1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args, CallArgList *RtlArgs) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36   ASTContext &C = CGF.getContext();
37 
38   // C++11 [class.mfct.non-static]p2:
39   //   If a non-static member function of a class X is called for an object that
40   //   is not of type X, or of a type derived from X, the behavior is undefined.
41   SourceLocation CallLoc;
42   if (CE)
43     CallLoc = CE->getExprLoc();
44   CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD)
45                         ? CodeGenFunction::TCK_ConstructorCall
46                         : CodeGenFunction::TCK_MemberCall,
47                     CallLoc, This, C.getRecordType(MD->getParent()));
48 
49   // Push the this ptr.
50   const CXXRecordDecl *RD =
51       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
52   Args.add(RValue::get(This),
53            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
54 
55   // If there is an implicit parameter (e.g. VTT), emit it.
56   if (ImplicitParam) {
57     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
58   }
59 
60   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
61   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
62 
63   // And the rest of the call args.
64   if (RtlArgs) {
65     // Special case: if the caller emitted the arguments right-to-left already
66     // (prior to emitting the *this argument), we're done. This happens for
67     // assignment operators.
68     Args.addFrom(*RtlArgs);
69   } else if (CE) {
70     // Special case: skip first argument of CXXOperatorCall (it is "this").
71     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
72     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
73                      CE->getDirectCallee());
74   } else {
75     assert(
76         FPT->getNumParams() == 0 &&
77         "No CallExpr specified for function with non-zero number of arguments");
78   }
79   return required;
80 }
81 
82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
83     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
91                   Callee, ReturnValue, Args, MD);
92 }
93 
94 RValue CodeGenFunction::EmitCXXDestructorCall(
95     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
96     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
97     StructorType Type) {
98   CallArgList Args;
99   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
100                                     ImplicitParamTy, CE, Args, nullptr);
101   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
102                   Callee, ReturnValueSlot(), Args, DD);
103 }
104 
105 static CXXRecordDecl *getCXXRecord(const Expr *E) {
106   QualType T = E->getType();
107   if (const PointerType *PTy = T->getAs<PointerType>())
108     T = PTy->getPointeeType();
109   const RecordType *Ty = T->castAs<RecordType>();
110   return cast<CXXRecordDecl>(Ty->getDecl());
111 }
112 
113 // Note: This function also emit constructor calls to support a MSVC
114 // extensions allowing explicit constructor function call.
115 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
116                                               ReturnValueSlot ReturnValue) {
117   const Expr *callee = CE->getCallee()->IgnoreParens();
118 
119   if (isa<BinaryOperator>(callee))
120     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
121 
122   const MemberExpr *ME = cast<MemberExpr>(callee);
123   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
124 
125   if (MD->isStatic()) {
126     // The method is static, emit it as we would a regular call.
127     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
128     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
129                     ReturnValue);
130   }
131 
132   bool HasQualifier = ME->hasQualifier();
133   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
134   bool IsArrow = ME->isArrow();
135   const Expr *Base = ME->getBase();
136 
137   return EmitCXXMemberOrOperatorMemberCallExpr(
138       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
139 }
140 
141 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
142     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
143     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
144     const Expr *Base) {
145   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
146 
147   // Compute the object pointer.
148   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
149 
150   const CXXMethodDecl *DevirtualizedMethod = nullptr;
151   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
152     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
153     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
154     assert(DevirtualizedMethod);
155     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
156     const Expr *Inner = Base->ignoreParenBaseCasts();
157     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
158         MD->getReturnType().getCanonicalType())
159       // If the return types are not the same, this might be a case where more
160       // code needs to run to compensate for it. For example, the derived
161       // method might return a type that inherits form from the return
162       // type of MD and has a prefix.
163       // For now we just avoid devirtualizing these covariant cases.
164       DevirtualizedMethod = nullptr;
165     else if (getCXXRecord(Inner) == DevirtualizedClass)
166       // If the class of the Inner expression is where the dynamic method
167       // is defined, build the this pointer from it.
168       Base = Inner;
169     else if (getCXXRecord(Base) != DevirtualizedClass) {
170       // If the method is defined in a class that is not the best dynamic
171       // one or the one of the full expression, we would have to build
172       // a derived-to-base cast to compute the correct this pointer, but
173       // we don't have support for that yet, so do a virtual call.
174       DevirtualizedMethod = nullptr;
175     }
176   }
177 
178   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
179   // operator before the LHS.
180   CallArgList RtlArgStorage;
181   CallArgList *RtlArgs = nullptr;
182   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
183     if (OCE->isAssignmentOp()) {
184       RtlArgs = &RtlArgStorage;
185       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
186                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
187                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
188     }
189   }
190 
191   Address This = Address::invalid();
192   if (IsArrow)
193     This = EmitPointerWithAlignment(Base);
194   else
195     This = EmitLValue(Base).getAddress();
196 
197 
198   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
199     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
200     if (isa<CXXConstructorDecl>(MD) &&
201         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
202       return RValue::get(nullptr);
203 
204     if (!MD->getParent()->mayInsertExtraPadding()) {
205       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
206         // We don't like to generate the trivial copy/move assignment operator
207         // when it isn't necessary; just produce the proper effect here.
208         LValue RHS = isa<CXXOperatorCallExpr>(CE)
209                          ? MakeNaturalAlignAddrLValue(
210                                (*RtlArgs)[0].RV.getScalarVal(),
211                                (*(CE->arg_begin() + 1))->getType())
212                          : EmitLValue(*CE->arg_begin());
213         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
214         return RValue::get(This.getPointer());
215       }
216 
217       if (isa<CXXConstructorDecl>(MD) &&
218           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
219         // Trivial move and copy ctor are the same.
220         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
221         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
222         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
223         return RValue::get(This.getPointer());
224       }
225       llvm_unreachable("unknown trivial member function");
226     }
227   }
228 
229   // Compute the function type we're calling.
230   const CXXMethodDecl *CalleeDecl =
231       DevirtualizedMethod ? DevirtualizedMethod : MD;
232   const CGFunctionInfo *FInfo = nullptr;
233   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
234     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
235         Dtor, StructorType::Complete);
236   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
237     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
238         Ctor, StructorType::Complete);
239   else
240     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
241 
242   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
243 
244   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
245   // 'CalleeDecl' instead.
246 
247   // C++ [class.virtual]p12:
248   //   Explicit qualification with the scope operator (5.1) suppresses the
249   //   virtual call mechanism.
250   //
251   // We also don't emit a virtual call if the base expression has a record type
252   // because then we know what the type is.
253   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
254   llvm::Value *Callee;
255 
256   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
257     assert(CE->arg_begin() == CE->arg_end() &&
258            "Destructor shouldn't have explicit parameters");
259     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
260     if (UseVirtualCall) {
261       CGM.getCXXABI().EmitVirtualDestructorCall(
262           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
263     } else {
264       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
265         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
266       else if (!DevirtualizedMethod)
267         Callee =
268             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
269       else {
270         const CXXDestructorDecl *DDtor =
271           cast<CXXDestructorDecl>(DevirtualizedMethod);
272         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
273       }
274       EmitCXXMemberOrOperatorCall(
275           CalleeDecl, Callee, ReturnValue, This.getPointer(),
276           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
277     }
278     return RValue::get(nullptr);
279   }
280 
281   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
282     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
283   } else if (UseVirtualCall) {
284     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
285                                                        CE->getLocStart());
286   } else {
287     if (SanOpts.has(SanitizerKind::CFINVCall) &&
288         MD->getParent()->isDynamicClass()) {
289       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
290       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
291                                 CE->getLocStart());
292     }
293 
294     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
295       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
296     else if (!DevirtualizedMethod)
297       Callee = CGM.GetAddrOfFunction(MD, Ty);
298     else {
299       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
300     }
301   }
302 
303   if (MD->isVirtual()) {
304     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
305         *this, CalleeDecl, This, UseVirtualCall);
306   }
307 
308   return EmitCXXMemberOrOperatorCall(
309       CalleeDecl, Callee, ReturnValue, This.getPointer(),
310       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
311 }
312 
313 RValue
314 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
315                                               ReturnValueSlot ReturnValue) {
316   const BinaryOperator *BO =
317       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
318   const Expr *BaseExpr = BO->getLHS();
319   const Expr *MemFnExpr = BO->getRHS();
320 
321   const MemberPointerType *MPT =
322     MemFnExpr->getType()->castAs<MemberPointerType>();
323 
324   const FunctionProtoType *FPT =
325     MPT->getPointeeType()->castAs<FunctionProtoType>();
326   const CXXRecordDecl *RD =
327     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
328 
329   // Emit the 'this' pointer.
