1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 93 CE ? CE->getExprLoc() : SourceLocation()); 94 } 95 96 RValue CodeGenFunction::EmitCXXDestructorCall( 97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 99 StructorType Type) { 100 CallArgList Args; 101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 102 ImplicitParamTy, CE, Args, nullptr); 103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 104 Callee, ReturnValueSlot(), Args); 105 } 106 107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 108 const CXXPseudoDestructorExpr *E) { 109 QualType DestroyedType = E->getDestroyedType(); 110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 111 // Automatic Reference Counting: 112 // If the pseudo-expression names a retainable object with weak or 113 // strong lifetime, the object shall be released. 114 Expr *BaseExpr = E->getBase(); 115 Address BaseValue = Address::invalid(); 116 Qualifiers BaseQuals; 117 118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 119 if (E->isArrow()) { 120 BaseValue = EmitPointerWithAlignment(BaseExpr); 121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 122 BaseQuals = PTy->getPointeeType().getQualifiers(); 123 } else { 124 LValue BaseLV = EmitLValue(BaseExpr); 125 BaseValue = BaseLV.getAddress(); 126 QualType BaseTy = BaseExpr->getType(); 127 BaseQuals = BaseTy.getQualifiers(); 128 } 129 130 switch (DestroyedType.getObjCLifetime()) { 131 case Qualifiers::OCL_None: 132 case Qualifiers::OCL_ExplicitNone: 133 case Qualifiers::OCL_Autoreleasing: 134 break; 135 136 case Qualifiers::OCL_Strong: 137 EmitARCRelease(Builder.CreateLoad(BaseValue, 138 DestroyedType.isVolatileQualified()), 139 ARCPreciseLifetime); 140 break; 141 142 case Qualifiers::OCL_Weak: 143 EmitARCDestroyWeak(BaseValue); 144 break; 145 } 146 } else { 147 // C++ [expr.pseudo]p1: 148 // The result shall only be used as the operand for the function call 149 // operator (), and the result of such a call has type void. The only 150 // effect is the evaluation of the postfix-expression before the dot or 151 // arrow. 152 EmitIgnoredExpr(E->getBase()); 153 } 154 155 return RValue::get(nullptr); 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 181 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 182 ReturnValue); 183 } 184 185 bool HasQualifier = ME->hasQualifier(); 186 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 187 bool IsArrow = ME->isArrow(); 188 const Expr *Base = ME->getBase(); 189 190 return EmitCXXMemberOrOperatorMemberCallExpr( 191 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 192 } 193 194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 195 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 196 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 197 const Expr *Base) { 198 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 199 200 // Compute the object pointer. 201 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 202 203 const CXXMethodDecl *DevirtualizedMethod = nullptr; 204 if (CanUseVirtualCall && 205 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 206 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 207 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 208 assert(DevirtualizedMethod); 209 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 210 const Expr *Inner = Base->ignoreParenBaseCasts(); 211 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 212 MD->getReturnType().getCanonicalType()) 213 // If the return types are not the same, this might be a case where more 214 // code needs to run to compensate for it. For example, the derived 215 // method might return a type that inherits form from the return 216 // type of MD and has a prefix. 217 // For now we just avoid devirtualizing these covariant cases. 218 DevirtualizedMethod = nullptr; 219 else if (getCXXRecord(Inner) == DevirtualizedClass) 220 // If the class of the Inner expression is where the dynamic method 221 // is defined, build the this pointer from it. 222 Base = Inner; 223 else if (getCXXRecord(Base) != DevirtualizedClass) { 224 // If the method is defined in a class that is not the best dynamic 225 // one or the one of the full expression, we would have to build 226 // a derived-to-base cast to compute the correct this pointer, but 227 // we don't have support for that yet, so do a virtual call. 228 DevirtualizedMethod = nullptr; 229 } 230 } 231 232 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 233 // operator before the LHS. 234 CallArgList RtlArgStorage; 235 CallArgList *RtlArgs = nullptr; 236 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 237 if (OCE->isAssignmentOp()) { 238 RtlArgs = &RtlArgStorage; 239 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 240 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 241 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 242 } 243 } 244 245 LValue This; 246 if (IsArrow) { 247 LValueBaseInfo BaseInfo; 248 TBAAAccessInfo TBAAInfo; 249 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 250 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 251 } else { 252 This = EmitLValue(Base); 253 } 254 