1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
28     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
29     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
30     const CallExpr *CE) {
31   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
32          isa<CXXOperatorCallExpr>(CE));
33   assert(MD->isInstance() &&
34          "Trying to emit a member or operator call expr on a static method!");
35 
36   // C++11 [class.mfct.non-static]p2:
37   //   If a non-static member function of a class X is called for an object that
38   //   is not of type X, or of a type derived from X, the behavior is undefined.
39   SourceLocation CallLoc;
40   if (CE)
41     CallLoc = CE->getExprLoc();
42   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
43                                             : TCK_MemberCall,
44                 CallLoc, This, getContext().getRecordType(MD->getParent()));
45 
46   CallArgList Args;
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   CallExpr::const_arg_iterator ArgBeg, ArgEnd;
61   if (CE == nullptr) {
62     ArgBeg = ArgEnd = nullptr;
63   } else if (auto OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
64     // Special case: skip first argument of CXXOperatorCall (it is "this").
65     ArgBeg = OCE->arg_begin() + 1;
66     ArgEnd = OCE->arg_end();
67   } else {
68     ArgBeg = CE->arg_begin();
69     ArgEnd = CE->arg_end();
70   }
71   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
72 
73   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
74                   Callee, ReturnValue, Args, MD);
75 }
76 
77 static CXXRecordDecl *getCXXRecord(const Expr *E) {
78   QualType T = E->getType();
79   if (const PointerType *PTy = T->getAs<PointerType>())
80     T = PTy->getPointeeType();
81   const RecordType *Ty = T->castAs<RecordType>();
82   return cast<CXXRecordDecl>(Ty->getDecl());
83 }
84 
85 // Note: This function also emit constructor calls to support a MSVC
86 // extensions allowing explicit constructor function call.
87 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
88                                               ReturnValueSlot ReturnValue) {
89   const Expr *callee = CE->getCallee()->IgnoreParens();
90 
91   if (isa<BinaryOperator>(callee))
92     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
93 
94   const MemberExpr *ME = cast<MemberExpr>(callee);
95   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
96 
97   if (MD->isStatic()) {
98     // The method is static, emit it as we would a regular call.
99     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
100     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
101                     ReturnValue);
102   }
103 
104   // Compute the object pointer.
105   const Expr *Base = ME->getBase();
106   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
107 
108   const CXXMethodDecl *DevirtualizedMethod = nullptr;
109   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
110     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
111     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
112     assert(DevirtualizedMethod);
113     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
114     const Expr *Inner = Base->ignoreParenBaseCasts();
115     if (getCXXRecord(Inner) == DevirtualizedClass)
116       // If the class of the Inner expression is where the dynamic method
117       // is defined, build the this pointer from it.
118       Base = Inner;
119     else if (getCXXRecord(Base) != DevirtualizedClass) {
120       // If the method is defined in a class that is not the best dynamic
121       // one or the one of the full expression, we would have to build
122       // a derived-to-base cast to compute the correct this pointer, but
123       // we don't have support for that yet, so do a virtual call.
124       DevirtualizedMethod = nullptr;
125     }
126     // If the return types are not the same, this might be a case where more
127     // code needs to run to compensate for it. For example, the derived
128     // method might return a type that inherits form from the return
129     // type of MD and has a prefix.
130     // For now we just avoid devirtualizing these covariant cases.
131     if (DevirtualizedMethod &&
132         DevirtualizedMethod->getReturnType().getCanonicalType() !=
133             MD->getReturnType().getCanonicalType())
134       DevirtualizedMethod = nullptr;
135   }
136 
137   llvm::Value *This;
138   if (ME->isArrow())
139     This = EmitScalarExpr(Base);
140   else
141     This = EmitLValue(Base).getAddress();
142 
143 
144   if (MD->isTrivial()) {
145     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
146     if (isa<CXXConstructorDecl>(MD) &&
147         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
148       return RValue::get(nullptr);
149 
150     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
151       // We don't like to generate the trivial copy/move assignment operator
152       // when it isn't necessary; just produce the proper effect here.
153       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
154       EmitAggregateAssign(This, RHS, CE->getType());
155       return RValue::get(This);
156     }
157 
158     if (isa<CXXConstructorDecl>(MD) &&
159         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
160       // Trivial move and copy ctor are the same.
161       assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
162       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
163       EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
164       return RValue::get(This);
165     }
166     llvm_unreachable("unknown trivial member function");
167   }
168 
169   // Compute the function type we're calling.
170   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
171   const CGFunctionInfo *FInfo = nullptr;
172   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
173     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
174                                                  Dtor_Complete);
175   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
176     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
177                                                              Ctor_Complete);
178   else
179     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
180 
181   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
182 
183   // C++ [class.virtual]p12:
184   //   Explicit qualification with the scope operator (5.1) suppresses the
185   //   virtual call mechanism.
186   //
187   // We also don't emit a virtual call if the base expression has a record type
188   // because then we know what the type is.
189   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
190   llvm::Value *Callee;
191 
192   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
193     assert(CE->arg_begin() == CE->arg_end() &&
194            "Destructor shouldn't have explicit parameters");
195     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
196     if (UseVirtualCall) {
197       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
198                                                 This, CE);
199     } else {
200       if (getLangOpts().AppleKext &&
201           MD->isVirtual() &&
202           ME->hasQualifier())
203         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
204       else if (!DevirtualizedMethod)
205         Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
206       else {
207         const CXXDestructorDecl *DDtor =
208           cast<CXXDestructorDecl>(DevirtualizedMethod);
209         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
210       }
211       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
212                                   /*ImplicitParam=*/nullptr, QualType(), CE);
213     }
214     return RValue::get(nullptr);
215   }
216 
217   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
218     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
219   } else if (UseVirtualCall) {
220     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
221   } else {
222     if (getLangOpts().AppleKext &&
223         MD->isVirtual() &&
224         ME->hasQualifier())
225       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
226     else if (!DevirtualizedMethod)
227       Callee = CGM.GetAddrOfFunction(MD, Ty);
228     else {
229       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
230     }
231   }
232 
233   if (MD->isVirtual()) {
234     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
235         *this, MD, This, UseVirtualCall);
236   }
237 
238   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
239                                      /*ImplicitParam=*/nullptr, QualType(), CE);
240 }
241 
242 RValue
243 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
244                                               ReturnValueSlot ReturnValue) {
245   const BinaryOperator *BO =
246       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
247   const Expr *BaseExpr = BO->getLHS();
248   const Expr *MemFnExpr = BO->getRHS();
249 
250   const MemberPointerType *MPT =
251     MemFnExpr->getType()->castAs<MemberPointerType>();
252 
253   const FunctionProtoType *FPT =
254     MPT->getPointeeType()->castAs<FunctionProtoType>();
255   const CXXRecordDecl *RD =
256     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
257 
258   // Get the member function pointer.
259   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
260 
261   // Emit the 'this' pointer.
