1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGDebugInfo.h"
19 #include "llvm/Intrinsics.h"
20 using namespace clang;
21 using namespace CodeGen;
22 
23 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
24                                           llvm::Value *Callee,
25                                           ReturnValueSlot ReturnValue,
26                                           llvm::Value *This,
27                                           llvm::Value *VTT,
28                                           CallExpr::const_arg_iterator ArgBeg,
29                                           CallExpr::const_arg_iterator ArgEnd) {
30   assert(MD->isInstance() &&
31          "Trying to emit a member call expr on a static method!");
32 
33   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
34 
35   CallArgList Args;
36 
37   // Push the this ptr.
38   Args.push_back(std::make_pair(RValue::get(This),
39                                 MD->getThisType(getContext())));
40 
41   // If there is a VTT parameter, emit it.
42   if (VTT) {
43     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
44     Args.push_back(std::make_pair(RValue::get(VTT), T));
45   }
46 
47   // And the rest of the call args
48   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
49 
50   QualType ResultType = FPT->getResultType();
51   return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
52                                                  FPT->getExtInfo()),
53                   Callee, ReturnValue, Args, MD);
54 }
55 
56 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
57 /// expr can be devirtualized.
58 static bool canDevirtualizeMemberFunctionCalls(const Expr *Base) {
59   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
60     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
61       // This is a record decl. We know the type and can devirtualize it.
62       return VD->getType()->isRecordType();
63     }
64 
65     return false;
66   }
67 
68   // We can always devirtualize calls on temporary object expressions.
69   if (isa<CXXConstructExpr>(Base))
70     return true;
71 
72   // And calls on bound temporaries.
73   if (isa<CXXBindTemporaryExpr>(Base))
74     return true;
75 
76   // Check if this is a call expr that returns a record type.
77   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
78     return CE->getCallReturnType()->isRecordType();
79 
80   // We can't devirtualize the call.
81   return false;
82 }
83 
84 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
85                                               ReturnValueSlot ReturnValue) {
86   if (isa<BinaryOperator>(CE->getCallee()->IgnoreParens()))
87     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
88 
89   const MemberExpr *ME = cast<MemberExpr>(CE->getCallee()->IgnoreParens());
90   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
91 
92   CGDebugInfo *DI = getDebugInfo();
93   if (DI && CGM.getCodeGenOpts().LimitDebugInfo
94       && !isa<CallExpr>(ME->getBase())) {
95     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
96     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
97       DI->getOrCreateRecordType(PTy->getPointeeType(),
98                                 MD->getParent()->getLocation());
99     }
100   }
101 
102   if (MD->isStatic()) {
103     // The method is static, emit it as we would a regular call.
104     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
105     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
106                     ReturnValue, CE->arg_begin(), CE->arg_end());
107   }
108 
109   // Compute the object pointer.
110   llvm::Value *This;
111   if (ME->isArrow())
112     This = EmitScalarExpr(ME->getBase());
113   else {
114     LValue BaseLV = EmitLValue(ME->getBase());
115     if (BaseLV.isPropertyRef() || BaseLV.isKVCRef()) {
116       QualType QT = ME->getBase()->getType();
117       RValue RV =
118         BaseLV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(BaseLV, QT)
119           : EmitLoadOfKVCRefLValue(BaseLV, QT);
120       This = RV.isScalar() ? RV.getScalarVal() : RV.getAggregateAddr();
121     }
122     else
123       This = BaseLV.getAddress();
124   }
125 
126   if (MD->isTrivial()) {
127     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
128 
129     assert(MD->isCopyAssignmentOperator() && "unknown trivial member function");
130     // We don't like to generate the trivial copy assignment operator when
131     // it isn't necessary; just produce the proper effect here.
132     llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
133     EmitAggregateCopy(This, RHS, CE->getType());
134     return RValue::get(This);
135   }
136 
137   // Compute the function type we're calling.
138   const CGFunctionInfo &FInfo =
139     (isa<CXXDestructorDecl>(MD)
140      ? CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
141                                       Dtor_Complete)
142      : CGM.getTypes().getFunctionInfo(MD));
143 
144   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
145   const llvm::Type *Ty
146     = CGM.getTypes().GetFunctionType(FInfo, FPT->isVariadic());
147 
148   // C++ [class.virtual]p12:
149   //   Explicit qualification with the scope operator (5.1) suppresses the
150   //   virtual call mechanism.
151   //
152   // We also don't emit a virtual call if the base expression has a record type
153   // because then we know what the type is.
154   bool UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
155                      && !canDevirtualizeMemberFunctionCalls(ME->getBase());
156 
157   llvm::Value *Callee;
158   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
159     if (UseVirtualCall) {
160       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
161     } else {
162       Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
163     }
164   } else if (UseVirtualCall) {
165     Callee = BuildVirtualCall(MD, This, Ty);
166   } else {
167     Callee = CGM.GetAddrOfFunction(MD, Ty);
168   }
169 
170   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
171                            CE->arg_begin(), CE->arg_end());
172 }
173 
174 RValue
175 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
176                                               ReturnValueSlot ReturnValue) {
177   const BinaryOperator *BO =
178       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
179   const Expr *BaseExpr = BO->getLHS();
180   const Expr *MemFnExpr = BO->getRHS();
181 
182   const MemberPointerType *MPT =
183     MemFnExpr->getType()->getAs<MemberPointerType>();
184 
185   const FunctionProtoType *FPT =
186     MPT->getPointeeType()->getAs<FunctionProtoType>();
187   const CXXRecordDecl *RD =
188     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
189 
190   // Get the member function pointer.
191   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
192 
193   // Emit the 'this' pointer.
194   llvm::Value *This;
195 
196   if (BO->getOpcode() == BO_PtrMemI)
197     This = EmitScalarExpr(BaseExpr);
198   else
199     This = EmitLValue(BaseExpr).getAddress();
200 
201   // Ask the ABI to load the callee.  Note that This is modified.
202   llvm::Value *Callee =
203     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(CGF, This, MemFnPtr, MPT);
204 
205   CallArgList Args;
206 
207   QualType ThisType =
208     getContext().getPointerType(getContext().getTagDeclType(RD));
209 
210   // Push the this ptr.
