1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCXXABI.h" 17 #include "CGObjCRuntime.h" 18 #include "CGDebugInfo.h" 19 #include "llvm/Intrinsics.h" 20 #include "llvm/Support/CallSite.h" 21 22 using namespace clang; 23 using namespace CodeGen; 24 25 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 26 llvm::Value *Callee, 27 ReturnValueSlot ReturnValue, 28 llvm::Value *This, 29 llvm::Value *VTT, 30 CallExpr::const_arg_iterator ArgBeg, 31 CallExpr::const_arg_iterator ArgEnd) { 32 assert(MD->isInstance() && 33 "Trying to emit a member call expr on a static method!"); 34 35 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 36 37 CallArgList Args; 38 39 // Push the this ptr. 40 Args.add(RValue::get(This), MD->getThisType(getContext())); 41 42 // If there is a VTT parameter, emit it. 43 if (VTT) { 44 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 45 Args.add(RValue::get(VTT), T); 46 } 47 48 // And the rest of the call args 49 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 50 51 QualType ResultType = FPT->getResultType(); 52 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, 53 FPT->getExtInfo()), 54 Callee, ReturnValue, Args, MD); 55 } 56 57 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 58 const Expr *E = Base; 59 60 while (true) { 61 E = E->IgnoreParens(); 62 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 63 if (CE->getCastKind() == CK_DerivedToBase || 64 CE->getCastKind() == CK_UncheckedDerivedToBase || 65 CE->getCastKind() == CK_NoOp) { 66 E = CE->getSubExpr(); 67 continue; 68 } 69 } 70 71 break; 72 } 73 74 QualType DerivedType = E->getType(); 75 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 76 DerivedType = PTy->getPointeeType(); 77 78 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 79 } 80 81 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 82 // quite what we want. 83 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 84 while (true) { 85 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 86 E = PE->getSubExpr(); 87 continue; 88 } 89 90 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 91 if (CE->getCastKind() == CK_NoOp) { 92 E = CE->getSubExpr(); 93 continue; 94 } 95 } 96 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 97 if (UO->getOpcode() == UO_Extension) { 98 E = UO->getSubExpr(); 99 continue; 100 } 101 } 102 return E; 103 } 104 } 105 106 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 107 /// expr can be devirtualized. 108 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 109 const Expr *Base, 110 const CXXMethodDecl *MD) { 111 112 // When building with -fapple-kext, all calls must go through the vtable since 113 // the kernel linker can do runtime patching of vtables. 114 if (Context.getLangOptions().AppleKext) 115 return false; 116 117 // If the most derived class is marked final, we know that no subclass can 118 // override this member function and so we can devirtualize it. For example: 119 // 120 // struct A { virtual void f(); } 121 // struct B final : A { }; 122 // 123 // void f(B *b) { 124 // b->f(); 125 // } 126 // 127 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 128 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 129 return true; 130 131 // If the member function is marked 'final', we know that it can't be 132 // overridden and can therefore devirtualize it. 133 if (MD->hasAttr<FinalAttr>()) 134 return true; 135 136 // Similarly, if the class itself is marked 'final' it can't be overridden 137 // and we can therefore devirtualize the member function call. 138 if (MD->getParent()->hasAttr<FinalAttr>()) 139 return true; 140 141 Base = skipNoOpCastsAndParens(Base); 142 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 143 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 144 // This is a record decl. We know the type and can devirtualize it. 145 return VD->getType()->isRecordType(); 146 } 147 148 return false; 149 } 150 151 // We can always devirtualize calls on temporary object expressions. 152 if (isa<CXXConstructExpr>(Base)) 153 return true; 154 155 // And calls on bound temporaries. 156 if (isa<CXXBindTemporaryExpr>(Base)) 157 return true; 158 159 // Check if this is a call expr that returns a record type. 160 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 161 return CE->getCallReturnType()->isRecordType(); 162 163 // We can't devirtualize the call. 164 return false; 165 } 166 167 // Note: This function also emit constructor calls to support a MSVC 168 // extensions allowing explicit constructor function call. 169 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 170 ReturnValueSlot ReturnValue) { 171 const Expr *callee = CE->getCallee()->IgnoreParens(); 172 173 if (isa<BinaryOperator>(callee)) 174 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 175 176 const MemberExpr *ME = cast<MemberExpr>(callee); 177 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 178 179 CGDebugInfo *DI = getDebugInfo(); 180 if (DI && CGM.getCodeGenOpts().LimitDebugInfo 181 && !isa<CallExpr>(ME->getBase())) { 182 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 183 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 184 DI->getOrCreateRecordType(PTy->getPointeeType(), 185 MD->getParent()->getLocation()); 186 } 187 } 188 189 if (MD->isStatic()) { 190 // The method is static, emit it as we would a regular call. 191 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 192 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 193 ReturnValue, CE->arg_begin(), CE->arg_end()); 194 } 195 196 // Compute the object pointer. 197 llvm::Value *This; 198 if (ME->isArrow()) 199 This = EmitScalarExpr(ME->getBase()); 200 else 201 This = EmitLValue(ME->getBase()).getAddress(); 202 203 if (MD->isTrivial()) { 204 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 205 if (isa<CXXConstructorDecl>(MD) && 206 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 207 return RValue::get(0); 208 209 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 210 // We don't like to generate the trivial copy/move assignment operator 211 // when it isn't necessary; just produce the proper effect here. 212 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 213 EmitAggregateCopy(This, RHS, CE->getType()); 214 return RValue::get(This); 215 } 216 217 if (isa<CXXConstructorDecl>(MD) && 218 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 219 // Trivial move and copy ctor are the same. 220 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 221 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 222 CE->arg_begin(), CE->arg_end()); 223 return RValue::get(This); 224 } 225 llvm_unreachable("unknown trivial member function"); 226 } 227 228 // Compute the function type we're calling. 229 const CGFunctionInfo *FInfo = 0; 230 if (isa<CXXDestructorDecl>(MD)) 231 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD), 232 Dtor_Complete); 233 else if (isa<CXXConstructorDecl>(MD)) 234 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD), 235 Ctor_Complete); 236 else 237 FInfo = &CGM.getTypes().getFunctionInfo(MD); 238 239 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 240 llvm::Type *Ty 241 = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic()); 242 243 // C++ [class.virtual]p12: 244 // Explicit qualification with the scope operator (5.1) suppresses the 245 // virtual call mechanism. 