1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
28     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
29     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
30     const CallExpr *CE) {
31   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
32          isa<CXXOperatorCallExpr>(CE));
33   assert(MD->isInstance() &&
34          "Trying to emit a member or operator call expr on a static method!");
35 
36   // C++11 [class.mfct.non-static]p2:
37   //   If a non-static member function of a class X is called for an object that
38   //   is not of type X, or of a type derived from X, the behavior is undefined.
39   SourceLocation CallLoc;
40   if (CE)
41     CallLoc = CE->getExprLoc();
42   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
43                                             : TCK_MemberCall,
44                 CallLoc, This, getContext().getRecordType(MD->getParent()));
45 
46   CallArgList Args;
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   if (CE) {
61     // Special case: skip first argument of CXXOperatorCall (it is "this").
62     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
63     EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
64                  CE->getDirectCallee());
65   } else {
66     assert(
67         FPT->getNumParams() == 0 &&
68         "No CallExpr specified for function with non-zero number of arguments");
69   }
70 
71   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
72                   Callee, ReturnValue, Args, MD);
73 }
74 
75 static CXXRecordDecl *getCXXRecord(const Expr *E) {
76   QualType T = E->getType();
77   if (const PointerType *PTy = T->getAs<PointerType>())
78     T = PTy->getPointeeType();
79   const RecordType *Ty = T->castAs<RecordType>();
80   return cast<CXXRecordDecl>(Ty->getDecl());
81 }
82 
83 // Note: This function also emit constructor calls to support a MSVC
84 // extensions allowing explicit constructor function call.
85 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
86                                               ReturnValueSlot ReturnValue) {
87   const Expr *callee = CE->getCallee()->IgnoreParens();
88 
89   if (isa<BinaryOperator>(callee))
90     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
91 
92   const MemberExpr *ME = cast<MemberExpr>(callee);
93   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
94 
95   if (MD->isStatic()) {
96     // The method is static, emit it as we would a regular call.
97     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
98     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
99                     ReturnValue);
100   }
101 
102   // Compute the object pointer.
103   const Expr *Base = ME->getBase();
104   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
105 
106   const CXXMethodDecl *DevirtualizedMethod = nullptr;
107   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
108     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
109     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
110     assert(DevirtualizedMethod);
111     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
112     const Expr *Inner = Base->ignoreParenBaseCasts();
113     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
114         MD->getReturnType().getCanonicalType())
115       // If the return types are not the same, this might be a case where more
116       // code needs to run to compensate for it. For example, the derived
117       // method might return a type that inherits form from the return
118       // type of MD and has a prefix.
119       // For now we just avoid devirtualizing these covariant cases.
120       DevirtualizedMethod = nullptr;
121     else if (getCXXRecord(Inner) == DevirtualizedClass)
122       // If the class of the Inner expression is where the dynamic method
123       // is defined, build the this pointer from it.
124       Base = Inner;
125     else if (getCXXRecord(Base) != DevirtualizedClass) {
126       // If the method is defined in a class that is not the best dynamic
127       // one or the one of the full expression, we would have to build
128       // a derived-to-base cast to compute the correct this pointer, but
129       // we don't have support for that yet, so do a virtual call.
130       DevirtualizedMethod = nullptr;
131     }
132   }
133 
134   llvm::Value *This;
135   if (ME->isArrow())
136     This = EmitScalarExpr(Base);
137   else
138     This = EmitLValue(Base).getAddress();
139 
140 
141   if (MD->isTrivial()) {
142     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
143     if (isa<CXXConstructorDecl>(MD) &&
144         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
145       return RValue::get(nullptr);
146 
147     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
148       // We don't like to generate the trivial copy/move assignment operator
149       // when it isn't necessary; just produce the proper effect here.
150       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
151       EmitAggregateAssign(This, RHS, CE->getType());
152       return RValue::get(This);
153     }
154 
155     if (isa<CXXConstructorDecl>(MD) &&
156         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
157       // Trivial move and copy ctor are the same.
158       assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
159       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
160       EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
161       return RValue::get(This);
162     }
163     llvm_unreachable("unknown trivial member function");
164   }
165 
166   // Compute the function type we're calling.
167   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
168   const CGFunctionInfo *FInfo = nullptr;
169   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
170     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
171         Dtor, StructorType::Complete);
172   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
173     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
174         Ctor, StructorType::Complete);
175   else
176     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
177 
178   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
179 
180   // C++ [class.virtual]p12:
181   //   Explicit qualification with the scope operator (5.1) suppresses the
182   //   virtual call mechanism.
183   //
184   // We also don't emit a virtual call if the base expression has a record type
185   // because then we know what the type is.
186   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
187   llvm::Value *Callee;
188 
189   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
190     assert(CE->arg_begin() == CE->arg_end() &&
191            "Destructor shouldn't have explicit parameters");
192     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
193     if (UseVirtualCall) {
194       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
195                                                 This, CE);
196     } else {
197       if (getLangOpts().AppleKext &&
198           MD->isVirtual() &&
199           ME->hasQualifier())
200         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
201       else if (!DevirtualizedMethod)
202         Callee =
203             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
204       else {
205         const CXXDestructorDecl *DDtor =
206           cast<CXXDestructorDecl>(DevirtualizedMethod);
207         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
208       }
209       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
210                                   /*ImplicitParam=*/nullptr, QualType(), CE);
211     }
212     return RValue::get(nullptr);
213   }
214 
215   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
216     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
217   } else if (UseVirtualCall) {
218     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
219   } else {
220     if (getLangOpts().AppleKext &&
221         MD->isVirtual() &&
222         ME->hasQualifier())
223       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
224     else if (!DevirtualizedMethod)
225       Callee = CGM.GetAddrOfFunction(MD, Ty);
226     else {
227       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
228     }
229   }
230 
231   if (MD->isVirtual()) {
232     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
233         *this, MD, This, UseVirtualCall);
234   }
235 
236   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
237                                      /*ImplicitParam=*/nullptr, QualType(), CE);
238 }
239 
240 RValue
241 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
242                                               ReturnValueSlot ReturnValue) {
243   const BinaryOperator *BO =
244       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
245   const Expr *BaseExpr = BO->getLHS();
246   const Expr *MemFnExpr = BO->getRHS();
247 
248   const MemberPointerType *MPT =
249     MemFnExpr->getType()->castAs<MemberPointerType>();
250 
251   const FunctionProtoType *FPT =
252     MPT->getPointeeType()->castAs<FunctionProtoType>();
253   const CXXRecordDecl *RD =
254     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
255 
256   // Get the member function pointer.
257   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
258 
259   // Emit the 'this' pointer.
260   llvm::Value *This;
261 
262   if (BO->getOpcode() == BO_PtrMemI)
263     This = EmitScalarExpr(BaseExpr);
264   else
265     This = EmitLValue(BaseExpr).getAddress();
266 
267   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
268                 QualType(MPT->getClass(), 0));
269 
270   // Ask the ABI to load the callee.  Note that This is modified.