211   Args.push_back(std::make_pair(RValue::get(This), ThisType));
212 
213   // And the rest of the call args
214   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
215   const FunctionType *BO_FPT = BO->getType()->getAs<FunctionProtoType>();
216   return EmitCall(CGM.getTypes().getFunctionInfo(Args, BO_FPT), Callee,
217                   ReturnValue, Args);
218 }
219 
220 RValue
221 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
222                                                const CXXMethodDecl *MD,
223                                                ReturnValueSlot ReturnValue) {
224   assert(MD->isInstance() &&
225          "Trying to emit a member call expr on a static method!");
226   if (MD->isCopyAssignmentOperator()) {
227     const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
228     if (ClassDecl->hasTrivialCopyAssignment()) {
229       assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
230              "EmitCXXOperatorMemberCallExpr - user declared copy assignment");
231       LValue LV = EmitLValue(E->getArg(0));
232       llvm::Value *This;
233       if (LV.isPropertyRef() || LV.isKVCRef()) {
234         AggValueSlot Slot = CreateAggTemp(E->getArg(1)->getType());
235         EmitAggExpr(E->getArg(1), Slot);
236         if (LV.isPropertyRef())
237           EmitObjCPropertySet(LV.getPropertyRefExpr(), Slot.asRValue());
238         else
239           EmitObjCPropertySet(LV.getKVCRefExpr(), Slot.asRValue());
240         return RValue::getAggregate(0, false);
241       }
242       else
243         This = LV.getAddress();
244 
245       llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
246       QualType Ty = E->getType();
247       EmitAggregateCopy(This, Src, Ty);
248       return RValue::get(This);
249     }
250   }
251 
252   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
253   const llvm::Type *Ty =
254     CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
255                                    FPT->isVariadic());
256   LValue LV = EmitLValue(E->getArg(0));
257   llvm::Value *This;
258   if (LV.isPropertyRef() || LV.isKVCRef()) {
259     QualType QT = E->getArg(0)->getType();
260     RValue RV =
261       LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT)
262                          : EmitLoadOfKVCRefLValue(LV, QT);
263     assert (!RV.isScalar() && "EmitCXXOperatorMemberCallExpr");
264     This = RV.getAggregateAddr();
265   }
266   else
267     This = LV.getAddress();
268 
269   llvm::Value *Callee;
270   if (MD->isVirtual() && !canDevirtualizeMemberFunctionCalls(E->getArg(0)))
271     Callee = BuildVirtualCall(MD, This, Ty);
272   else
273     Callee = CGM.GetAddrOfFunction(MD, Ty);
274 
275   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
276                            E->arg_begin() + 1, E->arg_end());
277 }
278 
279 void
280 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
281                                       AggValueSlot Dest) {
282   assert(!Dest.isIgnored() && "Must have a destination!");
283   const CXXConstructorDecl *CD = E->getConstructor();
284 
285   // If we require zero initialization before (or instead of) calling the
286   // constructor, as can be the case with a non-user-provided default
287   // constructor, emit the zero initialization now.
288   if (E->requiresZeroInitialization())
289     EmitNullInitialization(Dest.getAddr(), E->getType());
290 
291   // If this is a call to a trivial default constructor, do nothing.
292   if (CD->isTrivial() && CD->isDefaultConstructor())
293     return;
294 
295   // Elide the constructor if we're constructing from a temporary.
296   // The temporary check is required because Sema sets this on NRVO
297   // returns.
298   if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
299     assert(getContext().hasSameUnqualifiedType(E->getType(),
300                                                E->getArg(0)->getType()));
301     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
302       EmitAggExpr(E->getArg(0), Dest);
303       return;
304     }
305   }
306 
307   const ConstantArrayType *Array
308     = getContext().getAsConstantArrayType(E->getType());
309   if (Array) {
310     QualType BaseElementTy = getContext().getBaseElementType(Array);
311     const llvm::Type *BasePtr = ConvertType(BaseElementTy);
312     BasePtr = llvm::PointerType::getUnqual(BasePtr);
313     llvm::Value *BaseAddrPtr =
314       Builder.CreateBitCast(Dest.getAddr(), BasePtr);
315 
316     EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr,
317                                E->arg_begin(), E->arg_end());
318   }
319   else {
320     CXXCtorType Type =
321       (E->getConstructionKind() == CXXConstructExpr::CK_Complete)
322       ? Ctor_Complete : Ctor_Base;
323     bool ForVirtualBase =
324       E->getConstructionKind() == CXXConstructExpr::CK_VirtualBase;
325 
326     // Call the constructor.
327     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
328                            E->arg_begin(), E->arg_end());
329   }
330 }
331 
332 /// Check whether the given operator new[] is the global placement
333 /// operator new[].
334 static bool IsPlacementOperatorNewArray(ASTContext &Ctx,
335                                         const FunctionDecl *Fn) {
336   // Must be in global scope.  Note that allocation functions can't be
337   // declared in namespaces.
338   if (!Fn->getDeclContext()->getRedeclContext()->isFileContext())
339     return false;
340 
341   // Signature must be void *operator new[](size_t, void*).
342   // The size_t is common to all operator new[]s.
343   if (Fn->getNumParams() != 2)
344     return false;
345 
346   CanQualType ParamType = Ctx.getCanonicalType(Fn->getParamDecl(1)->getType());
347   return (ParamType == Ctx.VoidPtrTy);
348 }
349 
350 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
351                                         const CXXNewExpr *E) {
352   if (!E->isArray())
353     return CharUnits::Zero();
354 
355   // No cookie is required if the new operator being used is
356   // ::operator new[](size_t, void*).
357   const FunctionDecl *OperatorNew = E->getOperatorNew();
358   if (IsPlacementOperatorNewArray(CGF.getContext(), OperatorNew))
359     return CharUnits::Zero();
360 
361   return CGF.CGM.getCXXABI().GetArrayCookieSize(E->getAllocatedType());
362 }
363 
364 static llvm::Value *EmitCXXNewAllocSize(ASTContext &Context,
365                                         CodeGenFunction &CGF,
366                                         const CXXNewExpr *E,
367                                         llvm::Value *&NumElements,
368                                         llvm::Value *&SizeWithoutCookie) {
369   QualType ElemType = E->getAllocatedType();
370 
371   const llvm::IntegerType *SizeTy =
372     cast<llvm::IntegerType>(CGF.ConvertType(CGF.getContext().getSizeType()));
373 
374   CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(ElemType);
375 
376   if (!E->isArray()) {
377     SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity());
378     return SizeWithoutCookie;
379   }
380 
381   // Figure out the cookie size.
382   CharUnits CookieSize = CalculateCookiePadding(CGF, E);
383 
384   // Emit the array size expression.
385   // We multiply the size of all dimensions for NumElements.
386   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
387   NumElements = CGF.EmitScalarExpr(E->getArraySize());
388   assert(NumElements->getType() == SizeTy && "element count not a size_t");
389 
390   uint64_t ArraySizeMultiplier = 1;
391   while (const ConstantArrayType *CAT
392              = CGF.getContext().getAsConstantArrayType(ElemType)) {
393     ElemType = CAT->getElementType();
394     ArraySizeMultiplier *= CAT->getSize().getZExtValue();
395   }
396 
397   llvm::Value *Size;
398 
399   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
400   // Don't bloat the -O0 code.
