1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36 
37   // C++11 [class.mfct.non-static]p2:
38   //   If a non-static member function of a class X is called for an object that
39   //   is not of type X, or of a type derived from X, the behavior is undefined.
40   SourceLocation CallLoc;
41   if (CE)
42     CallLoc = CE->getExprLoc();
43   CGF.EmitTypeCheck(
44       isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
45                                   : CodeGenFunction::TCK_MemberCall,
46       CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   if (CE) {
61     // Special case: skip first argument of CXXOperatorCall (it is "this").
62     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
63     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
64                      CE->getDirectCallee());
65   } else {
66     assert(
67         FPT->getNumParams() == 0 &&
68         "No CallExpr specified for function with non-zero number of arguments");
69   }
70   return required;
71 }
72 
73 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
74     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
75     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
76     const CallExpr *CE) {
77   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
78   CallArgList Args;
79   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
80       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args);
81   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82                   Callee, ReturnValue, Args, MD);
83 }
84 
85 RValue CodeGenFunction::EmitCXXDestructorCall(
86     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
87     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
88     StructorType Type) {
89   CallArgList Args;
90   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
91                                     ImplicitParamTy, CE, Args);
92   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
93                   Callee, ReturnValueSlot(), Args, DD);
94 }
95 
96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97   QualType T = E->getType();
98   if (const PointerType *PTy = T->getAs<PointerType>())
99     T = PTy->getPointeeType();
100   const RecordType *Ty = T->castAs<RecordType>();
101   return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103 
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107                                               ReturnValueSlot ReturnValue) {
108   const Expr *callee = CE->getCallee()->IgnoreParens();
109 
110   if (isa<BinaryOperator>(callee))
111     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112 
113   const MemberExpr *ME = cast<MemberExpr>(callee);
114   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115 
116   if (MD->isStatic()) {
117     // The method is static, emit it as we would a regular call.
118     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120                     ReturnValue);
121   }
122 
123   bool HasQualifier = ME->hasQualifier();
124   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125   bool IsArrow = ME->isArrow();
126   const Expr *Base = ME->getBase();
127 
128   return EmitCXXMemberOrOperatorMemberCallExpr(
129       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131 
132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135     const Expr *Base) {
136   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137 
138   // Compute the object pointer.
139   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140 
141   const CXXMethodDecl *DevirtualizedMethod = nullptr;
142   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145     assert(DevirtualizedMethod);
146     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147     const Expr *Inner = Base->ignoreParenBaseCasts();
148     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149         MD->getReturnType().getCanonicalType())
150       // If the return types are not the same, this might be a case where more
151       // code needs to run to compensate for it. For example, the derived
152       // method might return a type that inherits form from the return
153       // type of MD and has a prefix.
154       // For now we just avoid devirtualizing these covariant cases.
155       DevirtualizedMethod = nullptr;
156     else if (getCXXRecord(Inner) == DevirtualizedClass)
157       // If the class of the Inner expression is where the dynamic method
158       // is defined, build the this pointer from it.
159       Base = Inner;
160     else if (getCXXRecord(Base) != DevirtualizedClass) {
161       // If the method is defined in a class that is not the best dynamic
162       // one or the one of the full expression, we would have to build
163       // a derived-to-base cast to compute the correct this pointer, but
164       // we don't have support for that yet, so do a virtual call.
165       DevirtualizedMethod = nullptr;
166     }
167   }
168 
169   Address This = Address::invalid();
170   if (IsArrow)
171     This = EmitPointerWithAlignment(Base);
172   else
173     This = EmitLValue(Base).getAddress();
174 
175 
176   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
177     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178     if (isa<CXXConstructorDecl>(MD) &&
179         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180       return RValue::get(nullptr);
181 
182     if (!MD->getParent()->mayInsertExtraPadding()) {
183       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184         // We don't like to generate the trivial copy/move assignment operator
185         // when it isn't necessary; just produce the proper effect here.
186         // Special case: skip first argument of CXXOperatorCall (it is "this").
187         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188         Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
189         EmitAggregateAssign(This, RHS, CE->getType());
190         return RValue::get(This.getPointer());
191       }
192 
193       if (isa<CXXConstructorDecl>(MD) &&
194           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
195         // Trivial move and copy ctor are the same.
196         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
197         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
198         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
199         return RValue::get(This.getPointer());
200       }
201       llvm_unreachable("unknown trivial member function");
202     }
203   }
204 
205   // Compute the function type we're calling.
206   const CXXMethodDecl *CalleeDecl =
207       DevirtualizedMethod ? DevirtualizedMethod : MD;
208   const CGFunctionInfo *FInfo = nullptr;
209   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
210     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
211         Dtor, StructorType::Complete);
212   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
213     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
214         Ctor, StructorType::Complete);
215   else
216     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
217 
218   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
219 
220   // C++ [class.virtual]p12:
221   //   Explicit qualification with the scope operator (5.1) suppresses the
222   //   virtual call mechanism.
223   //
224   // We also don't emit a virtual call if the base expression has a record type
225   // because then we know what the type is.
226   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
227   llvm::Value *Callee;
228 
229   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
230     assert(CE->arg_begin() == CE->arg_end() &&
231            "Destructor shouldn't have explicit parameters");
232     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
233     if (UseVirtualCall) {
234       CGM.getCXXABI().EmitVirtualDestructorCall(
235           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
236     } else {
237       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
238         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
239       else if (!DevirtualizedMethod)
240         Callee =
241             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
242       else {
243         const CXXDestructorDecl *DDtor =
244           cast<CXXDestructorDecl>(DevirtualizedMethod);
245         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
246       }
247       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
248                                   /*ImplicitParam=*/nullptr, QualType(), CE);
249     }
250     return RValue::get(nullptr);
251   }
252 
253   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
254     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
255   } else if (UseVirtualCall) {
256     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
257                                                        CE->getLocStart());
258   } else {
259     if (SanOpts.has(SanitizerKind::CFINVCall) &&
260         MD->getParent()->isDynamicClass()) {
261       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
262       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
263                                 CE->getLocStart());
264     }
265 
266     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
267       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
268     else if (!DevirtualizedMethod)
269       Callee = CGM.GetAddrOfFunction(MD, Ty);
270     else {
271       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
272     }
273   }
274 
275   if (MD->isVirtual()) {
276     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
277         *this, MD, This, UseVirtualCall);
278   }
279 
280   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
281                                      /*ImplicitParam=*/nullptr, QualType(), CE);
282 }
283 
284 RValue
285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
286                                               ReturnValueSlot ReturnValue) {
287   const BinaryOperator *BO =
288       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
289   const Expr *BaseExpr = BO->getLHS();
290   const Expr *MemFnExpr = BO->getRHS();
291 
292   const MemberPointerType *MPT =
293     MemFnExpr->getType()->castAs<MemberPointerType>();
294 
295   const FunctionProtoType *FPT =
296     MPT->getPointeeType()->castAs<FunctionProtoType>();
297   const CXXRecordDecl *RD =
298     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
299 
300   // Get the member function pointer.
301   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
302 
303   // Emit the 'this' pointer.
304   Address This = Address::invalid();
305   if (BO->getOpcode() == BO_PtrMemI)
306     This = EmitPointerWithAlignment(BaseExpr);
307   else
308     This = EmitLValue(BaseExpr).getAddress();
309 
310   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
311                 QualType(MPT->getClass(), 0));
312 
313   // Ask the ABI to load the callee.  Note that This is modified.