246 // 247 // We also don't emit a virtual call if the base expression has a record type 248 // because then we know what the type is. 249 bool UseVirtualCall; 250 UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 251 && !canDevirtualizeMemberFunctionCalls(getContext(), 252 ME->getBase(), MD); 253 llvm::Value *Callee; 254 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 255 if (UseVirtualCall) { 256 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 257 } else { 258 if (getContext().getLangOptions().AppleKext && 259 MD->isVirtual() && 260 ME->hasQualifier()) 261 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 262 else 263 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 264 } 265 } else if (const CXXConstructorDecl *Ctor = 266 dyn_cast<CXXConstructorDecl>(MD)) { 267 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 268 } else if (UseVirtualCall) { 269 Callee = BuildVirtualCall(MD, This, Ty); 270 } else { 271 if (getContext().getLangOptions().AppleKext && 272 MD->isVirtual() && 273 ME->hasQualifier()) 274 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 275 else 276 Callee = CGM.GetAddrOfFunction(MD, Ty); 277 } 278 279 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 280 CE->arg_begin(), CE->arg_end()); 281 } 282 283 RValue 284 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 285 ReturnValueSlot ReturnValue) { 286 const BinaryOperator *BO = 287 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 288 const Expr *BaseExpr = BO->getLHS(); 289 const Expr *MemFnExpr = BO->getRHS(); 290 291 const MemberPointerType *MPT = 292 MemFnExpr->getType()->castAs<MemberPointerType>(); 293 294 const FunctionProtoType *FPT = 295 MPT->getPointeeType()->castAs<FunctionProtoType>(); 296 const CXXRecordDecl *RD = 297 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 298 299 // Get the member function pointer. 300 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 301 302 // Emit the 'this' pointer. 303 llvm::Value *This; 304 305 if (BO->getOpcode() == BO_PtrMemI) 306 This = EmitScalarExpr(BaseExpr); 307 else 308 This = EmitLValue(BaseExpr).getAddress(); 309 310 // Ask the ABI to load the callee. Note that This is modified. 311 llvm::Value *Callee = 312 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 313 314 CallArgList Args; 315 316 QualType ThisType = 317 getContext().getPointerType(getContext().getTagDeclType(RD)); 318 319 // Push the this ptr. 320 Args.add(RValue::get(This), ThisType); 321 322 // And the rest of the call args 323 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 324 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee, 325 ReturnValue, Args); 326 } 327 328 RValue 329 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 330 const CXXMethodDecl *MD, 331 ReturnValueSlot ReturnValue) { 332 assert(MD->isInstance() && 333 "Trying to emit a member call expr on a static method!"); 334 LValue LV = EmitLValue(E->getArg(0)); 335 llvm::Value *This = LV.getAddress(); 336 337 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 338 MD->isTrivial()) { 339 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 340 QualType Ty = E->getType(); 341 EmitAggregateCopy(This, Src, Ty); 342 return RValue::get(This); 343 } 344 345 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 346 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 347 E->arg_begin() + 1, E->arg_end()); 348 } 349 350 void 351 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 352 AggValueSlot Dest) { 353 assert(!Dest.isIgnored() && "Must have a destination!"); 354 const CXXConstructorDecl *CD = E->getConstructor(); 355 356 // If we require zero initialization before (or instead of) calling the 357 // constructor, as can be the case with a non-user-provided default 358 // constructor, emit the zero initialization now, unless destination is 359 // already zeroed. 360 if (E->requiresZeroInitialization() && !Dest.isZeroed()) 361 EmitNullInitialization(Dest.getAddr(), E->getType()); 362 363 // If this is a call to a trivial default constructor, do nothing. 364 if (CD->isTrivial() && CD->isDefaultConstructor()) 365 return; 366 367 // Elide the constructor if we're constructing from a temporary. 368 // The temporary check is required because Sema sets this on NRVO 369 // returns. 370 if (getContext().getLangOptions().ElideConstructors && E->isElidable()) { 371 assert(getContext().hasSameUnqualifiedType(E->getType(), 372 E->getArg(0)->getType())); 373 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 374 EmitAggExpr(E->getArg(0), Dest); 375 return; 376 } 377 } 378 379 if (const ConstantArrayType *arrayType 380 = getContext().getAsConstantArrayType(E->getType())) { 381 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 382 E->arg_begin(), E->arg_end()); 383 } else { 384 CXXCtorType Type = Ctor_Complete; 385 bool ForVirtualBase = false; 386 387 switch (E->getConstructionKind()) { 388 case CXXConstructExpr::CK_Delegating: 389 // We should be emitting a constructor; GlobalDecl will assert this 390 Type = CurGD.getCtorType(); 391 break; 392 393 case CXXConstructExpr::CK_Complete: 394 Type = Ctor_Complete; 395 break; 396 397 case CXXConstructExpr::CK_VirtualBase: 398 ForVirtualBase = true; 399 // fall-through 400 401 case CXXConstructExpr::CK_NonVirtualBase: 402 Type = Ctor_Base; 403 } 404 405 // Call the constructor. 406 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 407 E->arg_begin(), E->arg_end()); 408 } 409 } 410 411 void 412 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 413 llvm::Value *Src, 414 const Expr *Exp) { 415 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 416 Exp = E->getSubExpr(); 417 assert(isa<CXXConstructExpr>(Exp) && 418 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 419 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 420 const CXXConstructorDecl *CD = E->getConstructor(); 421 RunCleanupsScope Scope(*this); 422 423 // If we require zero initialization before (or instead of) calling the 424 // constructor, as can be the case with a non-user-provided default 425 // constructor, emit the zero initialization now. 426 // FIXME. Do I still need this for a copy ctor synthesis? 427 if (E->requiresZeroInitialization()) 428 EmitNullInitialization(Dest, E->getType()); 429 430 assert(!getContext().getAsConstantArrayType(E->getType()) 431 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 432 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 433 E->arg_begin(), E->arg_end()); 434 } 435 436 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 437 const CXXNewExpr *E) { 438 if (!E->isArray()) 439 return CharUnits::Zero(); 440 441 // No cookie is required if the operator new[] being used is the 442 // reserved placement operator new[]. 