401   if (llvm::ConstantInt *NumElementsC =
402         dyn_cast<llvm::ConstantInt>(NumElements)) {
403     llvm::APInt NEC = NumElementsC->getValue();
404     unsigned SizeWidth = NEC.getBitWidth();
405 
406     // Determine if there is an overflow here by doing an extended multiply.
407     NEC.zext(SizeWidth*2);
408     llvm::APInt SC(SizeWidth*2, TypeSize.getQuantity());
409     SC *= NEC;
410 
411     if (!CookieSize.isZero()) {
412       // Save the current size without a cookie.  We don't care if an
413       // overflow's already happened because SizeWithoutCookie isn't
414       // used if the allocator returns null or throws, as it should
415       // always do on an overflow.
416       llvm::APInt SWC = SC;
417       SWC.trunc(SizeWidth);
418       SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, SWC);
419 
420       // Add the cookie size.
421       SC += llvm::APInt(SizeWidth*2, CookieSize.getQuantity());
422     }
423 
424     if (SC.countLeadingZeros() >= SizeWidth) {
425       SC.trunc(SizeWidth);
426       Size = llvm::ConstantInt::get(SizeTy, SC);
427     } else {
428       // On overflow, produce a -1 so operator new throws.
429       Size = llvm::Constant::getAllOnesValue(SizeTy);
430     }
431 
432     // Scale NumElements while we're at it.
433     uint64_t N = NEC.getZExtValue() * ArraySizeMultiplier;
434     NumElements = llvm::ConstantInt::get(SizeTy, N);
435 
436   // Otherwise, we don't need to do an overflow-checked multiplication if
437   // we're multiplying by one.
438   } else if (TypeSize.isOne()) {
439     assert(ArraySizeMultiplier == 1);
440 
441     Size = NumElements;
442 
443     // If we need a cookie, add its size in with an overflow check.
444     // This is maybe a little paranoid.
445     if (!CookieSize.isZero()) {
446       SizeWithoutCookie = Size;
447 
448       llvm::Value *CookieSizeV
449         = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
450 
451       const llvm::Type *Types[] = { SizeTy };
452       llvm::Value *UAddF
453         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1);
454       llvm::Value *AddRes
455         = CGF.Builder.CreateCall2(UAddF, Size, CookieSizeV);
456 
457       Size = CGF.Builder.CreateExtractValue(AddRes, 0);
458       llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1);
459       Size = CGF.Builder.CreateSelect(DidOverflow,
460                                       llvm::ConstantInt::get(SizeTy, -1),
461                                       Size);
462     }
463 
464   // Otherwise use the int.umul.with.overflow intrinsic.
465   } else {
466     llvm::Value *OutermostElementSize
467       = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity());
468 
469     llvm::Value *NumOutermostElements = NumElements;
470 
471     // Scale NumElements by the array size multiplier.  This might
472     // overflow, but only if the multiplication below also overflows,
473     // in which case this multiplication isn't used.
474     if (ArraySizeMultiplier != 1)
475       NumElements = CGF.Builder.CreateMul(NumElements,
476                          llvm::ConstantInt::get(SizeTy, ArraySizeMultiplier));
477 
478     // The requested size of the outermost array is non-constant.
479     // Multiply that by the static size of the elements of that array;
480     // on unsigned overflow, set the size to -1 to trigger an
481     // exception from the allocation routine.  This is sufficient to
482     // prevent buffer overruns from the allocator returning a
483     // seemingly valid pointer to insufficient space.  This idea comes
484     // originally from MSVC, and GCC has an open bug requesting
485     // similar behavior:
486     //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19351
487     //
488     // This will not be sufficient for C++0x, which requires a
489     // specific exception class (std::bad_array_new_length).
490     // That will require ABI support that has not yet been specified.
491     const llvm::Type *Types[] = { SizeTy };
492     llvm::Value *UMulF
493       = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, Types, 1);
494     llvm::Value *MulRes = CGF.Builder.CreateCall2(UMulF, NumOutermostElements,
495                                                   OutermostElementSize);
496 
497     // The overflow bit.
498     llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(MulRes, 1);
499 
500     // The result of the multiplication.
501     Size = CGF.Builder.CreateExtractValue(MulRes, 0);
502 
503     // If we have a cookie, we need to add that size in, too.
504     if (!CookieSize.isZero()) {
505       SizeWithoutCookie = Size;
506 
507       llvm::Value *CookieSizeV
508         = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
509       llvm::Value *UAddF
510         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1);
511       llvm::Value *AddRes
512         = CGF.Builder.CreateCall2(UAddF, SizeWithoutCookie, CookieSizeV);
513 
514       Size = CGF.Builder.CreateExtractValue(AddRes, 0);
515 
516       llvm::Value *AddDidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1);
517       DidOverflow = CGF.Builder.CreateAnd(DidOverflow, AddDidOverflow);
518     }
519 
520     Size = CGF.Builder.CreateSelect(DidOverflow,
521                                     llvm::ConstantInt::get(SizeTy, -1),
522                                     Size);
523   }
524 
525   if (CookieSize.isZero())
526     SizeWithoutCookie = Size;
527   else
528     assert(SizeWithoutCookie && "didn't set SizeWithoutCookie?");
529 
530   return Size;
531 }
532 
533 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
534                                     llvm::Value *NewPtr) {
535 
536   assert(E->getNumConstructorArgs() == 1 &&
537          "Can only have one argument to initializer of POD type.");
538 
539   const Expr *Init = E->getConstructorArg(0);
540   QualType AllocType = E->getAllocatedType();
541 
542   unsigned Alignment =
543     CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
544   if (!CGF.hasAggregateLLVMType(AllocType))
545     CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr,
546                           AllocType.isVolatileQualified(), Alignment,
547                           AllocType);
548   else if (AllocType->isAnyComplexType())
549     CGF.EmitComplexExprIntoAddr(Init, NewPtr,
550                                 AllocType.isVolatileQualified());
551   else {
552     AggValueSlot Slot
553       = AggValueSlot::forAddr(NewPtr, AllocType.isVolatileQualified(), true);
554     CGF.EmitAggExpr(Init, Slot);
555   }
556 }
557 
558 void
559 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
560                                          llvm::Value *NewPtr,
561                                          llvm::Value *NumElements) {
562   // We have a POD type.
563   if (E->getNumConstructorArgs() == 0)
564     return;
565 
566   const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
567 
568   // Create a temporary for the loop index and initialize it with 0.
569   llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
570   llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
571   Builder.CreateStore(Zero, IndexPtr);
572 
573   // Start the loop with a block that tests the condition.
574   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
575   llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
576 
577   EmitBlock(CondBlock);
578 
579   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
580 
581   // Generate: if (loop-index < number-of-elements fall to the loop body,
582   // otherwise, go to the block after the for-loop.
583   llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
584   llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
585   // If the condition is true, execute the body.