271   llvm::Value *Callee =
272     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
273 
274   CallArgList Args;
275 
276   QualType ThisType =
277     getContext().getPointerType(getContext().getTagDeclType(RD));
278 
279   // Push the this ptr.
280   Args.add(RValue::get(This), ThisType);
281 
282   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
283 
284   // And the rest of the call args
285   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
286   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
287                   Callee, ReturnValue, Args);
288 }
289 
290 RValue
291 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
292                                                const CXXMethodDecl *MD,
293                                                ReturnValueSlot ReturnValue) {
294   assert(MD->isInstance() &&
295          "Trying to emit a member call expr on a static method!");
296   LValue LV = EmitLValue(E->getArg(0));
297   llvm::Value *This = LV.getAddress();
298 
299   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
300       MD->isTrivial()) {
301     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
302     QualType Ty = E->getType();
303     EmitAggregateAssign(This, Src, Ty);
304     return RValue::get(This);
305   }
306 
307   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
308   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
309                                      /*ImplicitParam=*/nullptr, QualType(), E);
310 }
311 
312 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
313                                                ReturnValueSlot ReturnValue) {
314   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
315 }
316 
317 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
318                                             llvm::Value *DestPtr,
319                                             const CXXRecordDecl *Base) {
320   if (Base->isEmpty())
321     return;
322 
323   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
324 
325   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
326   CharUnits Size = Layout.getNonVirtualSize();
327   CharUnits Align = Layout.getNonVirtualAlignment();
328 
329   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
330 
331   // If the type contains a pointer to data member we can't memset it to zero.
332   // Instead, create a null constant and copy it to the destination.
333   // TODO: there are other patterns besides zero that we can usefully memset,
334   // like -1, which happens to be the pattern used by member-pointers.
335   // TODO: isZeroInitializable can be over-conservative in the case where a
336   // virtual base contains a member pointer.
337   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
338     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
339 
340     llvm::GlobalVariable *NullVariable =
341       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
342                                /*isConstant=*/true,
343                                llvm::GlobalVariable::PrivateLinkage,
344                                NullConstant, Twine());
345     NullVariable->setAlignment(Align.getQuantity());
346     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
347 
348     // Get and call the appropriate llvm.memcpy overload.
349     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
350     return;
351   }
352 
353   // Otherwise, just memset the whole thing to zero.  This is legal
354   // because in LLVM, all default initializers (other than the ones we just
355   // handled above) are guaranteed to have a bit pattern of all zeros.
356   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
357                            Align.getQuantity());
358 }
359 
360 void
361 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
362                                       AggValueSlot Dest) {
363   assert(!Dest.isIgnored() && "Must have a destination!");
364   const CXXConstructorDecl *CD = E->getConstructor();
365 
366   // If we require zero initialization before (or instead of) calling the
367   // constructor, as can be the case with a non-user-provided default
368   // constructor, emit the zero initialization now, unless destination is
369   // already zeroed.
370   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
371     switch (E->getConstructionKind()) {
372     case CXXConstructExpr::CK_Delegating:
373     case CXXConstructExpr::CK_Complete:
374       EmitNullInitialization(Dest.getAddr(), E->getType());
375       break;
376     case CXXConstructExpr::CK_VirtualBase:
377     case CXXConstructExpr::CK_NonVirtualBase:
378       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
379       break;
380     }
381   }
382 
383   // If this is a call to a trivial default constructor, do nothing.
384   if (CD->isTrivial() && CD->isDefaultConstructor())
385     return;
386 
387   // Elide the constructor if we're constructing from a temporary.
388   // The temporary check is required because Sema sets this on NRVO
389   // returns.
390   if (getLangOpts().ElideConstructors && E->isElidable()) {
391     assert(getContext().hasSameUnqualifiedType(E->getType(),
392                                                E->getArg(0)->getType()));
393     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
394       EmitAggExpr(E->getArg(0), Dest);
395       return;
396     }
397   }
398 
399   if (const ConstantArrayType *arrayType
400         = getContext().getAsConstantArrayType(E->getType())) {
401     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
402   } else {
403     CXXCtorType Type = Ctor_Complete;
404     bool ForVirtualBase = false;
405     bool Delegating = false;
406 
407     switch (E->getConstructionKind()) {
408      case CXXConstructExpr::CK_Delegating:
409       // We should be emitting a constructor; GlobalDecl will assert this
410       Type = CurGD.getCtorType();
411       Delegating = true;
412       break;
413 
414      case CXXConstructExpr::CK_Complete:
415       Type = Ctor_Complete;
416       break;
417 
418      case CXXConstructExpr::CK_VirtualBase:
419       ForVirtualBase = true;
420       // fall-through
421 
422      case CXXConstructExpr::CK_NonVirtualBase:
423       Type = Ctor_Base;
424     }
425 
426     // Call the constructor.
427     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
428                            E);
429   }
430 }
431 
432 void
433 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
434                                             llvm::Value *Src,
435                                             const Expr *Exp) {
436   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
437     Exp = E->getSubExpr();
438   assert(isa<CXXConstructExpr>(Exp) &&
439          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
440   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
441   const CXXConstructorDecl *CD = E->getConstructor();
442   RunCleanupsScope Scope(*this);
443 
444   // If we require zero initialization before (or instead of) calling the
445   // constructor, as can be the case with a non-user-provided default
446   // constructor, emit the zero initialization now.
447   // FIXME. Do I still need this for a copy ctor synthesis?
448   if (E->requiresZeroInitialization())
449     EmitNullInitialization(Dest, E->getType());
450 
451   assert(!getContext().getAsConstantArrayType(E->getType())
452          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
453   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
454 }
455 
456 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
457                                         const CXXNewExpr *E) {
458   if (!E->isArray())
459     return CharUnits::Zero();
460 
461   // No cookie is required if the operator new[] being used is the
462   // reserved placement operator new[].
463   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
464     return CharUnits::Zero();
465 
466   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
467 }
468 
469 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
470                                         const CXXNewExpr *e,
471                                         unsigned minElements,
472                                         llvm::Value *&numElements,
473                                         llvm::Value *&sizeWithoutCookie) {
474   QualType type = e->getAllocatedType();
475 
476   if (!e->isArray()) {
477     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
478     sizeWithoutCookie
479       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
480     return sizeWithoutCookie;
481   }
482 
483   // The width of size_t.
484   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
485 
486   // Figure out the cookie size.
487   llvm::APInt cookieSize(sizeWidth,
488                          CalculateCookiePadding(CGF, e).getQuantity());
489 
490   // Emit the array size expression.
491   // We multiply the size of all dimensions for NumElements.
492   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
493   numElements = CGF.EmitScalarExpr(e->getArraySize());
494   assert(isa<llvm::IntegerType>(numElements->getType()));
495 
496   // The number of elements can be have an arbitrary integer type;
497   // essentially, we need to multiply it by a constant factor, add a
498   // cookie size, and verify that the result is representable as a
499   // size_t.  That's just a gloss, though, and it's wrong in one
500   // important way: if the count is negative, it's an error even if
501   // the cookie size would bring the total size >= 0.