330   Address This = Address::invalid();
331   if (BO->getOpcode() == BO_PtrMemI)
332     This = EmitPointerWithAlignment(BaseExpr);
333   else
334     This = EmitLValue(BaseExpr).getAddress();
335 
336   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
337                 QualType(MPT->getClass(), 0));
338 
339   // Get the member function pointer.
340   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
341 
342   // Ask the ABI to load the callee.  Note that This is modified.
343   llvm::Value *ThisPtrForCall = nullptr;
344   llvm::Value *Callee =
345     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
346                                              ThisPtrForCall, MemFnPtr, MPT);
347 
348   CallArgList Args;
349 
350   QualType ThisType =
351     getContext().getPointerType(getContext().getTagDeclType(RD));
352 
353   // Push the this ptr.
354   Args.add(RValue::get(ThisPtrForCall), ThisType);
355 
356   RequiredArgs required =
357       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
358 
359   // And the rest of the call args
360   EmitCallArgs(Args, FPT, E->arguments());
361   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
362                   Callee, ReturnValue, Args);
363 }
364 
365 RValue
366 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
367                                                const CXXMethodDecl *MD,
368                                                ReturnValueSlot ReturnValue) {
369   assert(MD->isInstance() &&
370          "Trying to emit a member call expr on a static method!");
371   return EmitCXXMemberOrOperatorMemberCallExpr(
372       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
373       /*IsArrow=*/false, E->getArg(0));
374 }
375 
376 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
377                                                ReturnValueSlot ReturnValue) {
378   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
379 }
380 
381 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
382                                             Address DestPtr,
383                                             const CXXRecordDecl *Base) {
384   if (Base->isEmpty())
385     return;
386 
387   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
388 
389   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
390   CharUnits NVSize = Layout.getNonVirtualSize();
391 
392   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
393   // present, they are initialized by the most derived class before calling the
394   // constructor.
395   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
396   Stores.emplace_back(CharUnits::Zero(), NVSize);
397 
398   // Each store is split by the existence of a vbptr.
399   CharUnits VBPtrWidth = CGF.getPointerSize();
400   std::vector<CharUnits> VBPtrOffsets =
401       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
402   for (CharUnits VBPtrOffset : VBPtrOffsets) {
403     // Stop before we hit any virtual base pointers located in virtual bases.
404     if (VBPtrOffset >= NVSize)
405       break;
406     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
407     CharUnits LastStoreOffset = LastStore.first;
408     CharUnits LastStoreSize = LastStore.second;
409 
410     CharUnits SplitBeforeOffset = LastStoreOffset;
411     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
412     assert(!SplitBeforeSize.isNegative() && "negative store size!");
413     if (!SplitBeforeSize.isZero())
414       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
415 
416     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
417     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
418     assert(!SplitAfterSize.isNegative() && "negative store size!");
419     if (!SplitAfterSize.isZero())
420       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
421   }
422 
423   // If the type contains a pointer to data member we can't memset it to zero.
424   // Instead, create a null constant and copy it to the destination.
425   // TODO: there are other patterns besides zero that we can usefully memset,
426   // like -1, which happens to be the pattern used by member-pointers.
427   // TODO: isZeroInitializable can be over-conservative in the case where a
428   // virtual base contains a member pointer.
429   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
430   if (!NullConstantForBase->isNullValue()) {
431     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
432         CGF.CGM.getModule(), NullConstantForBase->getType(),
433         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
434         NullConstantForBase, Twine());
435 
436     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
437                                DestPtr.getAlignment());
438     NullVariable->setAlignment(Align.getQuantity());
439 
440     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
441 
442     // Get and call the appropriate llvm.memcpy overload.
443     for (std::pair<CharUnits, CharUnits> Store : Stores) {
444       CharUnits StoreOffset = Store.first;
445       CharUnits StoreSize = Store.second;
446       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
447       CGF.Builder.CreateMemCpy(
448           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
449           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
450           StoreSizeVal);
451     }
452 
453   // Otherwise, just memset the whole thing to zero.  This is legal
454   // because in LLVM, all default initializers (other than the ones we just
455   // handled above) are guaranteed to have a bit pattern of all zeros.
456   } else {
457     for (std::pair<CharUnits, CharUnits> Store : Stores) {
458       CharUnits StoreOffset = Store.first;
459       CharUnits StoreSize = Store.second;
460       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
461       CGF.Builder.CreateMemSet(
462           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
463           CGF.Builder.getInt8(0), StoreSizeVal);
464     }
465   }
466 }
467 
468 void
469 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
470                                       AggValueSlot Dest) {
471   assert(!Dest.isIgnored() && "Must have a destination!");
472   const CXXConstructorDecl *CD = E->getConstructor();
473 
474   // If we require zero initialization before (or instead of) calling the
475   // constructor, as can be the case with a non-user-provided default
476   // constructor, emit the zero initialization now, unless destination is
477   // already zeroed.
478   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
479     switch (E->getConstructionKind()) {
480     case CXXConstructExpr::CK_Delegating:
481     case CXXConstructExpr::CK_Complete:
482       EmitNullInitialization(Dest.getAddress(), E->getType());
483       break;
484     case CXXConstructExpr::CK_VirtualBase:
485     case CXXConstructExpr::CK_NonVirtualBase:
486       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
487                                       CD->getParent());
488       break;
489     }
490   }
491 
492   // If this is a call to a trivial default constructor, do nothing.
493   if (CD->isTrivial() && CD->isDefaultConstructor())
494     return;
495 
496   // Elide the constructor if we're constructing from a temporary.
497   // The temporary check is required because Sema sets this on NRVO
498   // returns.
499   if (getLangOpts().ElideConstructors && E->isElidable()) {
500     assert(getContext().hasSameUnqualifiedType(E->getType(),
501                                                E->getArg(0)->getType()));
502     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
503       EmitAggExpr(E->getArg(0), Dest);
504       return;
505     }
506   }
507 
508   if (const ArrayType *arrayType
509         = getContext().getAsArrayType(E->getType())) {
510     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
511   } else {
512     CXXCtorType Type = Ctor_Complete;
513     bool ForVirtualBase = false;
514     bool Delegating = false;
515 
516     switch (E->getConstructionKind()) {
517      case CXXConstructExpr::CK_Delegating:
518       // We should be emitting a constructor; GlobalDecl will assert this
519       Type = CurGD.getCtorType();
520       Delegating = true;
521       break;
522 
523      case CXXConstructExpr::CK_Complete:
524       Type = Ctor_Complete;
525       break;
526 
527      case CXXConstructExpr::CK_VirtualBase:
528       ForVirtualBase = true;
529       // fall-through
530 
531      case CXXConstructExpr::CK_NonVirtualBase:
532       Type = Ctor_Base;
533     }
534 
535     // Call the constructor.
536     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
537                            Dest.getAddress(), E);
538   }
539 }
540 
541 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
542                                                  const Expr *Exp) {
543   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
544     Exp = E->getSubExpr();
545   assert(isa<CXXConstructExpr>(Exp) &&
546          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
547   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
548   const CXXConstructorDecl *CD = E->getConstructor();
549   RunCleanupsScope Scope(*this);
550 
551   // If we require zero initialization before (or instead of) calling the
552   // constructor, as can be the case with a non-user-provided default
553   // constructor, emit the zero initialization now.
554   // FIXME. Do I still need this for a copy ctor synthesis?
