1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs 28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29 llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, 31 CallArgList &Args, CallArgList *RtlArgs) { 32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33 isa<CXXOperatorCallExpr>(CE)); 34 assert(MD->isInstance() && 35 "Trying to emit a member or operator call expr on a static method!"); 36 ASTContext &C = CGF.getContext(); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 SourceLocation CallLoc; 42 if (CE) 43 CallLoc = CE->getExprLoc(); 44 CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD) 45 ? CodeGenFunction::TCK_ConstructorCall 46 : CodeGenFunction::TCK_MemberCall, 47 CallLoc, This, C.getRecordType(MD->getParent())); 48 49 // Push the this ptr. 50 const CXXRecordDecl *RD = 51 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 52 Args.add(RValue::get(This), 53 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 54 55 // If there is an implicit parameter (e.g. VTT), emit it. 56 if (ImplicitParam) { 57 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 58 } 59 60 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 61 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 62 63 // And the rest of the call args. 64 if (RtlArgs) { 65 // Special case: if the caller emitted the arguments right-to-left already 66 // (prior to emitting the *this argument), we're done. This happens for 67 // assignment operators. 68 Args.addFrom(*RtlArgs); 69 } else if (CE) { 70 // Special case: skip first argument of CXXOperatorCall (it is "this"). 71 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 72 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 73 CE->getDirectCallee()); 74 } else { 75 assert( 76 FPT->getNumParams() == 0 && 77 "No CallExpr specified for function with non-zero number of arguments"); 78 } 79 return required; 80 } 81 82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 83 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 91 Callee, ReturnValue, Args, MD); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97 StructorType Type) { 98 CallArgList Args; 99 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100 ImplicitParamTy, CE, Args, nullptr); 101 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102 Callee, ReturnValueSlot(), Args, DD); 103 } 104 105 static CXXRecordDecl *getCXXRecord(const Expr *E) { 106 QualType T = E->getType(); 107 if (const PointerType *PTy = T->getAs<PointerType>()) 108 T = PTy->getPointeeType(); 109 const RecordType *Ty = T->castAs<RecordType>(); 110 return cast<CXXRecordDecl>(Ty->getDecl()); 111 } 112 113 // Note: This function also emit constructor calls to support a MSVC 114 // extensions allowing explicit constructor function call. 115 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 116 ReturnValueSlot ReturnValue) { 117 const Expr *callee = CE->getCallee()->IgnoreParens(); 118 119 if (isa<BinaryOperator>(callee)) 120 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 121 122 const MemberExpr *ME = cast<MemberExpr>(callee); 123 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 124 125 if (MD->isStatic()) { 126 // The method is static, emit it as we would a regular call. 127 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 128 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 129 ReturnValue); 130 } 131 132 bool HasQualifier = ME->hasQualifier(); 133 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 134 bool IsArrow = ME->isArrow(); 135 const Expr *Base = ME->getBase(); 136 137 return EmitCXXMemberOrOperatorMemberCallExpr( 138 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 139 } 140 141 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 142 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 143 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 144 const Expr *Base) { 145 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 146 147 // Compute the object pointer. 148 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 149 150 const CXXMethodDecl *DevirtualizedMethod = nullptr; 151 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 152 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 153 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 154 assert(DevirtualizedMethod); 155 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 156 const Expr *Inner = Base->ignoreParenBaseCasts(); 157 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 158 MD->getReturnType().getCanonicalType()) 159 // If the return types are not the same, this might be a case where more 160 // code needs to run to compensate for it. For example, the derived 161 // method might return a type that inherits form from the return 162 // type of MD and has a prefix. 163 // For now we just avoid devirtualizing these covariant cases. 164 DevirtualizedMethod = nullptr; 165 else if (getCXXRecord(Inner) == DevirtualizedClass) 166 // If the class of the Inner expression is where the dynamic method 167 // is defined, build the this pointer from it. 168 Base = Inner; 169 else if (getCXXRecord(Base) != DevirtualizedClass) { 170 // If the method is defined in a class that is not the best dynamic 171 // one or the one of the full expression, we would have to build 172 // a derived-to-base cast to compute the correct this pointer, but 173 // we don't have support for that yet, so do a virtual call. 174 DevirtualizedMethod = nullptr; 175 } 176 } 177 178 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 179 // operator before the LHS. 180 CallArgList RtlArgStorage; 181 CallArgList *RtlArgs = nullptr; 182 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 183 if (OCE->isAssignmentOp()) { 184 RtlArgs = &RtlArgStorage; 185 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 186 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 187 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 188 } 189 } 190 191 Address This = Address::invalid(); 192 if (IsArrow) 193 This = EmitPointerWithAlignment(Base); 194 else 195 This = EmitLValue(Base).getAddress(); 196 197 198 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 199 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 200 if (isa<CXXConstructorDecl>(MD) && 201 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 202 return RValue::get(nullptr); 203 204 if (!MD->getParent()->mayInsertExtraPadding()) { 205 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 206 // We don't like to generate the trivial copy/move assignment operator 207 // when it isn't necessary; just produce the proper effect here. 208 LValue RHS = isa<CXXOperatorCallExpr>(CE) 209 ? MakeNaturalAlignAddrLValue( 210 (*RtlArgs)[0].RV.getScalarVal(), 211 (*(CE->arg_begin() + 1))->getType()) 212 : EmitLValue(*CE->arg_begin()); 213 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 214 return RValue::get(This.getPointer()); 215 } 216 217 if (isa<CXXConstructorDecl>(MD) && 218 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 219 // Trivial move and copy ctor are the same. 220 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 221 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 222 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 223 return RValue::get(This.getPointer()); 224 } 225 llvm_unreachable("unknown trivial member function"); 226 } 227 } 228 229 // Compute the function type we're calling. 230 const CXXMethodDecl *CalleeDecl = 231 DevirtualizedMethod ? DevirtualizedMethod : MD; 232 const CGFunctionInfo *FInfo = nullptr; 233 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 234 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 235 Dtor, StructorType::Complete); 236 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 237 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 238 Ctor, StructorType::Complete); 239 else 240 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 241 242 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 243 244 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 245 // 'CalleeDecl' instead. 246 247 // C++ [class.virtual]p12: 248 // Explicit qualification with the scope operator (5.1) suppresses the 249 // virtual call mechanism. 