502   bool isSigned
503     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
504   llvm::IntegerType *numElementsType
505     = cast<llvm::IntegerType>(numElements->getType());
506   unsigned numElementsWidth = numElementsType->getBitWidth();
507 
508   // Compute the constant factor.
509   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
510   while (const ConstantArrayType *CAT
511              = CGF.getContext().getAsConstantArrayType(type)) {
512     type = CAT->getElementType();
513     arraySizeMultiplier *= CAT->getSize();
514   }
515 
516   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
517   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
518   typeSizeMultiplier *= arraySizeMultiplier;
519 
520   // This will be a size_t.
521   llvm::Value *size;
522 
523   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
524   // Don't bloat the -O0 code.
525   if (llvm::ConstantInt *numElementsC =
526         dyn_cast<llvm::ConstantInt>(numElements)) {
527     const llvm::APInt &count = numElementsC->getValue();
528 
529     bool hasAnyOverflow = false;
530 
531     // If 'count' was a negative number, it's an overflow.
532     if (isSigned && count.isNegative())
533       hasAnyOverflow = true;
534 
535     // We want to do all this arithmetic in size_t.  If numElements is
536     // wider than that, check whether it's already too big, and if so,
537     // overflow.
538     else if (numElementsWidth > sizeWidth &&
539              numElementsWidth - sizeWidth > count.countLeadingZeros())
540       hasAnyOverflow = true;
541 
542     // Okay, compute a count at the right width.
543     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
544 
545     // If there is a brace-initializer, we cannot allocate fewer elements than
546     // there are initializers. If we do, that's treated like an overflow.
547     if (adjustedCount.ult(minElements))
548       hasAnyOverflow = true;
549 
550     // Scale numElements by that.  This might overflow, but we don't
551     // care because it only overflows if allocationSize does, too, and
552     // if that overflows then we shouldn't use this.
553     numElements = llvm::ConstantInt::get(CGF.SizeTy,
554                                          adjustedCount * arraySizeMultiplier);
555 
556     // Compute the size before cookie, and track whether it overflowed.
557     bool overflow;
558     llvm::APInt allocationSize
559       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
560     hasAnyOverflow |= overflow;
561 
562     // Add in the cookie, and check whether it's overflowed.
563     if (cookieSize != 0) {
564       // Save the current size without a cookie.  This shouldn't be
565       // used if there was overflow.
566       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
567 
568       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
569       hasAnyOverflow |= overflow;
570     }
571 
572     // On overflow, produce a -1 so operator new will fail.
573     if (hasAnyOverflow) {
574       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
575     } else {
576       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
577     }
578 
579   // Otherwise, we might need to use the overflow intrinsics.
580   } else {
581     // There are up to five conditions we need to test for:
582     // 1) if isSigned, we need to check whether numElements is negative;
583     // 2) if numElementsWidth > sizeWidth, we need to check whether
584     //   numElements is larger than something representable in size_t;
585     // 3) if minElements > 0, we need to check whether numElements is smaller
586     //    than that.
587     // 4) we need to compute
588     //      sizeWithoutCookie := numElements * typeSizeMultiplier
589     //    and check whether it overflows; and
590     // 5) if we need a cookie, we need to compute
591     //      size := sizeWithoutCookie + cookieSize
592     //    and check whether it overflows.
593 
594     llvm::Value *hasOverflow = nullptr;
595 
596     // If numElementsWidth > sizeWidth, then one way or another, we're
597     // going to have to do a comparison for (2), and this happens to
598     // take care of (1), too.
599     if (numElementsWidth > sizeWidth) {
600       llvm::APInt threshold(numElementsWidth, 1);
601       threshold <<= sizeWidth;
602 
603       llvm::Value *thresholdV
604         = llvm::ConstantInt::get(numElementsType, threshold);
605 
606       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
607       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
608 
609     // Otherwise, if we're signed, we want to sext up to size_t.
610     } else if (isSigned) {
611       if (numElementsWidth < sizeWidth)
612         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
613 
614       // If there's a non-1 type size multiplier, then we can do the
615       // signedness check at the same time as we do the multiply
616       // because a negative number times anything will cause an
617       // unsigned overflow.  Otherwise, we have to do it here. But at least
618       // in this case, we can subsume the >= minElements check.
619       if (typeSizeMultiplier == 1)
620         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
621                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
622 
623     // Otherwise, zext up to size_t if necessary.
624     } else if (numElementsWidth < sizeWidth) {
625       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
626     }
627 
628     assert(numElements->getType() == CGF.SizeTy);
629 
630     if (minElements) {
631       // Don't allow allocation of fewer elements than we have initializers.
632       if (!hasOverflow) {
633         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
634                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
635       } else if (numElementsWidth > sizeWidth) {
636         // The other existing overflow subsumes this check.
637         // We do an unsigned comparison, since any signed value < -1 is
638         // taken care of either above or below.
639         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
640                           CGF.Builder.CreateICmpULT(numElements,
641                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
642       }
643     }
644 
645     size = numElements;
646 
647     // Multiply by the type size if necessary.  This multiplier
648     // includes all the factors for nested arrays.
649     //
650     // This step also causes numElements to be scaled up by the
651     // nested-array factor if necessary.  Overflow on this computation
652     // can be ignored because the result shouldn't be used if
653     // allocation fails.
654     if (typeSizeMultiplier != 1) {
655       llvm::Value *umul_with_overflow
656         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
657 
658       llvm::Value *tsmV =
659         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
660       llvm::Value *result =
661         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
662 
663       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
664       if (hasOverflow)
665         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
666       else
667         hasOverflow = overflowed;
668 
669       size = CGF.Builder.CreateExtractValue(result, 0);
670 
671       // Also scale up numElements by the array size multiplier.
672       if (arraySizeMultiplier != 1) {
673         // If the base element type size is 1, then we can re-use the
674         // multiply we just did.
675         if (typeSize.isOne()) {
676           assert(arraySizeMultiplier == typeSizeMultiplier);
677           numElements = size;
678 
679         // Otherwise we need a separate multiply.
680         } else {
681           llvm::Value *asmV =
682             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
683           numElements = CGF.Builder.CreateMul(numElements, asmV);
684         }
685       }
686     } else {
687       // numElements doesn't need to be scaled.
688       assert(arraySizeMultiplier == 1);
689     }
690 
691     // Add in the cookie size if necessary.
692     if (cookieSize != 0) {
693       sizeWithoutCookie = size;
694 
695       llvm::Value *uadd_with_overflow
696         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
697 
698       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
699       llvm::Value *result =
700         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
701 
702       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
703       if (hasOverflow)
704         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
705       else
706         hasOverflow = overflowed;
707 
708       size = CGF.Builder.CreateExtractValue(result, 0);
709     }
710 
711     // If we had any possibility of dynamic overflow, make a select to
712     // overwrite 'size' with an all-ones value, which should cause
713     // operator new to throw.