555   if (E->requiresZeroInitialization())
556     EmitNullInitialization(Dest, E->getType());
557 
558   assert(!getContext().getAsConstantArrayType(E->getType())
559          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
560   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
561 }
562 
563 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
564                                         const CXXNewExpr *E) {
565   if (!E->isArray())
566     return CharUnits::Zero();
567 
568   // No cookie is required if the operator new[] being used is the
569   // reserved placement operator new[].
570   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
571     return CharUnits::Zero();
572 
573   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
574 }
575 
576 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
577                                         const CXXNewExpr *e,
578                                         unsigned minElements,
579                                         llvm::Value *&numElements,
580                                         llvm::Value *&sizeWithoutCookie) {
581   QualType type = e->getAllocatedType();
582 
583   if (!e->isArray()) {
584     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
585     sizeWithoutCookie
586       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
587     return sizeWithoutCookie;
588   }
589 
590   // The width of size_t.
591   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
592 
593   // Figure out the cookie size.
594   llvm::APInt cookieSize(sizeWidth,
595                          CalculateCookiePadding(CGF, e).getQuantity());
596 
597   // Emit the array size expression.
598   // We multiply the size of all dimensions for NumElements.
599   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
600   numElements = CGF.EmitScalarExpr(e->getArraySize());
601   assert(isa<llvm::IntegerType>(numElements->getType()));
602 
603   // The number of elements can be have an arbitrary integer type;
604   // essentially, we need to multiply it by a constant factor, add a
605   // cookie size, and verify that the result is representable as a
606   // size_t.  That's just a gloss, though, and it's wrong in one
607   // important way: if the count is negative, it's an error even if
608   // the cookie size would bring the total size >= 0.
609   bool isSigned
610     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
611   llvm::IntegerType *numElementsType
612     = cast<llvm::IntegerType>(numElements->getType());
613   unsigned numElementsWidth = numElementsType->getBitWidth();
614 
615   // Compute the constant factor.
616   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
617   while (const ConstantArrayType *CAT
618              = CGF.getContext().getAsConstantArrayType(type)) {
619     type = CAT->getElementType();
620     arraySizeMultiplier *= CAT->getSize();
621   }
622 
623   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
624   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
625   typeSizeMultiplier *= arraySizeMultiplier;
626 
627   // This will be a size_t.
628   llvm::Value *size;
629 
630   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
631   // Don't bloat the -O0 code.
632   if (llvm::ConstantInt *numElementsC =
633         dyn_cast<llvm::ConstantInt>(numElements)) {
634     const llvm::APInt &count = numElementsC->getValue();
635 
636     bool hasAnyOverflow = false;
637 
638     // If 'count' was a negative number, it's an overflow.
639     if (isSigned && count.isNegative())
640       hasAnyOverflow = true;
641 
642     // We want to do all this arithmetic in size_t.  If numElements is
643     // wider than that, check whether it's already too big, and if so,
644     // overflow.
645     else if (numElementsWidth > sizeWidth &&
646              numElementsWidth - sizeWidth > count.countLeadingZeros())
647       hasAnyOverflow = true;
648 
649     // Okay, compute a count at the right width.
650     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
651 
652     // If there is a brace-initializer, we cannot allocate fewer elements than
653     // there are initializers. If we do, that's treated like an overflow.
654     if (adjustedCount.ult(minElements))
655       hasAnyOverflow = true;
656 
657     // Scale numElements by that.  This might overflow, but we don't
658     // care because it only overflows if allocationSize does, too, and
659     // if that overflows then we shouldn't use this.
660     numElements = llvm::ConstantInt::get(CGF.SizeTy,
661                                          adjustedCount * arraySizeMultiplier);
662 
663     // Compute the size before cookie, and track whether it overflowed.
664     bool overflow;
665     llvm::APInt allocationSize
666       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
667     hasAnyOverflow |= overflow;
668 
669     // Add in the cookie, and check whether it's overflowed.
670     if (cookieSize != 0) {
671       // Save the current size without a cookie.  This shouldn't be
672       // used if there was overflow.
673       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
674 
675       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
676       hasAnyOverflow |= overflow;
677     }
678 
679     // On overflow, produce a -1 so operator new will fail.
680     if (hasAnyOverflow) {
681       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
682     } else {
683       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
684     }
685 
686   // Otherwise, we might need to use the overflow intrinsics.
687   } else {
688     // There are up to five conditions we need to test for:
689     // 1) if isSigned, we need to check whether numElements is negative;
690     // 2) if numElementsWidth > sizeWidth, we need to check whether
691     //   numElements is larger than something representable in size_t;
692     // 3) if minElements > 0, we need to check whether numElements is smaller
693     //    than that.
694     // 4) we need to compute
695     //      sizeWithoutCookie := numElements * typeSizeMultiplier
696     //    and check whether it overflows; and
697     // 5) if we need a cookie, we need to compute
698     //      size := sizeWithoutCookie + cookieSize
699     //    and check whether it overflows.
700 
701     llvm::Value *hasOverflow = nullptr;
702 
703     // If numElementsWidth > sizeWidth, then one way or another, we're
704     // going to have to do a comparison for (2), and this happens to
705     // take care of (1), too.
706     if (numElementsWidth > sizeWidth) {
707       llvm::APInt threshold(numElementsWidth, 1);
708       threshold <<= sizeWidth;
709 
710       llvm::Value *thresholdV
711         = llvm::ConstantInt::get(numElementsType, threshold);
712 
713       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
714       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
715 
716     // Otherwise, if we're signed, we want to sext up to size_t.
717     } else if (isSigned) {
718       if (numElementsWidth < sizeWidth)
719         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
720 
721       // If there's a non-1 type size multiplier, then we can do the
722       // signedness check at the same time as we do the multiply
723       // because a negative number times anything will cause an
724       // unsigned overflow.  Otherwise, we have to do it here. But at least
725       // in this case, we can subsume the >= minElements check.
726       if (typeSizeMultiplier == 1)
727         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
728                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
729 
730     // Otherwise, zext up to size_t if necessary.
731     } else if (numElementsWidth < sizeWidth) {
732       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
733     }
734 
735     assert(numElements->getType() == CGF.SizeTy);
736 
737     if (minElements) {
738       // Don't allow allocation of fewer elements than we have initializers.
739       if (!hasOverflow) {
740         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
741                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
742       } else if (numElementsWidth > sizeWidth) {
743         // The other existing overflow subsumes this check.
744         // We do an unsigned comparison, since any signed value < -1 is
745         // taken care of either above or below.
746         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
747                           CGF.Builder.CreateICmpULT(numElements,
748                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
749       }
750     }
751 
752     size = numElements;
753 
754     // Multiply by the type size if necessary.  This multiplier
755     // includes all the factors for nested arrays.
756     //
757     // This step also causes numElements to be scaled up by the
758     // nested-array factor if necessary.  Overflow on this computation
759     // can be ignored because the result shouldn't be used if
760     // allocation fails.
761     if (typeSizeMultiplier != 1) {
762       llvm::Value *umul_with_overflow
763         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
764 
765       llvm::Value *tsmV =
766         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
767       llvm::Value *result =
768           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
769 
770       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
771       if (hasOverflow)
772         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
773       else
774         hasOverflow = overflowed;
775 
776       size = CGF.Builder.CreateExtractValue(result, 0);
777 
778       // Also scale up numElements by the array size multiplier.
779       if (arraySizeMultiplier != 1) {
780         // If the base element type size is 1, then we can re-use the
781         // multiply we just did.
782         if (typeSize.isOne()) {
783           assert(arraySizeMultiplier == typeSizeMultiplier);
784           numElements = size;
785 
786         // Otherwise we need a separate multiply.
787         } else {
788           llvm::Value *asmV =
789             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
790           numElements = CGF.Builder.CreateMul(numElements, asmV);
791         }
792       }
793     } else {
794       // numElements doesn't need to be scaled.
795       assert(arraySizeMultiplier == 1);
796     }
797 
798     // Add in the cookie size if necessary.