443 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 444 return CharUnits::Zero(); 445 446 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 447 } 448 449 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 450 const CXXNewExpr *e, 451 llvm::Value *&numElements, 452 llvm::Value *&sizeWithoutCookie) { 453 QualType type = e->getAllocatedType(); 454 455 if (!e->isArray()) { 456 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 457 sizeWithoutCookie 458 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 459 return sizeWithoutCookie; 460 } 461 462 // The width of size_t. 463 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 464 465 // Figure out the cookie size. 466 llvm::APInt cookieSize(sizeWidth, 467 CalculateCookiePadding(CGF, e).getQuantity()); 468 469 // Emit the array size expression. 470 // We multiply the size of all dimensions for NumElements. 471 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 472 numElements = CGF.EmitScalarExpr(e->getArraySize()); 473 assert(isa<llvm::IntegerType>(numElements->getType())); 474 475 // The number of elements can be have an arbitrary integer type; 476 // essentially, we need to multiply it by a constant factor, add a 477 // cookie size, and verify that the result is representable as a 478 // size_t. That's just a gloss, though, and it's wrong in one 479 // important way: if the count is negative, it's an error even if 480 // the cookie size would bring the total size >= 0. 481 bool isSigned 482 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 483 llvm::IntegerType *numElementsType 484 = cast<llvm::IntegerType>(numElements->getType()); 485 unsigned numElementsWidth = numElementsType->getBitWidth(); 486 487 // Compute the constant factor. 488 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 489 while (const ConstantArrayType *CAT 490 = CGF.getContext().getAsConstantArrayType(type)) { 491 type = CAT->getElementType(); 492 arraySizeMultiplier *= CAT->getSize(); 493 } 494 495 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 496 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 497 typeSizeMultiplier *= arraySizeMultiplier; 498 499 // This will be a size_t. 500 llvm::Value *size; 501 502 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 503 // Don't bloat the -O0 code. 504 if (llvm::ConstantInt *numElementsC = 505 dyn_cast<llvm::ConstantInt>(numElements)) { 506 const llvm::APInt &count = numElementsC->getValue(); 507 508 bool hasAnyOverflow = false; 509 510 // If 'count' was a negative number, it's an overflow. 511 if (isSigned && count.isNegative()) 512 hasAnyOverflow = true; 513 514 // We want to do all this arithmetic in size_t. If numElements is 515 // wider than that, check whether it's already too big, and if so, 516 // overflow. 517 else if (numElementsWidth > sizeWidth && 518 numElementsWidth - sizeWidth > count.countLeadingZeros()) 519 hasAnyOverflow = true; 520 521 // Okay, compute a count at the right width. 522 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 523 524 // Scale numElements by that. This might overflow, but we don't 525 // care because it only overflows if allocationSize does, too, and 526 // if that overflows then we shouldn't use this. 527 numElements = llvm::ConstantInt::get(CGF.SizeTy, 528 adjustedCount * arraySizeMultiplier); 529 530 // Compute the size before cookie, and track whether it overflowed. 531 bool overflow; 532 llvm::APInt allocationSize 533 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 534 hasAnyOverflow |= overflow; 535 536 // Add in the cookie, and check whether it's overflowed. 537 if (cookieSize != 0) { 538 // Save the current size without a cookie. This shouldn't be 539 // used if there was overflow. 540 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 541 542 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 543 hasAnyOverflow |= overflow; 544 } 545 546 // On overflow, produce a -1 so operator new will fail. 547 if (hasAnyOverflow) { 548 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 549 } else { 550 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 551 } 552 553 // Otherwise, we might need to use the overflow intrinsics. 554 } else { 555 // There are up to four conditions we need to test for: 556 // 1) if isSigned, we need to check whether numElements is negative; 557 // 2) if numElementsWidth > sizeWidth, we need to check whether 558 // numElements is larger than something representable in size_t; 559 // 3) we need to compute 560 // sizeWithoutCookie := numElements * typeSizeMultiplier 561 // and check whether it overflows; and 562 // 4) if we need a cookie, we need to compute 563 // size := sizeWithoutCookie + cookieSize 564 // and check whether it overflows. 565 566 llvm::Value *hasOverflow = 0; 567 568 // If numElementsWidth > sizeWidth, then one way or another, we're 569 // going to have to do a comparison for (2), and this happens to 570 // take care of (1), too. 571 if (numElementsWidth > sizeWidth) { 572 llvm::APInt threshold(numElementsWidth, 1); 573 threshold <<= sizeWidth; 574 575 llvm::Value *thresholdV 576 = llvm::ConstantInt::get(numElementsType, threshold); 577 578 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 579 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 580 581 // Otherwise, if we're signed, we want to sext up to size_t. 582 } else if (isSigned) { 583 if (numElementsWidth < sizeWidth) 584 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 585 586 // If there's a non-1 type size multiplier, then we can do the 587 // signedness check at the same time as we do the multiply 588 // because a negative number times anything will cause an 589 // unsigned overflow. Otherwise, we have to do it here. 590 if (typeSizeMultiplier == 1) 591 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 592 llvm::ConstantInt::get(CGF.SizeTy, 0)); 593 594 // Otherwise, zext up to size_t if necessary. 595 } else if (numElementsWidth < sizeWidth) { 596 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 597 } 598 599 assert(numElements->getType() == CGF.SizeTy); 600 601 size = numElements; 602 603 // Multiply by the type size if necessary. This multiplier 604 // includes all the factors for nested arrays. 605 // 606 // This step also causes numElements to be scaled up by the 607 // nested-array factor if necessary. Overflow on this computation 608 // can be ignored because the result shouldn't be used if 609 // allocation fails. 610 if (typeSizeMultiplier != 1) { 611 llvm::Value *umul_with_overflow 612 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 613 614 llvm::Value *tsmV = 615 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 616 llvm::Value *result = 617 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 618 619 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 620 if (hasOverflow) 621 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 622 else 623 hasOverflow = overflowed; 624 625 size = CGF.Builder.CreateExtractValue(result, 0); 626 627 // Also scale up numElements by the array size multiplier. 628 if (arraySizeMultiplier != 1) { 629 // If the base element type size is 1, then we can re-use the 630 // multiply we just did. 631 if (typeSize.isOne()) { 632 assert(arraySizeMultiplier == typeSizeMultiplier); 633 numElements = size; 634 635 // Otherwise we need a separate multiply. 636 } else { 637 llvm::Value *asmV = 638 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 639 numElements = CGF.Builder.CreateMul(numElements, asmV); 640 } 641 } 642 } else { 643 // numElements doesn't need to be scaled. 