714     if (hasOverflow)
715       size = CGF.Builder.CreateSelect(hasOverflow,
716                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
717                                       size);
718   }
719 
720   if (cookieSize == 0)
721     sizeWithoutCookie = size;
722   else
723     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
724 
725   return size;
726 }
727 
728 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
729                                     QualType AllocType, llvm::Value *NewPtr) {
730   // FIXME: Refactor with EmitExprAsInit.
731   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
732   switch (CGF.getEvaluationKind(AllocType)) {
733   case TEK_Scalar:
734     CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType,
735                                                          Alignment),
736                        false);
737     return;
738   case TEK_Complex:
739     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
740                                                            Alignment),
741                                   /*isInit*/ true);
742     return;
743   case TEK_Aggregate: {
744     AggValueSlot Slot
745       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
746                               AggValueSlot::IsDestructed,
747                               AggValueSlot::DoesNotNeedGCBarriers,
748                               AggValueSlot::IsNotAliased);
749     CGF.EmitAggExpr(Init, Slot);
750     return;
751   }
752   }
753   llvm_unreachable("bad evaluation kind");
754 }
755 
756 void
757 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
758                                          QualType ElementType,
759                                          llvm::Value *BeginPtr,
760                                          llvm::Value *NumElements,
761                                          llvm::Value *AllocSizeWithoutCookie) {
762   // If we have a type with trivial initialization and no initializer,
763   // there's nothing to do.
764   if (!E->hasInitializer())
765     return;
766 
767   llvm::Value *CurPtr = BeginPtr;
768 
769   unsigned InitListElements = 0;
770 
771   const Expr *Init = E->getInitializer();
772   llvm::AllocaInst *EndOfInit = nullptr;
773   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
774   EHScopeStack::stable_iterator Cleanup;
775   llvm::Instruction *CleanupDominator = nullptr;
776 
777   // If the initializer is an initializer list, first do the explicit elements.
778   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
779     InitListElements = ILE->getNumInits();
780 
781     // If this is a multi-dimensional array new, we will initialize multiple
782     // elements with each init list element.
783     QualType AllocType = E->getAllocatedType();
784     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
785             AllocType->getAsArrayTypeUnsafe())) {
786       unsigned AS = CurPtr->getType()->getPointerAddressSpace();
787       llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
788       CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
789       InitListElements *= getContext().getConstantArrayElementCount(CAT);
790     }
791 
792     // Enter a partial-destruction Cleanup if necessary.
793     if (needsEHCleanup(DtorKind)) {
794       // In principle we could tell the Cleanup where we are more
795       // directly, but the control flow can get so varied here that it
796       // would actually be quite complex.  Therefore we go through an
797       // alloca.
798       EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
799       CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
800       pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
801                                        getDestroyer(DtorKind));
802       Cleanup = EHStack.stable_begin();
803     }
804 
805     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
806       // Tell the cleanup that it needs to destroy up to this
807       // element.  TODO: some of these stores can be trivially
808       // observed to be unnecessary.
809       if (EndOfInit)
810         Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
811                             EndOfInit);
812       // FIXME: If the last initializer is an incomplete initializer list for
813       // an array, and we have an array filler, we can fold together the two
814       // initialization loops.
815       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
816                               ILE->getInit(i)->getType(), CurPtr);
817       CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next");
818     }
819 
820     // The remaining elements are filled with the array filler expression.
821     Init = ILE->getArrayFiller();
822 
823     // Extract the initializer for the individual array elements by pulling
824     // out the array filler from all the nested initializer lists. This avoids
825     // generating a nested loop for the initialization.
826     while (Init && Init->getType()->isConstantArrayType()) {
827       auto *SubILE = dyn_cast<InitListExpr>(Init);
828       if (!SubILE)
829         break;
830       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
831       Init = SubILE->getArrayFiller();
832     }
833 
834     // Switch back to initializing one base element at a time.
835     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
836   }
837 
838   // Attempt to perform zero-initialization using memset.
839   auto TryMemsetInitialization = [&]() -> bool {
840     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
841     // we can initialize with a memset to -1.
842     if (!CGM.getTypes().isZeroInitializable(ElementType))
843       return false;
844 
845     // Optimization: since zero initialization will just set the memory
846     // to all zeroes, generate a single memset to do it in one shot.
847 
848     // Subtract out the size of any elements we've already initialized.
849     auto *RemainingSize = AllocSizeWithoutCookie;
850     if (InitListElements) {
851       // We know this can't overflow; we check this when doing the allocation.
852       auto *InitializedSize = llvm::ConstantInt::get(
853           RemainingSize->getType(),
854           getContext().getTypeSizeInChars(ElementType).getQuantity() *
855               InitListElements);
856       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
857     }
858 
859     // Create the memset.
860     CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
861     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
862                          Alignment.getQuantity(), false);
863     return true;
864   };
865 
866   // If all elements have already been initialized, skip any further
867   // initialization.
868   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
869   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
870     // If there was a Cleanup, deactivate it.
871     if (CleanupDominator)
872       DeactivateCleanupBlock(Cleanup, CleanupDominator);
873     return;
874   }
875 
876   assert(Init && "have trailing elements to initialize but no initializer");
877 
878   // If this is a constructor call, try to optimize it out, and failing that
879   // emit a single loop to initialize all remaining elements.
880   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
881     CXXConstructorDecl *Ctor = CCE->getConstructor();
882     if (Ctor->isTrivial()) {
883       // If new expression did not specify value-initialization, then there
884       // is no initialization.
885       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
886         return;
887 
888       if (TryMemsetInitialization())
889         return;
890     }
891 
892     // Store the new Cleanup position for irregular Cleanups.
893     //
894     // FIXME: Share this cleanup with the constructor call emission rather than
895     // having it create a cleanup of its own.
896     if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
897 
898     // Emit a constructor call loop to initialize the remaining elements.
899     if (InitListElements)
900       NumElements = Builder.CreateSub(
901           NumElements,
902           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
903     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
904                                CCE->requiresZeroInitialization());
905     return;
906   }
907 
908   // If this is value-initialization, we can usually use memset.
909   ImplicitValueInitExpr IVIE(ElementType);
910   if (isa<ImplicitValueInitExpr>(Init)) {
911     if (TryMemsetInitialization())
912       return;
913 
914     // Switch to an ImplicitValueInitExpr for the element type. This handles
915     // only one case: multidimensional array new of pointers to members. In
916     // all other cases, we already have an initializer for the array element.
917     Init = &IVIE;
918   }
919 
920   // At this point we should have found an initializer for the individual
921   // elements of the array.
922   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
923          "got wrong type of element to initialize");
924 
925   // If we have an empty initializer list, we can usually use memset.
926   if (auto *ILE = dyn_cast<InitListExpr>(Init))
927     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
928       return;
929 
930   // Create the loop blocks.