586   Builder.CreateCondBr(IsLess, ForBody, AfterFor);
587 
588   EmitBlock(ForBody);
589 
590   llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
591   // Inside the loop body, emit the constructor call on the array element.
592   Counter = Builder.CreateLoad(IndexPtr);
593   llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter,
594                                                    "arrayidx");
595   StoreAnyExprIntoOneUnit(*this, E, Address);
596 
597   EmitBlock(ContinueBlock);
598 
599   // Emit the increment of the loop counter.
600   llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
601   Counter = Builder.CreateLoad(IndexPtr);
602   NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
603   Builder.CreateStore(NextVal, IndexPtr);
604 
605   // Finally, branch back up to the condition for the next iteration.
606   EmitBranch(CondBlock);
607 
608   // Emit the fall-through block.
609   EmitBlock(AfterFor, true);
610 }
611 
612 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
613                            llvm::Value *NewPtr, llvm::Value *Size) {
614   llvm::LLVMContext &VMContext = CGF.CGM.getLLVMContext();
615   const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
616   if (NewPtr->getType() != BP)
617     NewPtr = CGF.Builder.CreateBitCast(NewPtr, BP, "tmp");
618 
619   CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(BP, CGF.IntPtrTy), NewPtr,
620                 llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)),
621                           Size,
622                     llvm::ConstantInt::get(CGF.Int32Ty,
623                                            CGF.getContext().getTypeAlign(T)/8),
624                           llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext),
625                                                  0));
626 }
627 
628 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
629                                llvm::Value *NewPtr,
630                                llvm::Value *NumElements,
631                                llvm::Value *AllocSizeWithoutCookie) {
632   if (E->isArray()) {
633     if (CXXConstructorDecl *Ctor = E->getConstructor()) {
634       bool RequiresZeroInitialization = false;
635       if (Ctor->getParent()->hasTrivialConstructor()) {
636         // If new expression did not specify value-initialization, then there
637         // is no initialization.
638         if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
639           return;
640 
641         if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
642           // Optimization: since zero initialization will just set the memory
643           // to all zeroes, generate a single memset to do it in one shot.
644           EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
645                          AllocSizeWithoutCookie);
646           return;
647         }
648 
649         RequiresZeroInitialization = true;
650       }
651 
652       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
653                                      E->constructor_arg_begin(),
654                                      E->constructor_arg_end(),
655                                      RequiresZeroInitialization);
656       return;
657     } else if (E->getNumConstructorArgs() == 1 &&
658                isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
659       // Optimization: since zero initialization will just set the memory
660       // to all zeroes, generate a single memset to do it in one shot.
661       EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
662                      AllocSizeWithoutCookie);
663       return;
664     } else {
665       CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
666       return;
667     }
668   }
669 
670   if (CXXConstructorDecl *Ctor = E->getConstructor()) {
671     // Per C++ [expr.new]p15, if we have an initializer, then we're performing
672     // direct initialization. C++ [dcl.init]p5 requires that we
673     // zero-initialize storage if there are no user-declared constructors.
674     if (E->hasInitializer() &&
675         !Ctor->getParent()->hasUserDeclaredConstructor() &&
676         !Ctor->getParent()->isEmpty())
677       CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
678 
679     CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
680                                NewPtr, E->constructor_arg_begin(),
681                                E->constructor_arg_end());
682 
683     return;
684   }
685   // We have a POD type.
686   if (E->getNumConstructorArgs() == 0)
687     return;
688 
689   StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
690 }
691 
692 namespace {
693 /// A utility class for saving an rvalue.
694 class SavedRValue {
695 public:
696   enum Kind { ScalarLiteral, ScalarAddress,
697               AggregateLiteral, AggregateAddress,
698               Complex };
699 
700 private:
701   llvm::Value *Value;
702   Kind K;
703 
704   SavedRValue(llvm::Value *V, Kind K) : Value(V), K(K) {}
705 
706 public:
707   SavedRValue() {}
708 
709   static SavedRValue forScalarLiteral(llvm::Value *V) {
710     return SavedRValue(V, ScalarLiteral);
711   }
712 
713   static SavedRValue forScalarAddress(llvm::Value *Addr) {
714     return SavedRValue(Addr, ScalarAddress);
715   }
716 
717   static SavedRValue forAggregateLiteral(llvm::Value *V) {
718     return SavedRValue(V, AggregateLiteral);
719   }
720 
721   static SavedRValue forAggregateAddress(llvm::Value *Addr) {
722     return SavedRValue(Addr, AggregateAddress);
723   }
724 
725   static SavedRValue forComplexAddress(llvm::Value *Addr) {
726     return SavedRValue(Addr, Complex);
727   }
728 
729   Kind getKind() const { return K; }
730   llvm::Value *getValue() const { return Value; }
731 };
732 } // end anonymous namespace
733 
734 /// Given an r-value, perform the code necessary to make sure that a
735 /// future RestoreRValue will be able to load the value without
736 /// domination concerns.
737 static SavedRValue SaveRValue(CodeGenFunction &CGF, RValue RV) {
738   if (RV.isScalar()) {
739     llvm::Value *V = RV.getScalarVal();
740 
741     // These automatically dominate and don't need to be saved.
742     if (isa<llvm::Constant>(V) || isa<llvm::AllocaInst>(V))
743       return SavedRValue::forScalarLiteral(V);
744 
745     // Everything else needs an alloca.
746     llvm::Value *Addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
747     CGF.Builder.CreateStore(V, Addr);
748     return SavedRValue::forScalarAddress(Addr);
749   }
750 
751   if (RV.isComplex()) {
752     CodeGenFunction::ComplexPairTy V = RV.getComplexVal();
753     const llvm::Type *ComplexTy =
754       llvm::StructType::get(CGF.getLLVMContext(),
755                             V.first->getType(), V.second->getType(),
756                             (void*) 0);
757     llvm::Value *Addr = CGF.CreateTempAlloca(ComplexTy, "saved-complex");
758     CGF.StoreComplexToAddr(V, Addr, /*volatile*/ false);
759     return SavedRValue::forComplexAddress(Addr);
760   }
761 
762   assert(RV.isAggregate());
763   llvm::Value *V = RV.getAggregateAddr(); // TODO: volatile?
764   if (isa<llvm::Constant>(V) || isa<llvm::AllocaInst>(V))
765     return SavedRValue::forAggregateLiteral(V);
766 
767   llvm::Value *Addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
768   CGF.Builder.CreateStore(V, Addr);
769   return SavedRValue::forAggregateAddress(Addr);
770 }
771 
772 /// Given a saved r-value produced by SaveRValue, perform the code
773 /// necessary to restore it to usability at the current insertion
774 /// point.