314   llvm::Value *ThisPtrForCall = nullptr;
315   llvm::Value *Callee =
316     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
317                                              ThisPtrForCall, MemFnPtr, MPT);
318 
319   CallArgList Args;
320 
321   QualType ThisType =
322     getContext().getPointerType(getContext().getTagDeclType(RD));
323 
324   // Push the this ptr.
325   Args.add(RValue::get(ThisPtrForCall), ThisType);
326 
327   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
328 
329   // And the rest of the call args
330   EmitCallArgs(Args, FPT, E->arguments(), E->getDirectCallee());
331   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
332                   Callee, ReturnValue, Args);
333 }
334 
335 RValue
336 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
337                                                const CXXMethodDecl *MD,
338                                                ReturnValueSlot ReturnValue) {
339   assert(MD->isInstance() &&
340          "Trying to emit a member call expr on a static method!");
341   return EmitCXXMemberOrOperatorMemberCallExpr(
342       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
343       /*IsArrow=*/false, E->getArg(0));
344 }
345 
346 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
347                                                ReturnValueSlot ReturnValue) {
348   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
349 }
350 
351 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
352                                             Address DestPtr,
353                                             const CXXRecordDecl *Base) {
354   if (Base->isEmpty())
355     return;
356 
357   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
358 
359   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
360   CharUnits NVSize = Layout.getNonVirtualSize();
361 
362   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
363   // present, they are initialized by the most derived class before calling the
364   // constructor.
365   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
366   Stores.emplace_back(CharUnits::Zero(), NVSize);
367 
368   // Each store is split by the existence of a vbptr.
369   CharUnits VBPtrWidth = CGF.getPointerSize();
370   std::vector<CharUnits> VBPtrOffsets =
371       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
372   for (CharUnits VBPtrOffset : VBPtrOffsets) {
373     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
374     CharUnits LastStoreOffset = LastStore.first;
375     CharUnits LastStoreSize = LastStore.second;
376 
377     CharUnits SplitBeforeOffset = LastStoreOffset;
378     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
379     assert(!SplitBeforeSize.isNegative() && "negative store size!");
380     if (!SplitBeforeSize.isZero())
381       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
382 
383     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
384     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
385     assert(!SplitAfterSize.isNegative() && "negative store size!");
386     if (!SplitAfterSize.isZero())
387       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
388   }
389 
390   // If the type contains a pointer to data member we can't memset it to zero.
391   // Instead, create a null constant and copy it to the destination.
392   // TODO: there are other patterns besides zero that we can usefully memset,
393   // like -1, which happens to be the pattern used by member-pointers.
394   // TODO: isZeroInitializable can be over-conservative in the case where a
395   // virtual base contains a member pointer.
396   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
397   if (!NullConstantForBase->isNullValue()) {
398     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
399         CGF.CGM.getModule(), NullConstantForBase->getType(),
400         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
401         NullConstantForBase, Twine());
402 
403     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
404                                DestPtr.getAlignment());
405     NullVariable->setAlignment(Align.getQuantity());
406 
407     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
408 
409     // Get and call the appropriate llvm.memcpy overload.
410     for (std::pair<CharUnits, CharUnits> Store : Stores) {
411       CharUnits StoreOffset = Store.first;
412       CharUnits StoreSize = Store.second;
413       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
414       CGF.Builder.CreateMemCpy(
415           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
416           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
417           StoreSizeVal);
418     }
419 
420   // Otherwise, just memset the whole thing to zero.  This is legal
421   // because in LLVM, all default initializers (other than the ones we just
422   // handled above) are guaranteed to have a bit pattern of all zeros.
423   } else {
424     for (std::pair<CharUnits, CharUnits> Store : Stores) {
425       CharUnits StoreOffset = Store.first;
426       CharUnits StoreSize = Store.second;
427       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
428       CGF.Builder.CreateMemSet(
429           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
430           CGF.Builder.getInt8(0), StoreSizeVal);
431     }
432   }
433 }
434 
435 void
436 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
437                                       AggValueSlot Dest) {
438   assert(!Dest.isIgnored() && "Must have a destination!");
439   const CXXConstructorDecl *CD = E->getConstructor();
440 
441   // If we require zero initialization before (or instead of) calling the
442   // constructor, as can be the case with a non-user-provided default
443   // constructor, emit the zero initialization now, unless destination is
444   // already zeroed.
445   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
446     switch (E->getConstructionKind()) {
447     case CXXConstructExpr::CK_Delegating:
448     case CXXConstructExpr::CK_Complete:
449       EmitNullInitialization(Dest.getAddress(), E->getType());
450       break;
451     case CXXConstructExpr::CK_VirtualBase:
452     case CXXConstructExpr::CK_NonVirtualBase:
453       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
454                                       CD->getParent());
455       break;
456     }
457   }
458 
459   // If this is a call to a trivial default constructor, do nothing.
460   if (CD->isTrivial() && CD->isDefaultConstructor())
461     return;
462 
463   // Elide the constructor if we're constructing from a temporary.
464   // The temporary check is required because Sema sets this on NRVO
465   // returns.
466   if (getLangOpts().ElideConstructors && E->isElidable()) {
467     assert(getContext().hasSameUnqualifiedType(E->getType(),
468                                                E->getArg(0)->getType()));
469     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
470       EmitAggExpr(E->getArg(0), Dest);
471       return;
472     }
473   }
474 
475   if (const ConstantArrayType *arrayType
476         = getContext().getAsConstantArrayType(E->getType())) {
477     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
478   } else {
479     CXXCtorType Type = Ctor_Complete;
480     bool ForVirtualBase = false;
481     bool Delegating = false;
482 
483     switch (E->getConstructionKind()) {
484      case CXXConstructExpr::CK_Delegating:
485       // We should be emitting a constructor; GlobalDecl will assert this
486       Type = CurGD.getCtorType();
487       Delegating = true;
488       break;
489 
490      case CXXConstructExpr::CK_Complete:
491       Type = Ctor_Complete;
492       break;
493 
494      case CXXConstructExpr::CK_VirtualBase:
495       ForVirtualBase = true;
496       // fall-through
497 
498      case CXXConstructExpr::CK_NonVirtualBase:
499       Type = Ctor_Base;
500     }
501 
502     // Call the constructor.
503     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
504                            Dest.getAddress(), E);
505   }
506 }
507 
508 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
509                                                  const Expr *Exp) {
510   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
511     Exp = E->getSubExpr();
512   assert(isa<CXXConstructExpr>(Exp) &&
513          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
514   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
515   const CXXConstructorDecl *CD = E->getConstructor();
516   RunCleanupsScope Scope(*this);
517 
518   // If we require zero initialization before (or instead of) calling the
519   // constructor, as can be the case with a non-user-provided default
520   // constructor, emit the zero initialization now.
521   // FIXME. Do I still need this for a copy ctor synthesis?
522   if (E->requiresZeroInitialization())
523     EmitNullInitialization(Dest, E->getType());
524 
525   assert(!getContext().getAsConstantArrayType(E->getType())
526          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
527   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
528 }
529 
530 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
531                                         const CXXNewExpr *E) {
532   if (!E->isArray())
533     return CharUnits::Zero();
534 
535   // No cookie is required if the operator new[] being used is the
536   // reserved placement operator new[].