262   llvm::Value *This;
263 
264   if (BO->getOpcode() == BO_PtrMemI)
265     This = EmitScalarExpr(BaseExpr);
266   else
267     This = EmitLValue(BaseExpr).getAddress();
268 
269   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
270                 QualType(MPT->getClass(), 0));
271 
272   // Ask the ABI to load the callee.  Note that This is modified.
273   llvm::Value *Callee =
274     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
275 
276   CallArgList Args;
277 
278   QualType ThisType =
279     getContext().getPointerType(getContext().getTagDeclType(RD));
280 
281   // Push the this ptr.
282   Args.add(RValue::get(This), ThisType);
283 
284   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
285 
286   // And the rest of the call args
287   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
288   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
289                   Callee, ReturnValue, Args);
290 }
291 
292 RValue
293 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
294                                                const CXXMethodDecl *MD,
295                                                ReturnValueSlot ReturnValue) {
296   assert(MD->isInstance() &&
297          "Trying to emit a member call expr on a static method!");
298   LValue LV = EmitLValue(E->getArg(0));
299   llvm::Value *This = LV.getAddress();
300 
301   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
302       MD->isTrivial()) {
303     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
304     QualType Ty = E->getType();
305     EmitAggregateAssign(This, Src, Ty);
306     return RValue::get(This);
307   }
308 
309   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
310   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
311                                      /*ImplicitParam=*/nullptr, QualType(), E);
312 }
313 
314 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
315                                                ReturnValueSlot ReturnValue) {
316   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
317 }
318 
319 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
320                                             llvm::Value *DestPtr,
321                                             const CXXRecordDecl *Base) {
322   if (Base->isEmpty())
323     return;
324 
325   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
326 
327   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
328   CharUnits Size = Layout.getNonVirtualSize();
329   CharUnits Align = Layout.getNonVirtualAlignment();
330 
331   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
332 
333   // If the type contains a pointer to data member we can't memset it to zero.
334   // Instead, create a null constant and copy it to the destination.
335   // TODO: there are other patterns besides zero that we can usefully memset,
336   // like -1, which happens to be the pattern used by member-pointers.
337   // TODO: isZeroInitializable can be over-conservative in the case where a
338   // virtual base contains a member pointer.
339   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
340     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
341 
342     llvm::GlobalVariable *NullVariable =
343       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
344                                /*isConstant=*/true,
345                                llvm::GlobalVariable::PrivateLinkage,
346                                NullConstant, Twine());
347     NullVariable->setAlignment(Align.getQuantity());
348     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
349 
350     // Get and call the appropriate llvm.memcpy overload.
351     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
352     return;
353   }
354 
355   // Otherwise, just memset the whole thing to zero.  This is legal
356   // because in LLVM, all default initializers (other than the ones we just
357   // handled above) are guaranteed to have a bit pattern of all zeros.
358   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
359                            Align.getQuantity());
360 }
361 
362 void
363 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
364                                       AggValueSlot Dest) {
365   assert(!Dest.isIgnored() && "Must have a destination!");
366   const CXXConstructorDecl *CD = E->getConstructor();
367 
368   // If we require zero initialization before (or instead of) calling the
369   // constructor, as can be the case with a non-user-provided default
370   // constructor, emit the zero initialization now, unless destination is
371   // already zeroed.
372   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
373     switch (E->getConstructionKind()) {
374     case CXXConstructExpr::CK_Delegating:
375     case CXXConstructExpr::CK_Complete:
376       EmitNullInitialization(Dest.getAddr(), E->getType());
377       break;
378     case CXXConstructExpr::CK_VirtualBase:
379     case CXXConstructExpr::CK_NonVirtualBase:
380       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
381       break;
382     }
383   }
384 
385   // If this is a call to a trivial default constructor, do nothing.
386   if (CD->isTrivial() && CD->isDefaultConstructor())
387     return;
388 
389   // Elide the constructor if we're constructing from a temporary.
390   // The temporary check is required because Sema sets this on NRVO
391   // returns.
392   if (getLangOpts().ElideConstructors && E->isElidable()) {
393     assert(getContext().hasSameUnqualifiedType(E->getType(),
394                                                E->getArg(0)->getType()));
395     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
396       EmitAggExpr(E->getArg(0), Dest);
397       return;
398     }
399   }
400 
401   if (const ConstantArrayType *arrayType
402         = getContext().getAsConstantArrayType(E->getType())) {
403     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
404   } else {
405     CXXCtorType Type = Ctor_Complete;
406     bool ForVirtualBase = false;
407     bool Delegating = false;
408 
409     switch (E->getConstructionKind()) {
410      case CXXConstructExpr::CK_Delegating:
411       // We should be emitting a constructor; GlobalDecl will assert this
412       Type = CurGD.getCtorType();
413       Delegating = true;
414       break;
415 
416      case CXXConstructExpr::CK_Complete:
417       Type = Ctor_Complete;
418       break;
419 
420      case CXXConstructExpr::CK_VirtualBase:
421       ForVirtualBase = true;
422       // fall-through
423 
424      case CXXConstructExpr::CK_NonVirtualBase:
425       Type = Ctor_Base;
426     }
427 
428     // Call the constructor.
429     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
430                            E);
431   }
432 }
433 
434 void
435 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
436                                             llvm::Value *Src,
437                                             const Expr *Exp) {
438   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
439     Exp = E->getSubExpr();
440   assert(isa<CXXConstructExpr>(Exp) &&
441          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
442   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
443   const CXXConstructorDecl *CD = E->getConstructor();
444   RunCleanupsScope Scope(*this);
445 
446   // If we require zero initialization before (or instead of) calling the
447   // constructor, as can be the case with a non-user-provided default
448   // constructor, emit the zero initialization now.
449   // FIXME. Do I still need this for a copy ctor synthesis?
450   if (E->requiresZeroInitialization())
451     EmitNullInitialization(Dest, E->getType());
452 
453   assert(!getContext().getAsConstantArrayType(E->getType())
454          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
455   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
456 }
457 
458 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
459                                         const CXXNewExpr *E) {
460   if (!E->isArray())
461     return CharUnits::Zero();
462 
463   // No cookie is required if the operator new[] being used is the
464   // reserved placement operator new[].
465   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
466     return CharUnits::Zero();
467 
468   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
469 }
470 
471 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
472                                         const CXXNewExpr *e,
473                                         unsigned minElements,
474                                         llvm::Value *&numElements,
475                                         llvm::Value *&sizeWithoutCookie) {
476   QualType type = e->getAllocatedType();
477 
478   if (!e->isArray()) {
479     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
480     sizeWithoutCookie
481       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
482     return sizeWithoutCookie;
483   }
484 
485   // The width of size_t.
486   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
487 
488   // Figure out the cookie size.
489   llvm::APInt cookieSize(sizeWidth,
490                          CalculateCookiePadding(CGF, e).getQuantity());
491 
492   // Emit the array size expression.
493   // We multiply the size of all dimensions for NumElements.