775 static RValue RestoreRValue(CodeGenFunction &CGF, SavedRValue RV) {
776   switch (RV.getKind()) {
777   case SavedRValue::ScalarLiteral:
778     return RValue::get(RV.getValue());
779   case SavedRValue::ScalarAddress:
780     return RValue::get(CGF.Builder.CreateLoad(RV.getValue()));
781   case SavedRValue::AggregateLiteral:
782     return RValue::getAggregate(RV.getValue());
783   case SavedRValue::AggregateAddress:
784     return RValue::getAggregate(CGF.Builder.CreateLoad(RV.getValue()));
785   case SavedRValue::Complex:
786     return RValue::getComplex(CGF.LoadComplexFromAddr(RV.getValue(), false));
787   }
788 
789   llvm_unreachable("bad saved r-value kind");
790   return RValue();
791 }
792 
793 namespace {
794   /// A cleanup to call the given 'operator delete' function upon
795   /// abnormal exit from a new expression.
796   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
797     size_t NumPlacementArgs;
798     const FunctionDecl *OperatorDelete;
799     llvm::Value *Ptr;
800     llvm::Value *AllocSize;
801 
802     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
803 
804   public:
805     static size_t getExtraSize(size_t NumPlacementArgs) {
806       return NumPlacementArgs * sizeof(RValue);
807     }
808 
809     CallDeleteDuringNew(size_t NumPlacementArgs,
810                         const FunctionDecl *OperatorDelete,
811                         llvm::Value *Ptr,
812                         llvm::Value *AllocSize)
813       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
814         Ptr(Ptr), AllocSize(AllocSize) {}
815 
816     void setPlacementArg(unsigned I, RValue Arg) {
817       assert(I < NumPlacementArgs && "index out of range");
818       getPlacementArgs()[I] = Arg;
819     }
820 
821     void Emit(CodeGenFunction &CGF, bool IsForEH) {
822       const FunctionProtoType *FPT
823         = OperatorDelete->getType()->getAs<FunctionProtoType>();
824       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
825              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
826 
827       CallArgList DeleteArgs;
828 
829       // The first argument is always a void*.
830       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
831       DeleteArgs.push_back(std::make_pair(RValue::get(Ptr), *AI++));
832 
833       // A member 'operator delete' can take an extra 'size_t' argument.
834       if (FPT->getNumArgs() == NumPlacementArgs + 2)
835         DeleteArgs.push_back(std::make_pair(RValue::get(AllocSize), *AI++));
836 
837       // Pass the rest of the arguments, which must match exactly.
838       for (unsigned I = 0; I != NumPlacementArgs; ++I)
839         DeleteArgs.push_back(std::make_pair(getPlacementArgs()[I], *AI++));
840 
841       // Call 'operator delete'.
842       CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
843                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
844                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
845     }
846   };
847 
848   /// A cleanup to call the given 'operator delete' function upon
849   /// abnormal exit from a new expression when the new expression is
850   /// conditional.
851   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
852     size_t NumPlacementArgs;
853     const FunctionDecl *OperatorDelete;
854     SavedRValue Ptr;
855     SavedRValue AllocSize;
856 
857     SavedRValue *getPlacementArgs() {
858       return reinterpret_cast<SavedRValue*>(this+1);
859     }
860 
861   public:
862     static size_t getExtraSize(size_t NumPlacementArgs) {
863       return NumPlacementArgs * sizeof(SavedRValue);
864     }
865 
866     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
867                                    const FunctionDecl *OperatorDelete,
868                                    SavedRValue Ptr,
869                                    SavedRValue AllocSize)
870       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
871         Ptr(Ptr), AllocSize(AllocSize) {}
872 
873     void setPlacementArg(unsigned I, SavedRValue Arg) {
874       assert(I < NumPlacementArgs && "index out of range");
875       getPlacementArgs()[I] = Arg;
876     }
877 
878     void Emit(CodeGenFunction &CGF, bool IsForEH) {
879       const FunctionProtoType *FPT
880         = OperatorDelete->getType()->getAs<FunctionProtoType>();
881       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
882              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
883 
884       CallArgList DeleteArgs;
885 
886       // The first argument is always a void*.
887       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
888       DeleteArgs.push_back(std::make_pair(RestoreRValue(CGF, Ptr), *AI++));
889 
890       // A member 'operator delete' can take an extra 'size_t' argument.
891       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
892         RValue RV = RestoreRValue(CGF, AllocSize);
893         DeleteArgs.push_back(std::make_pair(RV, *AI++));
894       }
895 
896       // Pass the rest of the arguments, which must match exactly.
897       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
898         RValue RV = RestoreRValue(CGF, getPlacementArgs()[I]);
899         DeleteArgs.push_back(std::make_pair(RV, *AI++));
900       }
901 
902       // Call 'operator delete'.
903       CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
904                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
905                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
906     }
907   };
908 }
909 
910 /// Enter a cleanup to call 'operator delete' if the initializer in a
911 /// new-expression throws.
912 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
913                                   const CXXNewExpr *E,
914                                   llvm::Value *NewPtr,
915                                   llvm::Value *AllocSize,
916                                   const CallArgList &NewArgs) {
917   // If we're not inside a conditional branch, then the cleanup will
918   // dominate and we can do the easier (and more efficient) thing.
919   if (!CGF.isInConditionalBranch()) {
920     CallDeleteDuringNew *Cleanup = CGF.EHStack
921       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
922                                                  E->getNumPlacementArgs(),
923                                                  E->getOperatorDelete(),
924                                                  NewPtr, AllocSize);
925     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
926       Cleanup->setPlacementArg(I, NewArgs[I+1].first);
927 
928     return;
929   }
930 
931   // Otherwise, we need to save all this stuff.
932   SavedRValue SavedNewPtr = SaveRValue(CGF, RValue::get(NewPtr));
933   SavedRValue SavedAllocSize = SaveRValue(CGF, RValue::get(AllocSize));
934 
935   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
936     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
937                                                  E->getNumPlacementArgs(),
938                                                  E->getOperatorDelete(),
939                                                  SavedNewPtr,
940                                                  SavedAllocSize);
941   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
942     Cleanup->setPlacementArg(I, SaveRValue(CGF, NewArgs[I+1].first));
943 
944   CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
945 }
946 
947 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
948   QualType AllocType = E->getAllocatedType();
949   if (AllocType->isArrayType())
950     while (const ArrayType *AType = getContext().getAsArrayType(AllocType))
951       AllocType = AType->getElementType();
952 
953   FunctionDecl *NewFD = E->getOperatorNew();
954   const FunctionProtoType *NewFTy = NewFD->getType()->getAs<FunctionProtoType>();
955 
956   CallArgList NewArgs;
957 
958   // The allocation size is the first argument.
959   QualType SizeTy = getContext().getSizeType();
960 
961   llvm::Value *NumElements = 0;
962   llvm::Value *AllocSizeWithoutCookie = 0;
963   llvm::Value *AllocSize = EmitCXXNewAllocSize(getContext(),
964                                                *this, E, NumElements,
965                                                AllocSizeWithoutCookie);
966 
967   NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy));
968 
969   // Emit the rest of the arguments.