250 // 251 // We also don't emit a virtual call if the base expression has a record type 252 // because then we know what the type is. 253 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 254 llvm::Value *Callee; 255 256 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 257 assert(CE->arg_begin() == CE->arg_end() && 258 "Destructor shouldn't have explicit parameters"); 259 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 260 if (UseVirtualCall) { 261 CGM.getCXXABI().EmitVirtualDestructorCall( 262 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 263 } else { 264 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 265 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 266 else if (!DevirtualizedMethod) 267 Callee = 268 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 269 else { 270 const CXXDestructorDecl *DDtor = 271 cast<CXXDestructorDecl>(DevirtualizedMethod); 272 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 273 } 274 EmitCXXMemberOrOperatorCall( 275 CalleeDecl, Callee, ReturnValue, This.getPointer(), 276 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 277 } 278 return RValue::get(nullptr); 279 } 280 281 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 282 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 283 } else if (UseVirtualCall) { 284 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 285 CE->getLocStart()); 286 } else { 287 if (SanOpts.has(SanitizerKind::CFINVCall) && 288 MD->getParent()->isDynamicClass()) { 289 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 290 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 291 CE->getLocStart()); 292 } 293 294 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 295 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 296 else if (!DevirtualizedMethod) 297 Callee = CGM.GetAddrOfFunction(MD, Ty); 298 else { 299 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 300 } 301 } 302 303 if (MD->isVirtual()) { 304 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 305 *this, CalleeDecl, This, UseVirtualCall); 306 } 307 308 return EmitCXXMemberOrOperatorCall( 309 CalleeDecl, Callee, ReturnValue, This.getPointer(), 310 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 311 } 312 313 RValue 314 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 315 ReturnValueSlot ReturnValue) { 316 const BinaryOperator *BO = 317 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 318 const Expr *BaseExpr = BO->getLHS(); 319 const Expr *MemFnExpr = BO->getRHS(); 320 321 const MemberPointerType *MPT = 322 MemFnExpr->getType()->castAs<MemberPointerType>(); 323 324 const FunctionProtoType *FPT = 325 MPT->getPointeeType()->castAs<FunctionProtoType>(); 326 const CXXRecordDecl *RD = 327 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 328 329 // Emit the 'this' pointer. 330 Address This = Address::invalid(); 331 if (BO->getOpcode() == BO_PtrMemI) 332 This = EmitPointerWithAlignment(BaseExpr); 333 else 334 This = EmitLValue(BaseExpr).getAddress(); 335 336 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 337 QualType(MPT->getClass(), 0)); 338 339 // Get the member function pointer. 340 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 341 342 // Ask the ABI to load the callee. Note that This is modified. 343 llvm::Value *ThisPtrForCall = nullptr; 344 llvm::Value *Callee = 345 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 346 ThisPtrForCall, MemFnPtr, MPT); 347 348 CallArgList Args; 349 350 QualType ThisType = 351 getContext().getPointerType(getContext().getTagDeclType(RD)); 352 353 // Push the this ptr. 354 Args.add(RValue::get(ThisPtrForCall), ThisType); 355 356 RequiredArgs required = 357 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 358 359 // And the rest of the call args 360 EmitCallArgs(Args, FPT, E->arguments()); 361 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 362 Callee, ReturnValue, Args); 363 } 364 365 RValue 366 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 367 const CXXMethodDecl *MD, 368 ReturnValueSlot ReturnValue) { 369 assert(MD->isInstance() && 370 "Trying to emit a member call expr on a static method!"); 371 return EmitCXXMemberOrOperatorMemberCallExpr( 372 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 373 /*IsArrow=*/false, E->getArg(0)); 374 } 375 376 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 377 ReturnValueSlot ReturnValue) { 378 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 379 } 380 381 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 382 Address DestPtr, 383 const CXXRecordDecl *Base) { 384 if (Base->isEmpty()) 385 return; 386 387 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 388 389 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 390 CharUnits NVSize = Layout.getNonVirtualSize(); 391 392 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 393 // present, they are initialized by the most derived class before calling the 394 // constructor. 395 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 396 Stores.emplace_back(CharUnits::Zero(), NVSize); 397 398 // Each store is split by the existence of a vbptr. 399 CharUnits VBPtrWidth = CGF.getPointerSize(); 400 std::vector<CharUnits> VBPtrOffsets = 401 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 402 for (CharUnits VBPtrOffset : VBPtrOffsets) { 403 // Stop before we hit any virtual base pointers located in virtual bases. 404 if (VBPtrOffset >= NVSize) 405 break; 406 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 407 CharUnits LastStoreOffset = LastStore.first; 408 CharUnits LastStoreSize = LastStore.second; 409 410 CharUnits SplitBeforeOffset = LastStoreOffset; 411 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 412 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 413 if (!SplitBeforeSize.isZero()) 414 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 415 416 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 417 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 418 assert(!SplitAfterSize.isNegative() && "negative store size!"); 419 if (!SplitAfterSize.isZero()) 420 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 421 } 422 423 // If the type contains a pointer to data member we can't memset it to zero. 424 // Instead, create a null constant and copy it to the destination. 425 // TODO: there are other patterns besides zero that we can usefully memset, 426 // like -1, which happens to be the pattern used by member-pointers. 427 // TODO: isZeroInitializable can be over-conservative in the case where a 428 // virtual base contains a member pointer. 429 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 430 if (!NullConstantForBase->isNullValue()) { 431 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 432 CGF.CGM.getModule(), NullConstantForBase->getType(), 433 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 434 NullConstantForBase, Twine()); 435 436 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 437 DestPtr.getAlignment()); 438 NullVariable->setAlignment(Align.getQuantity()); 439 440 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 441 442 // Get and call the appropriate llvm.memcpy overload. 443 for (std::pair<CharUnits, CharUnits> Store : Stores) { 444 CharUnits StoreOffset = Store.first; 445 CharUnits StoreSize = Store.second; 446 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 447 CGF.Builder.CreateMemCpy( 448 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 449 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 450 StoreSizeVal); 451 } 452 453 // Otherwise, just memset the whole thing to zero. This is legal 454 // because in LLVM, all default initializers (other than the ones we just 455 // handled above) are guaranteed to have a bit pattern of all zeros. 456 } else { 457 for (std::pair<CharUnits, CharUnits> Store : Stores) { 458 CharUnits StoreOffset = Store.first; 459 CharUnits StoreSize = Store.second; 460 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 461 CGF.Builder.CreateMemSet( 462 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 463 CGF.Builder.getInt8(0), StoreSizeVal); 464 } 465 } 466 } 467 468 void 469 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 470 AggValueSlot Dest) { 471 assert(!Dest.isIgnored() && "Must have a destination!"); 472 const CXXConstructorDecl *CD = E->getConstructor(); 473 474 // If we require zero initialization before (or instead of) calling the 475 // constructor, as can be the case with a non-user-provided default 476 // constructor, emit the zero initialization now, unless destination is 477 // already zeroed. 478 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 479 switch (E->getConstructionKind()) { 480 case CXXConstructExpr::CK_Delegating: 481 case CXXConstructExpr::CK_Complete: 482 EmitNullInitialization(Dest.getAddress(), E->getType()); 483 break; 484 case CXXConstructExpr::CK_VirtualBase: 485 case CXXConstructExpr::CK_NonVirtualBase: 486 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 487 CD->getParent()); 488 break; 489 } 490 } 491 492 // If this is a call to a trivial default constructor, do nothing. 493 if (CD->isTrivial() && CD->isDefaultConstructor()) 494 return; 495 496 // Elide the constructor if we're constructing from a temporary. 497 // The temporary check is required because Sema sets this on NRVO 498 // returns. 499 if (getLangOpts().ElideConstructors && E->isElidable()) { 500 assert(getContext().hasSameUnqualifiedType(E->getType(), 501 E->getArg(0)->getType())); 502 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 503 EmitAggExpr(E->getArg(0), Dest); 504 return; 505 } 506 } 507 508 if (const ArrayType *arrayType 509 = getContext().getAsArrayType(E->getType())) { 510 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 511 } else { 512 CXXCtorType Type = Ctor_Complete; 513 bool ForVirtualBase = false; 514 bool Delegating = false; 515 516 switch (E->getConstructionKind()) { 517 case CXXConstructExpr::CK_Delegating: 518 // We should be emitting a constructor; GlobalDecl will assert this 519 Type = CurGD.getCtorType(); 520 Delegating = true; 521 break; 522 523 case CXXConstructExpr::CK_Complete: 524 Type = Ctor_Complete; 525 break; 526 527 case CXXConstructExpr::CK_VirtualBase: 528 ForVirtualBase = true; 529 // fall-through 530 531 case CXXConstructExpr::CK_NonVirtualBase: 532 Type = Ctor_Base; 533 } 534 535 // Call the constructor. 