cookie.
1551     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1552                          CGF.getDestroyer(dtorKind),
1553                          /*checkZeroLength*/ true,
1554                          CGF.needsEHCleanup(dtorKind));
1555   }
1556 
1557   // Pop the cleanup block.
1558   CGF.PopCleanupBlock();
1559 }
1560 
1561 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1562   const Expr *Arg = E->getArgument();
1563   llvm::Value *Ptr = EmitScalarExpr(Arg);
1564 
1565   // Null check the pointer.
1566   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1567   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1568 
1569   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1570 
1571   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1572   EmitBlock(DeleteNotNull);
1573 
1574   // We might be deleting a pointer to array.  If so, GEP down to the
1575   // first non-array element.
1576   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1577   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1578   if (DeleteTy->isConstantArrayType()) {
1579     llvm::Value *Zero = Builder.getInt32(0);
1580     SmallVector<llvm::Value*,8> GEP;
1581 
1582     GEP.push_back(Zero); // point at the outermost array
1583 
1584     // For each layer of array type we're pointing at:
1585     while (const ConstantArrayType *Arr
1586              = getContext().getAsConstantArrayType(DeleteTy)) {
1587       // 1. Unpeel the array type.
1588       DeleteTy = Arr->getElementType();
1589 
1590       // 2. GEP to the first element of the array.
1591       GEP.push_back(Zero);
1592     }
1593 
1594     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1595   }
1596 
1597   assert(ConvertTypeForMem(DeleteTy) ==
1598          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1599 
1600   if (E->isArrayForm()) {
1601     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1602   } else {
1603     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1604                      E->isGlobalDelete());
1605   }
1606 
1607   EmitBlock(DeleteEnd);
1608 }
1609 
1610 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1611   // void __cxa_bad_typeid();
1612   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1613 
1614   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1615 }
1616 
1617 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1618   llvm::Value *Fn = getBadTypeidFn(CGF);
1619   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1620   CGF.Builder.CreateUnreachable();
1621 }
1622 
1623 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1624                                          const Expr *E,
1625                                          llvm::Type *StdTypeInfoPtrTy) {
1626   // Get the vtable pointer.
1627   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1628 
1629   // C++ [expr.typeid]p2:
1630   //   If the glvalue expression is obtained by applying the unary * operator to
1631   //   a pointer and the pointer is a null pointer value, the typeid expression
1632   //   throws the std::bad_typeid exception.
1633   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1634     if (UO->getOpcode() == UO_Deref) {
1635       llvm::BasicBlock *BadTypeidBlock =
1636         CGF.createBasicBlock("typeid.bad_typeid");
1637       llvm::BasicBlock *EndBlock =
1638         CGF.createBasicBlock("typeid.end");
1639 
1640       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1641       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1642 
1643       CGF.EmitBlock(BadTypeidBlock);
1644       EmitBadTypeidCall(CGF);
1645       CGF.EmitBlock(EndBlock);
1646     }
1647   }
1648 
1649   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1650                                         StdTypeInfoPtrTy->getPointerTo());
1651 
1652   // Load the type info.
1653   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1654   return CGF.Builder.CreateLoad(Value);
1655 }
1656 
1657 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1658   llvm::Type *StdTypeInfoPtrTy =
1659     ConvertType(E->getType())->getPointerTo();
1660 
1661   if (E->isTypeOperand()) {
1662     llvm::Constant *TypeInfo =
1663       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1664     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1665   }
1666 
1667   // C++ [expr.typeid]p2:
1668   //   When typeid is applied to a glvalue expression whose type is a
1669   //   polymorphic class type, the result refers to a std::type_info object
1670   //   representing the type of the most derived object (that is, the dynamic
1671   //   type) to which the glvalue refers.