799     if (cookieSize != 0) {
800       sizeWithoutCookie = size;
801 
802       llvm::Value *uadd_with_overflow
803         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
804 
805       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
806       llvm::Value *result =
807           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
808 
809       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
810       if (hasOverflow)
811         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
812       else
813         hasOverflow = overflowed;
814 
815       size = CGF.Builder.CreateExtractValue(result, 0);
816     }
817 
818     // If we had any possibility of dynamic overflow, make a select to
819     // overwrite 'size' with an all-ones value, which should cause
820     // operator new to throw.
821     if (hasOverflow)
822       size = CGF.Builder.CreateSelect(hasOverflow,
823                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
824                                       size);
825   }
826 
827   if (cookieSize == 0)
828     sizeWithoutCookie = size;
829   else
830     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
831 
832   return size;
833 }
834 
835 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
836                                     QualType AllocType, Address NewPtr) {
837   // FIXME: Refactor with EmitExprAsInit.
838   switch (CGF.getEvaluationKind(AllocType)) {
839   case TEK_Scalar:
840     CGF.EmitScalarInit(Init, nullptr,
841                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
842     return;
843   case TEK_Complex:
844     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
845                                   /*isInit*/ true);
846     return;
847   case TEK_Aggregate: {
848     AggValueSlot Slot
849       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
850                               AggValueSlot::IsDestructed,
851                               AggValueSlot::DoesNotNeedGCBarriers,
852                               AggValueSlot::IsNotAliased);
853     CGF.EmitAggExpr(Init, Slot);
854     return;
855   }
856   }
857   llvm_unreachable("bad evaluation kind");
858 }
859 
860 void CodeGenFunction::EmitNewArrayInitializer(
861     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
862     Address BeginPtr, llvm::Value *NumElements,
863     llvm::Value *AllocSizeWithoutCookie) {
864   // If we have a type with trivial initialization and no initializer,
865   // there's nothing to do.
866   if (!E->hasInitializer())
867     return;
868 
869   Address CurPtr = BeginPtr;
870 
871   unsigned InitListElements = 0;
872 
873   const Expr *Init = E->getInitializer();
874   Address EndOfInit = Address::invalid();
875   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
876   EHScopeStack::stable_iterator Cleanup;
877   llvm::Instruction *CleanupDominator = nullptr;
878 
879   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
880   CharUnits ElementAlign =
881     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
882 
883   // Attempt to perform zero-initialization using memset.
884   auto TryMemsetInitialization = [&]() -> bool {
885     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
886     // we can initialize with a memset to -1.
887     if (!CGM.getTypes().isZeroInitializable(ElementType))
888       return false;
889 
890     // Optimization: since zero initialization will just set the memory
891     // to all zeroes, generate a single memset to do it in one shot.
892 
893     // Subtract out the size of any elements we've already initialized.
894     auto *RemainingSize = AllocSizeWithoutCookie;
895     if (InitListElements) {
896       // We know this can't overflow; we check this when doing the allocation.
897       auto *InitializedSize = llvm::ConstantInt::get(
898           RemainingSize->getType(),
899           getContext().getTypeSizeInChars(ElementType).getQuantity() *
900               InitListElements);
901       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
902     }
903 
904     // Create the memset.
905     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
906     return true;
907   };
908 
909   // If the initializer is an initializer list, first do the explicit elements.
910   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
911     // Initializing from a (braced) string literal is a special case; the init
912     // list element does not initialize a (single) array element.
913     if (ILE->isStringLiteralInit()) {
914       // Initialize the initial portion of length equal to that of the string
915       // literal. The allocation must be for at least this much; we emitted a
916       // check for that earlier.
917       AggValueSlot Slot =
918           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
919                                 AggValueSlot::IsDestructed,
920                                 AggValueSlot::DoesNotNeedGCBarriers,
921                                 AggValueSlot::IsNotAliased);
922       EmitAggExpr(ILE->getInit(0), Slot);
923 
924       // Move past these elements.
925       InitListElements =
926           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
927               ->getSize().getZExtValue();
928       CurPtr =
929           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
930                                             Builder.getSize(InitListElements),
931                                             "string.init.end"),
932                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
933                                                           ElementSize));
934 
935       // Zero out the rest, if any remain.
936       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
937       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
938         bool OK = TryMemsetInitialization();
939         (void)OK;
940         assert(OK && "couldn't memset character type?");
941       }
942       return;
943     }
944 
945     InitListElements = ILE->getNumInits();
946 
947     // If this is a multi-dimensional array new, we will initialize multiple
948     // elements with each init list element.
949     QualType AllocType = E->getAllocatedType();
950     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
951             AllocType->getAsArrayTypeUnsafe())) {
952       ElementTy = ConvertTypeForMem(AllocType);
953       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
954       InitListElements *= getContext().getConstantArrayElementCount(CAT);
955     }
956 
957     // Enter a partial-destruction Cleanup if necessary.
958     if (needsEHCleanup(DtorKind)) {
959       // In principle we could tell the Cleanup where we are more
960       // directly, but the control flow can get so varied here that it
961       // would actually be quite complex.  Therefore we go through an
962       // alloca.
963       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
964                                    "array.init.end");
965       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
966       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
967                                        ElementType, ElementAlign,
968                                        getDestroyer(DtorKind));
969       Cleanup = EHStack.stable_begin();
970     }
971 
972     CharUnits StartAlign = CurPtr.getAlignment();
973     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
974       // Tell the cleanup that it needs to destroy up to this
975       // element.  TODO: some of these stores can be trivially
976       // observed to be unnecessary.
977       if (EndOfInit.isValid()) {
978         auto FinishedPtr =
979           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
980         Builder.CreateStore(FinishedPtr, EndOfInit);
981       }
982       // FIXME: If the last initializer is an incomplete initializer list for
983       // an array, and we have an array filler, we can fold together the two
984       // initialization loops.
985       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
986                               ILE->getInit(i)->getType(), CurPtr);
987       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
988                                                  Builder.getSize(1),
989                                                  "array.exp.next"),
990                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
991     }
992 
993     // The remaining elements are filled with the array filler expression.
994     Init = ILE->getArrayFiller();
995 
996     // Extract the initializer for the individual array elements by pulling
997     // out the array filler from all the nested initializer lists. This avoids
998     // generating a nested loop for the initialization.
999     while (Init && Init->getType()->isConstantArrayType()) {
1000       auto *SubILE = dyn_cast<InitListExpr>(Init);
1001       if (!SubILE)
1002         break;
1003       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1004       Init = SubILE->getArrayFiller();
1005     }
1006 
1007     // Switch back to initializing one base element at a time.
1008     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1009   }
1010 
1011   // If all elements have already been initialized, skip any further
1012   // initialization.
1013   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1014   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1015     // If there was a Cleanup, deactivate it.
1016     if (CleanupDominator)
1017       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1018     return;
1019   }
1020 
1021   assert(Init && "have trailing elements to initialize but no initializer");
1022 
1023   // If this is a constructor call, try to optimize it out, and failing that
1024   // emit a single loop to initialize all remaining elements.
1025   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1026     CXXConstructorDecl *Ctor = CCE->getConstructor();
1027     if (Ctor->isTrivial()) {
1028       // If new expression did not specify value-initialization, then there
1029       // is no initialization.
1030       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1031         return;
1032 
1033       if (TryMemsetInitialization())
1034         return;
1035     }
1036 
1037     // Store the new Cleanup position for irregular Cleanups.
1038     //
1039     // FIXME: Share this cleanup with the constructor call emission rather than
1040     // having it create a cleanup of its own.
1041     if (EndOfInit.isValid())
1042       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1043 
1044     // Emit a constructor call loop to initialize the remaining elements.
1045     if (InitListElements)
1046       NumElements = Builder.CreateSub(
1047           NumElements,
1048           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1049     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1050                                CCE->requiresZeroInitialization());
1051     return;
1052   }
1053 
1054   // If this is value-initialization, we can usually use memset.