536 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 537 Dest.getAddress(), E); 538 } 539 } 540 541 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 542 const Expr *Exp) { 543 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 544 Exp = E->getSubExpr(); 545 assert(isa<CXXConstructExpr>(Exp) && 546 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 547 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 548 const CXXConstructorDecl *CD = E->getConstructor(); 549 RunCleanupsScope Scope(*this); 550 551 // If we require zero initialization before (or instead of) calling the 552 // constructor, as can be the case with a non-user-provided default 553 // constructor, emit the zero initialization now. 554 // FIXME. Do I still need this for a copy ctor synthesis? 555 if (E->requiresZeroInitialization()) 556 EmitNullInitialization(Dest, E->getType()); 557 558 assert(!getContext().getAsConstantArrayType(E->getType()) 559 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 560 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 561 } 562 563 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 564 const CXXNewExpr *E) { 565 if (!E->isArray()) 566 return CharUnits::Zero(); 567 568 // No cookie is required if the operator new[] being used is the 569 // reserved placement operator new[]. 570 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 571 return CharUnits::Zero(); 572 573 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 574 } 575 576 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 577 const CXXNewExpr *e, 578 unsigned minElements, 579 llvm::Value *&numElements, 580 llvm::Value *&sizeWithoutCookie) { 581 QualType type = e->getAllocatedType(); 582 583 if (!e->isArray()) { 584 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 585 sizeWithoutCookie 586 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 587 return sizeWithoutCookie; 588 } 589 590 // The width of size_t. 591 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 592 593 // Figure out the cookie size. 594 llvm::APInt cookieSize(sizeWidth, 595 CalculateCookiePadding(CGF, e).getQuantity()); 596 597 // Emit the array size expression. 598 // We multiply the size of all dimensions for NumElements. 599 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 600 numElements = CGF.EmitScalarExpr(e->getArraySize()); 601 assert(isa<llvm::IntegerType>(numElements->getType())); 602 603 // The number of elements can be have an arbitrary integer type; 604 // essentially, we need to multiply it by a constant factor, add a 605 // cookie size, and verify that the result is representable as a 606 // size_t. That's just a gloss, though, and it's wrong in one 607 // important way: if the count is negative, it's an error even if 608 // the cookie size would bring the total size >= 0. 609 bool isSigned 610 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 611 llvm::IntegerType *numElementsType 612 = cast<llvm::IntegerType>(numElements->getType()); 613 unsigned numElementsWidth = numElementsType->getBitWidth(); 614 615 // Compute the constant factor. 616 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 617 while (const ConstantArrayType *CAT 618 = CGF.getContext().getAsConstantArrayType(type)) { 619 type = CAT->getElementType(); 620 arraySizeMultiplier *= CAT->getSize(); 621 } 622 623 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 624 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 625 typeSizeMultiplier *= arraySizeMultiplier; 626 627 // This will be a size_t. 628 llvm::Value *size; 629 630 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 631 // Don't bloat the -O0 code. 632 if (llvm::ConstantInt *numElementsC = 633 dyn_cast<llvm::ConstantInt>(numElements)) { 634 const llvm::APInt &count = numElementsC->getValue(); 635 636 bool hasAnyOverflow = false; 637 638 // If 'count' was a negative number, it's an overflow. 639 if (isSigned && count.isNegative()) 640 hasAnyOverflow = true; 641 642 // We want to do all this arithmetic in size_t. If numElements is 643 // wider than that, check whether it's already too big, and if so, 644 // overflow. 645 else if (numElementsWidth > sizeWidth && 646 numElementsWidth - sizeWidth > count.countLeadingZeros()) 647 hasAnyOverflow = true; 648 649 // Okay, compute a count at the right width. 650 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 651 652 // If there is a brace-initializer, we cannot allocate fewer elements than 653 // there are initializers. If we do, that's treated like an overflow. 654 if (adjustedCount.ult(minElements)) 655 hasAnyOverflow = true; 656 657 // Scale numElements by that. This might overflow, but we don't 658 // care because it only overflows if allocationSize does, too, and 659 // if that overflows then we shouldn't use this. 660 numElements = llvm::ConstantInt::get(CGF.SizeTy, 661 adjustedCount * arraySizeMultiplier); 662 663 // Compute the size before cookie, and track whether it overflowed. 664 bool overflow; 665 llvm::APInt allocationSize 666 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 667 hasAnyOverflow |= overflow; 668 669 // Add in the cookie, and check whether it's overflowed. 670 if (cookieSize != 0) { 671 // Save the current size without a cookie. This shouldn't be 672 // used if there was overflow. 673 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 674 675 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 676 hasAnyOverflow |= overflow; 677 } 678 679 // On overflow, produce a -1 so operator new will fail. 680 if (hasAnyOverflow) { 681 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 682 } else { 683 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 684 } 685 686 // Otherwise, we might need to use the overflow intrinsics. 687 } else { 688 // There are up to five conditions we need to test for: 689 // 1) if isSigned, we need to check whether numElements is negative; 690 // 2) if numElementsWidth > sizeWidth, we need to check whether 691 // numElements is larger than something representable in size_t; 692 // 3) if minElements > 0, we need to check whether numElements is smaller 693 // than that. 694 // 4) we need to compute 695 // sizeWithoutCookie := numElements * typeSizeMultiplier 696 // and check whether it overflows; and 697 // 5) if we need a cookie, we need to compute 698 // size := sizeWithoutCookie + cookieSize 699 // and check whether it overflows. 700 701 llvm::Value *hasOverflow = nullptr; 702 703 // If numElementsWidth > sizeWidth, then one way or another, we're 704 // going to have to do a comparison for (2), and this happens to 705 // take care of (1), too. 706 if (numElementsWidth > sizeWidth) { 707 llvm::APInt threshold(numElementsWidth, 1); 708 threshold <<= sizeWidth; 709 710 llvm::Value *thresholdV 711 = llvm::ConstantInt::get(numElementsType, threshold); 712 713 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 714 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 715 716 // Otherwise, if we're signed, we want to sext up to size_t. 717 } else if (isSigned) { 718 if (numElementsWidth < sizeWidth) 719 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 720 721 // If there's a non-1 type size multiplier, then we can do the 722 // signedness check at the same time as we do the multiply 723 // because a negative number times anything will cause an 724 // unsigned overflow. Otherwise, we have to do it here. But at least 725 // in this case, we can subsume the >= minElements check. 726 if (typeSizeMultiplier == 1) 727 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 728 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 729 730 // Otherwise, zext up to size_t if necessary. 731 } else if (numElementsWidth < sizeWidth) { 732 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 733 } 734 735 assert(numElements->getType() == CGF.SizeTy); 736 737 if (minElements) { 738 // Don't allow allocation of fewer elements than we have initializers. 739 if (!hasOverflow) { 740 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 741 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 742 } else if (numElementsWidth > sizeWidth) { 743 // The other existing overflow subsumes this check. 744 // We do an unsigned comparison, since any signed value < -1 is 745 // taken care of either above or below. 746 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 747 CGF.Builder.CreateICmpULT(numElements, 748 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 749 } 750 } 751 752 size = numElements; 753 754 // Multiply by the type size if necessary. This multiplier 755 // includes all the factors for nested arrays. 756 // 757 // This step also causes numElements to be scaled up by the 758 // nested-array factor if necessary. Overflow on this computation 759 // can be ignored because the result shouldn't be used if 760 // allocation fails. 761 if (typeSizeMultiplier != 1) { 762 llvm::Value *umul_with_overflow 763 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 764 765 llvm::Value *tsmV = 766 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 767 llvm::Value *result = 768 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 769 770 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 771 if (hasOverflow) 772 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 773 else 774 hasOverflow = overflowed; 775 776 size = CGF.Builder.CreateExtractValue(result, 0); 777 778 // Also scale up numElements by the array size multiplier. 