255 256 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 257 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 258 if (isa<CXXConstructorDecl>(MD) && 259 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 260 return RValue::get(nullptr); 261 262 if (!MD->getParent()->mayInsertExtraPadding()) { 263 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 264 // We don't like to generate the trivial copy/move assignment operator 265 // when it isn't necessary; just produce the proper effect here. 266 LValue RHS = isa<CXXOperatorCallExpr>(CE) 267 ? MakeNaturalAlignAddrLValue( 268 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 269 (*(CE->arg_begin() + 1))->getType()) 270 : EmitLValue(*CE->arg_begin()); 271 EmitAggregateAssign(This, RHS, CE->getType()); 272 return RValue::get(This.getPointer()); 273 } 274 275 if (isa<CXXConstructorDecl>(MD) && 276 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 277 // Trivial move and copy ctor are the same. 278 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 279 const Expr *Arg = *CE->arg_begin(); 280 LValue RHS = EmitLValue(Arg); 281 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); 282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 283 // constructing a new complete object of type Ctor. 284 EmitAggregateCopy(Dest, RHS, Arg->getType(), 285 AggValueSlot::DoesNotOverlap); 286 return RValue::get(This.getPointer()); 287 } 288 llvm_unreachable("unknown trivial member function"); 289 } 290 } 291 292 // Compute the function type we're calling. 293 const CXXMethodDecl *CalleeDecl = 294 DevirtualizedMethod ? DevirtualizedMethod : MD; 295 const CGFunctionInfo *FInfo = nullptr; 296 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 297 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 298 Dtor, StructorType::Complete); 299 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 300 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 301 Ctor, StructorType::Complete); 302 else 303 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 304 305 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 306 307 // C++11 [class.mfct.non-static]p2: 308 // If a non-static member function of a class X is called for an object that 309 // is not of type X, or of a type derived from X, the behavior is undefined. 310 SourceLocation CallLoc; 311 ASTContext &C = getContext(); 312 if (CE) 313 CallLoc = CE->getExprLoc(); 314 315 SanitizerSet SkippedChecks; 316 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 317 auto *IOA = CMCE->getImplicitObjectArgument(); 318 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 319 if (IsImplicitObjectCXXThis) 320 SkippedChecks.set(SanitizerKind::Alignment, true); 321 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 322 SkippedChecks.set(SanitizerKind::Null, true); 323 } 324 EmitTypeCheck( 325 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 326 : CodeGenFunction::TCK_MemberCall, 327 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 328 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 329 330 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 331 // 'CalleeDecl' instead. 332 333 // C++ [class.virtual]p12: 334 // Explicit qualification with the scope operator (5.1) suppresses the 335 // virtual call mechanism. 336 // 337 // We also don't emit a virtual call if the base expression has a record type 338 // because then we know what the type is. 339 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 340 341 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 342 assert(CE->arg_begin() == CE->arg_end() && 343 "Destructor shouldn't have explicit parameters"); 344 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 345 if (UseVirtualCall) { 346 CGM.getCXXABI().EmitVirtualDestructorCall( 347 *this, Dtor, Dtor_Complete, This.getAddress(), 348 cast<CXXMemberCallExpr>(CE)); 349 } else { 350 CGCallee Callee; 351 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 352 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 353 else if (!DevirtualizedMethod) 354 Callee = CGCallee::forDirect( 355 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 356 Dtor); 357 else { 358 const CXXDestructorDecl *DDtor = 359 cast<CXXDestructorDecl>(DevirtualizedMethod); 360 Callee = CGCallee::forDirect( 361 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 362 DDtor); 363 } 364 EmitCXXMemberOrOperatorCall( 365 CalleeDecl, Callee, ReturnValue, This.getPointer(), 366 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 367 } 368 return RValue::get(nullptr); 369 } 370 371 CGCallee Callee; 372 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 373 Callee = CGCallee::forDirect( 374 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 375 Ctor); 376 } else if (UseVirtualCall) { 377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 378 } else { 379 if (SanOpts.has(SanitizerKind::CFINVCall) && 380 MD->getParent()->isDynamicClass()) { 381 llvm::Value *VTable; 382 const CXXRecordDecl *RD; 383 std::tie(VTable, RD) = 384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 385 MD->getParent()); 386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 