537   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
538     return CharUnits::Zero();
539 
540   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
541 }
542 
543 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
544                                         const CXXNewExpr *e,
545                                         unsigned minElements,
546                                         llvm::Value *&numElements,
547                                         llvm::Value *&sizeWithoutCookie) {
548   QualType type = e->getAllocatedType();
549 
550   if (!e->isArray()) {
551     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
552     sizeWithoutCookie
553       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
554     return sizeWithoutCookie;
555   }
556 
557   // The width of size_t.
558   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
559 
560   // Figure out the cookie size.
561   llvm::APInt cookieSize(sizeWidth,
562                          CalculateCookiePadding(CGF, e).getQuantity());
563 
564   // Emit the array size expression.
565   // We multiply the size of all dimensions for NumElements.
566   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
567   numElements = CGF.EmitScalarExpr(e->getArraySize());
568   assert(isa<llvm::IntegerType>(numElements->getType()));
569 
570   // The number of elements can be have an arbitrary integer type;
571   // essentially, we need to multiply it by a constant factor, add a
572   // cookie size, and verify that the result is representable as a
573   // size_t.  That's just a gloss, though, and it's wrong in one
574   // important way: if the count is negative, it's an error even if
575   // the cookie size would bring the total size >= 0.
576   bool isSigned
577     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
578   llvm::IntegerType *numElementsType
579     = cast<llvm::IntegerType>(numElements->getType());
580   unsigned numElementsWidth = numElementsType->getBitWidth();
581 
582   // Compute the constant factor.
583   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
584   while (const ConstantArrayType *CAT
585              = CGF.getContext().getAsConstantArrayType(type)) {
586     type = CAT->getElementType();
587     arraySizeMultiplier *= CAT->getSize();
588   }
589 
590   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
591   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
592   typeSizeMultiplier *= arraySizeMultiplier;
593 
594   // This will be a size_t.
595   llvm::Value *size;
596 
597   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
598   // Don't bloat the -O0 code.
599   if (llvm::ConstantInt *numElementsC =
600         dyn_cast<llvm::ConstantInt>(numElements)) {
601     const llvm::APInt &count = numElementsC->getValue();
602 
603     bool hasAnyOverflow = false;
604 
605     // If 'count' was a negative number, it's an overflow.
606     if (isSigned && count.isNegative())
607       hasAnyOverflow = true;
608 
609     // We want to do all this arithmetic in size_t.  If numElements is
610     // wider than that, check whether it's already too big, and if so,
611     // overflow.
612     else if (numElementsWidth > sizeWidth &&
613              numElementsWidth - sizeWidth > count.countLeadingZeros())
614       hasAnyOverflow = true;
615 
616     // Okay, compute a count at the right width.
617     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
618 
619     // If there is a brace-initializer, we cannot allocate fewer elements than
620     // there are initializers. If we do, that's treated like an overflow.
621     if (adjustedCount.ult(minElements))
622       hasAnyOverflow = true;
623 
624     // Scale numElements by that.  This might overflow, but we don't
625     // care because it only overflows if allocationSize does, too, and
626     // if that overflows then we shouldn't use this.
627     numElements = llvm::ConstantInt::get(CGF.SizeTy,
628                                          adjustedCount * arraySizeMultiplier);
629 
630     // Compute the size before cookie, and track whether it overflowed.
631     bool overflow;
632     llvm::APInt allocationSize
633       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
634     hasAnyOverflow |= overflow;
635 
636     // Add in the cookie, and check whether it's overflowed.
637     if (cookieSize != 0) {
638       // Save the current size without a cookie.  This shouldn't be
639       // used if there was overflow.
640       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
641 
642       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
643       hasAnyOverflow |= overflow;
644     }
645 
646     // On overflow, produce a -1 so operator new will fail.
647     if (hasAnyOverflow) {
648       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
649     } else {
650       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
651     }
652 
653   // Otherwise, we might need to use the overflow intrinsics.
654   } else {
655     // There are up to five conditions we need to test for:
656     // 1) if isSigned, we need to check whether numElements is negative;
657     // 2) if numElementsWidth > sizeWidth, we need to check whether
658     //   numElements is larger than something representable in size_t;
659     // 3) if minElements > 0, we need to check whether numElements is smaller
660     //    than that.
661     // 4) we need to compute
662     //      sizeWithoutCookie := numElements * typeSizeMultiplier
663     //    and check whether it overflows; and
664     // 5) if we need a cookie, we need to compute
665     //      size := sizeWithoutCookie + cookieSize
666     //    and check whether it overflows.
667 
668     llvm::Value *hasOverflow = nullptr;
669 
670     // If numElementsWidth > sizeWidth, then one way or another, we're
671     // going to have to do a comparison for (2), and this happens to
672     // take care of (1), too.
673     if (numElementsWidth > sizeWidth) {
674       llvm::APInt threshold(numElementsWidth, 1);
675       threshold <<= sizeWidth;
676 
677       llvm::Value *thresholdV
678         = llvm::ConstantInt::get(numElementsType, threshold);
679 
680       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
681       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
682 
683     // Otherwise, if we're signed, we want to sext up to size_t.
684     } else if (isSigned) {
685       if (numElementsWidth < sizeWidth)
686         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
687 
688       // If there's a non-1 type size multiplier, then we can do the
689       // signedness check at the same time as we do the multiply
690       // because a negative number times anything will cause an
691       // unsigned overflow.  Otherwise, we have to do it here. But at least
692       // in this case, we can subsume the >= minElements check.
693       if (typeSizeMultiplier == 1)
694         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
695                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
696 
697     // Otherwise, zext up to size_t if necessary.
698     } else if (numElementsWidth < sizeWidth) {
699       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
700     }
701 
702     assert(numElements->getType() == CGF.SizeTy);
703 
704     if (minElements) {
705       // Don't allow allocation of fewer elements than we have initializers.
706       if (!hasOverflow) {
707         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
708                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
709       } else if (numElementsWidth > sizeWidth) {
710         // The other existing overflow subsumes this check.
711         // We do an unsigned comparison, since any signed value < -1 is
712         // taken care of either above or below.
713         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
714                           CGF.Builder.CreateICmpULT(numElements,
715                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
716       }
717     }
718 
719     size = numElements;
720 
721     // Multiply by the type size if necessary.  This multiplier
722     // includes all the factors for nested arrays.
723     //
724     // This step also causes numElements to be scaled up by the
725     // nested-array factor if necessary.  Overflow on this computation
726     // can be ignored because the result shouldn't be used if
727     // allocation fails.
728     if (typeSizeMultiplier != 1) {
729       llvm::Value *umul_with_overflow
730         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
731 
732       llvm::Value *tsmV =
733         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
734       llvm::Value *result =
735           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
736 
737       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
738       if (hasOverflow)
739         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
740       else
741         hasOverflow = overflowed;
742 
743       size = CGF.Builder.CreateExtractValue(result, 0);
744 
745       // Also scale up numElements by the array size multiplier.
746       if (arraySizeMultiplier != 1) {
747         // If the base element type size is 1, then we can re-use the
748         // multiply we just did.
749         if (typeSize.isOne()) {
750           assert(arraySizeMultiplier == typeSizeMultiplier);
751           numElements = size;
752 
753         // Otherwise we need a separate multiply.
754         } else {
755           llvm::Value *asmV =
756             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
757           numElements = CGF.Builder.CreateMul(numElements, asmV);
758         }
759       }
760     } else {
761       // numElements doesn't need to be scaled.