494   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
495   numElements = CGF.EmitScalarExpr(e->getArraySize());
496   assert(isa<llvm::IntegerType>(numElements->getType()));
497 
498   // The number of elements can be have an arbitrary integer type;
499   // essentially, we need to multiply it by a constant factor, add a
500   // cookie size, and verify that the result is representable as a
501   // size_t.  That's just a gloss, though, and it's wrong in one
502   // important way: if the count is negative, it's an error even if
503   // the cookie size would bring the total size >= 0.
504   bool isSigned
505     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
506   llvm::IntegerType *numElementsType
507     = cast<llvm::IntegerType>(numElements->getType());
508   unsigned numElementsWidth = numElementsType->getBitWidth();
509 
510   // Compute the constant factor.
511   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
512   while (const ConstantArrayType *CAT
513              = CGF.getContext().getAsConstantArrayType(type)) {
514     type = CAT->getElementType();
515     arraySizeMultiplier *= CAT->getSize();
516   }
517 
518   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
519   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
520   typeSizeMultiplier *= arraySizeMultiplier;
521 
522   // This will be a size_t.
523   llvm::Value *size;
524 
525   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
526   // Don't bloat the -O0 code.
527   if (llvm::ConstantInt *numElementsC =
528         dyn_cast<llvm::ConstantInt>(numElements)) {
529     const llvm::APInt &count = numElementsC->getValue();
530 
531     bool hasAnyOverflow = false;
532 
533     // If 'count' was a negative number, it's an overflow.
534     if (isSigned && count.isNegative())
535       hasAnyOverflow = true;
536 
537     // We want to do all this arithmetic in size_t.  If numElements is
538     // wider than that, check whether it's already too big, and if so,
539     // overflow.
540     else if (numElementsWidth > sizeWidth &&
541              numElementsWidth - sizeWidth > count.countLeadingZeros())
542       hasAnyOverflow = true;
543 
544     // Okay, compute a count at the right width.
545     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
546 
547     // If there is a brace-initializer, we cannot allocate fewer elements than
548     // there are initializers. If we do, that's treated like an overflow.
549     if (adjustedCount.ult(minElements))
550       hasAnyOverflow = true;
551 
552     // Scale numElements by that.  This might overflow, but we don't
553     // care because it only overflows if allocationSize does, too, and
554     // if that overflows then we shouldn't use this.
555     numElements = llvm::ConstantInt::get(CGF.SizeTy,
556                                          adjustedCount * arraySizeMultiplier);
557 
558     // Compute the size before cookie, and track whether it overflowed.
559     bool overflow;
560     llvm::APInt allocationSize
561       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
562     hasAnyOverflow |= overflow;
563 
564     // Add in the cookie, and check whether it's overflowed.
565     if (cookieSize != 0) {
566       // Save the current size without a cookie.  This shouldn't be
567       // used if there was overflow.
568       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
569 
570       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
571       hasAnyOverflow |= overflow;
572     }
573 
574     // On overflow, produce a -1 so operator new will fail.
575     if (hasAnyOverflow) {
576       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
577     } else {
578       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
579     }
580 
581   // Otherwise, we might need to use the overflow intrinsics.
582   } else {
583     // There are up to five conditions we need to test for:
584     // 1) if isSigned, we need to check whether numElements is negative;
585     // 2) if numElementsWidth > sizeWidth, we need to check whether
586     //   numElements is larger than something representable in size_t;
587     // 3) if minElements > 0, we need to check whether numElements is smaller
588     //    than that.
589     // 4) we need to compute
590     //      sizeWithoutCookie := numElements * typeSizeMultiplier
591     //    and check whether it overflows; and
592     // 5) if we need a cookie, we need to compute
593     //      size := sizeWithoutCookie + cookieSize
594     //    and check whether it overflows.
595 
596     llvm::Value *hasOverflow = nullptr;
597 
598     // If numElementsWidth > sizeWidth, then one way or another, we're
599     // going to have to do a comparison for (2), and this happens to
600     // take care of (1), too.
601     if (numElementsWidth > sizeWidth) {
602       llvm::APInt threshold(numElementsWidth, 1);
603       threshold <<= sizeWidth;
604 
605       llvm::Value *thresholdV
606         = llvm::ConstantInt::get(numElementsType, threshold);
607 
608       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
609       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
610 
611     // Otherwise, if we're signed, we want to sext up to size_t.
612     } else if (isSigned) {
613       if (numElementsWidth < sizeWidth)
614         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
615 
616       // If there's a non-1 type size multiplier, then we can do the
617       // signedness check at the same time as we do the multiply
618       // because a negative number times anything will cause an
619       // unsigned overflow.  Otherwise, we have to do it here. But at least
620       // in this case, we can subsume the >= minElements check.
621       if (typeSizeMultiplier == 1)
622         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
623                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
624 
625     // Otherwise, zext up to size_t if necessary.
626     } else if (numElementsWidth < sizeWidth) {
627       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
628     }
629 
630     assert(numElements->getType() == CGF.SizeTy);
631 
632     if (minElements) {
633       // Don't allow allocation of fewer elements than we have initializers.
634       if (!hasOverflow) {
635         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
636                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
637       } else if (numElementsWidth > sizeWidth) {
638         // The other existing overflow subsumes this check.
639         // We do an unsigned comparison, since any signed value < -1 is
640         // taken care of either above or below.
641         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
642                           CGF.Builder.CreateICmpULT(numElements,
643                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
644       }
645     }
646 
647     size = numElements;
648 
649     // Multiply by the type size if necessary.  This multiplier
650     // includes all the factors for nested arrays.
651     //
652     // This step also causes numElements to be scaled up by the
653     // nested-array factor if necessary.  Overflow on this computation
654     // can be ignored because the result shouldn't be used if
655     // allocation fails.
656     if (typeSizeMultiplier != 1) {
657       llvm::Value *umul_with_overflow
658         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
659 
660       llvm::Value *tsmV =
661         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
662       llvm::Value *result =
663         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
664 
665       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
666       if (hasOverflow)
667         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
668       else
669         hasOverflow = overflowed;
670 
671       size = CGF.Builder.CreateExtractValue(result, 0);
672 
673       // Also scale up numElements by the array size multiplier.
674       if (arraySizeMultiplier != 1) {
675         // If the base element type size is 1, then we can re-use the
676         // multiply we just did.
677         if (typeSize.isOne()) {
678           assert(arraySizeMultiplier == typeSizeMultiplier);
679           numElements = size;
680 
681         // Otherwise we need a separate multiply.
682         } else {
683           llvm::Value *asmV =
684             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
685           numElements = CGF.Builder.CreateMul(numElements, asmV);
686         }
687       }
688     } else {
689       // numElements doesn't need to be scaled.
690       assert(arraySizeMultiplier == 1);
691     }
692 
693     // Add in the cookie size if necessary.