387 } 388 389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 391 else if (!DevirtualizedMethod) 392 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 393 else { 394 Callee = CGCallee::forDirect( 395 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 396 DevirtualizedMethod); 397 } 398 } 399 400 if (MD->isVirtual()) { 401 Address NewThisAddr = 402 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 403 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 404 This.setAddress(NewThisAddr); 405 } 406 407 return EmitCXXMemberOrOperatorCall( 408 CalleeDecl, Callee, ReturnValue, This.getPointer(), 409 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 410 } 411 412 RValue 413 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 414 ReturnValueSlot ReturnValue) { 415 const BinaryOperator *BO = 416 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 417 const Expr *BaseExpr = BO->getLHS(); 418 const Expr *MemFnExpr = BO->getRHS(); 419 420 const MemberPointerType *MPT = 421 MemFnExpr->getType()->castAs<MemberPointerType>(); 422 423 const FunctionProtoType *FPT = 424 MPT->getPointeeType()->castAs<FunctionProtoType>(); 425 const CXXRecordDecl *RD = 426 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 427 428 // Emit the 'this' pointer. 429 Address This = Address::invalid(); 430 if (BO->getOpcode() == BO_PtrMemI) 431 This = EmitPointerWithAlignment(BaseExpr); 432 else 433 This = EmitLValue(BaseExpr).getAddress(); 434 435 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 436 QualType(MPT->getClass(), 0)); 437 438 // Get the member function pointer. 439 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 440 441 // Ask the ABI to load the callee. Note that This is modified. 442 llvm::Value *ThisPtrForCall = nullptr; 443 CGCallee Callee = 444 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 445 ThisPtrForCall, MemFnPtr, MPT); 446 447 CallArgList Args; 448 449 QualType ThisType = 450 getContext().getPointerType(getContext().getTagDeclType(RD)); 451 452 // Push the this ptr. 453 Args.add(RValue::get(ThisPtrForCall), ThisType); 454 455 RequiredArgs required = 456 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 457 458 // And the rest of the call args 459 EmitCallArgs(Args, FPT, E->arguments()); 460 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 461 /*PrefixSize=*/0), 462 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 463 } 464 465 RValue 466 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 467 const CXXMethodDecl *MD, 468 ReturnValueSlot ReturnValue) { 469 assert(MD->isInstance() && 470 "Trying to emit a member call expr on a static method!"); 471 return EmitCXXMemberOrOperatorMemberCallExpr( 472 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 473 /*IsArrow=*/false, E->getArg(0)); 474 } 475 476 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 477 ReturnValueSlot ReturnValue) { 478 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 479 } 480 481 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 482 Address DestPtr, 483 const CXXRecordDecl *Base) { 484 if (Base->isEmpty()) 485 return; 486 487 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 488 489 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 490 CharUnits NVSize = Layout.getNonVirtualSize(); 491 492 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 493 // present, they are initialized by the most derived class before calling the 494 // constructor. 495 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 496 Stores.emplace_back(CharUnits::Zero(), NVSize); 497 498 // Each store is split by the existence of a vbptr. 499 CharUnits VBPtrWidth = CGF.getPointerSize(); 500 std::vector<CharUnits> VBPtrOffsets = 501 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 502 for (CharUnits VBPtrOffset : VBPtrOffsets) { 503 // Stop before we hit any virtual base pointers located in virtual bases. 504 if (VBPtrOffset >= NVSize) 505 break; 506 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 507 CharUnits LastStoreOffset = LastStore.first; 508 CharUnits LastStoreSize = LastStore.second; 509 510 CharUnits SplitBeforeOffset = LastStoreOffset; 511 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 512 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 513 if (!SplitBeforeSize.isZero()) 514 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 515 516 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 517 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 518 assert(!SplitAfterSize.isNegative() && "negative store size!"); 519 if (!SplitAfterSize.isZero()) 520 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 521 } 522 523 // If the type contains a pointer to data member we can't memset it to zero. 524 // Instead, create a null constant and copy it to the destination. 525 // TODO: there are other patterns besides zero that we can usefully memset, 526 // like -1, which happens to be the pattern used by member-pointers. 527 // TODO: isZeroInitializable can be over-conservative in the case where a 528 // virtual base contains a member pointer. 