762       assert(arraySizeMultiplier == 1);
763     }
764 
765     // Add in the cookie size if necessary.
766     if (cookieSize != 0) {
767       sizeWithoutCookie = size;
768 
769       llvm::Value *uadd_with_overflow
770         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
771 
772       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
773       llvm::Value *result =
774           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
775 
776       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
777       if (hasOverflow)
778         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
779       else
780         hasOverflow = overflowed;
781 
782       size = CGF.Builder.CreateExtractValue(result, 0);
783     }
784 
785     // If we had any possibility of dynamic overflow, make a select to
786     // overwrite 'size' with an all-ones value, which should cause
787     // operator new to throw.
788     if (hasOverflow)
789       size = CGF.Builder.CreateSelect(hasOverflow,
790                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
791                                       size);
792   }
793 
794   if (cookieSize == 0)
795     sizeWithoutCookie = size;
796   else
797     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
798 
799   return size;
800 }
801 
802 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
803                                     QualType AllocType, Address NewPtr) {
804   // FIXME: Refactor with EmitExprAsInit.
805   switch (CGF.getEvaluationKind(AllocType)) {
806   case TEK_Scalar:
807     CGF.EmitScalarInit(Init, nullptr,
808                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
809     return;
810   case TEK_Complex:
811     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
812                                   /*isInit*/ true);
813     return;
814   case TEK_Aggregate: {
815     AggValueSlot Slot
816       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
817                               AggValueSlot::IsDestructed,
818                               AggValueSlot::DoesNotNeedGCBarriers,
819                               AggValueSlot::IsNotAliased);
820     CGF.EmitAggExpr(Init, Slot);
821     return;
822   }
823   }
824   llvm_unreachable("bad evaluation kind");
825 }
826 
827 void CodeGenFunction::EmitNewArrayInitializer(
828     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
829     Address BeginPtr, llvm::Value *NumElements,
830     llvm::Value *AllocSizeWithoutCookie) {
831   // If we have a type with trivial initialization and no initializer,
832   // there's nothing to do.
833   if (!E->hasInitializer())
834     return;
835 
836   Address CurPtr = BeginPtr;
837 
838   unsigned InitListElements = 0;
839 
840   const Expr *Init = E->getInitializer();
841   Address EndOfInit = Address::invalid();
842   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
843   EHScopeStack::stable_iterator Cleanup;
844   llvm::Instruction *CleanupDominator = nullptr;
845 
846   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
847   CharUnits ElementAlign =
848     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
849 
850   // If the initializer is an initializer list, first do the explicit elements.
851   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
852     InitListElements = ILE->getNumInits();
853 
854     // If this is a multi-dimensional array new, we will initialize multiple
855     // elements with each init list element.
856     QualType AllocType = E->getAllocatedType();
857     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
858             AllocType->getAsArrayTypeUnsafe())) {
859       ElementTy = ConvertTypeForMem(AllocType);
860       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
861       InitListElements *= getContext().getConstantArrayElementCount(CAT);
862     }
863 
864     // Enter a partial-destruction Cleanup if necessary.
865     if (needsEHCleanup(DtorKind)) {
866       // In principle we could tell the Cleanup where we are more
867       // directly, but the control flow can get so varied here that it
868       // would actually be quite complex.  Therefore we go through an
869       // alloca.
870       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
871                                    "array.init.end");
872       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
873       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
874                                        ElementType, ElementAlign,
875                                        getDestroyer(DtorKind));
876       Cleanup = EHStack.stable_begin();
877     }
878 
879     CharUnits StartAlign = CurPtr.getAlignment();
880     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
881       // Tell the cleanup that it needs to destroy up to this
882       // element.  TODO: some of these stores can be trivially
883       // observed to be unnecessary.
884       if (EndOfInit.isValid()) {
885         auto FinishedPtr =
886           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
887         Builder.CreateStore(FinishedPtr, EndOfInit);
888       }
889       // FIXME: If the last initializer is an incomplete initializer list for
890       // an array, and we have an array filler, we can fold together the two
891       // initialization loops.
892       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
893                               ILE->getInit(i)->getType(), CurPtr);
894       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
895                                                  Builder.getSize(1),
896                                                  "array.exp.next"),
897                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
898     }
899 
900     // The remaining elements are filled with the array filler expression.
901     Init = ILE->getArrayFiller();
902 
903     // Extract the initializer for the individual array elements by pulling
904     // out the array filler from all the nested initializer lists. This avoids
905     // generating a nested loop for the initialization.
906     while (Init && Init->getType()->isConstantArrayType()) {
907       auto *SubILE = dyn_cast<InitListExpr>(Init);
908       if (!SubILE)
909         break;
910       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
911       Init = SubILE->getArrayFiller();
912     }
913 
914     // Switch back to initializing one base element at a time.
915     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
916   }
917 
918   // Attempt to perform zero-initialization using memset.
919   auto TryMemsetInitialization = [&]() -> bool {
920     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
921     // we can initialize with a memset to -1.
922     if (!CGM.getTypes().isZeroInitializable(ElementType))
923       return false;
924 
925     // Optimization: since zero initialization will just set the memory
926     // to all zeroes, generate a single memset to do it in one shot.
927 
928     // Subtract out the size of any elements we've already initialized.
929     auto *RemainingSize = AllocSizeWithoutCookie;
930     if (InitListElements) {
931       // We know this can't overflow; we check this when doing the allocation.
932       auto *InitializedSize = llvm::ConstantInt::get(
933           RemainingSize->getType(),
934           getContext().getTypeSizeInChars(ElementType).getQuantity() *
935               InitListElements);
936       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
937     }
938 
939     // Create the memset.
940     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
941     return true;
942   };
943 
944   // If all elements have already been initialized, skip any further
945   // initialization.
946   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
947   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
948     // If there was a Cleanup, deactivate it.
949     if (CleanupDominator)
950       DeactivateCleanupBlock(Cleanup, CleanupDominator);
951     return;
952   }
953 
954   assert(Init && "have trailing elements to initialize but no initializer");
955 
956   // If this is a constructor call, try to optimize it out, and failing that
957   // emit a single loop to initialize all remaining elements.
958   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
959     CXXConstructorDecl *Ctor = CCE->getConstructor();
960     if (Ctor->isTrivial()) {
961       // If new expression did not specify value-initialization, then there
962       // is no initialization.
963       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
964         return;
965 
966       if (TryMemsetInitialization())
967         return;
968     }
969 
970     // Store the new Cleanup position for irregular Cleanups.
971     //
972     // FIXME: Share this cleanup with the constructor call emission rather than
973     // having it create a cleanup of its own.
974     if (EndOfInit.isValid())
975       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
976 
977     // Emit a constructor call loop to initialize the remaining elements.
978     if (InitListElements)
979       NumElements = Builder.CreateSub(
980           NumElements,
981           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
982     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
983                                CCE->requiresZeroInitialization());
984     return;
985   }
986 
987   // If this is value-initialization, we can usually use memset.
988   ImplicitValueInitExpr IVIE(ElementType);
989   if (isa<ImplicitValueInitExpr>(Init)) {
990     if (TryMemsetInitialization())
991       return;
992 
993     // Switch to an ImplicitValueInitExpr for the element type. This handles
994     // only one case: multidimensional array new of pointers to members. In
995     // all other cases, we already have an initializer for the array element.
996     Init = &IVIE;
997   }
998 
999   // At this point we should have found an initializer for the individual
1000   // elements of the array.