644 assert(arraySizeMultiplier == 1); 645 } 646 647 // Add in the cookie size if necessary. 648 if (cookieSize != 0) { 649 sizeWithoutCookie = size; 650 651 llvm::Value *uadd_with_overflow 652 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 653 654 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 655 llvm::Value *result = 656 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 657 658 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 659 if (hasOverflow) 660 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 661 else 662 hasOverflow = overflowed; 663 664 size = CGF.Builder.CreateExtractValue(result, 0); 665 } 666 667 // If we had any possibility of dynamic overflow, make a select to 668 // overwrite 'size' with an all-ones value, which should cause 669 // operator new to throw. 670 if (hasOverflow) 671 size = CGF.Builder.CreateSelect(hasOverflow, 672 llvm::Constant::getAllOnesValue(CGF.SizeTy), 673 size); 674 } 675 676 if (cookieSize == 0) 677 sizeWithoutCookie = size; 678 else 679 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 680 681 return size; 682 } 683 684 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E, 685 llvm::Value *NewPtr) { 686 687 assert(E->getNumConstructorArgs() == 1 && 688 "Can only have one argument to initializer of POD type."); 689 690 const Expr *Init = E->getConstructorArg(0); 691 QualType AllocType = E->getAllocatedType(); 692 693 unsigned Alignment = 694 CGF.getContext().getTypeAlignInChars(AllocType).getQuantity(); 695 if (!CGF.hasAggregateLLVMType(AllocType)) 696 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), 697 false); 698 else if (AllocType->isAnyComplexType()) 699 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 700 AllocType.isVolatileQualified()); 701 else { 702 AggValueSlot Slot 703 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 704 AggValueSlot::IsDestructed, 705 AggValueSlot::DoesNotNeedGCBarriers, 706 AggValueSlot::IsNotAliased); 707 CGF.EmitAggExpr(Init, Slot); 708 } 709 } 710 711 void 712 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 713 QualType elementType, 714 llvm::Value *beginPtr, 715 llvm::Value *numElements) { 716 // We have a POD type. 717 if (E->getNumConstructorArgs() == 0) 718 return; 719 720 // Check if the number of elements is constant. 721 bool checkZero = true; 722 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 723 // If it's constant zero, skip the whole loop. 724 if (constNum->isZero()) return; 725 726 checkZero = false; 727 } 728 729 // Find the end of the array, hoisted out of the loop. 730 llvm::Value *endPtr = 731 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 732 733 // Create the continuation block. 734 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 735 736 // If we need to check for zero, do so now. 737 if (checkZero) { 738 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 739 llvm::Value *isEmpty = Builder.CreateICmpEQ(beginPtr, endPtr, 740 "array.isempty"); 741 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 742 EmitBlock(nonEmptyBB); 743 } 744 745 // Enter the loop. 746 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 747 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 748 749 EmitBlock(loopBB); 750 751 // Set up the current-element phi. 752 llvm::PHINode *curPtr = 753 Builder.CreatePHI(beginPtr->getType(), 2, "array.cur"); 754 curPtr->addIncoming(beginPtr, entryBB); 755 756 // Enter a partial-destruction cleanup if necessary. 757 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 758 EHScopeStack::stable_iterator cleanup; 759 if (needsEHCleanup(dtorKind)) { 760 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 761 getDestroyer(dtorKind)); 762 cleanup = EHStack.stable_begin(); 763 } 764 765 // Emit the initializer into this element. 766 StoreAnyExprIntoOneUnit(*this, E, curPtr); 767 768 // Leave the cleanup if we entered one. 769 if (cleanup != EHStack.stable_end()) 770 DeactivateCleanupBlock(cleanup); 771 772 // Advance to the next element. 773 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 774 775 // Check whether we've gotten to the end of the array and, if so, 776 // exit the loop. 777 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 778 Builder.CreateCondBr(isEnd, contBB, loopBB); 779 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 780 781 EmitBlock(contBB); 782 } 783 784 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 785 llvm::Value *NewPtr, llvm::Value *Size) { 786 CGF.EmitCastToVoidPtr(NewPtr); 787 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 788 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 789 Alignment.getQuantity(), false); 790 } 791 792 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 793 QualType ElementType, 794 llvm::Value *NewPtr, 795 llvm::Value *NumElements, 796 llvm::Value *AllocSizeWithoutCookie) { 797 if (E->isArray()) { 798 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 799 bool RequiresZeroInitialization = false; 800 if (Ctor->getParent()->hasTrivialDefaultConstructor()) { 801 // If new expression did not specify value-initialization, then there 802 // is no initialization. 803 if (!E->hasInitializer() || Ctor->getParent()->isEmpty()) 804 return; 805 806 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 807 // Optimization: since zero initialization will just set the memory 808 // to all zeroes, generate a single memset to do it in one shot. 809 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 810 return; 811 } 812 813 RequiresZeroInitialization = true; 814 } 815 816 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 817 E->constructor_arg_begin(), 818 E->constructor_arg_end(), 819 RequiresZeroInitialization); 820 return; 821 } else if (E->getNumConstructorArgs() == 1 && 822 isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) { 823 // Optimization: since zero initialization will just set the memory 824 // to all zeroes, generate a single memset to do it in one shot. 825 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 826 return; 827 } else { 828 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 829 return; 830 } 831 } 832 833 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 834 // Per C++ [expr.new]p15, if we have an initializer, then we're performing 835 // direct initialization. C++ [dcl.init]p5 requires that we 836 // zero-initialize storage if there are no user-declared constructors. 837 if (E->hasInitializer() && 838 !Ctor->getParent()->hasUserDeclaredConstructor() && 839 !Ctor->getParent()->isEmpty()) 840 CGF.EmitNullInitialization(NewPtr, ElementType); 841 842 CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 843 NewPtr, E->constructor_arg_begin(), 844 E->constructor_arg_end()); 845 846 return; 847 } 848 // We have a POD type. 849 if (E->getNumConstructorArgs() == 0) 850 return; 851 852 StoreAnyExprIntoOneUnit(CGF, E, NewPtr); 853 } 854 855 namespace { 856 /// A cleanup to call the given 'operator delete' function upon 857 /// abnormal exit from a new expression. 