694     if (cookieSize != 0) {
695       sizeWithoutCookie = size;
696 
697       llvm::Value *uadd_with_overflow
698         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
699 
700       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
701       llvm::Value *result =
702         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
703 
704       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
705       if (hasOverflow)
706         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
707       else
708         hasOverflow = overflowed;
709 
710       size = CGF.Builder.CreateExtractValue(result, 0);
711     }
712 
713     // If we had any possibility of dynamic overflow, make a select to
714     // overwrite 'size' with an all-ones value, which should cause
715     // operator new to throw.
716     if (hasOverflow)
717       size = CGF.Builder.CreateSelect(hasOverflow,
718                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
719                                       size);
720   }
721 
722   if (cookieSize == 0)
723     sizeWithoutCookie = size;
724   else
725     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
726 
727   return size;
728 }
729 
730 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
731                                     QualType AllocType, llvm::Value *NewPtr) {
732   // FIXME: Refactor with EmitExprAsInit.
733   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
734   switch (CGF.getEvaluationKind(AllocType)) {
735   case TEK_Scalar:
736     CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType,
737                                                          Alignment),
738                        false);
739     return;
740   case TEK_Complex:
741     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
742                                                            Alignment),
743                                   /*isInit*/ true);
744     return;
745   case TEK_Aggregate: {
746     AggValueSlot Slot
747       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
748                               AggValueSlot::IsDestructed,
749                               AggValueSlot::DoesNotNeedGCBarriers,
750                               AggValueSlot::IsNotAliased);
751     CGF.EmitAggExpr(Init, Slot);
752     return;
753   }
754   }
755   llvm_unreachable("bad evaluation kind");
756 }
757 
758 void
759 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
760                                          QualType ElementType,
761                                          llvm::Value *BeginPtr,
762                                          llvm::Value *NumElements,
763                                          llvm::Value *AllocSizeWithoutCookie) {
764   // If we have a type with trivial initialization and no initializer,
765   // there's nothing to do.
766   if (!E->hasInitializer())
767     return;
768 
769   llvm::Value *CurPtr = BeginPtr;
770 
771   unsigned InitListElements = 0;
772 
773   const Expr *Init = E->getInitializer();
774   llvm::AllocaInst *EndOfInit = nullptr;
775   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
776   EHScopeStack::stable_iterator Cleanup;
777   llvm::Instruction *CleanupDominator = nullptr;
778 
779   // If the initializer is an initializer list, first do the explicit elements.
780   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
781     InitListElements = ILE->getNumInits();
782 
783     // If this is a multi-dimensional array new, we will initialize multiple
784     // elements with each init list element.
785     QualType AllocType = E->getAllocatedType();
786     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
787             AllocType->getAsArrayTypeUnsafe())) {
788       unsigned AS = CurPtr->getType()->getPointerAddressSpace();
789       llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
790       CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
791       InitListElements *= getContext().getConstantArrayElementCount(CAT);
792     }
793 
794     // Enter a partial-destruction Cleanup if necessary.
795     if (needsEHCleanup(DtorKind)) {
796       // In principle we could tell the Cleanup where we are more
797       // directly, but the control flow can get so varied here that it
798       // would actually be quite complex.  Therefore we go through an
799       // alloca.
800       EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
801       CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
802       pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
803                                        getDestroyer(DtorKind));
804       Cleanup = EHStack.stable_begin();
805     }
806 
807     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
808       // Tell the cleanup that it needs to destroy up to this
809       // element.  TODO: some of these stores can be trivially
810       // observed to be unnecessary.
811       if (EndOfInit)
812         Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
813                             EndOfInit);
814       // FIXME: If the last initializer is an incomplete initializer list for
815       // an array, and we have an array filler, we can fold together the two
816       // initialization loops.
817       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
818                               ILE->getInit(i)->getType(), CurPtr);
819       CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next");
820     }
821 
822     // The remaining elements are filled with the array filler expression.
823     Init = ILE->getArrayFiller();
824 
825     // Extract the initializer for the individual array elements by pulling
826     // out the array filler from all the nested initializer lists. This avoids
827     // generating a nested loop for the initialization.
828     while (Init && Init->getType()->isConstantArrayType()) {
829       auto *SubILE = dyn_cast<InitListExpr>(Init);
830       if (!SubILE)
831         break;
832       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
833       Init = SubILE->getArrayFiller();
834     }
835 
836     // Switch back to initializing one base element at a time.
837     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
838   }
839 
840   // Attempt to perform zero-initialization using memset.
841   auto TryMemsetInitialization = [&]() -> bool {
842     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
843     // we can initialize with a memset to -1.
844     if (!CGM.getTypes().isZeroInitializable(ElementType))
845       return false;
846 
847     // Optimization: since zero initialization will just set the memory
848     // to all zeroes, generate a single memset to do it in one shot.
849 
850     // Subtract out the size of any elements we've already initialized.
851     auto *RemainingSize = AllocSizeWithoutCookie;
852     if (InitListElements) {
853       // We know this can't overflow; we check this when doing the allocation.
854       auto *InitializedSize = llvm::ConstantInt::get(
855           RemainingSize->getType(),
856           getContext().getTypeSizeInChars(ElementType).getQuantity() *
857               InitListElements);
858       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
859     }
860 
861     // Create the memset.
862     CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
863     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
864                          Alignment.getQuantity(), false);
865     return true;
866   };
867 
868   // If all elements have already been initialized, skip any further
869   // initialization.
870   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
871   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
872     // If there was a Cleanup, deactivate it.
873     if (CleanupDominator)
874       DeactivateCleanupBlock(Cleanup, CleanupDominator);
875     return;
876   }
877 
878   assert(Init && "have trailing elements to initialize but no initializer");
879 
880   // If this is a constructor call, try to optimize it out, and failing that
881   // emit a single loop to initialize all remaining elements.
882   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
883     CXXConstructorDecl *Ctor = CCE->getConstructor();
884     if (Ctor->isTrivial()) {
885       // If new expression did not specify value-initialization, then there
886       // is no initialization.
887       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
888         return;
889 
890       if (TryMemsetInitialization())
891         return;
892     }
893 
894     // Store the new Cleanup position for irregular Cleanups.
895     //
896     // FIXME: Share this cleanup with the constructor call emission rather than
897     // having it create a cleanup of its own.
898     if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
899 
900     // Emit a constructor call loop to initialize the remaining elements.
901     if (InitListElements)
902       NumElements = Builder.CreateSub(
903           NumElements,
904           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
905     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
906                                CCE->requiresZeroInitialization());
907     return;
908   }
909 
910   // If this is value-initialization, we can usually use memset.
911   ImplicitValueInitExpr IVIE(ElementType);
912   if (isa<ImplicitValueInitExpr>(Init)) {
913     if (TryMemsetInitialization())
914       return;
915 
916     // Switch to an ImplicitValueInitExpr for the element type. This handles
917     // only one case: multidimensional array new of pointers to members. In
918     // all other cases, we already have an initializer for the array element.
919     Init = &IVIE;
920   }
921 
922   // At this point we should have found an initializer for the individual
923   // elements of the array.
924   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
925          "got wrong type of element to initialize");
926 
927   // If we have an empty initializer list, we can usually use memset.