1001   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1002          "got wrong type of element to initialize");
1003 
1004   // If we have an empty initializer list, we can usually use memset.
1005   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1006     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1007       return;
1008 
1009   // If we have a struct whose every field is value-initialized, we can
1010   // usually use memset.
1011   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1012     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1013       if (RType->getDecl()->isStruct()) {
1014         unsigned NumElements = 0;
1015         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1016           NumElements = CXXRD->getNumBases();
1017         for (auto *Field : RType->getDecl()->fields())
1018           if (!Field->isUnnamedBitfield())
1019             ++NumElements;
1020         // FIXME: Recurse into nested InitListExprs.
1021         if (ILE->getNumInits() == NumElements)
1022           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1023             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1024               --NumElements;
1025         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1026           return;
1027       }
1028     }
1029   }
1030 
1031   // Create the loop blocks.
1032   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1033   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1034   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1035 
1036   // Find the end of the array, hoisted out of the loop.
1037   llvm::Value *EndPtr =
1038     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1039 
1040   // If the number of elements isn't constant, we have to now check if there is
1041   // anything left to initialize.
1042   if (!ConstNum) {
1043     llvm::Value *IsEmpty =
1044       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1045     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1046   }
1047 
1048   // Enter the loop.
1049   EmitBlock(LoopBB);
1050 
1051   // Set up the current-element phi.
1052   llvm::PHINode *CurPtrPhi =
1053     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1054   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1055 
1056   CurPtr = Address(CurPtrPhi, ElementAlign);
1057 
1058   // Store the new Cleanup position for irregular Cleanups.
1059   if (EndOfInit.isValid())
1060     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1061 
1062   // Enter a partial-destruction Cleanup if necessary.
1063   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1064     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1065                                    ElementType, ElementAlign,
1066                                    getDestroyer(DtorKind));
1067     Cleanup = EHStack.stable_begin();
1068     CleanupDominator = Builder.CreateUnreachable();
1069   }
1070 
1071   // Emit the initializer into this element.
1072   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1073 
1074   // Leave the Cleanup if we entered one.
1075   if (CleanupDominator) {
1076     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1077     CleanupDominator->eraseFromParent();
1078   }
1079 
1080   // Advance to the next element by adjusting the pointer type as necessary.
1081   llvm::Value *NextPtr =
1082     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1083                                        "array.next");
1084 
1085   // Check whether we've gotten to the end of the array and, if so,
1086   // exit the loop.
1087   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1088   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1089   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1090 
1091   EmitBlock(ContBB);
1092 }
1093 
1094 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1095                                QualType ElementType, llvm::Type *ElementTy,
1096                                Address NewPtr, llvm::Value *NumElements,
1097                                llvm::Value *AllocSizeWithoutCookie) {
1098   ApplyDebugLocation DL(CGF, E);
1099   if (E->isArray())
1100     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1101                                 AllocSizeWithoutCookie);
1102   else if (const Expr *Init = E->getInitializer())
1103     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1104 }
1105 
1106 /// Emit a call to an operator new or operator delete function, as implicitly
1107 /// created by new-expressions and delete-expressions.
1108 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1109                                 const FunctionDecl *Callee,
1110                                 const FunctionProtoType *CalleeType,
1111                                 const CallArgList &Args) {
1112   llvm::Instruction *CallOrInvoke;
1113   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1114   RValue RV =
1115       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1116                        Args, CalleeType, /*chainCall=*/false),
1117                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1118 
1119   /// C++1y [expr.new]p10:
1120   ///   [In a new-expression,] an implementation is allowed to omit a call
1121   ///   to a replaceable global allocation function.
1122   ///
1123   /// We model such elidable calls with the 'builtin' attribute.
1124   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1125   if (Callee->isReplaceableGlobalAllocationFunction() &&
1126       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1127     // FIXME: Add addAttribute to CallSite.
1128     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1129       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1130                        llvm::Attribute::Builtin);
1131     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1132       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1133                        llvm::Attribute::Builtin);
1134     else
1135       llvm_unreachable("unexpected kind of call instruction");
1136   }
1137 
1138   return RV;
1139 }
1140 
1141 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1142                                                  const Expr *Arg,
1143                                                  bool IsDelete) {
1144   CallArgList Args;
1145   const Stmt *ArgS = Arg;
1146   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1147   // Find the allocation or deallocation function that we're calling.
1148   ASTContext &Ctx = getContext();
1149   DeclarationName Name = Ctx.DeclarationNames
1150       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1151   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1152     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1153       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1154         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1155   llvm_unreachable("predeclared global operator new/delete is missing");
1156 }
1157 
1158 namespace {
1159   /// A cleanup to call the given 'operator delete' function upon
1160   /// abnormal exit from a new expression.
1161   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1162     size_t NumPlacementArgs;
1163     const FunctionDecl *OperatorDelete;
1164     llvm::Value *Ptr;
1165     llvm::Value *AllocSize;
1166 
1167     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1168 
1169   public:
1170     static size_t getExtraSize(size_t NumPlacementArgs) {
1171       return NumPlacementArgs * sizeof(RValue);
1172     }
1173 
1174     CallDeleteDuringNew(size_t NumPlacementArgs,
1175                         const FunctionDecl *OperatorDelete,
1176                         llvm::Value *Ptr,
1177                         llvm::Value *AllocSize)
1178       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1179         Ptr(Ptr), AllocSize(AllocSize) {}
1180 
1181     void setPlacementArg(unsigned I, RValue Arg) {
1182       assert(I < NumPlacementArgs && "index out of range");
1183       getPlacementArgs()[I] = Arg;
1184     }
1185 
1186     void Emit(CodeGenFunction &CGF, Flags flags) override {
1187       const FunctionProtoType *FPT
1188         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1189       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1190              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1191 
1192       CallArgList DeleteArgs;
1193 
1194       // The first argument is always a void*.
1195       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1196       DeleteArgs.add(RValue::get(Ptr), *AI++);
1197 
1198       // A member 'operator delete' can take an extra 'size_t' argument.
1199       if (FPT->getNumParams() == NumPlacementArgs + 2)
1200         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1201 
1202       // Pass the rest of the arguments, which must match exactly.
1203       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1204         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1205 
1206       // Call 'operator delete'.
1207       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1208     }
1209   };
1210 
1211   /// A cleanup to call the given 'operator delete' function upon
1212   /// abnormal exit from a new expression when the new expression is
1213   /// conditional.
1214   class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
1215     size_t NumPlacementArgs;
1216     const FunctionDecl *OperatorDelete;
1217     DominatingValue<RValue>::saved_type Ptr;
1218     DominatingValue<RValue>::saved_type AllocSize;
1219 
1220     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1221       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1222     }
1223 
1224   public:
1225     static size_t getExtraSize(size_t NumPlacementArgs) {
1226       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1227     }
1228 
1229     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1230                                    const FunctionDecl *OperatorDelete,
1231                                    DominatingValue<RValue>::saved_type Ptr,
1232                               DominatingValue<RValue>::saved_type AllocSize)
1233       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1234         Ptr(Ptr), AllocSize(AllocSize) {}
1235 
1236     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1237       assert(I < NumPlacementArgs && "index out of range");
1238       getPlacementArgs()[I] = Arg;
1239     }
1240 
1241     void Emit(CodeGenFunction &CGF, Flags flags) override {
1242       const FunctionProtoType *FPT
1243         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1244       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1245              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1246 
1247       CallArgList DeleteArgs;
1248 
1249       // The first argument is always a void*.