779 if (arraySizeMultiplier != 1) { 780 // If the base element type size is 1, then we can re-use the 781 // multiply we just did. 782 if (typeSize.isOne()) { 783 assert(arraySizeMultiplier == typeSizeMultiplier); 784 numElements = size; 785 786 // Otherwise we need a separate multiply. 787 } else { 788 llvm::Value *asmV = 789 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 790 numElements = CGF.Builder.CreateMul(numElements, asmV); 791 } 792 } 793 } else { 794 // numElements doesn't need to be scaled. 795 assert(arraySizeMultiplier == 1); 796 } 797 798 // Add in the cookie size if necessary. 799 if (cookieSize != 0) { 800 sizeWithoutCookie = size; 801 802 llvm::Value *uadd_with_overflow 803 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 804 805 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 806 llvm::Value *result = 807 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 808 809 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 810 if (hasOverflow) 811 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 812 else 813 hasOverflow = overflowed; 814 815 size = CGF.Builder.CreateExtractValue(result, 0); 816 } 817 818 // If we had any possibility of dynamic overflow, make a select to 819 // overwrite 'size' with an all-ones value, which should cause 820 // operator new to throw. 821 if (hasOverflow) 822 size = CGF.Builder.CreateSelect(hasOverflow, 823 llvm::Constant::getAllOnesValue(CGF.SizeTy), 824 size); 825 } 826 827 if (cookieSize == 0) 828 sizeWithoutCookie = size; 829 else 830 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 831 832 return size; 833 } 834 835 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 836 QualType AllocType, Address NewPtr) { 837 // FIXME: Refactor with EmitExprAsInit. 838 switch (CGF.getEvaluationKind(AllocType)) { 839 case TEK_Scalar: 840 CGF.EmitScalarInit(Init, nullptr, 841 CGF.MakeAddrLValue(NewPtr, AllocType), false); 842 return; 843 case TEK_Complex: 844 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 845 /*isInit*/ true); 846 return; 847 case TEK_Aggregate: { 848 AggValueSlot Slot 849 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 850 AggValueSlot::IsDestructed, 851 AggValueSlot::DoesNotNeedGCBarriers, 852 AggValueSlot::IsNotAliased); 853 CGF.EmitAggExpr(Init, Slot); 854 return; 855 } 856 } 857 llvm_unreachable("bad evaluation kind"); 858 } 859 860 void CodeGenFunction::EmitNewArrayInitializer( 861 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 862 Address BeginPtr, llvm::Value *NumElements, 863 llvm::Value *AllocSizeWithoutCookie) { 864 // If we have a type with trivial initialization and no initializer, 865 // there's nothing to do. 866 if (!E->hasInitializer()) 867 return; 868 869 Address CurPtr = BeginPtr; 870 871 unsigned InitListElements = 0; 872 873 const Expr *Init = E->getInitializer(); 874 Address EndOfInit = Address::invalid(); 875 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 876 EHScopeStack::stable_iterator Cleanup; 877 llvm::Instruction *CleanupDominator = nullptr; 878 879 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 880 CharUnits ElementAlign = 881 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 882 883 // Attempt to perform zero-initialization using memset. 884 auto TryMemsetInitialization = [&]() -> bool { 885 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 886 // we can initialize with a memset to -1. 887 if (!CGM.getTypes().isZeroInitializable(ElementType)) 888 return false; 889 890 // Optimization: since zero initialization will just set the memory 891 // to all zeroes, generate a single memset to do it in one shot. 892 893 // Subtract out the size of any elements we've already initialized. 894 auto *RemainingSize = AllocSizeWithoutCookie; 895 if (InitListElements) { 896 // We know this can't overflow; we check this when doing the allocation. 897 auto *InitializedSize = llvm::ConstantInt::get( 898 RemainingSize->getType(), 899 getContext().getTypeSizeInChars(ElementType).getQuantity() * 900 InitListElements); 901 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 902 } 903 904 // Create the memset. 905 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 906 return true; 907 }; 908 909 // If the initializer is an initializer list, first do the explicit elements. 910 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 911 // Initializing from a (braced) string literal is a special case; the init 912 // list element does not initialize a (single) array element. 913 if (ILE->isStringLiteralInit()) { 914 // Initialize the initial portion of length equal to that of the string 915 // literal. The allocation must be for at least this much; we emitted a 916 // check for that earlier. 917 AggValueSlot Slot = 918 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 919 AggValueSlot::IsDestructed, 920 AggValueSlot::DoesNotNeedGCBarriers, 921 AggValueSlot::IsNotAliased); 922 EmitAggExpr(ILE->getInit(0), Slot); 923 924 // Move past these elements. 925 InitListElements = 926 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 927 ->getSize().getZExtValue(); 928 CurPtr = 929 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 930 Builder.getSize(InitListElements), 931 "string.init.end"), 932 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 933 ElementSize)); 934 935 // Zero out the rest, if any remain. 936 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 937 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 938 bool OK = TryMemsetInitialization(); 939 (void)OK; 940 assert(OK && "couldn't memset character type?"); 941 } 942 return; 943 } 944 945 InitListElements = ILE->getNumInits(); 946 947 // If this is a multi-dimensional array new, we will initialize multiple 948 // elements with each init list element. 949 QualType AllocType = E->getAllocatedType(); 950 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 951 AllocType->getAsArrayTypeUnsafe())) { 952 ElementTy = ConvertTypeForMem(AllocType); 953 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 954 InitListElements *= getContext().getConstantArrayElementCount(CAT); 955 } 956 957 // Enter a partial-destruction Cleanup if necessary. 958 if (needsEHCleanup(DtorKind)) { 959 // In principle we could tell the Cleanup where we are more 960 // directly, but the control flow can get so varied here that it 961 // would actually be quite complex. Therefore we go through an 962 // alloca. 963 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 964 "array.init.end"); 965 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 966 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 967 ElementType, ElementAlign, 968 getDestroyer(DtorKind)); 969 Cleanup = EHStack.stable_begin(); 970 } 971 972 CharUnits StartAlign = CurPtr.getAlignment(); 973 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 974 // Tell the cleanup that it needs to destroy up to this 975 // element. TODO: some of these stores can be trivially 976 // observed to be unnecessary. 977 if (EndOfInit.isValid()) { 978 auto FinishedPtr = 979 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 980 Builder.CreateStore(FinishedPtr, EndOfInit); 981 } 982 // FIXME: If the last initializer is an incomplete initializer list for 983 // an array, and we have an array filler, we can fold together the two 984 // initialization loops. 985 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 986 ILE->getInit(i)->getType(), CurPtr); 987 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 988 Builder.getSize(1), 989 "array.exp.next"), 990 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 991 } 992 993 // The remaining elements are filled with the array filler expression. 994 Init = ILE->getArrayFiller(); 995 996 // Extract the initializer for the individual array elements by pulling 997 // out the array filler from all the nested initializer lists. This avoids 998 // generating a nested loop for the initialization. 999 while (Init && Init->getType()->isConstantArrayType()) { 1000 auto *SubILE = dyn_cast<InitListExpr>(Init); 1001 if (!SubILE) 1002 break; 1003 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1004 Init = SubILE->getArrayFiller(); 1005 } 1006 1007 // Switch back to initializing one base element at a time. 1008 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1009 } 1010 1011 // If all elements have already been initialized, skip any further 1012 // initialization. 1013 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1014 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1015 // If there was a Cleanup, deactivate it. 1016 if (CleanupDominator) 1017 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1018 return; 1019 } 1020 1021 assert(Init && "have trailing elements to initialize but no initializer"); 1022 1023 // If this is a constructor call, try to optimize it out, and failing that 1024 // emit a single loop to initialize all remaining elements. 1025 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1026 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1027 if (Ctor->isTrivial()) { 1028 // If new expression did not specify value-initialization, then there 1029 // is no initialization. 1030 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1031 return; 1032 1033 if (TryMemsetInitialization()) 1034 return; 1035 } 1036 1037 // Store the new Cleanup position for irregular Cleanups. 