928   if (auto *ILE = dyn_cast<InitListExpr>(Init))
929     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
930       return;
931 
932   // Create the loop blocks.
933   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
934   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
935   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
936 
937   // Find the end of the array, hoisted out of the loop.
938   llvm::Value *EndPtr =
939     Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
940 
941   // If the number of elements isn't constant, we have to now check if there is
942   // anything left to initialize.
943   if (!ConstNum) {
944     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
945                                                 "array.isempty");
946     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
947   }
948 
949   // Enter the loop.
950   EmitBlock(LoopBB);
951 
952   // Set up the current-element phi.
953   llvm::PHINode *CurPtrPhi =
954     Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
955   CurPtrPhi->addIncoming(CurPtr, EntryBB);
956   CurPtr = CurPtrPhi;
957 
958   // Store the new Cleanup position for irregular Cleanups.
959   if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
960 
961   // Enter a partial-destruction Cleanup if necessary.
962   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
963     pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
964                                    getDestroyer(DtorKind));
965     Cleanup = EHStack.stable_begin();
966     CleanupDominator = Builder.CreateUnreachable();
967   }
968 
969   // Emit the initializer into this element.
970   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
971 
972   // Leave the Cleanup if we entered one.
973   if (CleanupDominator) {
974     DeactivateCleanupBlock(Cleanup, CleanupDominator);
975     CleanupDominator->eraseFromParent();
976   }
977 
978   // Advance to the next element by adjusting the pointer type as necessary.
979   llvm::Value *NextPtr =
980       Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next");
981 
982   // Check whether we've gotten to the end of the array and, if so,
983   // exit the loop.
984   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
985   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
986   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
987 
988   EmitBlock(ContBB);
989 }
990 
991 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
992                                QualType ElementType,
993                                llvm::Value *NewPtr,
994                                llvm::Value *NumElements,
995                                llvm::Value *AllocSizeWithoutCookie) {
996   if (E->isArray())
997     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements,
998                                 AllocSizeWithoutCookie);
999   else if (const Expr *Init = E->getInitializer())
1000     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1001 }
1002 
1003 /// Emit a call to an operator new or operator delete function, as implicitly
1004 /// created by new-expressions and delete-expressions.
1005 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1006                                 const FunctionDecl *Callee,
1007                                 const FunctionProtoType *CalleeType,
1008                                 const CallArgList &Args) {
1009   llvm::Instruction *CallOrInvoke;
1010   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1011   RValue RV =
1012       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
1013                    CalleeAddr, ReturnValueSlot(), Args,
1014                    Callee, &CallOrInvoke);
1015 
1016   /// C++1y [expr.new]p10:
1017   ///   [In a new-expression,] an implementation is allowed to omit a call
1018   ///   to a replaceable global allocation function.
1019   ///
1020   /// We model such elidable calls with the 'builtin' attribute.
1021   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1022   if (Callee->isReplaceableGlobalAllocationFunction() &&
1023       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1024     // FIXME: Add addAttribute to CallSite.
1025     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1026       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1027                        llvm::Attribute::Builtin);
1028     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1029       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1030                        llvm::Attribute::Builtin);
1031     else
1032       llvm_unreachable("unexpected kind of call instruction");
1033   }
1034 
1035   return RV;
1036 }
1037 
1038 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1039                                                  const Expr *Arg,
1040                                                  bool IsDelete) {
1041   CallArgList Args;
1042   const Stmt *ArgS = Arg;
1043   EmitCallArgs(Args, *Type->param_type_begin(),
1044                ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1045   // Find the allocation or deallocation function that we're calling.
1046   ASTContext &Ctx = getContext();
1047   DeclarationName Name = Ctx.DeclarationNames
1048       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1049   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1050     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1051       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1052         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1053   llvm_unreachable("predeclared global operator new/delete is missing");
1054 }
1055 
1056 namespace {
1057   /// A cleanup to call the given 'operator delete' function upon
1058   /// abnormal exit from a new expression.
1059   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1060     size_t NumPlacementArgs;
1061     const FunctionDecl *OperatorDelete;
1062     llvm::Value *Ptr;
1063     llvm::Value *AllocSize;
1064 
1065     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1066 
1067   public:
1068     static size_t getExtraSize(size_t NumPlacementArgs) {
1069       return NumPlacementArgs * sizeof(RValue);
1070     }
1071 
1072     CallDeleteDuringNew(size_t NumPlacementArgs,
1073                         const FunctionDecl *OperatorDelete,
1074                         llvm::Value *Ptr,
1075                         llvm::Value *AllocSize)
1076       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1077         Ptr(Ptr), AllocSize(AllocSize) {}
1078 
1079     void setPlacementArg(unsigned I, RValue Arg) {
1080       assert(I < NumPlacementArgs && "index out of range");
1081       getPlacementArgs()[I] = Arg;
1082     }
1083 
1084     void Emit(CodeGenFunction &CGF, Flags flags) override {
1085       const FunctionProtoType *FPT
1086         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1087       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1088              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1089 
1090       CallArgList DeleteArgs;
1091 
1092       // The first argument is always a void*.
1093       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1094       DeleteArgs.add(RValue::get(Ptr), *AI++);
1095 
1096       // A member 'operator delete' can take an extra 'size_t' argument.
1097       if (FPT->getNumParams() == NumPlacementArgs + 2)
1098         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1099 
1100       // Pass the rest of the arguments, which must match exactly.
1101       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1102         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1103 
1104       // Call 'operator delete'.
1105       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1106     }
1107   };
1108 
1109   /// A cleanup to call the given 'operator delete' function upon
1110   /// abnormal exit from a new expression when the new expression is
1111   /// conditional.
1112   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1113     size_t NumPlacementArgs;
1114     const FunctionDecl *OperatorDelete;
1115     DominatingValue<RValue>::saved_type Ptr;
1116     DominatingValue<RValue>::saved_type AllocSize;
1117 
1118     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1119       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1120     }
1121 
1122   public:
1123     static size_t getExtraSize(size_t NumPlacementArgs) {
1124       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1125     }
1126 
1127     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1128                                    const FunctionDecl *OperatorDelete,
1129                                    DominatingValue<RValue>::saved_type Ptr,
1130                               DominatingValue<RValue>::saved_type AllocSize)
1131       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1132         Ptr(Ptr), AllocSize(AllocSize) {}
1133 
1134     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1135       assert(I < NumPlacementArgs && "index out of range");
1136       getPlacementArgs()[I] = Arg;
1137     }
1138 
1139     void Emit(CodeGenFunction &CGF, Flags flags) override {
1140       const FunctionProtoType *FPT
1141         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1142       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1143              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1144 
1145       CallArgList DeleteArgs;
1146 
1147       // The first argument is always a void*.
1148       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1149       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1150 
1151       // A member 'operator delete' can take an extra 'size_t' argument.
1152       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1153         RValue RV = AllocSize.restore(CGF);
1154         DeleteArgs.add(RV, *AI++);
1155       }
1156 
1157       // Pass the rest of the arguments, which must match exactly.