1250       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1251       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1252 
1253       // A member 'operator delete' can take an extra 'size_t' argument.
1254       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1255         RValue RV = AllocSize.restore(CGF);
1256         DeleteArgs.add(RV, *AI++);
1257       }
1258 
1259       // Pass the rest of the arguments, which must match exactly.
1260       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1261         RValue RV = getPlacementArgs()[I].restore(CGF);
1262         DeleteArgs.add(RV, *AI++);
1263       }
1264 
1265       // Call 'operator delete'.
1266       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1267     }
1268   };
1269 }
1270 
1271 /// Enter a cleanup to call 'operator delete' if the initializer in a
1272 /// new-expression throws.
1273 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1274                                   const CXXNewExpr *E,
1275                                   Address NewPtr,
1276                                   llvm::Value *AllocSize,
1277                                   const CallArgList &NewArgs) {
1278   // If we're not inside a conditional branch, then the cleanup will
1279   // dominate and we can do the easier (and more efficient) thing.
1280   if (!CGF.isInConditionalBranch()) {
1281     CallDeleteDuringNew *Cleanup = CGF.EHStack
1282       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1283                                                  E->getNumPlacementArgs(),
1284                                                  E->getOperatorDelete(),
1285                                                  NewPtr.getPointer(),
1286                                                  AllocSize);
1287     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1288       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1289 
1290     return;
1291   }
1292 
1293   // Otherwise, we need to save all this stuff.
1294   DominatingValue<RValue>::saved_type SavedNewPtr =
1295     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1296   DominatingValue<RValue>::saved_type SavedAllocSize =
1297     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1298 
1299   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1300     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1301                                                  E->getNumPlacementArgs(),
1302                                                  E->getOperatorDelete(),
1303                                                  SavedNewPtr,
1304                                                  SavedAllocSize);
1305   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1306     Cleanup->setPlacementArg(I,
1307                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1308 
1309   CGF.initFullExprCleanup();
1310 }
1311 
1312 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1313   // The element type being allocated.
1314   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1315 
1316   // 1. Build a call to the allocation function.
1317   FunctionDecl *allocator = E->getOperatorNew();
1318 
1319   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1320   unsigned minElements = 0;
1321   if (E->isArray() && E->hasInitializer()) {
1322     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1323       minElements = ILE->getNumInits();
1324   }
1325 
1326   llvm::Value *numElements = nullptr;
1327   llvm::Value *allocSizeWithoutCookie = nullptr;
1328   llvm::Value *allocSize =
1329     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1330                         allocSizeWithoutCookie);
1331 
1332   // Emit the allocation call.  If the allocator is a global placement
1333   // operator, just "inline" it directly.
1334   Address allocation = Address::invalid();
1335   CallArgList allocatorArgs;
1336   if (allocator->isReservedGlobalPlacementOperator()) {
1337     assert(E->getNumPlacementArgs() == 1);
1338     const Expr *arg = *E->placement_arguments().begin();
1339 
1340     AlignmentSource alignSource;
1341     allocation = EmitPointerWithAlignment(arg, &alignSource);
1342 
1343     // The pointer expression will, in many cases, be an opaque void*.
1344     // In these cases, discard the computed alignment and use the
1345     // formal alignment of the allocated type.
1346     if (alignSource != AlignmentSource::Decl) {
1347       allocation = Address(allocation.getPointer(),
1348                            getContext().getTypeAlignInChars(allocType));
1349     }
1350 
1351     // Set up allocatorArgs for the call to operator delete if it's not
1352     // the reserved global operator.
1353     if (E->getOperatorDelete() &&
1354         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1355       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1356       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1357     }
1358 
1359   } else {
1360     const FunctionProtoType *allocatorType =
1361       allocator->getType()->castAs<FunctionProtoType>();
1362 
1363     // The allocation size is the first argument.
1364     QualType sizeType = getContext().getSizeType();
1365     allocatorArgs.add(RValue::get(allocSize), sizeType);
1366 
1367     // We start at 1 here because the first argument (the allocation size)
1368     // has already been emitted.
1369     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1370                  /* CalleeDecl */ nullptr,
1371                  /*ParamsToSkip*/ 1);
1372 
1373     RValue RV =
1374       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1375 
1376     // For now, only assume that the allocation function returns
1377     // something satisfactorily aligned for the element type, plus
1378     // the cookie if we have one.
1379     CharUnits allocationAlign =
1380       getContext().getTypeAlignInChars(allocType);
1381     if (allocSize != allocSizeWithoutCookie) {
1382       CharUnits cookieAlign = getSizeAlign(); // FIXME?
1383       allocationAlign = std::max(allocationAlign, cookieAlign);
1384     }
1385 
1386     allocation = Address(RV.getScalarVal(), allocationAlign);
1387   }
1388 
1389   // Emit a null check on the allocation result if the allocation
1390   // function is allowed to return null (because it has a non-throwing
1391   // exception spec or is the reserved placement new) and we have an
1392   // interesting initializer.
1393   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1394     (!allocType.isPODType(getContext()) || E->hasInitializer());
1395 
1396   llvm::BasicBlock *nullCheckBB = nullptr;
1397   llvm::BasicBlock *contBB = nullptr;
1398 
1399   // The null-check means that the initializer is conditionally
1400   // evaluated.
1401   ConditionalEvaluation conditional(*this);
1402 
1403   if (nullCheck) {
1404     conditional.begin(*this);
1405 
1406     nullCheckBB = Builder.GetInsertBlock();
1407     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1408     contBB = createBasicBlock("new.cont");
1409 
1410     llvm::Value *isNull =
1411       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1412     Builder.CreateCondBr(isNull, contBB, notNullBB);
1413     EmitBlock(notNullBB);
1414   }
1415 
1416   // If there's an operator delete, enter a cleanup to call it if an
1417   // exception is thrown.
1418   EHScopeStack::stable_iterator operatorDeleteCleanup;
1419   llvm::Instruction *cleanupDominator = nullptr;
1420   if (E->getOperatorDelete() &&
1421       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1422     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1423     operatorDeleteCleanup = EHStack.stable_begin();
1424     cleanupDominator = Builder.CreateUnreachable();
1425   }
1426 
1427   assert((allocSize == allocSizeWithoutCookie) ==
1428          CalculateCookiePadding(*this, E).isZero());
1429   if (allocSize != allocSizeWithoutCookie) {
1430     assert(E->isArray());
1431     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1432                                                        numElements,
1433                                                        E, allocType);
1434   }
1435 
1436   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1437   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1438 
1439   // Passing pointer through invariant.group.barrier to avoid propagation of
1440   // vptrs information which may be included in previous type.
1441   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1442       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1443       allocator->isReservedGlobalPlacementOperator())
1444     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1445                      result.getAlignment());
1446 
1447   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1448                      allocSizeWithoutCookie);
1449   if (E->isArray()) {
1450     // NewPtr is a pointer to the base element type.  If we're
1451     // allocating an array of arrays, we'll need to cast back to the
1452     // array pointer type.
1453     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1454     if (result.getType() != resultType)
1455       result = Builder.CreateBitCast(result, resultType);
1456   }
1457 
1458   // Deactivate the 'operator delete' cleanup if we finished
1459   // initialization.