1038 // 1039 // FIXME: Share this cleanup with the constructor call emission rather than 1040 // having it create a cleanup of its own. 1041 if (EndOfInit.isValid()) 1042 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1043 1044 // Emit a constructor call loop to initialize the remaining elements. 1045 if (InitListElements) 1046 NumElements = Builder.CreateSub( 1047 NumElements, 1048 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1049 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1050 CCE->requiresZeroInitialization()); 1051 return; 1052 } 1053 1054 // If this is value-initialization, we can usually use memset. 1055 ImplicitValueInitExpr IVIE(ElementType); 1056 if (isa<ImplicitValueInitExpr>(Init)) { 1057 if (TryMemsetInitialization()) 1058 return; 1059 1060 // Switch to an ImplicitValueInitExpr for the element type. This handles 1061 // only one case: multidimensional array new of pointers to members. In 1062 // all other cases, we already have an initializer for the array element. 1063 Init = &IVIE; 1064 } 1065 1066 // At this point we should have found an initializer for the individual 1067 // elements of the array. 1068 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1069 "got wrong type of element to initialize"); 1070 1071 // If we have an empty initializer list, we can usually use memset. 1072 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1073 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1074 return; 1075 1076 // If we have a struct whose every field is value-initialized, we can 1077 // usually use memset. 1078 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1079 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1080 if (RType->getDecl()->isStruct()) { 1081 unsigned NumElements = 0; 1082 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1083 NumElements = CXXRD->getNumBases(); 1084 for (auto *Field : RType->getDecl()->fields()) 1085 if (!Field->isUnnamedBitfield()) 1086 ++NumElements; 1087 // FIXME: Recurse into nested InitListExprs. 1088 if (ILE->getNumInits() == NumElements) 1089 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1090 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1091 --NumElements; 1092 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1093 return; 1094 } 1095 } 1096 } 1097 1098 // Create the loop blocks. 1099 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1100 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1101 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1102 1103 // Find the end of the array, hoisted out of the loop. 1104 llvm::Value *EndPtr = 1105 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1106 1107 // If the number of elements isn't constant, we have to now check if there is 1108 // anything left to initialize. 1109 if (!ConstNum) { 1110 llvm::Value *IsEmpty = 1111 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1112 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1113 } 1114 1115 // Enter the loop. 1116 EmitBlock(LoopBB); 1117 1118 // Set up the current-element phi. 1119 llvm::PHINode *CurPtrPhi = 1120 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1121 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1122 1123 CurPtr = Address(CurPtrPhi, ElementAlign); 1124 1125 // Store the new Cleanup position for irregular Cleanups. 1126 if (EndOfInit.isValid()) 1127 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1128 1129 // Enter a partial-destruction Cleanup if necessary. 1130 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1131 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1132 ElementType, ElementAlign, 1133 getDestroyer(DtorKind)); 1134 Cleanup = EHStack.stable_begin(); 1135 CleanupDominator = Builder.CreateUnreachable(); 1136 } 1137 1138 // Emit the initializer into this element. 1139 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1140 1141 // Leave the Cleanup if we entered one. 1142 if (CleanupDominator) { 1143 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1144 CleanupDominator->eraseFromParent(); 1145 } 1146 1147 // Advance to the next element by adjusting the pointer type as necessary. 1148 llvm::Value *NextPtr = 1149 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1150 "array.next"); 1151 1152 // Check whether we've gotten to the end of the array and, if so, 1153 // exit the loop. 1154 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1155 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1156 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1157 1158 EmitBlock(ContBB); 1159 } 1160 1161 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1162 QualType ElementType, llvm::Type *ElementTy, 1163 Address NewPtr, llvm::Value *NumElements, 1164 llvm::Value *AllocSizeWithoutCookie) { 1165 ApplyDebugLocation DL(CGF, E); 1166 if (E->isArray()) 1167 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1168 AllocSizeWithoutCookie); 1169 else if (const Expr *Init = E->getInitializer()) 1170 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1171 } 1172 1173 /// Emit a call to an operator new or operator delete function, as implicitly 1174 /// created by new-expressions and delete-expressions. 1175 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1176 const FunctionDecl *Callee, 1177 const FunctionProtoType *CalleeType, 1178 const CallArgList &Args) { 1179 llvm::Instruction *CallOrInvoke; 1180 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1181 RValue RV = 1182 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1183 Args, CalleeType, /*chainCall=*/false), 1184 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1185 1186 /// C++1y [expr.new]p10: 1187 /// [In a new-expression,] an implementation is allowed to omit a call 1188 /// to a replaceable global allocation function. 1189 /// 1190 /// We model such elidable calls with the 'builtin' attribute. 1191 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1192 if (Callee->isReplaceableGlobalAllocationFunction() && 1193 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1194 // FIXME: Add addAttribute to CallSite. 1195 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1196 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1197 llvm::Attribute::Builtin); 1198 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1199 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1200 llvm::Attribute::Builtin); 1201 else 1202 llvm_unreachable("unexpected kind of call instruction"); 1203 } 1204 1205 return RV; 1206 } 1207 1208 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1209 const Expr *Arg, 1210 bool IsDelete) { 1211 CallArgList Args; 1212 const Stmt *ArgS = Arg; 1213 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1214 // Find the allocation or deallocation function that we're calling. 1215 ASTContext &Ctx = getContext(); 1216 DeclarationName Name = Ctx.DeclarationNames 1217 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1218 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1219 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1220 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1221 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1222 llvm_unreachable("predeclared global operator new/delete is missing"); 1223 } 1224 1225 static std::pair<bool, bool> 1226 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1227 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1228 1229 // The first argument is always a void*. 1230 ++AI; 1231 1232 // Figure out what other parameters we should be implicitly passing. 1233 bool PassSize = false; 1234 bool PassAlignment = false; 1235 1236 if (AI != AE && (*AI)->isIntegerType()) { 1237 PassSize = true; 1238 ++AI; 1239 } 1240 1241 if (AI != AE && (*AI)->isAlignValT()) { 1242 PassAlignment = true; 1243 ++AI; 1244 } 1245 1246 assert(AI == AE && "unexpected usual deallocation function parameter"); 1247 return {PassSize, PassAlignment}; 1248 } 1249 1250 namespace { 1251 /// A cleanup to call the given 'operator delete' function upon abnormal 1252 /// exit from a new expression. Templated on a traits type that deals with 1253 /// ensuring that the arguments dominate the cleanup if necessary. 1254 template<typename Traits> 1255 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1256 /// Type used to hold llvm::Value*s. 1257 typedef typename Traits::ValueTy ValueTy; 1258 /// Type used to hold RValues. 1259 typedef typename Traits::RValueTy RValueTy; 1260 struct PlacementArg { 1261 RValueTy ArgValue; 1262 QualType ArgType; 1263 }; 1264 1265 unsigned NumPlacementArgs : 31; 1266 unsigned PassAlignmentToPlacementDelete : 1; 1267 const FunctionDecl *OperatorDelete; 1268 ValueTy Ptr; 1269 ValueTy AllocSize; 1270 CharUnits AllocAlign; 1271 1272 PlacementArg *getPlacementArgs() { 1273 return reinterpret_cast<PlacementArg *>(this + 1); 1274 } 1275 1276 public: 1277 static size_t getExtraSize(size_t NumPlacementArgs) { 1278 return NumPlacementArgs * sizeof(PlacementArg); 1279 } 1280 1281 CallDeleteDuringNew(size_t NumPlacementArgs, 1282 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1283 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1284 CharUnits AllocAlign) 1285 : NumPlacementArgs(NumPlacementArgs), 1286 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1287 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1288 AllocAlign(AllocAlign) {} 1289 1290 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1291 assert(I < NumPlacementArgs && "index out of range"); 1292 getPlacementArgs()[I] = {Arg, Type}; 1293 } 1294 1295 void Emit(CodeGenFunction &CGF, Flags flags) override { 1296 const FunctionProtoType *FPT = 1297 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1298 CallArgList DeleteArgs; 1299 1300 // The first argument is always a void*. 