1158       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1159         RValue RV = getPlacementArgs()[I].restore(CGF);
1160         DeleteArgs.add(RV, *AI++);
1161       }
1162 
1163       // Call 'operator delete'.
1164       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1165     }
1166   };
1167 }
1168 
1169 /// Enter a cleanup to call 'operator delete' if the initializer in a
1170 /// new-expression throws.
1171 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1172                                   const CXXNewExpr *E,
1173                                   llvm::Value *NewPtr,
1174                                   llvm::Value *AllocSize,
1175                                   const CallArgList &NewArgs) {
1176   // If we're not inside a conditional branch, then the cleanup will
1177   // dominate and we can do the easier (and more efficient) thing.
1178   if (!CGF.isInConditionalBranch()) {
1179     CallDeleteDuringNew *Cleanup = CGF.EHStack
1180       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1181                                                  E->getNumPlacementArgs(),
1182                                                  E->getOperatorDelete(),
1183                                                  NewPtr, AllocSize);
1184     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1185       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1186 
1187     return;
1188   }
1189 
1190   // Otherwise, we need to save all this stuff.
1191   DominatingValue<RValue>::saved_type SavedNewPtr =
1192     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1193   DominatingValue<RValue>::saved_type SavedAllocSize =
1194     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1195 
1196   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1197     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1198                                                  E->getNumPlacementArgs(),
1199                                                  E->getOperatorDelete(),
1200                                                  SavedNewPtr,
1201                                                  SavedAllocSize);
1202   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1203     Cleanup->setPlacementArg(I,
1204                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1205 
1206   CGF.initFullExprCleanup();
1207 }
1208 
1209 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1210   // The element type being allocated.
1211   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1212 
1213   // 1. Build a call to the allocation function.
1214   FunctionDecl *allocator = E->getOperatorNew();
1215   const FunctionProtoType *allocatorType =
1216     allocator->getType()->castAs<FunctionProtoType>();
1217 
1218   CallArgList allocatorArgs;
1219 
1220   // The allocation size is the first argument.
1221   QualType sizeType = getContext().getSizeType();
1222 
1223   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1224   unsigned minElements = 0;
1225   if (E->isArray() && E->hasInitializer()) {
1226     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1227       minElements = ILE->getNumInits();
1228   }
1229 
1230   llvm::Value *numElements = nullptr;
1231   llvm::Value *allocSizeWithoutCookie = nullptr;
1232   llvm::Value *allocSize =
1233     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1234                         allocSizeWithoutCookie);
1235 
1236   allocatorArgs.add(RValue::get(allocSize), sizeType);
1237 
1238   // We start at 1 here because the first argument (the allocation size)
1239   // has already been emitted.
1240   EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
1241                E->placement_arg_end(), /*ParamsToSkip*/ 1);
1242 
1243   // Emit the allocation call.  If the allocator is a global placement
1244   // operator, just "inline" it directly.
1245   RValue RV;
1246   if (allocator->isReservedGlobalPlacementOperator()) {
1247     assert(allocatorArgs.size() == 2);
1248     RV = allocatorArgs[1].RV;
1249     // TODO: kill any unnecessary computations done for the size
1250     // argument.
1251   } else {
1252     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1253   }
1254 
1255   // Emit a null check on the allocation result if the allocation
1256   // function is allowed to return null (because it has a non-throwing
1257   // exception spec; for this part, we inline
1258   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1259   // interesting initializer.
1260   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1261     (!allocType.isPODType(getContext()) || E->hasInitializer());
1262 
1263   llvm::BasicBlock *nullCheckBB = nullptr;
1264   llvm::BasicBlock *contBB = nullptr;
1265 
1266   llvm::Value *allocation = RV.getScalarVal();
1267   unsigned AS = allocation->getType()->getPointerAddressSpace();
1268 
1269   // The null-check means that the initializer is conditionally
1270   // evaluated.
1271   ConditionalEvaluation conditional(*this);
1272 
1273   if (nullCheck) {
1274     conditional.begin(*this);
1275 
1276     nullCheckBB = Builder.GetInsertBlock();
1277     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1278     contBB = createBasicBlock("new.cont");
1279 
1280     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1281     Builder.CreateCondBr(isNull, contBB, notNullBB);
1282     EmitBlock(notNullBB);
1283   }
1284 
1285   // If there's an operator delete, enter a cleanup to call it if an
1286   // exception is thrown.
1287   EHScopeStack::stable_iterator operatorDeleteCleanup;
1288   llvm::Instruction *cleanupDominator = nullptr;
1289   if (E->getOperatorDelete() &&
1290       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1291     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1292     operatorDeleteCleanup = EHStack.stable_begin();
1293     cleanupDominator = Builder.CreateUnreachable();
1294   }
1295 
1296   assert((allocSize == allocSizeWithoutCookie) ==
1297          CalculateCookiePadding(*this, E).isZero());
1298   if (allocSize != allocSizeWithoutCookie) {
1299     assert(E->isArray());
1300     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1301                                                        numElements,
1302                                                        E, allocType);
1303   }
1304 
1305   llvm::Type *elementPtrTy
1306     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1307   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1308 
1309   EmitNewInitializer(*this, E, allocType, result, numElements,
1310                      allocSizeWithoutCookie);
1311   if (E->isArray()) {
1312     // NewPtr is a pointer to the base element type.  If we're
1313     // allocating an array of arrays, we'll need to cast back to the
1314     // array pointer type.
1315     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1316     if (result->getType() != resultType)
1317       result = Builder.CreateBitCast(result, resultType);
1318   }
1319 
1320   // Deactivate the 'operator delete' cleanup if we finished
1321   // initialization.
1322   if (operatorDeleteCleanup.isValid()) {
1323     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1324     cleanupDominator->eraseFromParent();
1325   }
1326 
1327   if (nullCheck) {
1328     conditional.end(*this);
1329 
1330     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1331     EmitBlock(contBB);
1332 
1333     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1334     PHI->addIncoming(result, notNullBB);
1335     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1336                      nullCheckBB);
1337 
1338     result = PHI;
1339   }
1340 
1341   return result;
1342 }
1343 
1344 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1345                                      llvm::Value *Ptr,
1346                                      QualType DeleteTy) {
1347   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1348 
1349   const FunctionProtoType *DeleteFTy =
1350     DeleteFD->getType()->getAs<FunctionProtoType>();
1351 
1352   CallArgList DeleteArgs;
1353 
1354   // Check if we need to pass the size to the delete operator.
1355   llvm::Value *Size = nullptr;
1356   QualType SizeTy;
1357   if (DeleteFTy->getNumParams() == 2) {
1358     SizeTy = DeleteFTy->getParamType(1);
1359     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1360     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1361                                   DeleteTypeSize.getQuantity());
1362   }
1363 
1364   QualType ArgTy = DeleteFTy->getParamType(0);
1365   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1366   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1367 
1368   if (Size)
1369     DeleteArgs.add(RValue::get(Size), SizeTy);
1370 
1371   // Emit the call to delete.