529 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 530 if (!NullConstantForBase->isNullValue()) { 531 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 532 CGF.CGM.getModule(), NullConstantForBase->getType(), 533 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 534 NullConstantForBase, Twine()); 535 536 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 537 DestPtr.getAlignment()); 538 NullVariable->setAlignment(Align.getQuantity()); 539 540 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 541 542 // Get and call the appropriate llvm.memcpy overload. 543 for (std::pair<CharUnits, CharUnits> Store : Stores) { 544 CharUnits StoreOffset = Store.first; 545 CharUnits StoreSize = Store.second; 546 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 547 CGF.Builder.CreateMemCpy( 548 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 549 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 550 StoreSizeVal); 551 } 552 553 // Otherwise, just memset the whole thing to zero. This is legal 554 // because in LLVM, all default initializers (other than the ones we just 555 // handled above) are guaranteed to have a bit pattern of all zeros. 556 } else { 557 for (std::pair<CharUnits, CharUnits> Store : Stores) { 558 CharUnits StoreOffset = Store.first; 559 CharUnits StoreSize = Store.second; 560 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 561 CGF.Builder.CreateMemSet( 562 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 563 CGF.Builder.getInt8(0), StoreSizeVal); 564 } 565 } 566 } 567 568 void 569 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 570 AggValueSlot Dest) { 571 assert(!Dest.isIgnored() && "Must have a destination!"); 572 const CXXConstructorDecl *CD = E->getConstructor(); 573 574 // If we require zero initialization before (or instead of) calling the 575 // constructor, as can be the case with a non-user-provided default 576 // constructor, emit the zero initialization now, unless destination is 577 // already zeroed. 578 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 579 switch (E->getConstructionKind()) { 580 case CXXConstructExpr::CK_Delegating: 581 case CXXConstructExpr::CK_Complete: 582 EmitNullInitialization(Dest.getAddress(), E->getType()); 583 break; 584 case CXXConstructExpr::CK_VirtualBase: 585 case CXXConstructExpr::CK_NonVirtualBase: 586 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 587 CD->getParent()); 588 break; 589 } 590 } 591 592 // If this is a call to a trivial default constructor, do nothing. 593 if (CD->isTrivial() && CD->isDefaultConstructor()) 594 return; 595 596 // Elide the constructor if we're constructing from a temporary. 597 // The temporary check is required because Sema sets this on NRVO 598 // returns. 599 if (getLangOpts().ElideConstructors && E->isElidable()) { 600 assert(getContext().hasSameUnqualifiedType(E->getType(), 601 E->getArg(0)->getType())); 602 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 603 EmitAggExpr(E->getArg(0), Dest); 604 return; 605 } 606 } 607 608 if (const ArrayType *arrayType 609 = getContext().getAsArrayType(E->getType())) { 610 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 611 Dest.isSanitizerChecked()); 612 } else { 613 CXXCtorType Type = Ctor_Complete; 614 bool ForVirtualBase = false; 615 bool Delegating = false; 616 617 switch (E->getConstructionKind()) { 618 case CXXConstructExpr::CK_Delegating: 619 // We should be emitting a constructor; GlobalDecl will assert this 620 Type = CurGD.getCtorType(); 621 Delegating = true; 622 break; 623 624 case CXXConstructExpr::CK_Complete: 625 Type = Ctor_Complete; 626 break; 627 628 case CXXConstructExpr::CK_VirtualBase: 629 ForVirtualBase = true; 630 LLVM_FALLTHROUGH; 631 632 case CXXConstructExpr::CK_NonVirtualBase: 633 Type = Ctor_Base; 634 } 635 636 // Call the constructor. 637 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 638 Dest.getAddress(), E, Dest.mayOverlap(), 639 Dest.isSanitizerChecked()); 640 } 641 } 642 643 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 644 const Expr *Exp) { 645 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 646 Exp = E->getSubExpr(); 647 assert(isa<CXXConstructExpr>(Exp) && 648 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 649 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 650 const CXXConstructorDecl *CD = E->getConstructor(); 651 RunCleanupsScope Scope(*this); 652 653 // If we require zero initialization before (or instead of) calling the 654 // constructor, as can be the case with a non-user-provided default 655 // constructor, emit the zero initialization now. 656 // FIXME. Do I still need this for a copy ctor synthesis? 657 if (E->requiresZeroInitialization()) 658 EmitNullInitialization(Dest, E->getType()); 659 660 assert(!getContext().getAsConstantArrayType(E->getType()) 661 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 662 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 663 } 664 665 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 666 const CXXNewExpr *E) { 667 if (!E->isArray()) 668 return CharUnits::Zero(); 669 670 // No cookie is required if the operator new[] being used is the 671 // reserved placement operator new[]. 