970   // FIXME: Ideally, this should just use EmitCallArgs.
971   CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin();
972 
973   // First, use the types from the function type.
974   // We start at 1 here because the first argument (the allocation size)
975   // has already been emitted.
976   for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) {
977     QualType ArgType = NewFTy->getArgType(i);
978 
979     assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
980            getTypePtr() ==
981            getContext().getCanonicalType(NewArg->getType()).getTypePtr() &&
982            "type mismatch in call argument!");
983 
984     NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
985                                      ArgType));
986 
987   }
988 
989   // Either we've emitted all the call args, or we have a call to a
990   // variadic function.
991   assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) &&
992          "Extra arguments in non-variadic function!");
993 
994   // If we still have any arguments, emit them using the type of the argument.
995   for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end();
996        NewArg != NewArgEnd; ++NewArg) {
997     QualType ArgType = NewArg->getType();
998     NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
999                                      ArgType));
1000   }
1001 
1002   // Emit the call to new.
1003   RValue RV =
1004     EmitCall(CGM.getTypes().getFunctionInfo(NewArgs, NewFTy),
1005              CGM.GetAddrOfFunction(NewFD), ReturnValueSlot(), NewArgs, NewFD);
1006 
1007   // If an allocation function is declared with an empty exception specification
1008   // it returns null to indicate failure to allocate storage. [expr.new]p13.
1009   // (We don't need to check for null when there's no new initializer and
1010   // we're allocating a POD type).
1011   bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() &&
1012     !(AllocType->isPODType() && !E->hasInitializer());
1013 
1014   llvm::BasicBlock *NullCheckSource = 0;
1015   llvm::BasicBlock *NewNotNull = 0;
1016   llvm::BasicBlock *NewEnd = 0;
1017 
1018   llvm::Value *NewPtr = RV.getScalarVal();
1019   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
1020 
1021   if (NullCheckResult) {
1022     NullCheckSource = Builder.GetInsertBlock();
1023     NewNotNull = createBasicBlock("new.notnull");
1024     NewEnd = createBasicBlock("new.end");
1025 
1026     llvm::Value *IsNull = Builder.CreateIsNull(NewPtr, "new.isnull");
1027     Builder.CreateCondBr(IsNull, NewEnd, NewNotNull);
1028     EmitBlock(NewNotNull);
1029   }
1030 
1031   assert((AllocSize == AllocSizeWithoutCookie) ==
1032          CalculateCookiePadding(*this, E).isZero());
1033   if (AllocSize != AllocSizeWithoutCookie) {
1034     assert(E->isArray());
1035     NewPtr = CGM.getCXXABI().InitializeArrayCookie(CGF, NewPtr, NumElements,
1036                                                    AllocType);
1037   }
1038 
1039   // If there's an operator delete, enter a cleanup to call it if an
1040   // exception is thrown.
1041   EHScopeStack::stable_iterator CallOperatorDelete;
1042   if (E->getOperatorDelete()) {
1043     EnterNewDeleteCleanup(*this, E, NewPtr, AllocSize, NewArgs);
1044     CallOperatorDelete = EHStack.stable_begin();
1045   }
1046 
1047   const llvm::Type *ElementPtrTy
1048     = ConvertTypeForMem(AllocType)->getPointerTo(AS);
1049   NewPtr = Builder.CreateBitCast(NewPtr, ElementPtrTy);
1050 
1051   if (E->isArray()) {
1052     EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie);
1053 
1054     // NewPtr is a pointer to the base element type.  If we're
1055     // allocating an array of arrays, we'll need to cast back to the
1056     // array pointer type.
1057     const llvm::Type *ResultTy = ConvertTypeForMem(E->getType());
1058     if (NewPtr->getType() != ResultTy)
1059       NewPtr = Builder.CreateBitCast(NewPtr, ResultTy);
1060   } else {
1061     EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie);
1062   }
1063 
1064   // Deactivate the 'operator delete' cleanup if we finished
1065   // initialization.
1066   if (CallOperatorDelete.isValid())
1067     DeactivateCleanupBlock(CallOperatorDelete);
1068 
1069   if (NullCheckResult) {
1070     Builder.CreateBr(NewEnd);
1071     llvm::BasicBlock *NotNullSource = Builder.GetInsertBlock();
1072     EmitBlock(NewEnd);
1073 
1074     llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType());
1075     PHI->reserveOperandSpace(2);
1076     PHI->addIncoming(NewPtr, NotNullSource);
1077     PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()),
1078                      NullCheckSource);
1079 
1080     NewPtr = PHI;
1081   }
1082 
1083   return NewPtr;
1084 }
1085 
1086 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1087                                      llvm::Value *Ptr,
1088                                      QualType DeleteTy) {
1089   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1090 
1091   const FunctionProtoType *DeleteFTy =
1092     DeleteFD->getType()->getAs<FunctionProtoType>();
1093 
1094   CallArgList DeleteArgs;
1095 
1096   // Check if we need to pass the size to the delete operator.
1097   llvm::Value *Size = 0;
1098   QualType SizeTy;
1099   if (DeleteFTy->getNumArgs() == 2) {
1100     SizeTy = DeleteFTy->getArgType(1);
1101     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1102     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1103                                   DeleteTypeSize.getQuantity());
1104   }
1105 
1106   QualType ArgTy = DeleteFTy->getArgType(0);
1107   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1108   DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy));
1109 
1110   if (Size)
1111     DeleteArgs.push_back(std::make_pair(RValue::get(Size), SizeTy));
1112 
1113   // Emit the call to delete.
1114   EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
1115            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1116            DeleteArgs, DeleteFD);
1117 }
1118 
1119 namespace {
1120   /// Calls the given 'operator delete' on a single object.
1121   struct CallObjectDelete : EHScopeStack::Cleanup {
1122     llvm::Value *Ptr;
1123     const FunctionDecl *OperatorDelete;
1124     QualType ElementType;
1125 
1126     CallObjectDelete(llvm::Value *Ptr,
1127                      const FunctionDecl *OperatorDelete,
1128                      QualType ElementType)
1129       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1130 
1131     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1132       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1133     }
1134   };
1135 }
1136 
1137 /// Emit the code for deleting a single object.
1138 static void EmitObjectDelete(CodeGenFunction &CGF,
1139                              const FunctionDecl *OperatorDelete,
1140                              llvm::Value *Ptr,
1141                              QualType ElementType) {
1142   // Find the destructor for the type, if applicable.  If the
1143   // destructor is virtual, we'll just emit the vcall and return.