858 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 859 size_t NumPlacementArgs; 860 const FunctionDecl *OperatorDelete; 861 llvm::Value *Ptr; 862 llvm::Value *AllocSize; 863 864 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 865 866 public: 867 static size_t getExtraSize(size_t NumPlacementArgs) { 868 return NumPlacementArgs * sizeof(RValue); 869 } 870 871 CallDeleteDuringNew(size_t NumPlacementArgs, 872 const FunctionDecl *OperatorDelete, 873 llvm::Value *Ptr, 874 llvm::Value *AllocSize) 875 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 876 Ptr(Ptr), AllocSize(AllocSize) {} 877 878 void setPlacementArg(unsigned I, RValue Arg) { 879 assert(I < NumPlacementArgs && "index out of range"); 880 getPlacementArgs()[I] = Arg; 881 } 882 883 void Emit(CodeGenFunction &CGF, Flags flags) { 884 const FunctionProtoType *FPT 885 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 886 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 887 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 888 889 CallArgList DeleteArgs; 890 891 // The first argument is always a void*. 892 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 893 DeleteArgs.add(RValue::get(Ptr), *AI++); 894 895 // A member 'operator delete' can take an extra 'size_t' argument. 896 if (FPT->getNumArgs() == NumPlacementArgs + 2) 897 DeleteArgs.add(RValue::get(AllocSize), *AI++); 898 899 // Pass the rest of the arguments, which must match exactly. 900 for (unsigned I = 0; I != NumPlacementArgs; ++I) 901 DeleteArgs.add(getPlacementArgs()[I], *AI++); 902 903 // Call 'operator delete'. 904 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT), 905 CGF.CGM.GetAddrOfFunction(OperatorDelete), 906 ReturnValueSlot(), DeleteArgs, OperatorDelete); 907 } 908 }; 909 910 /// A cleanup to call the given 'operator delete' function upon 911 /// abnormal exit from a new expression when the new expression is 912 /// conditional. 913 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 914 size_t NumPlacementArgs; 915 const FunctionDecl *OperatorDelete; 916 DominatingValue<RValue>::saved_type Ptr; 917 DominatingValue<RValue>::saved_type AllocSize; 918 919 DominatingValue<RValue>::saved_type *getPlacementArgs() { 920 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 921 } 922 923 public: 924 static size_t getExtraSize(size_t NumPlacementArgs) { 925 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 926 } 927 928 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 929 const FunctionDecl *OperatorDelete, 930 DominatingValue<RValue>::saved_type Ptr, 931 DominatingValue<RValue>::saved_type AllocSize) 932 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 933 Ptr(Ptr), AllocSize(AllocSize) {} 934 935 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 936 assert(I < NumPlacementArgs && "index out of range"); 937 getPlacementArgs()[I] = Arg; 938 } 939 940 void Emit(CodeGenFunction &CGF, Flags flags) { 941 const FunctionProtoType *FPT 942 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 943 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 944 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 945 946 CallArgList DeleteArgs; 947 948 // The first argument is always a void*. 949 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 950 DeleteArgs.add(Ptr.restore(CGF), *AI++); 951 952 // A member 'operator delete' can take an extra 'size_t' argument. 953 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 954 RValue RV = AllocSize.restore(CGF); 955 DeleteArgs.add(RV, *AI++); 956 } 957 958 // Pass the rest of the arguments, which must match exactly. 959 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 960 RValue RV = getPlacementArgs()[I].restore(CGF); 961 DeleteArgs.add(RV, *AI++); 962 } 963 964 // Call 'operator delete'. 965 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT), 966 CGF.CGM.GetAddrOfFunction(OperatorDelete), 967 ReturnValueSlot(), DeleteArgs, OperatorDelete); 968 } 969 }; 970 } 971 972 /// Enter a cleanup to call 'operator delete' if the initializer in a 973 /// new-expression throws. 974 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 975 const CXXNewExpr *E, 976 llvm::Value *NewPtr, 977 llvm::Value *AllocSize, 978 const CallArgList &NewArgs) { 979 // If we're not inside a conditional branch, then the cleanup will 980 // dominate and we can do the easier (and more efficient) thing. 981 if (!CGF.isInConditionalBranch()) { 982 CallDeleteDuringNew *Cleanup = CGF.EHStack 983 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 984 E->getNumPlacementArgs(), 985 E->getOperatorDelete(), 986 NewPtr, AllocSize); 987 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 988 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 989 990 return; 991 } 992 993 // Otherwise, we need to save all this stuff. 994 DominatingValue<RValue>::saved_type SavedNewPtr = 995 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 996 DominatingValue<RValue>::saved_type SavedAllocSize = 997 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 998 999 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1000 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup, 1001 E->getNumPlacementArgs(), 1002 E->getOperatorDelete(), 1003 SavedNewPtr, 1004 SavedAllocSize); 1005 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1006 Cleanup->setPlacementArg(I, 1007 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1008 1009 CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin()); 1010 } 1011 1012 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1013 // The element type being allocated. 1014 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1015 1016 // 1. Build a call to the allocation function. 1017 FunctionDecl *allocator = E->getOperatorNew(); 1018 const FunctionProtoType *allocatorType = 1019 allocator->getType()->castAs<FunctionProtoType>(); 1020 1021 CallArgList allocatorArgs; 1022 1023 // The allocation size is the first argument. 1024 QualType sizeType = getContext().getSizeType(); 1025 1026 llvm::Value *numElements = 0; 1027 llvm::Value *allocSizeWithoutCookie = 0; 1028 llvm::Value *allocSize = 1029 EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie); 1030 1031 allocatorArgs.add(RValue::get(allocSize), sizeType); 1032 1033 // Emit the rest of the arguments. 1034 // FIXME: Ideally, this should just use EmitCallArgs. 1035 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1036 1037 // First, use the types from the function type. 1038 // We start at 1 here because the first argument (the allocation size) 1039 // has already been emitted. 1040 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1041 ++i, ++placementArg) { 1042 QualType argType = allocatorType->getArgType(i); 1043 1044 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1045 placementArg->getType()) && 1046 "type mismatch in call argument!"); 1047 1048 EmitCallArg(allocatorArgs, *placementArg, argType); 1049 } 1050 1051 // Either we've emitted all the call args, or we have a call to a 1052 // variadic function. 1053 assert((placementArg == E->placement_arg_end() || 1054 allocatorType->isVariadic()) && 1055 "Extra arguments to non-variadic function!"); 1056 1057 // If we still have any arguments, emit them using the type of the argument. 