1301 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1302 1303 // Figure out what other parameters we should be implicitly passing. 1304 bool PassSize = false; 1305 bool PassAlignment = false; 1306 if (NumPlacementArgs) { 1307 // A placement deallocation function is implicitly passed an alignment 1308 // if the placement allocation function was, but is never passed a size. 1309 PassAlignment = PassAlignmentToPlacementDelete; 1310 } else { 1311 // For a non-placement new-expression, 'operator delete' can take a 1312 // size and/or an alignment if it has the right parameters. 1313 std::tie(PassSize, PassAlignment) = 1314 shouldPassSizeAndAlignToUsualDelete(FPT); 1315 } 1316 1317 // The second argument can be a std::size_t (for non-placement delete). 1318 if (PassSize) 1319 DeleteArgs.add(Traits::get(CGF, AllocSize), 1320 CGF.getContext().getSizeType()); 1321 1322 // The next (second or third) argument can be a std::align_val_t, which 1323 // is an enum whose underlying type is std::size_t. 1324 // FIXME: Use the right type as the parameter type. Note that in a call 1325 // to operator delete(size_t, ...), we may not have it available. 1326 if (PassAlignment) 1327 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1328 CGF.SizeTy, AllocAlign.getQuantity())), 1329 CGF.getContext().getSizeType()); 1330 1331 // Pass the rest of the arguments, which must match exactly. 1332 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1333 auto Arg = getPlacementArgs()[I]; 1334 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1335 } 1336 1337 // Call 'operator delete'. 1338 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1339 } 1340 }; 1341 } 1342 1343 /// Enter a cleanup to call 'operator delete' if the initializer in a 1344 /// new-expression throws. 1345 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1346 const CXXNewExpr *E, 1347 Address NewPtr, 1348 llvm::Value *AllocSize, 1349 CharUnits AllocAlign, 1350 const CallArgList &NewArgs) { 1351 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1352 1353 // If we're not inside a conditional branch, then the cleanup will 1354 // dominate and we can do the easier (and more efficient) thing. 1355 if (!CGF.isInConditionalBranch()) { 1356 struct DirectCleanupTraits { 1357 typedef llvm::Value *ValueTy; 1358 typedef RValue RValueTy; 1359 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1360 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1361 }; 1362 1363 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1364 1365 DirectCleanup *Cleanup = CGF.EHStack 1366 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1367 E->getNumPlacementArgs(), 1368 E->getOperatorDelete(), 1369 NewPtr.getPointer(), 1370 AllocSize, 1371 E->passAlignment(), 1372 AllocAlign); 1373 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1374 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1375 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1376 } 1377 1378 return; 1379 } 1380 1381 // Otherwise, we need to save all this stuff. 1382 DominatingValue<RValue>::saved_type SavedNewPtr = 1383 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1384 DominatingValue<RValue>::saved_type SavedAllocSize = 1385 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1386 1387 struct ConditionalCleanupTraits { 1388 typedef DominatingValue<RValue>::saved_type ValueTy; 1389 typedef DominatingValue<RValue>::saved_type RValueTy; 1390 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1391 return V.restore(CGF); 1392 } 1393 }; 1394 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1395 1396 ConditionalCleanup *Cleanup = CGF.EHStack 1397 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1398 E->getNumPlacementArgs(), 1399 E->getOperatorDelete(), 1400 SavedNewPtr, 1401 SavedAllocSize, 1402 E->passAlignment(), 1403 AllocAlign); 1404 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1405 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1406 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1407 Arg.Ty); 1408 } 1409 1410 CGF.initFullExprCleanup(); 1411 } 1412 1413 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1414 // The element type being allocated. 1415 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1416 1417 // 1. Build a call to the allocation function. 1418 FunctionDecl *allocator = E->getOperatorNew(); 1419 1420 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1421 unsigned minElements = 0; 1422 if (E->isArray() && E->hasInitializer()) { 1423 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1424 if (ILE && ILE->isStringLiteralInit()) 1425 minElements = 1426 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1427 ->getSize().getZExtValue(); 1428 else if (ILE) 1429 minElements = ILE->getNumInits(); 1430 } 1431 1432 llvm::Value *numElements = nullptr; 1433 llvm::Value *allocSizeWithoutCookie = nullptr; 1434 llvm::Value *allocSize = 1435 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1436 allocSizeWithoutCookie); 1437 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1438 1439 // Emit the allocation call. If the allocator is a global placement 1440 // operator, just "inline" it directly. 1441 Address allocation = Address::invalid(); 1442 CallArgList allocatorArgs; 1443 if (allocator->isReservedGlobalPlacementOperator()) { 1444 assert(E->getNumPlacementArgs() == 1); 1445 const Expr *arg = *E->placement_arguments().begin(); 1446 1447 AlignmentSource alignSource; 1448 allocation = EmitPointerWithAlignment(arg, &alignSource); 1449 1450 // The pointer expression will, in many cases, be an opaque void*. 1451 // In these cases, discard the computed alignment and use the 1452 // formal alignment of the allocated type. 1453 if (alignSource != AlignmentSource::Decl) 1454 allocation = Address(allocation.getPointer(), allocAlign); 1455 1456 // Set up allocatorArgs for the call to operator delete if it's not 1457 // the reserved global operator. 1458 if (E->getOperatorDelete() && 1459 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1460 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1461 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1462 } 1463 1464 } else { 1465 const FunctionProtoType *allocatorType = 1466 allocator->getType()->castAs<FunctionProtoType>(); 1467 unsigned ParamsToSkip = 0; 1468 1469 // The allocation size is the first argument. 1470 QualType sizeType = getContext().getSizeType(); 1471 allocatorArgs.add(RValue::get(allocSize), sizeType); 1472 ++ParamsToSkip; 1473 1474 if (allocSize != allocSizeWithoutCookie) { 1475 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1476 allocAlign = std::max(allocAlign, cookieAlign); 1477 } 1478 1479 // The allocation alignment may be passed as the second argument. 1480 if (E->passAlignment()) { 1481 QualType AlignValT = sizeType; 1482 if (allocatorType->getNumParams() > 1) { 1483 AlignValT = allocatorType->getParamType(1); 1484 assert(getContext().hasSameUnqualifiedType( 1485 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1486 sizeType) && 1487 "wrong type for alignment parameter"); 1488 ++ParamsToSkip; 1489 } else { 1490 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1491 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1492 } 1493 allocatorArgs.add( 1494 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1495 AlignValT); 1496 } 1497 1498 // FIXME: Why do we not pass a CalleeDecl here? 1499 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1500 /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip); 1501 1502 RValue RV = 1503 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1504 1505 // If this was a call to a global replaceable allocation function that does 1506 // not take an alignment argument, the allocator is known to produce 1507 // storage that's suitably aligned for any object that fits, up to a known 1508 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1509 CharUnits allocationAlign = allocAlign; 1510 if (!E->passAlignment() && 1511 allocator->isReplaceableGlobalAllocationFunction()) { 1512 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1513 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1514 allocationAlign = std::max( 1515 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1516 } 1517 1518 allocation = Address(RV.getScalarVal(), allocationAlign); 1519 } 1520 1521 // Emit a null check on the allocation result if the allocation 1522 // function is allowed to return null (because it has a non-throwing 1523 // exception spec or is the reserved placement new) and we have an 1524 // interesting initializer. 1525 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1526 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1527 1528 llvm::BasicBlock *nullCheckBB = nullptr; 1529 llvm::BasicBlock *contBB = nullptr; 1530 1531 // The null-check means that the initializer is conditionally 1532 // evaluated. 