672 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 673 return CharUnits::Zero(); 674 675 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 676 } 677 678 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 679 const CXXNewExpr *e, 680 unsigned minElements, 681 llvm::Value *&numElements, 682 llvm::Value *&sizeWithoutCookie) { 683 QualType type = e->getAllocatedType(); 684 685 if (!e->isArray()) { 686 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 687 sizeWithoutCookie 688 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 689 return sizeWithoutCookie; 690 } 691 692 // The width of size_t. 693 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 694 695 // Figure out the cookie size. 696 llvm::APInt cookieSize(sizeWidth, 697 CalculateCookiePadding(CGF, e).getQuantity()); 698 699 // Emit the array size expression. 700 // We multiply the size of all dimensions for NumElements. 701 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 702 numElements = 703 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 704 if (!numElements) 705 numElements = CGF.EmitScalarExpr(e->getArraySize()); 706 assert(isa<llvm::IntegerType>(numElements->getType())); 707 708 // The number of elements can be have an arbitrary integer type; 709 // essentially, we need to multiply it by a constant factor, add a 710 // cookie size, and verify that the result is representable as a 711 // size_t. That's just a gloss, though, and it's wrong in one 712 // important way: if the count is negative, it's an error even if 713 // the cookie size would bring the total size >= 0. 714 bool isSigned 715 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 716 llvm::IntegerType *numElementsType 717 = cast<llvm::IntegerType>(numElements->getType()); 718 unsigned numElementsWidth = numElementsType->getBitWidth(); 719 720 // Compute the constant factor. 721 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 722 while (const ConstantArrayType *CAT 723 = CGF.getContext().getAsConstantArrayType(type)) { 724 type = CAT->getElementType(); 725 arraySizeMultiplier *= CAT->getSize(); 726 } 727 728 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 729 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 730 typeSizeMultiplier *= arraySizeMultiplier; 731 732 // This will be a size_t. 733 llvm::Value *size; 734 735 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 736 // Don't bloat the -O0 code. 737 if (llvm::ConstantInt *numElementsC = 738 dyn_cast<llvm::ConstantInt>(numElements)) { 739 const llvm::APInt &count = numElementsC->getValue(); 740 741 bool hasAnyOverflow = false; 742 743 // If 'count' was a negative number, it's an overflow. 744 if (isSigned && count.isNegative()) 745 hasAnyOverflow = true; 746 747 // We want to do all this arithmetic in size_t. If numElements is 748 // wider than that, check whether it's already too big, and if so, 749 // overflow. 750 else if (numElementsWidth > sizeWidth && 751 numElementsWidth - sizeWidth > count.countLeadingZeros()) 752 hasAnyOverflow = true; 753 754 // Okay, compute a count at the right width. 755 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 756 757 // If there is a brace-initializer, we cannot allocate fewer elements than 758 // there are initializers. If we do, that's treated like an overflow. 759 if (adjustedCount.ult(minElements)) 760 hasAnyOverflow = true; 761 762 // Scale numElements by that. This might overflow, but we don't 763 // care because it only overflows if allocationSize does, too, and 764 // if that overflows then we shouldn't use this. 765 numElements = llvm::ConstantInt::get(CGF.SizeTy, 766 adjustedCount * arraySizeMultiplier); 767 768 // Compute the size before cookie, and track whether it overflowed. 769 bool overflow; 770 llvm::APInt allocationSize 771 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 772 hasAnyOverflow |= overflow; 773 774 // Add in the cookie, and check whether it's overflowed. 775 if (cookieSize != 0) { 776 // Save the current size without a cookie. This shouldn't be 777 // used if there was overflow. 778 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 779 780 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 781 hasAnyOverflow |= overflow; 782 } 783 784 // On overflow, produce a -1 so operator new will fail. 785 if (hasAnyOverflow) { 786 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 787 } else { 788 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 789 } 790 791 // Otherwise, we might need to use the overflow intrinsics. 792 } else { 793 // There are up to five conditions we need to test for: 794 // 1) if isSigned, we need to check whether numElements is negative; 795 // 2) if numElementsWidth > sizeWidth, we need to check whether 796 // numElements is larger than something representable in size_t; 797 // 3) if minElements > 0, we need to check whether numElements is smaller 798 // than that. 799 // 4) we need to compute 800 // sizeWithoutCookie := numElements * typeSizeMultiplier 801 // and check whether it overflows; and 802 // 5) if we need a cookie, we need to compute 803 // size := sizeWithoutCookie + cookieSize 804 // and check whether it overflows. 