1372   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1373 }
1374 
1375 namespace {
1376   /// Calls the given 'operator delete' on a single object.
1377   struct CallObjectDelete : EHScopeStack::Cleanup {
1378     llvm::Value *Ptr;
1379     const FunctionDecl *OperatorDelete;
1380     QualType ElementType;
1381 
1382     CallObjectDelete(llvm::Value *Ptr,
1383                      const FunctionDecl *OperatorDelete,
1384                      QualType ElementType)
1385       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1386 
1387     void Emit(CodeGenFunction &CGF, Flags flags) override {
1388       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1389     }
1390   };
1391 }
1392 
1393 /// Emit the code for deleting a single object.
1394 static void EmitObjectDelete(CodeGenFunction &CGF,
1395                              const FunctionDecl *OperatorDelete,
1396                              llvm::Value *Ptr,
1397                              QualType ElementType,
1398                              bool UseGlobalDelete) {
1399   // Find the destructor for the type, if applicable.  If the
1400   // destructor is virtual, we'll just emit the vcall and return.
1401   const CXXDestructorDecl *Dtor = nullptr;
1402   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1403     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1404     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1405       Dtor = RD->getDestructor();
1406 
1407       if (Dtor->isVirtual()) {
1408         if (UseGlobalDelete) {
1409           // If we're supposed to call the global delete, make sure we do so
1410           // even if the destructor throws.
1411 
1412           // Derive the complete-object pointer, which is what we need
1413           // to pass to the deallocation function.
1414           llvm::Value *completePtr =
1415             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1416 
1417           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1418                                                     completePtr, OperatorDelete,
1419                                                     ElementType);
1420         }
1421 
1422         // FIXME: Provide a source location here even though there's no
1423         // CXXMemberCallExpr for dtor call.
1424         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1425         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr,
1426                                                       nullptr);
1427 
1428         if (UseGlobalDelete) {
1429           CGF.PopCleanupBlock();
1430         }
1431 
1432         return;
1433       }
1434     }
1435   }
1436 
1437   // Make sure that we call delete even if the dtor throws.
1438   // This doesn't have to a conditional cleanup because we're going
1439   // to pop it off in a second.
1440   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1441                                             Ptr, OperatorDelete, ElementType);
1442 
1443   if (Dtor)
1444     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1445                               /*ForVirtualBase=*/false,
1446                               /*Delegating=*/false,
1447                               Ptr);
1448   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1449            ElementType->isObjCLifetimeType()) {
1450     switch (ElementType.getObjCLifetime()) {
1451     case Qualifiers::OCL_None:
1452     case Qualifiers::OCL_ExplicitNone:
1453     case Qualifiers::OCL_Autoreleasing:
1454       break;
1455 
1456     case Qualifiers::OCL_Strong: {
1457       // Load the pointer value.
1458       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1459                                              ElementType.isVolatileQualified());
1460 
1461       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1462       break;
1463     }
1464 
1465     case Qualifiers::OCL_Weak:
1466       CGF.EmitARCDestroyWeak(Ptr);
1467       break;
1468     }
1469   }
1470 
1471   CGF.PopCleanupBlock();
1472 }
1473 
1474 namespace {
1475   /// Calls the given 'operator delete' on an array of objects.
1476   struct CallArrayDelete : EHScopeStack::Cleanup {
1477     llvm::Value *Ptr;
1478     const FunctionDecl *OperatorDelete;
1479     llvm::Value *NumElements;
1480     QualType ElementType;
1481     CharUnits CookieSize;
1482 
1483     CallArrayDelete(llvm::Value *Ptr,
1484                     const FunctionDecl *OperatorDelete,
1485                     llvm::Value *NumElements,
1486                     QualType ElementType,
1487                     CharUnits CookieSize)
1488       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1489         ElementType(ElementType), CookieSize(CookieSize) {}
1490 
1491     void Emit(CodeGenFunction &CGF, Flags flags) override {
1492       const FunctionProtoType *DeleteFTy =
1493         OperatorDelete->getType()->getAs<FunctionProtoType>();
1494       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1495 
1496       CallArgList Args;
1497 
1498       // Pass the pointer as the first argument.
1499       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1500       llvm::Value *DeletePtr
1501         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1502       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1503 
1504       // Pass the original requested size as the second argument.
1505       if (DeleteFTy->getNumParams() == 2) {
1506         QualType size_t = DeleteFTy->getParamType(1);
1507         llvm::IntegerType *SizeTy
1508           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1509 
1510         CharUnits ElementTypeSize =
1511           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1512 
1513         // The size of an element, multiplied by the number of elements.
1514         llvm::Value *Size
1515           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1516         Size = CGF.Builder.CreateMul(Size, NumElements);
1517 
1518         // Plus the size of the cookie if applicable.
1519         if (!CookieSize.isZero()) {
1520           llvm::Value *CookieSizeV
1521             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1522           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1523         }
1524 
1525         Args.add(RValue::get(Size), size_t);
1526       }
1527 
1528       // Emit the call to delete.
1529       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1530     }
1531   };
1532 }
1533 
1534 /// Emit the code for deleting an array of objects.
1535 static void EmitArrayDelete(CodeGenFunction &CGF,
1536                             const CXXDeleteExpr *E,
1537                             llvm::Value *deletedPtr,
1538                             QualType elementType) {
1539   llvm::Value *numElements = nullptr;
1540   llvm::Value *allocatedPtr = nullptr;
1541   CharUnits cookieSize;
1542   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1543                                       numElements, allocatedPtr, cookieSize);
1544 
1545   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1546 
1547   // Make sure that we call delete even if one of the dtors throws.
1548   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1549   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1550                                            allocatedPtr, operatorDelete,
1551                                            numElements, elementType,
1552                                            cookieSize);
1553 
1554   // Destroy the elements.
1555   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1556     assert(numElements && "no element count for a type with a destructor!");
1557 
1558     llvm::Value *arrayEnd =
1559       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1560 
1561     // Note that it is legal to allocate a zero-length array, and we
1562     // can never fold the check away because the length should always
1563     // come from a cookie.
1564     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1565                          CGF.getDestroyer(dtorKind),
1566                          /*checkZeroLength*/ true,
1567                          CGF.needsEHCleanup(dtorKind));
1568   }
1569 
1570   // Pop the cleanup block.
1571   CGF.PopCleanupBlock();
1572 }
1573 
1574 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1575   const Expr *Arg = E->getArgument();
1576   llvm::Value *Ptr = EmitScalarExpr(Arg);
1577 
1578   // Null check the pointer.
1579   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1580   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1581 
1582   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1583 
1584   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1585   EmitBlock(DeleteNotNull);
1586 
1587   // We might be deleting a pointer to array.  If so, GEP down to the
1588   // first non-array element.