1460   if (operatorDeleteCleanup.isValid()) {
1461     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1462     cleanupDominator->eraseFromParent();
1463   }
1464 
1465   llvm::Value *resultPtr = result.getPointer();
1466   if (nullCheck) {
1467     conditional.end(*this);
1468 
1469     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1470     EmitBlock(contBB);
1471 
1472     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1473     PHI->addIncoming(resultPtr, notNullBB);
1474     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1475                      nullCheckBB);
1476 
1477     resultPtr = PHI;
1478   }
1479 
1480   return resultPtr;
1481 }
1482 
1483 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1484                                      llvm::Value *Ptr,
1485                                      QualType DeleteTy) {
1486   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1487 
1488   const FunctionProtoType *DeleteFTy =
1489     DeleteFD->getType()->getAs<FunctionProtoType>();
1490 
1491   CallArgList DeleteArgs;
1492 
1493   // Check if we need to pass the size to the delete operator.
1494   llvm::Value *Size = nullptr;
1495   QualType SizeTy;
1496   if (DeleteFTy->getNumParams() == 2) {
1497     SizeTy = DeleteFTy->getParamType(1);
1498     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1499     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1500                                   DeleteTypeSize.getQuantity());
1501   }
1502 
1503   QualType ArgTy = DeleteFTy->getParamType(0);
1504   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1505   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1506 
1507   if (Size)
1508     DeleteArgs.add(RValue::get(Size), SizeTy);
1509 
1510   // Emit the call to delete.
1511   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1512 }
1513 
1514 namespace {
1515   /// Calls the given 'operator delete' on a single object.
1516   struct CallObjectDelete final : EHScopeStack::Cleanup {
1517     llvm::Value *Ptr;
1518     const FunctionDecl *OperatorDelete;
1519     QualType ElementType;
1520 
1521     CallObjectDelete(llvm::Value *Ptr,
1522                      const FunctionDecl *OperatorDelete,
1523                      QualType ElementType)
1524       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1525 
1526     void Emit(CodeGenFunction &CGF, Flags flags) override {
1527       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1528     }
1529   };
1530 }
1531 
1532 void
1533 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1534                                              llvm::Value *CompletePtr,
1535                                              QualType ElementType) {
1536   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1537                                         OperatorDelete, ElementType);
1538 }
1539 
1540 /// Emit the code for deleting a single object.
1541 static void EmitObjectDelete(CodeGenFunction &CGF,
1542                              const CXXDeleteExpr *DE,
1543                              Address Ptr,
1544                              QualType ElementType) {
1545   // Find the destructor for the type, if applicable.  If the
1546   // destructor is virtual, we'll just emit the vcall and return.
1547   const CXXDestructorDecl *Dtor = nullptr;
1548   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1549     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1550     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1551       Dtor = RD->getDestructor();
1552 
1553       if (Dtor->isVirtual()) {
1554         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1555                                                     Dtor);
1556         return;
1557       }
1558     }
1559   }
1560 
1561   // Make sure that we call delete even if the dtor throws.
1562   // This doesn't have to a conditional cleanup because we're going
1563   // to pop it off in a second.
1564   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1565   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1566                                             Ptr.getPointer(),
1567                                             OperatorDelete, ElementType);
1568 
1569   if (Dtor)
1570     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1571                               /*ForVirtualBase=*/false,
1572                               /*Delegating=*/false,
1573                               Ptr);
1574   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1575     switch (Lifetime) {
1576     case Qualifiers::OCL_None:
1577     case Qualifiers::OCL_ExplicitNone:
1578     case Qualifiers::OCL_Autoreleasing:
1579       break;
1580 
1581     case Qualifiers::OCL_Strong:
1582       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1583       break;
1584 
1585     case Qualifiers::OCL_Weak:
1586       CGF.EmitARCDestroyWeak(Ptr);
1587       break;
1588     }
1589   }
1590 
1591   CGF.PopCleanupBlock();
1592 }
1593 
1594 namespace {
1595   /// Calls the given 'operator delete' on an array of objects.
1596   struct CallArrayDelete final : EHScopeStack::Cleanup {
1597     llvm::Value *Ptr;
1598     const FunctionDecl *OperatorDelete;
1599     llvm::Value *NumElements;
1600     QualType ElementType;
1601     CharUnits CookieSize;
1602 
1603     CallArrayDelete(llvm::Value *Ptr,
1604                     const FunctionDecl *OperatorDelete,
1605                     llvm::Value *NumElements,
1606                     QualType ElementType,
1607                     CharUnits CookieSize)
1608       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1609         ElementType(ElementType), CookieSize(CookieSize) {}
1610 
1611     void Emit(CodeGenFunction &CGF, Flags flags) override {
1612       const FunctionProtoType *DeleteFTy =
1613         OperatorDelete->getType()->getAs<FunctionProtoType>();
1614       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1615 
1616       CallArgList Args;
1617 
1618       // Pass the pointer as the first argument.
1619       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1620       llvm::Value *DeletePtr
1621         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1622       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1623 
1624       // Pass the original requested size as the second argument.
1625       if (DeleteFTy->getNumParams() == 2) {
1626         QualType size_t = DeleteFTy->getParamType(1);
1627         llvm::IntegerType *SizeTy
1628           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1629 
1630         CharUnits ElementTypeSize =
1631           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1632 
1633         // The size of an element, multiplied by the number of elements.
1634         llvm::Value *Size
1635           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1636         if (NumElements)
1637           Size = CGF.Builder.CreateMul(Size, NumElements);
1638 
1639         // Plus the size of the cookie if applicable.
1640         if (!CookieSize.isZero()) {
1641           llvm::Value *CookieSizeV
1642             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1643           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1644         }
1645 
1646         Args.add(RValue::get(Size), size_t);
1647       }
1648 
1649       // Emit the call to delete.
1650       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1651     }
1652   };
1653 }
1654 
1655 /// Emit the code for deleting an array of objects.
1656 static void EmitArrayDelete(CodeGenFunction &CGF,
1657                             const CXXDeleteExpr *E,
1658                             Address deletedPtr,
1659                             QualType elementType) {
1660   llvm::Value *numElements = nullptr;
1661   llvm::Value *allocatedPtr = nullptr;
1662   CharUnits cookieSize;
1663   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1664                                       numElements, allocatedPtr, cookieSize);
1665 
1666   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1667 
1668   // Make sure that we call delete even if one of the dtors throws.
1669   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1670   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1671                                            allocatedPtr, operatorDelete,
1672                                            numElements, elementType,
1673                                            cookieSize);
1674 
1675   // Destroy the elements.
1676   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1677     assert(numElements && "no element count for a type with a destructor!");
1678 
1679     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1680     CharUnits elementAlign =
1681       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1682 
1683     llvm::Value *arrayBegin = deletedPtr.getPointer();
1684     llvm::Value *arrayEnd =
1685       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1686 
1687     // Note that it is legal to allocate a zero-length array, and we
1688     // can never fold the check away because the length should always
1689     // come from a cookie.
1690     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1691                          CGF.getDestroyer(dtorKind),
1692                          /*checkZeroLength*/ true,
1693                          CGF.needsEHCleanup(dtorKind));
1694   }
1695 
1696   // Pop the cleanup block.
1697   CGF.PopCleanupBlock();
1698 }
1699 
1700 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1701   const Expr *Arg = E->getArgument();
1702   Address Ptr = EmitPointerWithAlignment(Arg);
1703 
1704   // Null check the pointer.