1672   if (E->isPotentiallyEvaluated())
1673     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1674                                 StdTypeInfoPtrTy);
1675 
1676   QualType OperandTy = E->getExprOperand()->getType();
1677   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1678                                StdTypeInfoPtrTy);
1679 }
1680 
1681 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1682   // void *__dynamic_cast(const void *sub,
1683   //                      const abi::__class_type_info *src,
1684   //                      const abi::__class_type_info *dst,
1685   //                      std::ptrdiff_t src2dst_offset);
1686 
1687   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1688   llvm::Type *PtrDiffTy =
1689     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1690 
1691   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1692 
1693   llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
1694 
1695   // Mark the function as nounwind readonly.
1696   llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
1697                                             llvm::Attribute::ReadOnly };
1698   llvm::AttributeSet Attrs = llvm::AttributeSet::get(
1699       CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1700 
1701   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
1702 }
1703 
1704 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1705   // void __cxa_bad_cast();
1706   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1707   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1708 }
1709 
1710 static void EmitBadCastCall(CodeGenFunction &CGF) {
1711   llvm::Value *Fn = getBadCastFn(CGF);
1712   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1713   CGF.Builder.CreateUnreachable();
1714 }
1715 
1716 /// \brief Compute the src2dst_offset hint as described in the
1717 /// Itanium C++ ABI [2.9.7]
1718 static CharUnits computeOffsetHint(ASTContext &Context,
1719                                    const CXXRecordDecl *Src,
1720                                    const CXXRecordDecl *Dst) {
1721   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1722                      /*DetectVirtual=*/false);
1723 
1724   // If Dst is not derived from Src we can skip the whole computation below and
1725   // return that Src is not a public base of Dst.  Record all inheritance paths.
1726   if (!Dst->isDerivedFrom(Src, Paths))
1727     return CharUnits::fromQuantity(-2ULL);
1728 
1729   unsigned NumPublicPaths = 0;
1730   CharUnits Offset;
1731 
1732   // Now walk all possible inheritance paths.
1733   for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
1734        I != E; ++I) {
1735     if (I->Access != AS_public) // Ignore non-public inheritance.
1736       continue;
1737 
1738     ++NumPublicPaths;
1739 
1740     for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
1741       // If the path contains a virtual base class we can't give any hint.
1742       // -1: no hint.
1743       if (J->Base->isVirtual())
1744         return CharUnits::fromQuantity(-1ULL);
1745 
1746       if (NumPublicPaths > 1) // Won't use offsets, skip computation.
1747         continue;
1748 
1749       // Accumulate the base class offsets.
1750       const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
1751       Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
1752     }
1753   }
1754 
1755   // -2: Src is not a public base of Dst.
1756   if (NumPublicPaths == 0)
1757     return CharUnits::fromQuantity(-2ULL);
1758 
1759   // -3: Src is a multiple public base type but never a virtual base type.
1760   if (NumPublicPaths > 1)
1761     return CharUnits::fromQuantity(-3ULL);
1762 
1763   // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1764   // Return the offset of Src from the origin of Dst.
1765   return Offset;
1766 }
1767 
1768 static llvm::Value *
1769 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1770                     QualType SrcTy, QualType DestTy,
1771                     llvm::BasicBlock *CastEnd) {
1772   llvm::Type *PtrDiffLTy =
1773     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1774   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1775 
1776   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1777     if (PTy->getPointeeType()->isVoidType()) {
1778       // C++ [expr.dynamic.cast]p7:
1779       //   If T is "pointer to cv void," then the result is a pointer to the
1780       //   most derived object pointed to by v.
1781 
1782       // Get the vtable pointer.
1783       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1784 
1785       // Get the offset-to-top from the vtable.
1786       llvm::Value *OffsetToTop =
1787         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1788       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1789 
1790       // Finally, add the offset to the pointer.