931   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
932   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
933   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
934 
935   // Find the end of the array, hoisted out of the loop.
936   llvm::Value *EndPtr =
937     Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
938 
939   // If the number of elements isn't constant, we have to now check if there is
940   // anything left to initialize.
941   if (!ConstNum) {
942     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
943                                                 "array.isempty");
944     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
945   }
946 
947   // Enter the loop.
948   EmitBlock(LoopBB);
949 
950   // Set up the current-element phi.
951   llvm::PHINode *CurPtrPhi =
952     Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
953   CurPtrPhi->addIncoming(CurPtr, EntryBB);
954   CurPtr = CurPtrPhi;
955 
956   // Store the new Cleanup position for irregular Cleanups.
957   if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
958 
959   // Enter a partial-destruction Cleanup if necessary.
960   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
961     pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
962                                    getDestroyer(DtorKind));
963     Cleanup = EHStack.stable_begin();
964     CleanupDominator = Builder.CreateUnreachable();
965   }
966 
967   // Emit the initializer into this element.
968   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
969 
970   // Leave the Cleanup if we entered one.
971   if (CleanupDominator) {
972     DeactivateCleanupBlock(Cleanup, CleanupDominator);
973     CleanupDominator->eraseFromParent();
974   }
975 
976   // Advance to the next element by adjusting the pointer type as necessary.
977   llvm::Value *NextPtr =
978       Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next");
979 
980   // Check whether we've gotten to the end of the array and, if so,
981   // exit the loop.
982   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
983   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
984   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
985 
986   EmitBlock(ContBB);
987 }
988 
989 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
990                                QualType ElementType,
991                                llvm::Value *NewPtr,
992                                llvm::Value *NumElements,
993                                llvm::Value *AllocSizeWithoutCookie) {
994   if (E->isArray())
995     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements,
996                                 AllocSizeWithoutCookie);
997   else if (const Expr *Init = E->getInitializer())
998     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
999 }
1000 
1001 /// Emit a call to an operator new or operator delete function, as implicitly
1002 /// created by new-expressions and delete-expressions.
1003 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1004                                 const FunctionDecl *Callee,
1005                                 const FunctionProtoType *CalleeType,
1006                                 const CallArgList &Args) {
1007   llvm::Instruction *CallOrInvoke;
1008   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1009   RValue RV =
1010       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
1011                    CalleeAddr, ReturnValueSlot(), Args,
1012                    Callee, &CallOrInvoke);
1013 
1014   /// C++1y [expr.new]p10:
1015   ///   [In a new-expression,] an implementation is allowed to omit a call
1016   ///   to a replaceable global allocation function.
1017   ///
1018   /// We model such elidable calls with the 'builtin' attribute.
1019   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1020   if (Callee->isReplaceableGlobalAllocationFunction() &&
1021       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1022     // FIXME: Add addAttribute to CallSite.
1023     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1024       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1025                        llvm::Attribute::Builtin);
1026     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1027       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1028                        llvm::Attribute::Builtin);
1029     else
1030       llvm_unreachable("unexpected kind of call instruction");
1031   }
1032 
1033   return RV;
1034 }
1035 
1036 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1037                                                  const Expr *Arg,
1038                                                  bool IsDelete) {
1039   CallArgList Args;
1040   const Stmt *ArgS = Arg;
1041   EmitCallArgs(Args, *Type->param_type_begin(),
1042                ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1043   // Find the allocation or deallocation function that we're calling.
1044   ASTContext &Ctx = getContext();
1045   DeclarationName Name = Ctx.DeclarationNames
1046       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1047   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1048     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1049       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1050         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1051   llvm_unreachable("predeclared global operator new/delete is missing");
1052 }
1053 
1054 namespace {
1055   /// A cleanup to call the given 'operator delete' function upon
1056   /// abnormal exit from a new expression.
1057   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1058     size_t NumPlacementArgs;
1059     const FunctionDecl *OperatorDelete;
1060     llvm::Value *Ptr;
1061     llvm::Value *AllocSize;
1062 
1063     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1064 
1065   public:
1066     static size_t getExtraSize(size_t NumPlacementArgs) {
1067       return NumPlacementArgs * sizeof(RValue);
1068     }
1069 
1070     CallDeleteDuringNew(size_t NumPlacementArgs,
1071                         const FunctionDecl *OperatorDelete,
1072                         llvm::Value *Ptr,
1073                         llvm::Value *AllocSize)
1074       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1075         Ptr(Ptr), AllocSize(AllocSize) {}
1076 
1077     void setPlacementArg(unsigned I, RValue Arg) {
1078       assert(I < NumPlacementArgs && "index out of range");
1079       getPlacementArgs()[I] = Arg;
1080     }
1081 
1082     void Emit(CodeGenFunction &CGF, Flags flags) override {
1083       const FunctionProtoType *FPT
1084         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1085       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1086              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1087 
1088       CallArgList DeleteArgs;
1089 
1090       // The first argument is always a void*.
1091       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1092       DeleteArgs.add(RValue::get(Ptr), *AI++);
1093 
1094       // A member 'operator delete' can take an extra 'size_t' argument.
1095       if (FPT->getNumParams() == NumPlacementArgs + 2)
1096         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1097 
1098       // Pass the rest of the arguments, which must match exactly.
1099       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1100         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1101 
1102       // Call 'operator delete'.
1103       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1104     }
1105   };
1106 
1107   /// A cleanup to call the given 'operator delete' function upon
1108   /// abnormal exit from a new expression when the new expression is
1109   /// conditional.
1110   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1111     size_t NumPlacementArgs;
1112     const FunctionDecl *OperatorDelete;
1113     DominatingValue<RValue>::saved_type Ptr;
1114     DominatingValue<RValue>::saved_type AllocSize;
1115 
1116     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1117       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1118     }
1119 
1120   public:
1121     static size_t getExtraSize(size_t NumPlacementArgs) {
1122       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1123     }
1124 
1125     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1126                                    const FunctionDecl *OperatorDelete,
1127                                    DominatingValue<RValue>::saved_type Ptr,
1128                               DominatingValue<RValue>::saved_type AllocSize)
1129       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1130         Ptr(Ptr), AllocSize(AllocSize) {}
1131 
1132     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1133       assert(I < NumPlacementArgs && "index out of range");
1134       getPlacementArgs()[I] = Arg;
1135     }
1136 
1137     void Emit(CodeGenFunction &CGF, Flags flags) override {
1138       const FunctionProtoType *FPT
1139         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1140       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1141              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1142 
1143       CallArgList DeleteArgs;
1144 
1145       // The first argument is always a void*.
1146       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1147       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1148 
1149       // A member 'operator delete' can take an extra 'size_t' argument.
1150       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1151         RValue RV = AllocSize.restore(CGF);
1152         DeleteArgs.add(RV, *AI++);
1153       }
1154 
1155       // Pass the rest of the arguments, which must match exactly.