1589   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1590   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1591   if (DeleteTy->isConstantArrayType()) {
1592     llvm::Value *Zero = Builder.getInt32(0);
1593     SmallVector<llvm::Value*,8> GEP;
1594 
1595     GEP.push_back(Zero); // point at the outermost array
1596 
1597     // For each layer of array type we're pointing at:
1598     while (const ConstantArrayType *Arr
1599              = getContext().getAsConstantArrayType(DeleteTy)) {
1600       // 1. Unpeel the array type.
1601       DeleteTy = Arr->getElementType();
1602 
1603       // 2. GEP to the first element of the array.
1604       GEP.push_back(Zero);
1605     }
1606 
1607     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1608   }
1609 
1610   assert(ConvertTypeForMem(DeleteTy) ==
1611          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1612 
1613   if (E->isArrayForm()) {
1614     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1615   } else {
1616     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1617                      E->isGlobalDelete());
1618   }
1619 
1620   EmitBlock(DeleteEnd);
1621 }
1622 
1623 static bool isGLValueFromPointerDeref(const Expr *E) {
1624   E = E->IgnoreParens();
1625 
1626   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1627     if (!CE->getSubExpr()->isGLValue())
1628       return false;
1629     return isGLValueFromPointerDeref(CE->getSubExpr());
1630   }
1631 
1632   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1633     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1634 
1635   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1636     if (BO->getOpcode() == BO_Comma)
1637       return isGLValueFromPointerDeref(BO->getRHS());
1638 
1639   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1640     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1641            isGLValueFromPointerDeref(ACO->getFalseExpr());
1642 
1643   // C++11 [expr.sub]p1:
1644   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1645   if (isa<ArraySubscriptExpr>(E))
1646     return true;
1647 
1648   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1649     if (UO->getOpcode() == UO_Deref)
1650       return true;
1651 
1652   return false;
1653 }
1654 
1655 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1656                                          llvm::Type *StdTypeInfoPtrTy) {
1657   // Get the vtable pointer.
1658   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1659 
1660   // C++ [expr.typeid]p2:
1661   //   If the glvalue expression is obtained by applying the unary * operator to
1662   //   a pointer and the pointer is a null pointer value, the typeid expression
1663   //   throws the std::bad_typeid exception.
1664   //
1665   // However, this paragraph's intent is not clear.  We choose a very generous
1666   // interpretation which implores us to consider comma operators, conditional
1667   // operators, parentheses and other such constructs.
1668   QualType SrcRecordTy = E->getType();
1669   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1670           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1671     llvm::BasicBlock *BadTypeidBlock =
1672         CGF.createBasicBlock("typeid.bad_typeid");
1673     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1674 
1675     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1676     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1677 
1678     CGF.EmitBlock(BadTypeidBlock);
1679     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1680     CGF.EmitBlock(EndBlock);
1681   }
1682 
1683   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1684                                         StdTypeInfoPtrTy);
1685 }
1686 
1687 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1688   llvm::Type *StdTypeInfoPtrTy =
1689     ConvertType(E->getType())->getPointerTo();
1690 
1691   if (E->isTypeOperand()) {
1692     llvm::Constant *TypeInfo =
1693         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1694     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1695   }
1696 
1697   // C++ [expr.typeid]p2:
1698   //   When typeid is applied to a glvalue expression whose type is a
1699   //   polymorphic class type, the result refers to a std::type_info object
1700   //   representing the type of the most derived object (that is, the dynamic
1701   //   type) to which the glvalue refers.
1702   if (E->isPotentiallyEvaluated())
1703     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1704                                 StdTypeInfoPtrTy);
1705 
1706   QualType OperandTy = E->getExprOperand()->getType();
1707   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1708                                StdTypeInfoPtrTy);
1709 }
1710 
1711 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1712                                           QualType DestTy) {
1713   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1714   if (DestTy->isPointerType())
1715     return llvm::Constant::getNullValue(DestLTy);
1716 
1717   /// C++ [expr.dynamic.cast]p9:
1718   ///   A failed cast to reference type throws std::bad_cast
1719   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1720     return nullptr;
1721 
1722   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1723   return llvm::UndefValue::get(DestLTy);
1724 }
1725 
1726 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1727                                               const CXXDynamicCastExpr *DCE) {
1728   QualType DestTy = DCE->getTypeAsWritten();
1729 
1730   if (DCE->isAlwaysNull())
1731     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1732       return T;
1733 
1734   QualType SrcTy = DCE->getSubExpr()->getType();
1735 
1736   // C++ [expr.dynamic.cast]p7:
1737   //   If T is "pointer to cv void," then the result is a pointer to the most
1738   //   derived object pointed to by v.
1739   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1740 
1741   bool isDynamicCastToVoid;
1742   QualType SrcRecordTy;
1743   QualType DestRecordTy;
1744   if (DestPTy) {
1745     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1746     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1747     DestRecordTy = DestPTy->getPointeeType();
1748   } else {
1749     isDynamicCastToVoid = false;
1750     SrcRecordTy = SrcTy;
1751     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1752   }
1753 
1754   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1755 
1756   // C++ [expr.dynamic.cast]p4:
1757   //   If the value of v is a null pointer value in the pointer case, the result
1758   //   is the null pointer value of type T.
1759   bool ShouldNullCheckSrcValue =
1760       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1761                                                          SrcRecordTy);
1762 
1763   llvm::BasicBlock *CastNull = nullptr;
1764   llvm::BasicBlock *CastNotNull = nullptr;
1765   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1766 
1767   if (ShouldNullCheckSrcValue) {
1768     CastNull = createBasicBlock("dynamic_cast.null");
1769     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1770 
1771     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1772     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1773     EmitBlock(CastNotNull);
1774   }
1775 
1776   if (isDynamicCastToVoid) {
1777     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1778                                                   DestTy);
1779   } else {
1780     assert(DestRecordTy->isRecordType() &&
1781            "destination type must be a record type!");
1782     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1783                                                 DestTy, DestRecordTy, CastEnd);
1784   }
1785 
1786   if (ShouldNullCheckSrcValue) {
1787     EmitBranch(CastEnd);
1788 
1789     EmitBlock(CastNull);
1790     EmitBranch(CastEnd);
1791   }
1792 
1793   EmitBlock(CastEnd);
1794 
1795   if (ShouldNullCheckSrcValue) {
1796     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1797     PHI->addIncoming(Value, CastNotNull);
1798     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1799 
1800     Value = PHI;
1801   }
1802 
1803   return Value;
1804 }
1805 
1806 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1807   RunCleanupsScope Scope(*this);
1808   LValue SlotLV =
1809       MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
1810 
1811   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1812   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1813                                          e = E->capture_init_end();
1814        i != e; ++i, ++CurField) {
1815     // Emit initialization
1816     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1817     if (CurField->hasCapturedVLAType()) {
1818       auto VAT = CurField->getCapturedVLAType();
1819       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1820     } else {
1821       ArrayRef<VarDecl *> ArrayIndexes;
1822       if (CurField->getType()->isArrayType())
1823         ArrayIndexes = E->getCaptureInitIndexVars(i);
1824       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1825     }
1826   }
1827 }
1828