1058 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1059 placementArg != placementArgsEnd; ++placementArg) { 1060 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1061 } 1062 1063 // Emit the allocation call. If the allocator is a global placement 1064 // operator, just "inline" it directly. 1065 RValue RV; 1066 if (allocator->isReservedGlobalPlacementOperator()) { 1067 assert(allocatorArgs.size() == 2); 1068 RV = allocatorArgs[1].RV; 1069 // TODO: kill any unnecessary computations done for the size 1070 // argument. 1071 } else { 1072 RV = EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType), 1073 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1074 allocatorArgs, allocator); 1075 } 1076 1077 // Emit a null check on the allocation result if the allocation 1078 // function is allowed to return null (because it has a non-throwing 1079 // exception spec; for this part, we inline 1080 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1081 // interesting initializer. 1082 bool nullCheck = allocatorType->isNothrow(getContext()) && 1083 !(allocType.isPODType(getContext()) && !E->hasInitializer()); 1084 1085 llvm::BasicBlock *nullCheckBB = 0; 1086 llvm::BasicBlock *contBB = 0; 1087 1088 llvm::Value *allocation = RV.getScalarVal(); 1089 unsigned AS = 1090 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1091 1092 // The null-check means that the initializer is conditionally 1093 // evaluated. 1094 ConditionalEvaluation conditional(*this); 1095 1096 if (nullCheck) { 1097 conditional.begin(*this); 1098 1099 nullCheckBB = Builder.GetInsertBlock(); 1100 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1101 contBB = createBasicBlock("new.cont"); 1102 1103 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1104 Builder.CreateCondBr(isNull, contBB, notNullBB); 1105 EmitBlock(notNullBB); 1106 } 1107 1108 // If there's an operator delete, enter a cleanup to call it if an 1109 // exception is thrown. 1110 EHScopeStack::stable_iterator operatorDeleteCleanup; 1111 if (E->getOperatorDelete() && 1112 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1113 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1114 operatorDeleteCleanup = EHStack.stable_begin(); 1115 } 1116 1117 assert((allocSize == allocSizeWithoutCookie) == 1118 CalculateCookiePadding(*this, E).isZero()); 1119 if (allocSize != allocSizeWithoutCookie) { 1120 assert(E->isArray()); 1121 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1122 numElements, 1123 E, allocType); 1124 } 1125 1126 llvm::Type *elementPtrTy 1127 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1128 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1129 1130 EmitNewInitializer(*this, E, allocType, result, numElements, 1131 allocSizeWithoutCookie); 1132 if (E->isArray()) { 1133 // NewPtr is a pointer to the base element type. If we're 1134 // allocating an array of arrays, we'll need to cast back to the 1135 // array pointer type. 1136 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1137 if (result->getType() != resultType) 1138 result = Builder.CreateBitCast(result, resultType); 1139 } 1140 1141 // Deactivate the 'operator delete' cleanup if we finished 1142 // initialization. 1143 if (operatorDeleteCleanup.isValid()) 1144 DeactivateCleanupBlock(operatorDeleteCleanup); 1145 1146 if (nullCheck) { 1147 conditional.end(*this); 1148 1149 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1150 EmitBlock(contBB); 1151 1152 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1153 PHI->addIncoming(result, notNullBB); 1154 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1155 nullCheckBB); 1156 1157 result = PHI; 1158 } 1159 1160 return result; 1161 } 1162 1163 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1164 llvm::Value *Ptr, 1165 QualType DeleteTy) { 1166 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1167 1168 const FunctionProtoType *DeleteFTy = 1169 DeleteFD->getType()->getAs<FunctionProtoType>(); 1170 1171 CallArgList DeleteArgs; 1172 1173 // Check if we need to pass the size to the delete operator. 1174 llvm::Value *Size = 0; 1175 QualType SizeTy; 1176 if (DeleteFTy->getNumArgs() == 2) { 1177 SizeTy = DeleteFTy->getArgType(1); 1178 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1179 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1180 DeleteTypeSize.getQuantity()); 1181 } 1182 1183 QualType ArgTy = DeleteFTy->getArgType(0); 1184 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1185 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1186 1187 if (Size) 1188 DeleteArgs.add(RValue::get(Size), SizeTy); 1189 1190 // Emit the call to delete. 1191 EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy), 1192 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1193 DeleteArgs, DeleteFD); 1194 } 1195 1196 namespace { 1197 /// Calls the given 'operator delete' on a single object. 1198 struct CallObjectDelete : EHScopeStack::Cleanup { 1199 llvm::Value *Ptr; 1200 const FunctionDecl *OperatorDelete; 1201 QualType ElementType; 1202 1203 CallObjectDelete(llvm::Value *Ptr, 1204 const FunctionDecl *OperatorDelete, 1205 QualType ElementType) 1206 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1207 1208 void Emit(CodeGenFunction &CGF, Flags flags) { 1209 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1210 } 1211 }; 1212 } 1213 1214 /// Emit the code for deleting a single object. 1215 static void EmitObjectDelete(CodeGenFunction &CGF, 1216 const FunctionDecl *OperatorDelete, 1217 llvm::Value *Ptr, 1218 QualType ElementType, 1219 bool UseGlobalDelete) { 1220 // Find the destructor for the type, if applicable. If the 1221 // destructor is virtual, we'll just emit the vcall and return. 1222 const CXXDestructorDecl *Dtor = 0; 1223 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1224 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1225 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1226 Dtor = RD->getDestructor(); 1227 1228 if (Dtor->isVirtual()) { 1229 if (UseGlobalDelete) { 1230 // If we're supposed to call the global delete, make sure we do so 1231 // even if the destructor throws. 1232 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1233 Ptr, OperatorDelete, 1234 ElementType); 1235 } 1236 1237 llvm::Type *Ty = 1238 CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor, 1239 Dtor_Complete), 1240 /*isVariadic=*/false); 1241 1242 llvm::Value *Callee 1243 = CGF.BuildVirtualCall(Dtor, 1244 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1245 Ptr, Ty); 1246 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1247 0, 0); 1248 1249 if (UseGlobalDelete) { 1250 CGF.PopCleanupBlock(); 1251 } 1252 1253 return; 1254 } 1255 } 1256 } 1257 1258 // Make sure that we call delete even if the dtor throws. 1259 // This doesn't have to a conditional cleanup because we're going 1260 // to pop it off in a second. 1261 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1262 Ptr, OperatorDelete, ElementType); 1263 1264 if (Dtor) 1265 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1266 /*ForVirtualBase=*/false, Ptr); 1267 else if (CGF.getLangOptions().ObjCAutoRefCount && 1268 ElementType->isObjCLifetimeType()) { 1269 switch (ElementType.getObjCLifetime()) { 1270 case Qualifiers::OCL_None: 1271 case Qualifiers::OCL_ExplicitNone: 1272 case Qualifiers::OCL_Autoreleasing: 1273 break; 1274 1275 case Qualifiers::OCL_Strong: { 1276 // Load the pointer value. 