1144   const CXXDestructorDecl *Dtor = 0;
1145   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1146     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1147     if (!RD->hasTrivialDestructor()) {
1148       Dtor = RD->getDestructor();
1149 
1150       if (Dtor->isVirtual()) {
1151         const llvm::Type *Ty =
1152           CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
1153                                                                Dtor_Complete),
1154                                          /*isVariadic=*/false);
1155 
1156         llvm::Value *Callee
1157           = CGF.BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty);
1158         CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1159                               0, 0);
1160 
1161         // The dtor took care of deleting the object.
1162         return;
1163       }
1164     }
1165   }
1166 
1167   // Make sure that we call delete even if the dtor throws.
1168   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1169                                             Ptr, OperatorDelete, ElementType);
1170 
1171   if (Dtor)
1172     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1173                               /*ForVirtualBase=*/false, Ptr);
1174 
1175   CGF.PopCleanupBlock();
1176 }
1177 
1178 namespace {
1179   /// Calls the given 'operator delete' on an array of objects.
1180   struct CallArrayDelete : EHScopeStack::Cleanup {
1181     llvm::Value *Ptr;
1182     const FunctionDecl *OperatorDelete;
1183     llvm::Value *NumElements;
1184     QualType ElementType;
1185     CharUnits CookieSize;
1186 
1187     CallArrayDelete(llvm::Value *Ptr,
1188                     const FunctionDecl *OperatorDelete,
1189                     llvm::Value *NumElements,
1190                     QualType ElementType,
1191                     CharUnits CookieSize)
1192       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1193         ElementType(ElementType), CookieSize(CookieSize) {}
1194 
1195     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1196       const FunctionProtoType *DeleteFTy =
1197         OperatorDelete->getType()->getAs<FunctionProtoType>();
1198       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1199 
1200       CallArgList Args;
1201 
1202       // Pass the pointer as the first argument.
1203       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1204       llvm::Value *DeletePtr
1205         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1206       Args.push_back(std::make_pair(RValue::get(DeletePtr), VoidPtrTy));
1207 
1208       // Pass the original requested size as the second argument.
1209       if (DeleteFTy->getNumArgs() == 2) {
1210         QualType size_t = DeleteFTy->getArgType(1);
1211         const llvm::IntegerType *SizeTy
1212           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1213 
1214         CharUnits ElementTypeSize =
1215           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1216 
1217         // The size of an element, multiplied by the number of elements.
1218         llvm::Value *Size
1219           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1220         Size = CGF.Builder.CreateMul(Size, NumElements);
1221 
1222         // Plus the size of the cookie if applicable.
1223         if (!CookieSize.isZero()) {
1224           llvm::Value *CookieSizeV
1225             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1226           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1227         }
1228 
1229         Args.push_back(std::make_pair(RValue::get(Size), size_t));
1230       }
1231 
1232       // Emit the call to delete.
1233       CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
1234                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1235                    ReturnValueSlot(), Args, OperatorDelete);
1236     }
1237   };
1238 }
1239 
1240 /// Emit the code for deleting an array of objects.
1241 static void EmitArrayDelete(CodeGenFunction &CGF,
1242                             const FunctionDecl *OperatorDelete,
1243                             llvm::Value *Ptr,
1244                             QualType ElementType) {
1245   llvm::Value *NumElements = 0;
1246   llvm::Value *AllocatedPtr = 0;
1247   CharUnits CookieSize;
1248   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr, ElementType,
1249                                       NumElements, AllocatedPtr, CookieSize);
1250 
1251   assert(AllocatedPtr && "ReadArrayCookie didn't set AllocatedPtr");
1252 
1253   // Make sure that we call delete even if one of the dtors throws.
1254   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1255                                            AllocatedPtr, OperatorDelete,
1256                                            NumElements, ElementType,
1257                                            CookieSize);
1258 
1259   if (const CXXRecordDecl *RD = ElementType->getAsCXXRecordDecl()) {
1260     if (!RD->hasTrivialDestructor()) {
1261       assert(NumElements && "ReadArrayCookie didn't find element count"
1262                             " for a class with destructor");
1263       CGF.EmitCXXAggrDestructorCall(RD->getDestructor(), NumElements, Ptr);
1264     }
1265   }
1266 
1267   CGF.PopCleanupBlock();
1268 }
1269 
1270 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1271 
1272   // Get at the argument before we performed the implicit conversion
1273   // to void*.
1274   const Expr *Arg = E->getArgument();
1275   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
1276     if (ICE->getCastKind() != CK_UserDefinedConversion &&
1277         ICE->getType()->isVoidPointerType())
1278       Arg = ICE->getSubExpr();
1279     else
1280       break;
1281   }
1282 
1283   llvm::Value *Ptr = EmitScalarExpr(Arg);
1284 
1285   // Null check the pointer.
1286   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1287   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1288 
1289   llvm::Value *IsNull =
1290     Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()),
1291                          "isnull");
1292 
1293   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1294   EmitBlock(DeleteNotNull);
1295 
1296   // We might be deleting a pointer to array.  If so, GEP down to the
1297   // first non-array element.
1298   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1299   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1300   if (DeleteTy->isConstantArrayType()) {
1301     llvm::Value *Zero = Builder.getInt32(0);
1302     llvm::SmallVector<llvm::Value*,8> GEP;
1303 
1304     GEP.push_back(Zero); // point at the outermost array
1305 
1306     // For each layer of array type we're pointing at:
1307     while (const ConstantArrayType *Arr
1308              = getContext().getAsConstantArrayType(DeleteTy)) {
1309       // 1. Unpeel the array type.
1310       DeleteTy = Arr->getElementType();
1311 
1312       // 2. GEP to the first element of the array.
1313       GEP.push_back(Zero);
1314     }
1315 
1316     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
1317   }
1318 
1319   assert(ConvertTypeForMem(DeleteTy) ==
1320          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1321 
1322   if (E->isArrayForm()) {
1323     EmitArrayDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy);
1324   } else {
1325     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy);
1326   }
1327 
1328   EmitBlock(DeleteEnd);
1329 }
1330 
1331 llvm::Value * CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1332   QualType Ty = E->getType();
1333   const llvm::Type *LTy = ConvertType(Ty)->getPointerTo();
1334 
1335   if (E->isTypeOperand()) {
1336     llvm::Constant *TypeInfo =
1337       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1338     return Builder.CreateBitCast(TypeInfo, LTy);
1339   }
1340 
1341   Expr *subE = E->getExprOperand();
1342   Ty = subE->getType();
1343   CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
1344   Ty = CanTy.getUnqualifiedType().getNonReferenceType();
1345   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1346     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1347     if (RD->isPolymorphic()) {
1348       // FIXME: if subE is an lvalue do
1349       LValue Obj = EmitLValue(subE);
1350       llvm::Value *This = Obj.getAddress();
1351       LTy = LTy->getPointerTo()->getPointerTo();
1352       llvm::Value *V = Builder.CreateBitCast(This, LTy);
1353       // We need to do a zero check for *p, unless it has NonNullAttr.