1156       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1157         RValue RV = getPlacementArgs()[I].restore(CGF);
1158         DeleteArgs.add(RV, *AI++);
1159       }
1160 
1161       // Call 'operator delete'.
1162       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1163     }
1164   };
1165 }
1166 
1167 /// Enter a cleanup to call 'operator delete' if the initializer in a
1168 /// new-expression throws.
1169 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1170                                   const CXXNewExpr *E,
1171                                   llvm::Value *NewPtr,
1172                                   llvm::Value *AllocSize,
1173                                   const CallArgList &NewArgs) {
1174   // If we're not inside a conditional branch, then the cleanup will
1175   // dominate and we can do the easier (and more efficient) thing.
1176   if (!CGF.isInConditionalBranch()) {
1177     CallDeleteDuringNew *Cleanup = CGF.EHStack
1178       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1179                                                  E->getNumPlacementArgs(),
1180                                                  E->getOperatorDelete(),
1181                                                  NewPtr, AllocSize);
1182     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1183       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1184 
1185     return;
1186   }
1187 
1188   // Otherwise, we need to save all this stuff.
1189   DominatingValue<RValue>::saved_type SavedNewPtr =
1190     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1191   DominatingValue<RValue>::saved_type SavedAllocSize =
1192     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1193 
1194   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1195     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1196                                                  E->getNumPlacementArgs(),
1197                                                  E->getOperatorDelete(),
1198                                                  SavedNewPtr,
1199                                                  SavedAllocSize);
1200   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1201     Cleanup->setPlacementArg(I,
1202                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1203 
1204   CGF.initFullExprCleanup();
1205 }
1206 
1207 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1208   // The element type being allocated.
1209   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1210 
1211   // 1. Build a call to the allocation function.
1212   FunctionDecl *allocator = E->getOperatorNew();
1213   const FunctionProtoType *allocatorType =
1214     allocator->getType()->castAs<FunctionProtoType>();
1215 
1216   CallArgList allocatorArgs;
1217 
1218   // The allocation size is the first argument.
1219   QualType sizeType = getContext().getSizeType();
1220 
1221   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1222   unsigned minElements = 0;
1223   if (E->isArray() && E->hasInitializer()) {
1224     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1225       minElements = ILE->getNumInits();
1226   }
1227 
1228   llvm::Value *numElements = nullptr;
1229   llvm::Value *allocSizeWithoutCookie = nullptr;
1230   llvm::Value *allocSize =
1231     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1232                         allocSizeWithoutCookie);
1233 
1234   allocatorArgs.add(RValue::get(allocSize), sizeType);
1235 
1236   // We start at 1 here because the first argument (the allocation size)
1237   // has already been emitted.
1238   EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
1239                E->placement_arg_end(), /* CalleeDecl */ nullptr,
1240                /*ParamsToSkip*/ 1);
1241 
1242   // Emit the allocation call.  If the allocator is a global placement
1243   // operator, just "inline" it directly.
1244   RValue RV;
1245   if (allocator->isReservedGlobalPlacementOperator()) {
1246     assert(allocatorArgs.size() == 2);
1247     RV = allocatorArgs[1].RV;
1248     // TODO: kill any unnecessary computations done for the size
1249     // argument.
1250   } else {
1251     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1252   }
1253 
1254   // Emit a null check on the allocation result if the allocation
1255   // function is allowed to return null (because it has a non-throwing
1256   // exception spec; for this part, we inline
1257   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1258   // interesting initializer.
1259   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1260     (!allocType.isPODType(getContext()) || E->hasInitializer());
1261 
1262   llvm::BasicBlock *nullCheckBB = nullptr;
1263   llvm::BasicBlock *contBB = nullptr;
1264 
1265   llvm::Value *allocation = RV.getScalarVal();
1266   unsigned AS = allocation->getType()->getPointerAddressSpace();
1267 
1268   // The null-check means that the initializer is conditionally
1269   // evaluated.
1270   ConditionalEvaluation conditional(*this);
1271 
1272   if (nullCheck) {
1273     conditional.begin(*this);
1274 
1275     nullCheckBB = Builder.GetInsertBlock();
1276     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1277     contBB = createBasicBlock("new.cont");
1278 
1279     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1280     Builder.CreateCondBr(isNull, contBB, notNullBB);
1281     EmitBlock(notNullBB);
1282   }
1283 
1284   // If there's an operator delete, enter a cleanup to call it if an
1285   // exception is thrown.
1286   EHScopeStack::stable_iterator operatorDeleteCleanup;
1287   llvm::Instruction *cleanupDominator = nullptr;
1288   if (E->getOperatorDelete() &&
1289       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1290     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1291     operatorDeleteCleanup = EHStack.stable_begin();
1292     cleanupDominator = Builder.CreateUnreachable();
1293   }
1294 
1295   assert((allocSize == allocSizeWithoutCookie) ==
1296          CalculateCookiePadding(*this, E).isZero());
1297   if (allocSize != allocSizeWithoutCookie) {
1298     assert(E->isArray());
1299     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1300                                                        numElements,
1301                                                        E, allocType);
1302   }
1303 
1304   llvm::Type *elementPtrTy
1305     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1306   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1307 
1308   EmitNewInitializer(*this, E, allocType, result, numElements,
1309                      allocSizeWithoutCookie);
1310   if (E->isArray()) {
1311     // NewPtr is a pointer to the base element type.  If we're
1312     // allocating an array of arrays, we'll need to cast back to the
1313     // array pointer type.
1314     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1315     if (result->getType() != resultType)
1316       result = Builder.CreateBitCast(result, resultType);
1317   }
1318 
1319   // Deactivate the 'operator delete' cleanup if we finished
1320   // initialization.
1321   if (operatorDeleteCleanup.isValid()) {
1322     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1323     cleanupDominator->eraseFromParent();
1324   }
1325 
1326   if (nullCheck) {
1327     conditional.end(*this);
1328 
1329     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1330     EmitBlock(contBB);
1331 
1332     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1333     PHI->addIncoming(result, notNullBB);
1334     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1335                      nullCheckBB);
1336 
1337     result = PHI;
1338   }
1339 
1340   return result;
1341 }
1342 
1343 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1344                                      llvm::Value *Ptr,
1345                                      QualType DeleteTy) {
1346   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1347 
1348   const FunctionProtoType *DeleteFTy =
1349     DeleteFD->getType()->getAs<FunctionProtoType>();
1350 
1351   CallArgList DeleteArgs;
1352 
1353   // Check if we need to pass the size to the delete operator.
1354   llvm::Value *Size = nullptr;
1355   QualType SizeTy;
1356   if (DeleteFTy->getNumParams() == 2) {
1357     SizeTy = DeleteFTy->getParamType(1);
1358     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1359     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1360                                   DeleteTypeSize.getQuantity());
1361   }
1362 
1363   QualType ArgTy = DeleteFTy->getParamType(0);
1364   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1365   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1366 
1367   if (Size)
1368     DeleteArgs.add(RValue::get(Size), SizeTy);
1369 
1370   // Emit the call to delete.