1533 ConditionalEvaluation conditional(*this); 1534 1535 if (nullCheck) { 1536 conditional.begin(*this); 1537 1538 nullCheckBB = Builder.GetInsertBlock(); 1539 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1540 contBB = createBasicBlock("new.cont"); 1541 1542 llvm::Value *isNull = 1543 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1544 Builder.CreateCondBr(isNull, contBB, notNullBB); 1545 EmitBlock(notNullBB); 1546 } 1547 1548 // If there's an operator delete, enter a cleanup to call it if an 1549 // exception is thrown. 1550 EHScopeStack::stable_iterator operatorDeleteCleanup; 1551 llvm::Instruction *cleanupDominator = nullptr; 1552 if (E->getOperatorDelete() && 1553 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1554 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1555 allocatorArgs); 1556 operatorDeleteCleanup = EHStack.stable_begin(); 1557 cleanupDominator = Builder.CreateUnreachable(); 1558 } 1559 1560 assert((allocSize == allocSizeWithoutCookie) == 1561 CalculateCookiePadding(*this, E).isZero()); 1562 if (allocSize != allocSizeWithoutCookie) { 1563 assert(E->isArray()); 1564 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1565 numElements, 1566 E, allocType); 1567 } 1568 1569 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1570 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1571 1572 // Passing pointer through invariant.group.barrier to avoid propagation of 1573 // vptrs information which may be included in previous type. 1574 if (CGM.getCodeGenOpts().StrictVTablePointers && 1575 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1576 allocator->isReservedGlobalPlacementOperator()) 1577 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1578 result.getAlignment()); 1579 1580 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1581 allocSizeWithoutCookie); 1582 if (E->isArray()) { 1583 // NewPtr is a pointer to the base element type. If we're 1584 // allocating an array of arrays, we'll need to cast back to the 1585 // array pointer type. 1586 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1587 if (result.getType() != resultType) 1588 result = Builder.CreateBitCast(result, resultType); 1589 } 1590 1591 // Deactivate the 'operator delete' cleanup if we finished 1592 // initialization. 1593 if (operatorDeleteCleanup.isValid()) { 1594 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1595 cleanupDominator->eraseFromParent(); 1596 } 1597 1598 llvm::Value *resultPtr = result.getPointer(); 1599 if (nullCheck) { 1600 conditional.end(*this); 1601 1602 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1603 EmitBlock(contBB); 1604 1605 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1606 PHI->addIncoming(resultPtr, notNullBB); 1607 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1608 nullCheckBB); 1609 1610 resultPtr = PHI; 1611 } 1612 1613 return resultPtr; 1614 } 1615 1616 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1617 llvm::Value *Ptr, QualType DeleteTy, 1618 llvm::Value *NumElements, 1619 CharUnits CookieSize) { 1620 assert((!NumElements && CookieSize.isZero()) || 1621 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1622 1623 const FunctionProtoType *DeleteFTy = 1624 DeleteFD->getType()->getAs<FunctionProtoType>(); 1625 1626 CallArgList DeleteArgs; 1627 1628 std::pair<bool, bool> PassSizeAndAlign = 1629 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1630 1631 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1632 1633 // Pass the pointer itself. 1634 QualType ArgTy = *ParamTypeIt++; 1635 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1636 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1637 1638 // Pass the size if the delete function has a size_t parameter. 1639 if (PassSizeAndAlign.first) { 1640 QualType SizeType = *ParamTypeIt++; 1641 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1642 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1643 DeleteTypeSize.getQuantity()); 1644 1645 // For array new, multiply by the number of elements. 1646 if (NumElements) 1647 Size = Builder.CreateMul(Size, NumElements); 1648 1649 // If there is a cookie, add the cookie size. 1650 if (!CookieSize.isZero()) 1651 Size = Builder.CreateAdd( 1652 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1653 1654 DeleteArgs.add(RValue::get(Size), SizeType); 1655 } 1656 1657 // Pass the alignment if the delete function has an align_val_t parameter. 1658 if (PassSizeAndAlign.second) { 1659 QualType AlignValType = *ParamTypeIt++; 1660 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1661 getContext().getTypeAlignIfKnown(DeleteTy)); 1662 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1663 DeleteTypeAlign.getQuantity()); 1664 DeleteArgs.add(RValue::get(Align), AlignValType); 1665 } 1666 1667 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1668 "unknown parameter to usual delete function"); 1669 1670 // Emit the call to delete. 1671 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1672 } 1673 1674 namespace { 1675 /// Calls the given 'operator delete' on a single object. 1676 struct CallObjectDelete final : EHScopeStack::Cleanup { 1677 llvm::Value *Ptr; 1678 const FunctionDecl *OperatorDelete; 1679 QualType ElementType; 1680 1681 CallObjectDelete(llvm::Value *Ptr, 1682 const FunctionDecl *OperatorDelete, 1683 QualType ElementType) 1684 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1685 1686 void Emit(CodeGenFunction &CGF, Flags flags) override { 1687 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1688 } 1689 }; 1690 } 1691 1692 void 1693 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1694 llvm::Value *CompletePtr, 1695 QualType ElementType) { 1696 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1697 OperatorDelete, ElementType); 1698 } 1699 1700 /// Emit the code for deleting a single object. 1701 static void EmitObjectDelete(CodeGenFunction &CGF, 1702 const CXXDeleteExpr *DE, 1703 Address Ptr, 1704 QualType ElementType) { 1705 // Find the destructor for the type, if applicable. If the 1706 // destructor is virtual, we'll just emit the vcall and return. 1707 const CXXDestructorDecl *Dtor = nullptr; 1708 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1709 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1710 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1711 Dtor = RD->getDestructor(); 1712 1713 if (Dtor->isVirtual()) { 1714 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1715 Dtor); 1716 return; 1717 } 1718 } 1719 } 1720 1721 // Make sure that we call delete even if the dtor throws. 1722 // This doesn't have to a conditional cleanup because we're going 1723 // to pop it off in a second. 1724 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1725 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1726 Ptr.getPointer(), 1727 OperatorDelete, ElementType); 1728 1729 if (Dtor) 1730 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1731 /*ForVirtualBase=*/false, 1732 /*Delegating=*/false, 1733 Ptr); 1734 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1735 switch (Lifetime) { 1736 case Qualifiers::OCL_None: 1737 case Qualifiers::OCL_ExplicitNone: 1738 case Qualifiers::OCL_Autoreleasing: 1739 break; 1740 1741 case Qualifiers::OCL_Strong: 1742 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1743 break; 1744 1745 case Qualifiers::OCL_Weak: 1746 CGF.EmitARCDestroyWeak(Ptr); 1747 break; 1748 } 1749 } 1750 1751 CGF.PopCleanupBlock(); 1752 } 1753 1754 namespace { 1755 /// Calls the given 'operator delete' on an array of objects. 1756 struct CallArrayDelete final : EHScopeStack::Cleanup { 1757 llvm::Value *Ptr; 1758 const FunctionDecl *OperatorDelete; 1759 llvm::Value *NumElements; 1760 QualType ElementType; 1761 CharUnits CookieSize; 1762 1763 CallArrayDelete(llvm::Value *Ptr, 1764 const FunctionDecl *OperatorDelete, 1765 llvm::Value *NumElements, 1766 QualType ElementType, 1767 CharUnits CookieSize) 1768 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1769 ElementType(ElementType), CookieSize(CookieSize) {} 1770 1771 void Emit(CodeGenFunction &CGF, Flags flags) override { 1772 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1773 CookieSize); 1774 } 1775 }; 1776 } 1777 1778 /// Emit the code for deleting an array of objects. 1779 static void EmitArrayDelete(CodeGenFunction &CGF, 1780 const CXXDeleteExpr *E, 1781 Address deletedPtr, 1782 QualType elementType) { 1783 llvm::Value *numElements = nullptr; 1784 llvm::Value *allocatedPtr = nullptr; 1785 CharUnits cookieSize; 1786 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1787 numElements, allocatedPtr, cookieSize); 1788 1789 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1790 1791 // Make sure that we call delete even if one of the dtors throws. 1792 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1793 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1794 allocatedPtr, operatorDelete, 1795 numElements, elementType, 1796 cookieSize); 1797 1798 // Destroy the elements. 1799 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1800 assert(numElements && "no element count for a type with a destructor!"); 1801 1802 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1803 CharUnits elementAlign = 1804 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1805 1806 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1807 llvm::Value *arrayEnd = 1808 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1809 1810 // Note that it is legal to allocate a zero-length array, and we 1811 // can never fold the check away because the length should always 1812 // come from a cookie. 