1277 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1278 ElementType.isVolatileQualified()); 1279 1280 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1281 break; 1282 } 1283 1284 case Qualifiers::OCL_Weak: 1285 CGF.EmitARCDestroyWeak(Ptr); 1286 break; 1287 } 1288 } 1289 1290 CGF.PopCleanupBlock(); 1291 } 1292 1293 namespace { 1294 /// Calls the given 'operator delete' on an array of objects. 1295 struct CallArrayDelete : EHScopeStack::Cleanup { 1296 llvm::Value *Ptr; 1297 const FunctionDecl *OperatorDelete; 1298 llvm::Value *NumElements; 1299 QualType ElementType; 1300 CharUnits CookieSize; 1301 1302 CallArrayDelete(llvm::Value *Ptr, 1303 const FunctionDecl *OperatorDelete, 1304 llvm::Value *NumElements, 1305 QualType ElementType, 1306 CharUnits CookieSize) 1307 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1308 ElementType(ElementType), CookieSize(CookieSize) {} 1309 1310 void Emit(CodeGenFunction &CGF, Flags flags) { 1311 const FunctionProtoType *DeleteFTy = 1312 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1313 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1314 1315 CallArgList Args; 1316 1317 // Pass the pointer as the first argument. 1318 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1319 llvm::Value *DeletePtr 1320 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1321 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1322 1323 // Pass the original requested size as the second argument. 1324 if (DeleteFTy->getNumArgs() == 2) { 1325 QualType size_t = DeleteFTy->getArgType(1); 1326 llvm::IntegerType *SizeTy 1327 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1328 1329 CharUnits ElementTypeSize = 1330 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1331 1332 // The size of an element, multiplied by the number of elements. 1333 llvm::Value *Size 1334 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1335 Size = CGF.Builder.CreateMul(Size, NumElements); 1336 1337 // Plus the size of the cookie if applicable. 1338 if (!CookieSize.isZero()) { 1339 llvm::Value *CookieSizeV 1340 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1341 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1342 } 1343 1344 Args.add(RValue::get(Size), size_t); 1345 } 1346 1347 // Emit the call to delete. 1348 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy), 1349 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1350 ReturnValueSlot(), Args, OperatorDelete); 1351 } 1352 }; 1353 } 1354 1355 /// Emit the code for deleting an array of objects. 1356 static void EmitArrayDelete(CodeGenFunction &CGF, 1357 const CXXDeleteExpr *E, 1358 llvm::Value *deletedPtr, 1359 QualType elementType) { 1360 llvm::Value *numElements = 0; 1361 llvm::Value *allocatedPtr = 0; 1362 CharUnits cookieSize; 1363 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1364 numElements, allocatedPtr, cookieSize); 1365 1366 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1367 1368 // Make sure that we call delete even if one of the dtors throws. 1369 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1370 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1371 allocatedPtr, operatorDelete, 1372 numElements, elementType, 1373 cookieSize); 1374 1375 // Destroy the elements. 1376 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1377 assert(numElements && "no element count for a type with a destructor!"); 1378 1379 llvm::Value *arrayEnd = 1380 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1381 1382 // Note that it is legal to allocate a zero-length array, and we 1383 // can never fold the check away because the length should always 1384 // come from a cookie. 1385 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1386 CGF.getDestroyer(dtorKind), 1387 /*checkZeroLength*/ true, 1388 CGF.needsEHCleanup(dtorKind)); 1389 } 1390 1391 // Pop the cleanup block. 1392 CGF.PopCleanupBlock(); 1393 } 1394 1395 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1396 1397 // Get at the argument before we performed the implicit conversion 1398 // to void*. 1399 const Expr *Arg = E->getArgument(); 1400 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 1401 if (ICE->getCastKind() != CK_UserDefinedConversion && 1402 ICE->getType()->isVoidPointerType()) 1403 Arg = ICE->getSubExpr(); 1404 else 1405 break; 1406 } 1407 1408 llvm::Value *Ptr = EmitScalarExpr(Arg); 1409 1410 // Null check the pointer. 1411 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1412 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1413 1414 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1415 1416 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1417 EmitBlock(DeleteNotNull); 1418 1419 // We might be deleting a pointer to array. If so, GEP down to the 1420 // first non-array element. 1421 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1422 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1423 if (DeleteTy->isConstantArrayType()) { 1424 llvm::Value *Zero = Builder.getInt32(0); 1425 SmallVector<llvm::Value*,8> GEP; 1426 1427 GEP.push_back(Zero); // point at the outermost array 1428 1429 // For each layer of array type we're pointing at: 1430 while (const ConstantArrayType *Arr 1431 = getContext().getAsConstantArrayType(DeleteTy)) { 1432 // 1. Unpeel the array type. 1433 DeleteTy = Arr->getElementType(); 1434 1435 // 2. GEP to the first element of the array. 1436 GEP.push_back(Zero); 1437 } 1438 1439 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1440 } 1441 1442 assert(ConvertTypeForMem(DeleteTy) == 1443 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1444 1445 if (E->isArrayForm()) { 1446 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1447 } else { 1448 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1449 E->isGlobalDelete()); 1450 } 1451 1452 EmitBlock(DeleteEnd); 1453 } 1454 1455 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1456 // void __cxa_bad_typeid(); 1457 1458 llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 1459 llvm::FunctionType *FTy = 1460 llvm::FunctionType::get(VoidTy, false); 1461 1462 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1463 } 1464 1465 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1466 llvm::Value *Fn = getBadTypeidFn(CGF); 1467 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1468 CGF.Builder.CreateUnreachable(); 1469 } 1470 1471 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1472 const Expr *E, 1473 llvm::Type *StdTypeInfoPtrTy) { 1474 // Get the vtable pointer. 1475 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1476 1477 // C++ [expr.typeid]p2: 1478 // If the glvalue expression is obtained by applying the unary * operator to 1479 // a pointer and the pointer is a null pointer value, the typeid expression 1480 // throws the std::bad_typeid exception. 