1354       // FIXME: PointerType->hasAttr<NonNullAttr>()
1355       bool CanBeZero = false;
1356       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(subE->IgnoreParens()))
1357         if (UO->getOpcode() == UO_Deref)
1358           CanBeZero = true;
1359       if (CanBeZero) {
1360         llvm::BasicBlock *NonZeroBlock = createBasicBlock();
1361         llvm::BasicBlock *ZeroBlock = createBasicBlock();
1362 
1363         llvm::Value *Zero = llvm::Constant::getNullValue(LTy);
1364         Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero),
1365                              NonZeroBlock, ZeroBlock);
1366         EmitBlock(ZeroBlock);
1367         /// Call __cxa_bad_typeid
1368         const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
1369         const llvm::FunctionType *FTy;
1370         FTy = llvm::FunctionType::get(ResultType, false);
1371         llvm::Value *F = CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1372         Builder.CreateCall(F)->setDoesNotReturn();
1373         Builder.CreateUnreachable();
1374         EmitBlock(NonZeroBlock);
1375       }
1376       V = Builder.CreateLoad(V, "vtable");
1377       V = Builder.CreateConstInBoundsGEP1_64(V, -1ULL);
1378       V = Builder.CreateLoad(V);
1379       return V;
1380     }
1381   }
1382   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(Ty), LTy);
1383 }
1384 
1385 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V,
1386                                               const CXXDynamicCastExpr *DCE) {
1387   QualType SrcTy = DCE->getSubExpr()->getType();
1388   QualType DestTy = DCE->getTypeAsWritten();
1389   QualType InnerType = DestTy->getPointeeType();
1390 
1391   const llvm::Type *LTy = ConvertType(DCE->getType());
1392 
1393   bool CanBeZero = false;
1394   bool ToVoid = false;
1395   bool ThrowOnBad = false;
1396   if (DestTy->isPointerType()) {
1397     // FIXME: if PointerType->hasAttr<NonNullAttr>(), we don't set this
1398     CanBeZero = true;
1399     if (InnerType->isVoidType())
1400       ToVoid = true;
1401   } else {
1402     LTy = LTy->getPointerTo();
1403 
1404     // FIXME: What if exceptions are disabled?
1405     ThrowOnBad = true;
1406   }
1407 
1408   if (SrcTy->isPointerType() || SrcTy->isReferenceType())
1409     SrcTy = SrcTy->getPointeeType();
1410   SrcTy = SrcTy.getUnqualifiedType();
1411 
1412   if (DestTy->isPointerType() || DestTy->isReferenceType())
1413     DestTy = DestTy->getPointeeType();
1414   DestTy = DestTy.getUnqualifiedType();
1415 
1416   llvm::BasicBlock *ContBlock = createBasicBlock();
1417   llvm::BasicBlock *NullBlock = 0;
1418   llvm::BasicBlock *NonZeroBlock = 0;
1419   if (CanBeZero) {
1420     NonZeroBlock = createBasicBlock();
1421     NullBlock = createBasicBlock();
1422     Builder.CreateCondBr(Builder.CreateIsNotNull(V), NonZeroBlock, NullBlock);
1423     EmitBlock(NonZeroBlock);
1424   }
1425 
1426   llvm::BasicBlock *BadCastBlock = 0;
1427 
1428   const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType());
1429 
1430   // See if this is a dynamic_cast(void*)
1431   if (ToVoid) {
1432     llvm::Value *This = V;
1433     V = Builder.CreateBitCast(This, PtrDiffTy->getPointerTo()->getPointerTo());
1434     V = Builder.CreateLoad(V, "vtable");
1435     V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL);
1436     V = Builder.CreateLoad(V, "offset to top");
1437     This = Builder.CreateBitCast(This, llvm::Type::getInt8PtrTy(VMContext));
1438     V = Builder.CreateInBoundsGEP(This, V);
1439     V = Builder.CreateBitCast(V, LTy);
1440   } else {
1441     /// Call __dynamic_cast
1442     const llvm::Type *ResultType = llvm::Type::getInt8PtrTy(VMContext);
1443     const llvm::FunctionType *FTy;
1444     std::vector<const llvm::Type*> ArgTys;
1445     const llvm::Type *PtrToInt8Ty
1446       = llvm::Type::getInt8Ty(VMContext)->getPointerTo();
1447     ArgTys.push_back(PtrToInt8Ty);
1448     ArgTys.push_back(PtrToInt8Ty);
1449     ArgTys.push_back(PtrToInt8Ty);
1450     ArgTys.push_back(PtrDiffTy);
1451     FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
1452 
1453     // FIXME: Calculate better hint.
1454     llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL);
1455 
1456     assert(SrcTy->isRecordType() && "Src type must be record type!");
1457     assert(DestTy->isRecordType() && "Dest type must be record type!");
1458 
1459     llvm::Value *SrcArg
1460       = CGM.GetAddrOfRTTIDescriptor(SrcTy.getUnqualifiedType());
1461     llvm::Value *DestArg
1462       = CGM.GetAddrOfRTTIDescriptor(DestTy.getUnqualifiedType());
1463 
1464     V = Builder.CreateBitCast(V, PtrToInt8Ty);
1465     V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"),
1466                             V, SrcArg, DestArg, hint);
1467     V = Builder.CreateBitCast(V, LTy);
1468 
1469     if (ThrowOnBad) {
1470       BadCastBlock = createBasicBlock();
1471       Builder.CreateCondBr(Builder.CreateIsNotNull(V), ContBlock, BadCastBlock);
1472       EmitBlock(BadCastBlock);
1473       /// Invoke __cxa_bad_cast
1474       ResultType = llvm::Type::getVoidTy(VMContext);
1475       const llvm::FunctionType *FBadTy;
1476       FBadTy = llvm::FunctionType::get(ResultType, false);
1477       llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast");
1478       if (llvm::BasicBlock *InvokeDest = getInvokeDest()) {
1479         llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
1480         Builder.CreateInvoke(F, Cont, InvokeDest)->setDoesNotReturn();
1481         EmitBlock(Cont);
1482       } else {
1483         // FIXME: Does this ever make sense?
1484         Builder.CreateCall(F)->setDoesNotReturn();
1485       }
1486       Builder.CreateUnreachable();
1487     }
1488   }
1489 
1490   if (CanBeZero) {
1491     Builder.CreateBr(ContBlock);
1492     EmitBlock(NullBlock);
1493     Builder.CreateBr(ContBlock);
1494   }
1495   EmitBlock(ContBlock);
1496   if (CanBeZero) {
1497     llvm::PHINode *PHI = Builder.CreatePHI(LTy);
1498     PHI->reserveOperandSpace(2);
1499     PHI->addIncoming(V, NonZeroBlock);
1500     PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock);
1501     V = PHI;
1502   }
1503 
1504   return V;
1505 }
1506