1055   ImplicitValueInitExpr IVIE(ElementType);
1056   if (isa<ImplicitValueInitExpr>(Init)) {
1057     if (TryMemsetInitialization())
1058       return;
1059 
1060     // Switch to an ImplicitValueInitExpr for the element type. This handles
1061     // only one case: multidimensional array new of pointers to members. In
1062     // all other cases, we already have an initializer for the array element.
1063     Init = &IVIE;
1064   }
1065 
1066   // At this point we should have found an initializer for the individual
1067   // elements of the array.
1068   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1069          "got wrong type of element to initialize");
1070 
1071   // If we have an empty initializer list, we can usually use memset.
1072   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1073     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1074       return;
1075 
1076   // If we have a struct whose every field is value-initialized, we can
1077   // usually use memset.
1078   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1079     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1080       if (RType->getDecl()->isStruct()) {
1081         unsigned NumElements = 0;
1082         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1083           NumElements = CXXRD->getNumBases();
1084         for (auto *Field : RType->getDecl()->fields())
1085           if (!Field->isUnnamedBitfield())
1086             ++NumElements;
1087         // FIXME: Recurse into nested InitListExprs.
1088         if (ILE->getNumInits() == NumElements)
1089           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1090             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1091               --NumElements;
1092         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1093           return;
1094       }
1095     }
1096   }
1097 
1098   // Create the loop blocks.
1099   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1100   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1101   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1102 
1103   // Find the end of the array, hoisted out of the loop.
1104   llvm::Value *EndPtr =
1105     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1106 
1107   // If the number of elements isn't constant, we have to now check if there is
1108   // anything left to initialize.
1109   if (!ConstNum) {
1110     llvm::Value *IsEmpty =
1111       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1112     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1113   }
1114 
1115   // Enter the loop.
1116   EmitBlock(LoopBB);
1117 
1118   // Set up the current-element phi.
1119   llvm::PHINode *CurPtrPhi =
1120     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1121   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1122 
1123   CurPtr = Address(CurPtrPhi, ElementAlign);
1124 
1125   // Store the new Cleanup position for irregular Cleanups.
1126   if (EndOfInit.isValid())
1127     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1128 
1129   // Enter a partial-destruction Cleanup if necessary.
1130   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1131     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1132                                    ElementType, ElementAlign,
1133                                    getDestroyer(DtorKind));
1134     Cleanup = EHStack.stable_begin();
1135     CleanupDominator = Builder.CreateUnreachable();
1136   }
1137 
1138   // Emit the initializer into this element.
1139   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1140 
1141   // Leave the Cleanup if we entered one.
1142   if (CleanupDominator) {
1143     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1144     CleanupDominator->eraseFromParent();
1145   }
1146 
1147   // Advance to the next element by adjusting the pointer type as necessary.
1148   llvm::Value *NextPtr =
1149     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1150                                        "array.next");
1151 
1152   // Check whether we've gotten to the end of the array and, if so,
1153   // exit the loop.
1154   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1155   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1156   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1157 
1158   EmitBlock(ContBB);
1159 }
1160 
1161 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1162                                QualType ElementType, llvm::Type *ElementTy,
1163                                Address NewPtr, llvm::Value *NumElements,
1164                                llvm::Value *AllocSizeWithoutCookie) {
1165   ApplyDebugLocation DL(CGF, E);
1166   if (E->isArray())
1167     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1168                                 AllocSizeWithoutCookie);
1169   else if (const Expr *Init = E->getInitializer())
1170     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1171 }
1172 
1173 /// Emit a call to an operator new or operator delete function, as implicitly
1174 /// created by new-expressions and delete-expressions.
1175 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1176                                 const FunctionDecl *Callee,
1177                                 const FunctionProtoType *CalleeType,
1178                                 const CallArgList &Args) {
1179   llvm::Instruction *CallOrInvoke;
1180   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1181   RValue RV =
1182       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1183                        Args, CalleeType, /*chainCall=*/false),
1184                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1185 
1186   /// C++1y [expr.new]p10:
1187   ///   [In a new-expression,] an implementation is allowed to omit a call
1188   ///   to a replaceable global allocation function.
1189   ///
1190   /// We model such elidable calls with the 'builtin' attribute.
1191   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1192   if (Callee->isReplaceableGlobalAllocationFunction() &&
1193       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1194     // FIXME: Add addAttribute to CallSite.
1195     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1196       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1197                        llvm::Attribute::Builtin);
1198     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1199       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1200                        llvm::Attribute::Builtin);
1201     else
1202       llvm_unreachable("unexpected kind of call instruction");
1203   }
1204 
1205   return RV;
1206 }
1207 
1208 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1209                                                  const Expr *Arg,
1210                                                  bool IsDelete) {
1211   CallArgList Args;
1212   const Stmt *ArgS = Arg;
1213   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1214   // Find the allocation or deallocation function that we're calling.
1215   ASTContext &Ctx = getContext();
1216   DeclarationName Name = Ctx.DeclarationNames
1217       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1218   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1219     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1220       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1221         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1222   llvm_unreachable("predeclared global operator new/delete is missing");
1223 }
1224 
1225 static std::pair<bool, bool>
1226 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) {
1227   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1228 
1229   // The first argument is always a void*.
1230   ++AI;
1231 
1232   // Figure out what other parameters we should be implicitly passing.
1233   bool PassSize = false;
1234   bool PassAlignment = false;
1235 
1236   if (AI != AE && (*AI)->isIntegerType()) {
1237     PassSize = true;
1238     ++AI;
1239   }
1240 
1241   if (AI != AE && (*AI)->isAlignValT()) {
1242     PassAlignment = true;
1243     ++AI;
1244   }
1245 
1246   assert(AI == AE && "unexpected usual deallocation function parameter");
1247   return {PassSize, PassAlignment};
1248 }
1249 
1250 namespace {
1251   /// A cleanup to call the given 'operator delete' function upon abnormal
1252   /// exit from a new expression. Templated on a traits type that deals with
1253   /// ensuring that the arguments dominate the cleanup if necessary.
1254   template<typename Traits>
1255   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1256     /// Type used to hold llvm::Value*s.
1257     typedef typename Traits::ValueTy ValueTy;
1258     /// Type used to hold RValues.
1259     typedef typename Traits::RValueTy RValueTy;
1260     struct PlacementArg {
1261       RValueTy ArgValue;
1262       QualType ArgType;
1263     };
1264 
1265     unsigned NumPlacementArgs : 31;
1266     unsigned PassAlignmentToPlacementDelete : 1;
1267     const FunctionDecl *OperatorDelete;
1268     ValueTy Ptr;
1269     ValueTy AllocSize;
1270     CharUnits AllocAlign;
1271 
1272     PlacementArg *getPlacementArgs() {
1273       return reinterpret_cast<PlacementArg *>(this + 1);
1274     }
1275 
1276   public:
1277     static size_t getExtraSize(size_t NumPlacementArgs) {
1278       return NumPlacementArgs * sizeof(PlacementArg);
1279     }
1280 
1281     CallDeleteDuringNew(size_t NumPlacementArgs,
1282                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1283                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1284                         CharUnits AllocAlign)
1285       : NumPlacementArgs(NumPlacementArgs),
1286         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1287         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1288         AllocAlign(AllocAlign) {}
1289 
1290     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1291       assert(I < NumPlacementArgs && "index out of range");
1292       getPlacementArgs()[I] = {Arg, Type};
1293     }
1294 
1295     void Emit(CodeGenFunction &CGF, Flags flags) override {
1296       const FunctionProtoType *FPT =
1297           OperatorDelete->getType()->getAs<FunctionProtoType>();
1298       CallArgList DeleteArgs;
1299 
1300       // The first argument is always a void*.
1301       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1302 
1303       // Figure out what other parameters we should be implicitly passing.
1304       bool PassSize = false;
1305       bool PassAlignment = false;
1306       if (NumPlacementArgs) {
1307         // A placement deallocation function is implicitly passed an alignment
1308         // if the placement allocation function was, but is never passed a size.
1309         PassAlignment = PassAlignmentToPlacementDelete;
1310       } else {
1311         // For a non-placement new-expression, 'operator delete' can take a
1312         // size and/or an alignment if it has the right parameters.