1705   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1706   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1707 
1708   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1709 
1710   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1711   EmitBlock(DeleteNotNull);
1712 
1713   // We might be deleting a pointer to array.  If so, GEP down to the
1714   // first non-array element.
1715   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1716   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1717   if (DeleteTy->isConstantArrayType()) {
1718     llvm::Value *Zero = Builder.getInt32(0);
1719     SmallVector<llvm::Value*,8> GEP;
1720 
1721     GEP.push_back(Zero); // point at the outermost array
1722 
1723     // For each layer of array type we're pointing at:
1724     while (const ConstantArrayType *Arr
1725              = getContext().getAsConstantArrayType(DeleteTy)) {
1726       // 1. Unpeel the array type.
1727       DeleteTy = Arr->getElementType();
1728 
1729       // 2. GEP to the first element of the array.
1730       GEP.push_back(Zero);
1731     }
1732 
1733     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1734                   Ptr.getAlignment());
1735   }
1736 
1737   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1738 
1739   if (E->isArrayForm()) {
1740     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1741   } else {
1742     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1743   }
1744 
1745   EmitBlock(DeleteEnd);
1746 }
1747 
1748 static bool isGLValueFromPointerDeref(const Expr *E) {
1749   E = E->IgnoreParens();
1750 
1751   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1752     if (!CE->getSubExpr()->isGLValue())
1753       return false;
1754     return isGLValueFromPointerDeref(CE->getSubExpr());
1755   }
1756 
1757   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1758     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1759 
1760   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1761     if (BO->getOpcode() == BO_Comma)
1762       return isGLValueFromPointerDeref(BO->getRHS());
1763 
1764   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1765     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1766            isGLValueFromPointerDeref(ACO->getFalseExpr());
1767 
1768   // C++11 [expr.sub]p1:
1769   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1770   if (isa<ArraySubscriptExpr>(E))
1771     return true;
1772 
1773   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1774     if (UO->getOpcode() == UO_Deref)
1775       return true;
1776 
1777   return false;
1778 }
1779 
1780 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1781                                          llvm::Type *StdTypeInfoPtrTy) {
1782   // Get the vtable pointer.
1783   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1784 
1785   // C++ [expr.typeid]p2:
1786   //   If the glvalue expression is obtained by applying the unary * operator to
1787   //   a pointer and the pointer is a null pointer value, the typeid expression
1788   //   throws the std::bad_typeid exception.
1789   //
1790   // However, this paragraph's intent is not clear.  We choose a very generous
1791   // interpretation which implores us to consider comma operators, conditional
1792   // operators, parentheses and other such constructs.
1793   QualType SrcRecordTy = E->getType();
1794   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1795           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1796     llvm::BasicBlock *BadTypeidBlock =
1797         CGF.createBasicBlock("typeid.bad_typeid");
1798     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1799 
1800     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1801     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1802 
1803     CGF.EmitBlock(BadTypeidBlock);
1804     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1805     CGF.EmitBlock(EndBlock);
1806   }
1807 
1808   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1809                                         StdTypeInfoPtrTy);
1810 }
1811 
1812 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1813   llvm::Type *StdTypeInfoPtrTy =
1814     ConvertType(E->getType())->getPointerTo();
1815 
1816   if (E->isTypeOperand()) {
1817     llvm::Constant *TypeInfo =
1818         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1819     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1820   }
1821 
1822   // C++ [expr.typeid]p2:
1823   //   When typeid is applied to a glvalue expression whose type is a
1824   //   polymorphic class type, the result refers to a std::type_info object
1825   //   representing the type of the most derived object (that is, the dynamic
1826   //   type) to which the glvalue refers.
1827   if (E->isPotentiallyEvaluated())
1828     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1829                                 StdTypeInfoPtrTy);
1830 
1831   QualType OperandTy = E->getExprOperand()->getType();
1832   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1833                                StdTypeInfoPtrTy);
1834 }
1835 
1836 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1837                                           QualType DestTy) {
1838   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1839   if (DestTy->isPointerType())
1840     return llvm::Constant::getNullValue(DestLTy);
1841 
1842   /// C++ [expr.dynamic.cast]p9:
1843   ///   A failed cast to reference type throws std::bad_cast
1844   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1845     return nullptr;
1846 
1847   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1848   return llvm::UndefValue::get(DestLTy);
1849 }
1850 
1851 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1852                                               const CXXDynamicCastExpr *DCE) {
1853   CGM.EmitExplicitCastExprType(DCE, this);
1854   QualType DestTy = DCE->getTypeAsWritten();
1855 
1856   if (DCE->isAlwaysNull())
1857     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1858       return T;
1859 
1860   QualType SrcTy = DCE->getSubExpr()->getType();
1861 
1862   // C++ [expr.dynamic.cast]p7:
1863   //   If T is "pointer to cv void," then the result is a pointer to the most
1864   //   derived object pointed to by v.
1865   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1866 
1867   bool isDynamicCastToVoid;
1868   QualType SrcRecordTy;
1869   QualType DestRecordTy;
1870   if (DestPTy) {
1871     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1872     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1873     DestRecordTy = DestPTy->getPointeeType();
1874   } else {
1875     isDynamicCastToVoid = false;
1876     SrcRecordTy = SrcTy;
1877     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1878   }
1879 
1880   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1881 
1882   // C++ [expr.dynamic.cast]p4:
1883   //   If the value of v is a null pointer value in the pointer case, the result
1884   //   is the null pointer value of type T.
1885   bool ShouldNullCheckSrcValue =
1886       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1887                                                          SrcRecordTy);
1888 
1889   llvm::BasicBlock *CastNull = nullptr;
1890   llvm::BasicBlock *CastNotNull = nullptr;
1891   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1892 
1893   if (ShouldNullCheckSrcValue) {
1894     CastNull = createBasicBlock("dynamic_cast.null");
1895     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1896 
1897     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
1898     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1899     EmitBlock(CastNotNull);
1900   }
1901 
1902   llvm::Value *Value;
1903   if (isDynamicCastToVoid) {
1904     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
1905                                                   DestTy);
1906   } else {
1907     assert(DestRecordTy->isRecordType() &&
1908            "destination type must be a record type!");
1909     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
1910                                                 DestTy, DestRecordTy, CastEnd);
1911     CastNotNull = Builder.GetInsertBlock();
1912   }
1913 
1914   if (ShouldNullCheckSrcValue) {
1915     EmitBranch(CastEnd);
1916 
1917     EmitBlock(CastNull);
1918     EmitBranch(CastEnd);
1919   }
1920 
1921   EmitBlock(CastEnd);
1922 
1923   if (ShouldNullCheckSrcValue) {
1924     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1925     PHI->addIncoming(Value, CastNotNull);
1926     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1927 
1928     Value = PHI;
1929   }
1930 
1931   return Value;
1932 }
1933 
1934 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1935   RunCleanupsScope Scope(*this);
1936   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
1937 
1938   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1939   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1940                                                e = E->capture_init_end();
1941        i != e; ++i, ++CurField) {
1942     // Emit initialization
1943     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1944     if (CurField->hasCapturedVLAType()) {
1945       auto VAT = CurField->getCapturedVLAType();
1946       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1947     } else {
1948       ArrayRef<VarDecl *> ArrayIndexes;
1949       if (CurField->getType()->isArrayType())
1950         ArrayIndexes = E->getCaptureInitIndexVars(i);
1951       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1952     }
1953   }
1954 }
1955