1481 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1482 if (UO->getOpcode() == UO_Deref) { 1483 llvm::BasicBlock *BadTypeidBlock = 1484 CGF.createBasicBlock("typeid.bad_typeid"); 1485 llvm::BasicBlock *EndBlock = 1486 CGF.createBasicBlock("typeid.end"); 1487 1488 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1489 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1490 1491 CGF.EmitBlock(BadTypeidBlock); 1492 EmitBadTypeidCall(CGF); 1493 CGF.EmitBlock(EndBlock); 1494 } 1495 } 1496 1497 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1498 StdTypeInfoPtrTy->getPointerTo()); 1499 1500 // Load the type info. 1501 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1502 return CGF.Builder.CreateLoad(Value); 1503 } 1504 1505 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1506 llvm::Type *StdTypeInfoPtrTy = 1507 ConvertType(E->getType())->getPointerTo(); 1508 1509 if (E->isTypeOperand()) { 1510 llvm::Constant *TypeInfo = 1511 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1512 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1513 } 1514 1515 // C++ [expr.typeid]p2: 1516 // When typeid is applied to a glvalue expression whose type is a 1517 // polymorphic class type, the result refers to a std::type_info object 1518 // representing the type of the most derived object (that is, the dynamic 1519 // type) to which the glvalue refers. 1520 if (E->getExprOperand()->isGLValue()) { 1521 if (const RecordType *RT = 1522 E->getExprOperand()->getType()->getAs<RecordType>()) { 1523 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1524 if (RD->isPolymorphic()) 1525 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1526 StdTypeInfoPtrTy); 1527 } 1528 } 1529 1530 QualType OperandTy = E->getExprOperand()->getType(); 1531 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1532 StdTypeInfoPtrTy); 1533 } 1534 1535 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1536 // void *__dynamic_cast(const void *sub, 1537 // const abi::__class_type_info *src, 1538 // const abi::__class_type_info *dst, 1539 // std::ptrdiff_t src2dst_offset); 1540 1541 llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1542 llvm::Type *PtrDiffTy = 1543 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1544 1545 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1546 1547 llvm::FunctionType *FTy = 1548 llvm::FunctionType::get(Int8PtrTy, Args, false); 1549 1550 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1551 } 1552 1553 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1554 // void __cxa_bad_cast(); 1555 1556 llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 1557 llvm::FunctionType *FTy = 1558 llvm::FunctionType::get(VoidTy, false); 1559 1560 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1561 } 1562 1563 static void EmitBadCastCall(CodeGenFunction &CGF) { 1564 llvm::Value *Fn = getBadCastFn(CGF); 1565 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1566 CGF.Builder.CreateUnreachable(); 1567 } 1568 1569 static llvm::Value * 1570 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1571 QualType SrcTy, QualType DestTy, 1572 llvm::BasicBlock *CastEnd) { 1573 llvm::Type *PtrDiffLTy = 1574 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1575 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1576 1577 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1578 if (PTy->getPointeeType()->isVoidType()) { 1579 // C++ [expr.dynamic.cast]p7: 1580 // If T is "pointer to cv void," then the result is a pointer to the 1581 // most derived object pointed to by v. 1582 1583 // Get the vtable pointer. 1584 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1585 1586 // Get the offset-to-top from the vtable. 1587 llvm::Value *OffsetToTop = 1588 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1589 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1590 1591 // Finally, add the offset to the pointer. 1592 Value = CGF.EmitCastToVoidPtr(Value); 1593 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1594 1595 return CGF.Builder.CreateBitCast(Value, DestLTy); 1596 } 1597 } 1598 1599 QualType SrcRecordTy; 1600 QualType DestRecordTy; 1601 1602 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1603 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1604 DestRecordTy = DestPTy->getPointeeType(); 1605 } else { 1606 SrcRecordTy = SrcTy; 1607 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1608 } 1609 1610 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1611 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1612 1613 llvm::Value *SrcRTTI = 1614 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1615 llvm::Value *DestRTTI = 1616 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1617 1618 // FIXME: Actually compute a hint here. 1619 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1620 1621 // Emit the call to __dynamic_cast. 1622 Value = CGF.EmitCastToVoidPtr(Value); 1623 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1624 SrcRTTI, DestRTTI, OffsetHint); 1625 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1626 1627 /// C++ [expr.dynamic.cast]p9: 1628 /// A failed cast to reference type throws std::bad_cast 1629 if (DestTy->isReferenceType()) { 1630 llvm::BasicBlock *BadCastBlock = 1631 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1632 1633 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1634 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1635 1636 CGF.EmitBlock(BadCastBlock); 1637 EmitBadCastCall(CGF); 1638 } 1639 1640 return Value; 1641 } 1642 1643 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1644 QualType DestTy) { 1645 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1646 if (DestTy->isPointerType()) 1647 return llvm::Constant::getNullValue(DestLTy); 1648 1649 /// C++ [expr.dynamic.cast]p9: 1650 /// A failed cast to reference type throws std::bad_cast 1651 EmitBadCastCall(CGF); 1652 1653 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1654 return llvm::UndefValue::get(DestLTy); 1655 } 1656 1657 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1658 const CXXDynamicCastExpr *DCE) { 1659 QualType DestTy = DCE->getTypeAsWritten(); 1660 1661 if (DCE->isAlwaysNull()) 1662 return EmitDynamicCastToNull(*this, DestTy); 1663 1664 QualType SrcTy = DCE->getSubExpr()->getType(); 1665 1666 // C++ [expr.dynamic.cast]p4: 1667 // If the value of v is a null pointer value in the pointer case, the result 1668 // is the null pointer value of type T. 1669 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1670 1671 llvm::BasicBlock *CastNull = 0; 1672 llvm::BasicBlock *CastNotNull = 0; 1673 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1674 1675 if (ShouldNullCheckSrcValue) { 1676 CastNull = createBasicBlock("dynamic_cast.null"); 1677 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1678 1679 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1680 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1681 EmitBlock(CastNotNull); 1682 } 1683 1684 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1685 1686 if (ShouldNullCheckSrcValue) { 1687 EmitBranch(CastEnd); 1688 1689 EmitBlock(CastNull); 1690 EmitBranch(CastEnd); 1691 } 1692 1693 EmitBlock(CastEnd); 1694 1695 if (ShouldNullCheckSrcValue) { 1696 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1697 PHI->addIncoming(Value, CastNotNull); 1698 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1699 1700 Value = PHI; 1701 } 1702 1703 return Value; 1704 } 1705