1313         std::tie(PassSize, PassAlignment) =
1314             shouldPassSizeAndAlignToUsualDelete(FPT);
1315       }
1316 
1317       // The second argument can be a std::size_t (for non-placement delete).
1318       if (PassSize)
1319         DeleteArgs.add(Traits::get(CGF, AllocSize),
1320                        CGF.getContext().getSizeType());
1321 
1322       // The next (second or third) argument can be a std::align_val_t, which
1323       // is an enum whose underlying type is std::size_t.
1324       // FIXME: Use the right type as the parameter type. Note that in a call
1325       // to operator delete(size_t, ...), we may not have it available.
1326       if (PassAlignment)
1327         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1328                            CGF.SizeTy, AllocAlign.getQuantity())),
1329                        CGF.getContext().getSizeType());
1330 
1331       // Pass the rest of the arguments, which must match exactly.
1332       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1333         auto Arg = getPlacementArgs()[I];
1334         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1335       }
1336 
1337       // Call 'operator delete'.
1338       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1339     }
1340   };
1341 }
1342 
1343 /// Enter a cleanup to call 'operator delete' if the initializer in a
1344 /// new-expression throws.
1345 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1346                                   const CXXNewExpr *E,
1347                                   Address NewPtr,
1348                                   llvm::Value *AllocSize,
1349                                   CharUnits AllocAlign,
1350                                   const CallArgList &NewArgs) {
1351   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1352 
1353   // If we're not inside a conditional branch, then the cleanup will
1354   // dominate and we can do the easier (and more efficient) thing.
1355   if (!CGF.isInConditionalBranch()) {
1356     struct DirectCleanupTraits {
1357       typedef llvm::Value *ValueTy;
1358       typedef RValue RValueTy;
1359       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1360       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1361     };
1362 
1363     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1364 
1365     DirectCleanup *Cleanup = CGF.EHStack
1366       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1367                                            E->getNumPlacementArgs(),
1368                                            E->getOperatorDelete(),
1369                                            NewPtr.getPointer(),
1370                                            AllocSize,
1371                                            E->passAlignment(),
1372                                            AllocAlign);
1373     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1374       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1375       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1376     }
1377 
1378     return;
1379   }
1380 
1381   // Otherwise, we need to save all this stuff.
1382   DominatingValue<RValue>::saved_type SavedNewPtr =
1383     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1384   DominatingValue<RValue>::saved_type SavedAllocSize =
1385     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1386 
1387   struct ConditionalCleanupTraits {
1388     typedef DominatingValue<RValue>::saved_type ValueTy;
1389     typedef DominatingValue<RValue>::saved_type RValueTy;
1390     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1391       return V.restore(CGF);
1392     }
1393   };
1394   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1395 
1396   ConditionalCleanup *Cleanup = CGF.EHStack
1397     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1398                                               E->getNumPlacementArgs(),
1399                                               E->getOperatorDelete(),
1400                                               SavedNewPtr,
1401                                               SavedAllocSize,
1402                                               E->passAlignment(),
1403                                               AllocAlign);
1404   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1405     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1406     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1407                              Arg.Ty);
1408   }
1409 
1410   CGF.initFullExprCleanup();
1411 }
1412 
1413 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1414   // The element type being allocated.
1415   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1416 
1417   // 1. Build a call to the allocation function.
1418   FunctionDecl *allocator = E->getOperatorNew();
1419 
1420   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1421   unsigned minElements = 0;
1422   if (E->isArray() && E->hasInitializer()) {
1423     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1424     if (ILE && ILE->isStringLiteralInit())
1425       minElements =
1426           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1427               ->getSize().getZExtValue();
1428     else if (ILE)
1429       minElements = ILE->getNumInits();
1430   }
1431 
1432   llvm::Value *numElements = nullptr;
1433   llvm::Value *allocSizeWithoutCookie = nullptr;
1434   llvm::Value *allocSize =
1435     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1436                         allocSizeWithoutCookie);
1437   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1438 
1439   // Emit the allocation call.  If the allocator is a global placement
1440   // operator, just "inline" it directly.
1441   Address allocation = Address::invalid();
1442   CallArgList allocatorArgs;
1443   if (allocator->isReservedGlobalPlacementOperator()) {
1444     assert(E->getNumPlacementArgs() == 1);
1445     const Expr *arg = *E->placement_arguments().begin();
1446 
1447     AlignmentSource alignSource;
1448     allocation = EmitPointerWithAlignment(arg, &alignSource);
1449 
1450     // The pointer expression will, in many cases, be an opaque void*.
1451     // In these cases, discard the computed alignment and use the
1452     // formal alignment of the allocated type.
1453     if (alignSource != AlignmentSource::Decl)
1454       allocation = Address(allocation.getPointer(), allocAlign);
1455 
1456     // Set up allocatorArgs for the call to operator delete if it's not
1457     // the reserved global operator.
1458     if (E->getOperatorDelete() &&
1459         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1460       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1461       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1462     }
1463 
1464   } else {
1465     const FunctionProtoType *allocatorType =
1466       allocator->getType()->castAs<FunctionProtoType>();
1467     unsigned ParamsToSkip = 0;
1468 
1469     // The allocation size is the first argument.
1470     QualType sizeType = getContext().getSizeType();
1471     allocatorArgs.add(RValue::get(allocSize), sizeType);
1472     ++ParamsToSkip;
1473 
1474     if (allocSize != allocSizeWithoutCookie) {
1475       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1476       allocAlign = std::max(allocAlign, cookieAlign);
1477     }
1478 
1479     // The allocation alignment may be passed as the second argument.
1480     if (E->passAlignment()) {
1481       QualType AlignValT = sizeType;
1482       if (allocatorType->getNumParams() > 1) {
1483         AlignValT = allocatorType->getParamType(1);
1484         assert(getContext().hasSameUnqualifiedType(
1485                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1486                    sizeType) &&
1487                "wrong type for alignment parameter");
1488         ++ParamsToSkip;
1489       } else {
1490         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1491         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1492       }
1493       allocatorArgs.add(
1494           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1495           AlignValT);
1496     }
1497 
1498     // FIXME: Why do we not pass a CalleeDecl here?
1499     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1500                  /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip);
1501 
1502     RValue RV =
1503       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1504 
1505     // If this was a call to a global replaceable allocation function that does
1506     // not take an alignment argument, the allocator is known to produce
1507     // storage that's suitably aligned for any object that fits, up to a known
1508     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1509     CharUnits allocationAlign = allocAlign;
1510     if (!E->passAlignment() &&
1511         allocator->isReplaceableGlobalAllocationFunction()) {
1512       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1513           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1514       allocationAlign = std::max(
1515           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1516     }
1517 
1518     allocation = Address(RV.getScalarVal(), allocationAlign);
1519   }
1520 
1521   // Emit a null check on the allocation result if the allocation
1522   // function is allowed to return null (because it has a non-throwing
1523   // exception spec or is the reserved placement new) and we have an
1524   // interesting initializer.
1525   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1526     (!allocType.isPODType(getContext()) || E->hasInitializer());
1527 
1528   llvm::BasicBlock *nullCheckBB = nullptr;
1529   llvm::BasicBlock *contBB = nullptr;
1530 
1531   // The null-check means that the initializer is conditionally
1532   // evaluated.
1533   ConditionalEvaluation conditional(*this);
1534 
1535   if (nullCheck) {
1536     conditional.begin(*this);
1537 
1538     nullCheckBB = Builder.GetInsertBlock();
1539     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1540     contBB = createBasicBlock("new.cont");
1541 
1542     llvm::Value *isNull =
1543       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1544     Builder.CreateCondBr(isNull, contBB, notNullBB);
1545     EmitBlock(notNullBB);
1546   }
1547 
1548   // If there's an operator delete, enter a cleanup to call it if an
1549   // exception is thrown.