1791       Value = CGF.EmitCastToVoidPtr(Value);
1792       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1793 
1794       return CGF.Builder.CreateBitCast(Value, DestLTy);
1795     }
1796   }
1797 
1798   QualType SrcRecordTy;
1799   QualType DestRecordTy;
1800 
1801   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1802     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1803     DestRecordTy = DestPTy->getPointeeType();
1804   } else {
1805     SrcRecordTy = SrcTy;
1806     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1807   }
1808 
1809   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1810   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1811 
1812   llvm::Value *SrcRTTI =
1813     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1814   llvm::Value *DestRTTI =
1815     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1816 
1817   // Compute the offset hint.
1818   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1819   const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
1820   llvm::Value *OffsetHint =
1821     llvm::ConstantInt::get(PtrDiffLTy,
1822                            computeOffsetHint(CGF.getContext(), SrcDecl,
1823                                              DestDecl).getQuantity());
1824 
1825   // Emit the call to __dynamic_cast.
1826   Value = CGF.EmitCastToVoidPtr(Value);
1827   Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1828                                   SrcRTTI, DestRTTI, OffsetHint);
1829   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1830 
1831   /// C++ [expr.dynamic.cast]p9:
1832   ///   A failed cast to reference type throws std::bad_cast
1833   if (DestTy->isReferenceType()) {
1834     llvm::BasicBlock *BadCastBlock =
1835       CGF.createBasicBlock("dynamic_cast.bad_cast");
1836 
1837     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1838     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1839 
1840     CGF.EmitBlock(BadCastBlock);
1841     EmitBadCastCall(CGF);
1842   }
1843 
1844   return Value;
1845 }
1846 
1847 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1848                                           QualType DestTy) {
1849   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1850   if (DestTy->isPointerType())
1851     return llvm::Constant::getNullValue(DestLTy);
1852 
1853   /// C++ [expr.dynamic.cast]p9:
1854   ///   A failed cast to reference type throws std::bad_cast
1855   EmitBadCastCall(CGF);
1856 
1857   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1858   return llvm::UndefValue::get(DestLTy);
1859 }
1860 
1861 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1862                                               const CXXDynamicCastExpr *DCE) {
1863   QualType DestTy = DCE->getTypeAsWritten();
1864 
1865   if (DCE->isAlwaysNull())
1866     return EmitDynamicCastToNull(*this, DestTy);
1867 
1868   QualType SrcTy = DCE->getSubExpr()->getType();
1869 
1870   // C++ [expr.dynamic.cast]p4:
1871   //   If the value of v is a null pointer value in the pointer case, the result
1872   //   is the null pointer value of type T.
1873   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1874 
1875   llvm::BasicBlock *CastNull = 0;
1876   llvm::BasicBlock *CastNotNull = 0;
1877   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1878 
1879   if (ShouldNullCheckSrcValue) {
1880     CastNull = createBasicBlock("dynamic_cast.null");
1881     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1882 
1883     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1884     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1885     EmitBlock(CastNotNull);
1886   }
1887 
1888   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1889 
1890   if (ShouldNullCheckSrcValue) {
1891     EmitBranch(CastEnd);
1892 
1893     EmitBlock(CastNull);
1894     EmitBranch(CastEnd);
1895   }
1896 
1897   EmitBlock(CastEnd);
1898 
1899   if (ShouldNullCheckSrcValue) {
1900     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1901     PHI->addIncoming(Value, CastNotNull);
1902     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1903 
1904     Value = PHI;
1905   }
1906 
1907   return Value;
1908 }
1909 
1910 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1911   RunCleanupsScope Scope(*this);
1912   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1913                                  Slot.getAlignment());
1914 
1915   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1916   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1917                                          e = E->capture_init_end();
1918        i != e; ++i, ++CurField) {
1919     // Emit initialization
1920 
1921     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1922     ArrayRef<VarDecl *> ArrayIndexes;
1923     if (CurField->getType()->isArrayType())
1924       ArrayIndexes = E->getCaptureInitIndexVars(i);
1925     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1926   }
1927 }
1928