1371   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1372 }
1373 
1374 namespace {
1375   /// Calls the given 'operator delete' on a single object.
1376   struct CallObjectDelete : EHScopeStack::Cleanup {
1377     llvm::Value *Ptr;
1378     const FunctionDecl *OperatorDelete;
1379     QualType ElementType;
1380 
1381     CallObjectDelete(llvm::Value *Ptr,
1382                      const FunctionDecl *OperatorDelete,
1383                      QualType ElementType)
1384       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1385 
1386     void Emit(CodeGenFunction &CGF, Flags flags) override {
1387       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1388     }
1389   };
1390 }
1391 
1392 /// Emit the code for deleting a single object.
1393 static void EmitObjectDelete(CodeGenFunction &CGF,
1394                              const FunctionDecl *OperatorDelete,
1395                              llvm::Value *Ptr,
1396                              QualType ElementType,
1397                              bool UseGlobalDelete) {
1398   // Find the destructor for the type, if applicable.  If the
1399   // destructor is virtual, we'll just emit the vcall and return.
1400   const CXXDestructorDecl *Dtor = nullptr;
1401   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1402     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1403     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1404       Dtor = RD->getDestructor();
1405 
1406       if (Dtor->isVirtual()) {
1407         if (UseGlobalDelete) {
1408           // If we're supposed to call the global delete, make sure we do so
1409           // even if the destructor throws.
1410 
1411           // Derive the complete-object pointer, which is what we need
1412           // to pass to the deallocation function.
1413           llvm::Value *completePtr =
1414             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1415 
1416           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1417                                                     completePtr, OperatorDelete,
1418                                                     ElementType);
1419         }
1420 
1421         // FIXME: Provide a source location here even though there's no
1422         // CXXMemberCallExpr for dtor call.
1423         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1424         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr,
1425                                                       nullptr);
1426 
1427         if (UseGlobalDelete) {
1428           CGF.PopCleanupBlock();
1429         }
1430 
1431         return;
1432       }
1433     }
1434   }
1435 
1436   // Make sure that we call delete even if the dtor throws.
1437   // This doesn't have to a conditional cleanup because we're going
1438   // to pop it off in a second.
1439   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1440                                             Ptr, OperatorDelete, ElementType);
1441 
1442   if (Dtor)
1443     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1444                               /*ForVirtualBase=*/false,
1445                               /*Delegating=*/false,
1446                               Ptr);
1447   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1448            ElementType->isObjCLifetimeType()) {
1449     switch (ElementType.getObjCLifetime()) {
1450     case Qualifiers::OCL_None:
1451     case Qualifiers::OCL_ExplicitNone:
1452     case Qualifiers::OCL_Autoreleasing:
1453       break;
1454 
1455     case Qualifiers::OCL_Strong: {
1456       // Load the pointer value.
1457       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1458                                              ElementType.isVolatileQualified());
1459 
1460       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1461       break;
1462     }
1463 
1464     case Qualifiers::OCL_Weak:
1465       CGF.EmitARCDestroyWeak(Ptr);
1466       break;
1467     }
1468   }
1469 
1470   CGF.PopCleanupBlock();
1471 }
1472 
1473 namespace {
1474   /// Calls the given 'operator delete' on an array of objects.
1475   struct CallArrayDelete : EHScopeStack::Cleanup {
1476     llvm::Value *Ptr;
1477     const FunctionDecl *OperatorDelete;
1478     llvm::Value *NumElements;
1479     QualType ElementType;
1480     CharUnits CookieSize;
1481 
1482     CallArrayDelete(llvm::Value *Ptr,
1483                     const FunctionDecl *OperatorDelete,
1484                     llvm::Value *NumElements,
1485                     QualType ElementType,
1486                     CharUnits CookieSize)
1487       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1488         ElementType(ElementType), CookieSize(CookieSize) {}
1489 
1490     void Emit(CodeGenFunction &CGF, Flags flags) override {
1491       const FunctionProtoType *DeleteFTy =
1492         OperatorDelete->getType()->getAs<FunctionProtoType>();
1493       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1494 
1495       CallArgList Args;
1496 
1497       // Pass the pointer as the first argument.
1498       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1499       llvm::Value *DeletePtr
1500         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1501       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1502 
1503       // Pass the original requested size as the second argument.
1504       if (DeleteFTy->getNumParams() == 2) {
1505         QualType size_t = DeleteFTy->getParamType(1);
1506         llvm::IntegerType *SizeTy
1507           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1508 
1509         CharUnits ElementTypeSize =
1510           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1511 
1512         // The size of an element, multiplied by the number of elements.
1513         llvm::Value *Size
1514           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1515         Size = CGF.Builder.CreateMul(Size, NumElements);
1516 
1517         // Plus the size of the cookie if applicable.
1518         if (!CookieSize.isZero()) {
1519           llvm::Value *CookieSizeV
1520             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1521           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1522         }
1523 
1524         Args.add(RValue::get(Size), size_t);
1525       }
1526 
1527       // Emit the call to delete.
1528       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1529     }
1530   };
1531 }
1532 
1533 /// Emit the code for deleting an array of objects.
1534 static void EmitArrayDelete(CodeGenFunction &CGF,
1535                             const CXXDeleteExpr *E,
1536                             llvm::Value *deletedPtr,
1537                             QualType elementType) {
1538   llvm::Value *numElements = nullptr;
1539   llvm::Value *allocatedPtr = nullptr;
1540   CharUnits cookieSize;
1541   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1542                                       numElements, allocatedPtr, cookieSize);
1543 
1544   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1545 
1546   // Make sure that we call delete even if one of the dtors throws.
1547   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1548   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1549                                            allocatedPtr, operatorDelete,
1550                                            numElements, elementType,
1551                                            cookieSize);
1552 
1553   // Destroy the elements.
1554   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1555     assert(numElements && "no element count for a type with a destructor!");
1556 
1557     llvm::Value *arrayEnd =
1558       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1559 
1560     // Note that it is legal to allocate a zero-length array, and we
1561     // can never fold the check away because the length should always
1562     // come from a cookie.
1563     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1564                          CGF.getDestroyer(dtorKind),
1565                          /*checkZeroLength*/ true,
1566                          CGF.needsEHCleanup(dtorKind));
1567   }
1568 
1569   // Pop the cleanup block.
1570   CGF.PopCleanupBlock();
1571 }
1572 
1573 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1574   const Expr *Arg = E->getArgument();
1575   llvm::Value *Ptr = EmitScalarExpr(Arg);
1576 
1577   // Null check the pointer.
1578   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1579   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1580 
1581   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1582 
1583   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1584   EmitBlock(DeleteNotNull);
1585 
1586   // We might be deleting a pointer to array.  If so, GEP down to the
1587   // first non-array element.