1813 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1814 CGF.getDestroyer(dtorKind), 1815 /*checkZeroLength*/ true, 1816 CGF.needsEHCleanup(dtorKind)); 1817 } 1818 1819 // Pop the cleanup block. 1820 CGF.PopCleanupBlock(); 1821 } 1822 1823 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1824 const Expr *Arg = E->getArgument(); 1825 Address Ptr = EmitPointerWithAlignment(Arg); 1826 1827 // Null check the pointer. 1828 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1829 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1830 1831 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1832 1833 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1834 EmitBlock(DeleteNotNull); 1835 1836 // We might be deleting a pointer to array. If so, GEP down to the 1837 // first non-array element. 1838 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1839 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1840 if (DeleteTy->isConstantArrayType()) { 1841 llvm::Value *Zero = Builder.getInt32(0); 1842 SmallVector<llvm::Value*,8> GEP; 1843 1844 GEP.push_back(Zero); // point at the outermost array 1845 1846 // For each layer of array type we're pointing at: 1847 while (const ConstantArrayType *Arr 1848 = getContext().getAsConstantArrayType(DeleteTy)) { 1849 // 1. Unpeel the array type. 1850 DeleteTy = Arr->getElementType(); 1851 1852 // 2. GEP to the first element of the array. 1853 GEP.push_back(Zero); 1854 } 1855 1856 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1857 Ptr.getAlignment()); 1858 } 1859 1860 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1861 1862 if (E->isArrayForm()) { 1863 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1864 } else { 1865 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1866 } 1867 1868 EmitBlock(DeleteEnd); 1869 } 1870 1871 static bool isGLValueFromPointerDeref(const Expr *E) { 1872 E = E->IgnoreParens(); 1873 1874 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1875 if (!CE->getSubExpr()->isGLValue()) 1876 return false; 1877 return isGLValueFromPointerDeref(CE->getSubExpr()); 1878 } 1879 1880 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1881 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1882 1883 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1884 if (BO->getOpcode() == BO_Comma) 1885 return isGLValueFromPointerDeref(BO->getRHS()); 1886 1887 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1888 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1889 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1890 1891 // C++11 [expr.sub]p1: 1892 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1893 if (isa<ArraySubscriptExpr>(E)) 1894 return true; 1895 1896 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1897 if (UO->getOpcode() == UO_Deref) 1898 return true; 1899 1900 return false; 1901 } 1902 1903 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1904 llvm::Type *StdTypeInfoPtrTy) { 1905 // Get the vtable pointer. 1906 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1907 1908 // C++ [expr.typeid]p2: 1909 // If the glvalue expression is obtained by applying the unary * operator to 1910 // a pointer and the pointer is a null pointer value, the typeid expression 1911 // throws the std::bad_typeid exception. 1912 // 1913 // However, this paragraph's intent is not clear. We choose a very generous 1914 // interpretation which implores us to consider comma operators, conditional 1915 // operators, parentheses and other such constructs. 1916 QualType SrcRecordTy = E->getType(); 1917 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1918 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1919 llvm::BasicBlock *BadTypeidBlock = 1920 CGF.createBasicBlock("typeid.bad_typeid"); 1921 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1922 1923 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1924 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1925 1926 CGF.EmitBlock(BadTypeidBlock); 1927 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1928 CGF.EmitBlock(EndBlock); 1929 } 1930 1931 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1932 StdTypeInfoPtrTy); 1933 } 1934 1935 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1936 llvm::Type *StdTypeInfoPtrTy = 1937 ConvertType(E->getType())->getPointerTo(); 1938 1939 if (E->isTypeOperand()) { 1940 llvm::Constant *TypeInfo = 1941 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1942 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1943 } 1944 1945 // C++ [expr.typeid]p2: 1946 // When typeid is applied to a glvalue expression whose type is a 1947 // polymorphic class type, the result refers to a std::type_info object 1948 // representing the type of the most derived object (that is, the dynamic 1949 // type) to which the glvalue refers. 1950 if (E->isPotentiallyEvaluated()) 1951 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1952 StdTypeInfoPtrTy); 1953 1954 QualType OperandTy = E->getExprOperand()->getType(); 1955 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1956 StdTypeInfoPtrTy); 1957 } 1958 1959 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1960 QualType DestTy) { 1961 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1962 if (DestTy->isPointerType()) 1963 return llvm::Constant::getNullValue(DestLTy); 1964 1965 /// C++ [expr.dynamic.cast]p9: 1966 /// A failed cast to reference type throws std::bad_cast 1967 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1968 return nullptr; 1969 1970 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1971 return llvm::UndefValue::get(DestLTy); 1972 } 1973 1974 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1975 const CXXDynamicCastExpr *DCE) { 1976 CGM.EmitExplicitCastExprType(DCE, this); 1977 QualType DestTy = DCE->getTypeAsWritten(); 1978 1979 if (DCE->isAlwaysNull()) 1980 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1981 return T; 1982 1983 QualType SrcTy = DCE->getSubExpr()->getType(); 1984 1985 // C++ [expr.dynamic.cast]p7: 1986 // If T is "pointer to cv void," then the result is a pointer to the most 1987 // derived object pointed to by v. 1988 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1989 1990 bool isDynamicCastToVoid; 1991 QualType SrcRecordTy; 1992 QualType DestRecordTy; 1993 if (DestPTy) { 1994 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1995 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1996 DestRecordTy = DestPTy->getPointeeType(); 1997 } else { 1998 isDynamicCastToVoid = false; 1999 SrcRecordTy = SrcTy; 2000 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2001 } 2002 2003 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2004 2005 // C++ [expr.dynamic.cast]p4: 2006 // If the value of v is a null pointer value in the pointer case, the result 2007 // is the null pointer value of type T. 2008 bool ShouldNullCheckSrcValue = 2009 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2010 SrcRecordTy); 2011 2012 llvm::BasicBlock *CastNull = nullptr; 2013 llvm::BasicBlock *CastNotNull = nullptr; 2014 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2015 2016 if (ShouldNullCheckSrcValue) { 2017 CastNull = createBasicBlock("dynamic_cast.null"); 2018 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2019 2020 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2021 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2022 EmitBlock(CastNotNull); 2023 } 2024 2025 llvm::Value *Value; 2026 if (isDynamicCastToVoid) { 2027 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2028 DestTy); 2029 } else { 2030 assert(DestRecordTy->isRecordType() && 2031 "destination type must be a record type!"); 2032 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2033 DestTy, DestRecordTy, CastEnd); 2034 CastNotNull = Builder.GetInsertBlock(); 2035 } 2036 2037 if (ShouldNullCheckSrcValue) { 2038 EmitBranch(CastEnd); 2039 2040 EmitBlock(CastNull); 2041 EmitBranch(CastEnd); 2042 } 2043 2044 EmitBlock(CastEnd); 2045 2046 if (ShouldNullCheckSrcValue) { 2047 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2048 PHI->addIncoming(Value, CastNotNull); 2049 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2050 2051 Value = PHI; 2052 } 2053 2054 return Value; 2055 } 2056 2057 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2058 RunCleanupsScope Scope(*this); 2059 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2060 2061 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2062 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2063 e = E->capture_init_end(); 2064 i != e; ++i, ++CurField) { 2065 // Emit initialization 2066 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2067 if (CurField->hasCapturedVLAType()) { 2068 auto VAT = CurField->getCapturedVLAType(); 2069 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2070 } else { 2071 ArrayRef<VarDecl *> ArrayIndexes; 2072 if (CurField->getType()->isArrayType()) 2073 ArrayIndexes = E->getCaptureInitIndexVars(i); 2074 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 2075 } 2076 } 2077 } 2078