1550   EHScopeStack::stable_iterator operatorDeleteCleanup;
1551   llvm::Instruction *cleanupDominator = nullptr;
1552   if (E->getOperatorDelete() &&
1553       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1554     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1555                           allocatorArgs);
1556     operatorDeleteCleanup = EHStack.stable_begin();
1557     cleanupDominator = Builder.CreateUnreachable();
1558   }
1559 
1560   assert((allocSize == allocSizeWithoutCookie) ==
1561          CalculateCookiePadding(*this, E).isZero());
1562   if (allocSize != allocSizeWithoutCookie) {
1563     assert(E->isArray());
1564     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1565                                                        numElements,
1566                                                        E, allocType);
1567   }
1568 
1569   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1570   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1571 
1572   // Passing pointer through invariant.group.barrier to avoid propagation of
1573   // vptrs information which may be included in previous type.
1574   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1575       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1576       allocator->isReservedGlobalPlacementOperator())
1577     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1578                      result.getAlignment());
1579 
1580   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1581                      allocSizeWithoutCookie);
1582   if (E->isArray()) {
1583     // NewPtr is a pointer to the base element type.  If we're
1584     // allocating an array of arrays, we'll need to cast back to the
1585     // array pointer type.
1586     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1587     if (result.getType() != resultType)
1588       result = Builder.CreateBitCast(result, resultType);
1589   }
1590 
1591   // Deactivate the 'operator delete' cleanup if we finished
1592   // initialization.
1593   if (operatorDeleteCleanup.isValid()) {
1594     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1595     cleanupDominator->eraseFromParent();
1596   }
1597 
1598   llvm::Value *resultPtr = result.getPointer();
1599   if (nullCheck) {
1600     conditional.end(*this);
1601 
1602     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1603     EmitBlock(contBB);
1604 
1605     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1606     PHI->addIncoming(resultPtr, notNullBB);
1607     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1608                      nullCheckBB);
1609 
1610     resultPtr = PHI;
1611   }
1612 
1613   return resultPtr;
1614 }
1615 
1616 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1617                                      llvm::Value *Ptr, QualType DeleteTy,
1618                                      llvm::Value *NumElements,
1619                                      CharUnits CookieSize) {
1620   assert((!NumElements && CookieSize.isZero()) ||
1621          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1622 
1623   const FunctionProtoType *DeleteFTy =
1624     DeleteFD->getType()->getAs<FunctionProtoType>();
1625 
1626   CallArgList DeleteArgs;
1627 
1628   std::pair<bool, bool> PassSizeAndAlign =
1629       shouldPassSizeAndAlignToUsualDelete(DeleteFTy);
1630 
1631   auto ParamTypeIt = DeleteFTy->param_type_begin();
1632 
1633   // Pass the pointer itself.
1634   QualType ArgTy = *ParamTypeIt++;
1635   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1636   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1637 
1638   // Pass the size if the delete function has a size_t parameter.
1639   if (PassSizeAndAlign.first) {
1640     QualType SizeType = *ParamTypeIt++;
1641     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1642     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1643                                                DeleteTypeSize.getQuantity());
1644 
1645     // For array new, multiply by the number of elements.
1646     if (NumElements)
1647       Size = Builder.CreateMul(Size, NumElements);
1648 
1649     // If there is a cookie, add the cookie size.
1650     if (!CookieSize.isZero())
1651       Size = Builder.CreateAdd(
1652           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1653 
1654     DeleteArgs.add(RValue::get(Size), SizeType);
1655   }
1656 
1657   // Pass the alignment if the delete function has an align_val_t parameter.
1658   if (PassSizeAndAlign.second) {
1659     QualType AlignValType = *ParamTypeIt++;
1660     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1661         getContext().getTypeAlignIfKnown(DeleteTy));
1662     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1663                                                 DeleteTypeAlign.getQuantity());
1664     DeleteArgs.add(RValue::get(Align), AlignValType);
1665   }
1666 
1667   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1668          "unknown parameter to usual delete function");
1669 
1670   // Emit the call to delete.
1671   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1672 }
1673 
1674 namespace {
1675   /// Calls the given 'operator delete' on a single object.
1676   struct CallObjectDelete final : EHScopeStack::Cleanup {
1677     llvm::Value *Ptr;
1678     const FunctionDecl *OperatorDelete;
1679     QualType ElementType;
1680 
1681     CallObjectDelete(llvm::Value *Ptr,
1682                      const FunctionDecl *OperatorDelete,
1683                      QualType ElementType)
1684       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1685 
1686     void Emit(CodeGenFunction &CGF, Flags flags) override {
1687       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1688     }
1689   };
1690 }
1691 
1692 void
1693 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1694                                              llvm::Value *CompletePtr,
1695                                              QualType ElementType) {
1696   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1697                                         OperatorDelete, ElementType);
1698 }
1699 
1700 /// Emit the code for deleting a single object.
1701 static void EmitObjectDelete(CodeGenFunction &CGF,
1702                              const CXXDeleteExpr *DE,
1703                              Address Ptr,
1704                              QualType ElementType) {
1705   // Find the destructor for the type, if applicable.  If the
1706   // destructor is virtual, we'll just emit the vcall and return.
1707   const CXXDestructorDecl *Dtor = nullptr;
1708   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1709     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1710     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1711       Dtor = RD->getDestructor();
1712 
1713       if (Dtor->isVirtual()) {
1714         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1715                                                     Dtor);
1716         return;
1717       }
1718     }
1719   }
1720 
1721   // Make sure that we call delete even if the dtor throws.
1722   // This doesn't have to a conditional cleanup because we're going
1723   // to pop it off in a second.
1724   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1725   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1726                                             Ptr.getPointer(),
1727                                             OperatorDelete, ElementType);
1728 
1729   if (Dtor)
1730     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1731                               /*ForVirtualBase=*/false,
1732                               /*Delegating=*/false,
1733                               Ptr);
1734   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1735     switch (Lifetime) {
1736     case Qualifiers::OCL_None:
1737     case Qualifiers::OCL_ExplicitNone:
1738     case Qualifiers::OCL_Autoreleasing:
1739       break;
1740 
1741     case Qualifiers::OCL_Strong:
1742       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1743       break;
1744 
1745     case Qualifiers::OCL_Weak:
1746       CGF.EmitARCDestroyWeak(Ptr);
1747       break;
1748     }
1749   }
1750 
1751   CGF.PopCleanupBlock();
1752 }
1753 
1754 namespace {
1755   /// Calls the given 'operator delete' on an array of objects.
1756   struct CallArrayDelete final : EHScopeStack::Cleanup {
1757     llvm::Value *Ptr;
1758     const FunctionDecl *OperatorDelete;
1759     llvm::Value *NumElements;
1760     QualType ElementType;
1761     CharUnits CookieSize;
1762 
1763     CallArrayDelete(llvm::Value *Ptr,
1764                     const FunctionDecl *OperatorDelete,
1765                     llvm::Value *NumElements,
1766                     QualType ElementType,
1767                     CharUnits CookieSize)
1768       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1769         ElementType(ElementType), CookieSize(CookieSize) {}
1770 
1771     void Emit(CodeGenFunction &CGF, Flags flags) override {
1772       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1773                          CookieSize);
1774     }
1775   };
1776 }
1777 
1778 /// Emit the code for deleting an array of objects.
1779 static void EmitArrayDelete(CodeGenFunction &CGF,
1780                             const CXXDeleteExpr *E,
1781                             Address deletedPtr,
1782                             QualType elementType) {
1783   llvm::Value *numElements = nullptr;
1784   llvm::Value *allocatedPtr = nullptr;
1785   CharUnits cookieSize;
1786   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1787                                       numElements, allocatedPtr, cookieSize);
1788 
1789   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1790 
1791   // Make sure that we call delete even if one of the dtors throws.
1792   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1793   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1794                                            allocatedPtr, operatorDelete,
1795                                            numElements, elementType,
1796                                            cookieSize);
1797 
1798   // Destroy the elements.
1799   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1800     assert(numElements && "no element count for a type with a destructor!");
1801 
1802     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1803     CharUnits elementAlign =
1804       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1805 
1806     llvm::Value *arrayBegin = deletedPtr.getPointer();
1807     llvm::Value *arrayEnd =
1808       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1809 
1810     // Note that it is legal to allocate a zero-length array, and we
1811     // can never fold the check away because the length should always
1812     // come from a cookie.