1588   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1589   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1590   if (DeleteTy->isConstantArrayType()) {
1591     llvm::Value *Zero = Builder.getInt32(0);
1592     SmallVector<llvm::Value*,8> GEP;
1593 
1594     GEP.push_back(Zero); // point at the outermost array
1595 
1596     // For each layer of array type we're pointing at:
1597     while (const ConstantArrayType *Arr
1598              = getContext().getAsConstantArrayType(DeleteTy)) {
1599       // 1. Unpeel the array type.
1600       DeleteTy = Arr->getElementType();
1601 
1602       // 2. GEP to the first element of the array.
1603       GEP.push_back(Zero);
1604     }
1605 
1606     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1607   }
1608 
1609   assert(ConvertTypeForMem(DeleteTy) ==
1610          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1611 
1612   if (E->isArrayForm()) {
1613     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1614   } else {
1615     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1616                      E->isGlobalDelete());
1617   }
1618 
1619   EmitBlock(DeleteEnd);
1620 }
1621 
1622 static bool isGLValueFromPointerDeref(const Expr *E) {
1623   E = E->IgnoreParens();
1624 
1625   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1626     if (!CE->getSubExpr()->isGLValue())
1627       return false;
1628     return isGLValueFromPointerDeref(CE->getSubExpr());
1629   }
1630 
1631   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1632     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1633 
1634   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1635     if (BO->getOpcode() == BO_Comma)
1636       return isGLValueFromPointerDeref(BO->getRHS());
1637 
1638   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1639     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1640            isGLValueFromPointerDeref(ACO->getFalseExpr());
1641 
1642   // C++11 [expr.sub]p1:
1643   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1644   if (isa<ArraySubscriptExpr>(E))
1645     return true;
1646 
1647   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1648     if (UO->getOpcode() == UO_Deref)
1649       return true;
1650 
1651   return false;
1652 }
1653 
1654 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1655                                          llvm::Type *StdTypeInfoPtrTy) {
1656   // Get the vtable pointer.
1657   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1658 
1659   // C++ [expr.typeid]p2:
1660   //   If the glvalue expression is obtained by applying the unary * operator to
1661   //   a pointer and the pointer is a null pointer value, the typeid expression
1662   //   throws the std::bad_typeid exception.
1663   //
1664   // However, this paragraph's intent is not clear.  We choose a very generous
1665   // interpretation which implores us to consider comma operators, conditional
1666   // operators, parentheses and other such constructs.
1667   QualType SrcRecordTy = E->getType();
1668   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1669           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1670     llvm::BasicBlock *BadTypeidBlock =
1671         CGF.createBasicBlock("typeid.bad_typeid");
1672     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1673 
1674     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1675     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1676 
1677     CGF.EmitBlock(BadTypeidBlock);
1678     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1679     CGF.EmitBlock(EndBlock);
1680   }
1681 
1682   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1683                                         StdTypeInfoPtrTy);
1684 }
1685 
1686 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1687   llvm::Type *StdTypeInfoPtrTy =
1688     ConvertType(E->getType())->getPointerTo();
1689 
1690   if (E->isTypeOperand()) {
1691     llvm::Constant *TypeInfo =
1692         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1693     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1694   }
1695 
1696   // C++ [expr.typeid]p2:
1697   //   When typeid is applied to a glvalue expression whose type is a
1698   //   polymorphic class type, the result refers to a std::type_info object
1699   //   representing the type of the most derived object (that is, the dynamic
1700   //   type) to which the glvalue refers.
1701   if (E->isPotentiallyEvaluated())
1702     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1703                                 StdTypeInfoPtrTy);
1704 
1705   QualType OperandTy = E->getExprOperand()->getType();
1706   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1707                                StdTypeInfoPtrTy);
1708 }
1709 
1710 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1711                                           QualType DestTy) {
1712   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1713   if (DestTy->isPointerType())
1714     return llvm::Constant::getNullValue(DestLTy);
1715 
1716   /// C++ [expr.dynamic.cast]p9:
1717   ///   A failed cast to reference type throws std::bad_cast
1718   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1719     return nullptr;
1720 
1721   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1722   return llvm::UndefValue::get(DestLTy);
1723 }
1724 
1725 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1726                                               const CXXDynamicCastExpr *DCE) {
1727   QualType DestTy = DCE->getTypeAsWritten();
1728 
1729   if (DCE->isAlwaysNull())
1730     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1731       return T;
1732 
1733   QualType SrcTy = DCE->getSubExpr()->getType();
1734 
1735   // C++ [expr.dynamic.cast]p7:
1736   //   If T is "pointer to cv void," then the result is a pointer to the most
1737   //   derived object pointed to by v.
1738   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1739 
1740   bool isDynamicCastToVoid;
1741   QualType SrcRecordTy;
1742   QualType DestRecordTy;
1743   if (DestPTy) {
1744     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1745     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1746     DestRecordTy = DestPTy->getPointeeType();
1747   } else {
1748     isDynamicCastToVoid = false;
1749     SrcRecordTy = SrcTy;
1750     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1751   }
1752 
1753   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1754 
1755   // C++ [expr.dynamic.cast]p4:
1756   //   If the value of v is a null pointer value in the pointer case, the result
1757   //   is the null pointer value of type T.
1758   bool ShouldNullCheckSrcValue =
1759       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1760                                                          SrcRecordTy);
1761 
1762   llvm::BasicBlock *CastNull = nullptr;
1763   llvm::BasicBlock *CastNotNull = nullptr;
1764   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1765 
1766   if (ShouldNullCheckSrcValue) {
1767     CastNull = createBasicBlock("dynamic_cast.null");
1768     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1769 
1770     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1771     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1772     EmitBlock(CastNotNull);
1773   }
1774 
1775   if (isDynamicCastToVoid) {
1776     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1777                                                   DestTy);
1778   } else {
1779     assert(DestRecordTy->isRecordType() &&
1780            "destination type must be a record type!");
1781     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1782                                                 DestTy, DestRecordTy, CastEnd);
1783   }
1784 
1785   if (ShouldNullCheckSrcValue) {
1786     EmitBranch(CastEnd);
1787 
1788     EmitBlock(CastNull);
1789     EmitBranch(CastEnd);
1790   }
1791 
1792   EmitBlock(CastEnd);
1793 
1794   if (ShouldNullCheckSrcValue) {
1795     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1796     PHI->addIncoming(Value, CastNotNull);
1797     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1798 
1799     Value = PHI;
1800   }
1801 
1802   return Value;
1803 }
1804 
1805 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1806   RunCleanupsScope Scope(*this);
1807   LValue SlotLV =
1808       MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
1809 
1810   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1811   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1812                                          e = E->capture_init_end();
1813        i != e; ++i, ++CurField) {
1814     // Emit initialization
1815     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1816     if (CurField->hasCapturedVLAType()) {
1817       auto VAT = CurField->getCapturedVLAType();
1818       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1819     } else {
1820       ArrayRef<VarDecl *> ArrayIndexes;
1821       if (CurField->getType()->isArrayType())
1822         ArrayIndexes = E->getCaptureInitIndexVars(i);
1823       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1824     }
1825   }
1826 }
1827