1813     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1814                          CGF.getDestroyer(dtorKind),
1815                          /*checkZeroLength*/ true,
1816                          CGF.needsEHCleanup(dtorKind));
1817   }
1818 
1819   // Pop the cleanup block.
1820   CGF.PopCleanupBlock();
1821 }
1822 
1823 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1824   const Expr *Arg = E->getArgument();
1825   Address Ptr = EmitPointerWithAlignment(Arg);
1826 
1827   // Null check the pointer.
1828   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1829   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1830 
1831   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1832 
1833   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1834   EmitBlock(DeleteNotNull);
1835 
1836   // We might be deleting a pointer to array.  If so, GEP down to the
1837   // first non-array element.
1838   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1839   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1840   if (DeleteTy->isConstantArrayType()) {
1841     llvm::Value *Zero = Builder.getInt32(0);
1842     SmallVector<llvm::Value*,8> GEP;
1843 
1844     GEP.push_back(Zero); // point at the outermost array
1845 
1846     // For each layer of array type we're pointing at:
1847     while (const ConstantArrayType *Arr
1848              = getContext().getAsConstantArrayType(DeleteTy)) {
1849       // 1. Unpeel the array type.
1850       DeleteTy = Arr->getElementType();
1851 
1852       // 2. GEP to the first element of the array.
1853       GEP.push_back(Zero);
1854     }
1855 
1856     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1857                   Ptr.getAlignment());
1858   }
1859 
1860   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1861 
1862   if (E->isArrayForm()) {
1863     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1864   } else {
1865     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1866   }
1867 
1868   EmitBlock(DeleteEnd);
1869 }
1870 
1871 static bool isGLValueFromPointerDeref(const Expr *E) {
1872   E = E->IgnoreParens();
1873 
1874   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1875     if (!CE->getSubExpr()->isGLValue())
1876       return false;
1877     return isGLValueFromPointerDeref(CE->getSubExpr());
1878   }
1879 
1880   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1881     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1882 
1883   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1884     if (BO->getOpcode() == BO_Comma)
1885       return isGLValueFromPointerDeref(BO->getRHS());
1886 
1887   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1888     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1889            isGLValueFromPointerDeref(ACO->getFalseExpr());
1890 
1891   // C++11 [expr.sub]p1:
1892   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1893   if (isa<ArraySubscriptExpr>(E))
1894     return true;
1895 
1896   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1897     if (UO->getOpcode() == UO_Deref)
1898       return true;
1899 
1900   return false;
1901 }
1902 
1903 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1904                                          llvm::Type *StdTypeInfoPtrTy) {
1905   // Get the vtable pointer.
1906   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1907 
1908   // C++ [expr.typeid]p2:
1909   //   If the glvalue expression is obtained by applying the unary * operator to
1910   //   a pointer and the pointer is a null pointer value, the typeid expression
1911   //   throws the std::bad_typeid exception.
1912   //
1913   // However, this paragraph's intent is not clear.  We choose a very generous
1914   // interpretation which implores us to consider comma operators, conditional
1915   // operators, parentheses and other such constructs.
1916   QualType SrcRecordTy = E->getType();
1917   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1918           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1919     llvm::BasicBlock *BadTypeidBlock =
1920         CGF.createBasicBlock("typeid.bad_typeid");
1921     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1922 
1923     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1924     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1925 
1926     CGF.EmitBlock(BadTypeidBlock);
1927     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1928     CGF.EmitBlock(EndBlock);
1929   }
1930 
1931   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1932                                         StdTypeInfoPtrTy);
1933 }
1934 
1935 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1936   llvm::Type *StdTypeInfoPtrTy =
1937     ConvertType(E->getType())->getPointerTo();
1938 
1939   if (E->isTypeOperand()) {
1940     llvm::Constant *TypeInfo =
1941         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1942     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1943   }
1944 
1945   // C++ [expr.typeid]p2:
1946   //   When typeid is applied to a glvalue expression whose type is a
1947   //   polymorphic class type, the result refers to a std::type_info object
1948   //   representing the type of the most derived object (that is, the dynamic
1949   //   type) to which the glvalue refers.
1950   if (E->isPotentiallyEvaluated())
1951     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1952                                 StdTypeInfoPtrTy);
1953 
1954   QualType OperandTy = E->getExprOperand()->getType();
1955   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1956                                StdTypeInfoPtrTy);
1957 }
1958 
1959 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1960                                           QualType DestTy) {
1961   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1962   if (DestTy->isPointerType())
1963     return llvm::Constant::getNullValue(DestLTy);
1964 
1965   /// C++ [expr.dynamic.cast]p9:
1966   ///   A failed cast to reference type throws std::bad_cast
1967   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1968     return nullptr;
1969 
1970   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1971   return llvm::UndefValue::get(DestLTy);
1972 }
1973 
1974 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1975                                               const CXXDynamicCastExpr *DCE) {
1976   CGM.EmitExplicitCastExprType(DCE, this);
1977   QualType DestTy = DCE->getTypeAsWritten();
1978 
1979   if (DCE->isAlwaysNull())
1980     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1981       return T;
1982 
1983   QualType SrcTy = DCE->getSubExpr()->getType();
1984 
1985   // C++ [expr.dynamic.cast]p7:
1986   //   If T is "pointer to cv void," then the result is a pointer to the most
1987   //   derived object pointed to by v.
1988   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1989 
1990   bool isDynamicCastToVoid;
1991   QualType SrcRecordTy;
1992   QualType DestRecordTy;
1993   if (DestPTy) {
1994     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1995     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1996     DestRecordTy = DestPTy->getPointeeType();
1997   } else {
1998     isDynamicCastToVoid = false;
1999     SrcRecordTy = SrcTy;
2000     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2001   }
2002 
2003   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2004 
2005   // C++ [expr.dynamic.cast]p4:
2006   //   If the value of v is a null pointer value in the pointer case, the result
2007   //   is the null pointer value of type T.
2008   bool ShouldNullCheckSrcValue =
2009       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2010                                                          SrcRecordTy);
2011 
2012   llvm::BasicBlock *CastNull = nullptr;
2013   llvm::BasicBlock *CastNotNull = nullptr;
2014   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2015 
2016   if (ShouldNullCheckSrcValue) {
2017     CastNull = createBasicBlock("dynamic_cast.null");
2018     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2019 
2020     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2021     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2022     EmitBlock(CastNotNull);
2023   }
2024 
2025   llvm::Value *Value;
2026   if (isDynamicCastToVoid) {
2027     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2028                                                   DestTy);
2029   } else {
2030     assert(DestRecordTy->isRecordType() &&
2031            "destination type must be a record type!");
2032     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2033                                                 DestTy, DestRecordTy, CastEnd);
2034     CastNotNull = Builder.GetInsertBlock();
2035   }
2036 
2037   if (ShouldNullCheckSrcValue) {
2038     EmitBranch(CastEnd);
2039 
2040     EmitBlock(CastNull);
2041     EmitBranch(CastEnd);
2042   }
2043 
2044   EmitBlock(CastEnd);
2045 
2046   if (ShouldNullCheckSrcValue) {
2047     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2048     PHI->addIncoming(Value, CastNotNull);
2049     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2050 
2051     Value = PHI;
2052   }
2053 
2054   return Value;
2055 }
2056 
2057 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2058   RunCleanupsScope Scope(*this);
2059   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2060 
2061   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2062   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2063                                                e = E->capture_init_end();
2064        i != e; ++i, ++CurField) {
2065     // Emit initialization
2066     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2067     if (CurField->hasCapturedVLAType()) {
2068       auto VAT = CurField->getCapturedVLAType();
2069       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2070     } else {
2071       ArrayRef<VarDecl *> ArrayIndexes;
2072       if (CurField->getType()->isArrayType())
2073         ArrayIndexes = E->getCaptureInitIndexVars(i);
2074       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
2075     }
2076   }
2077 }
2078