805 806 llvm::Value *hasOverflow = nullptr; 807 808 // If numElementsWidth > sizeWidth, then one way or another, we're 809 // going to have to do a comparison for (2), and this happens to 810 // take care of (1), too. 811 if (numElementsWidth > sizeWidth) { 812 llvm::APInt threshold(numElementsWidth, 1); 813 threshold <<= sizeWidth; 814 815 llvm::Value *thresholdV 816 = llvm::ConstantInt::get(numElementsType, threshold); 817 818 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 819 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 820 821 // Otherwise, if we're signed, we want to sext up to size_t. 822 } else if (isSigned) { 823 if (numElementsWidth < sizeWidth) 824 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 825 826 // If there's a non-1 type size multiplier, then we can do the 827 // signedness check at the same time as we do the multiply 828 // because a negative number times anything will cause an 829 // unsigned overflow. Otherwise, we have to do it here. But at least 830 // in this case, we can subsume the >= minElements check. 831 if (typeSizeMultiplier == 1) 832 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 833 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 834 835 // Otherwise, zext up to size_t if necessary. 836 } else if (numElementsWidth < sizeWidth) { 837 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 838 } 839 840 assert(numElements->getType() == CGF.SizeTy); 841 842 if (minElements) { 843 // Don't allow allocation of fewer elements than we have initializers. 844 if (!hasOverflow) { 845 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 846 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 847 } else if (numElementsWidth > sizeWidth) { 848 // The other existing overflow subsumes this check. 849 // We do an unsigned comparison, since any signed value < -1 is 850 // taken care of either above or below. 851 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 852 CGF.Builder.CreateICmpULT(numElements, 853 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 854 } 855 } 856 857 size = numElements; 858 859 // Multiply by the type size if necessary. This multiplier 860 // includes all the factors for nested arrays. 861 // 862 // This step also causes numElements to be scaled up by the 863 // nested-array factor if necessary. Overflow on this computation 864 // can be ignored because the result shouldn't be used if 865 // allocation fails. 866 if (typeSizeMultiplier != 1) { 867 llvm::Value *umul_with_overflow 868 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 869 870 llvm::Value *tsmV = 871 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 872 llvm::Value *result = 873 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 874 875 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 876 if (hasOverflow) 877 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 878 else 879 hasOverflow = overflowed; 880 881 size = CGF.Builder.CreateExtractValue(result, 0); 882 883 // Also scale up numElements by the array size multiplier. 884 if (arraySizeMultiplier != 1) { 885 // If the base element type size is 1, then we can re-use the 886 // multiply we just did. 887 if (typeSize.isOne()) { 888 assert(arraySizeMultiplier == typeSizeMultiplier); 889 numElements = size; 890 891 // Otherwise we need a separate multiply. 892 } else { 893 llvm::Value *asmV = 894 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 895 numElements = CGF.Builder.CreateMul(numElements, asmV); 896 } 897 } 898 } else { 899 // numElements doesn't need to be scaled. 900 assert(arraySizeMultiplier == 1); 901 } 902 903 // Add in the cookie size if necessary. 904 if (cookieSize != 0) { 905 sizeWithoutCookie = size; 906 907 llvm::Value *uadd_with_overflow 908 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 909 910 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 911 llvm::Value *result = 912 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 913 914 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 915 if (hasOverflow) 916 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 917 else 918 hasOverflow = overflowed; 919 920 size = CGF.Builder.CreateExtractValue(result, 0); 921 } 922 923 // If we had any possibility of dynamic overflow, make a select to 924 // overwrite 'size' with an all-ones value, which should cause 925 // operator new to throw. 926 if (hasOverflow) 927 size = CGF.Builder.CreateSelect(hasOverflow, 928 llvm::Constant::getAllOnesValue(CGF.SizeTy), 929 size); 930 } 931 932 if (cookieSize == 0) 933 sizeWithoutCookie = size; 934 else 935 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 936 937 return size; 938 } 939 940 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 941 QualType AllocType, Address NewPtr, 942 AggValueSlot::Overlap_t MayOverlap) { 943 // FIXME: Refactor with EmitExprAsInit. 944 switch (CGF.getEvaluationKind(AllocType)) { 945 case TEK_Scalar: 946 CGF.EmitScalarInit(Init, nullptr, 947 CGF.MakeAddrLValue(NewPtr, AllocType), false); 948 return; 949 case TEK_Complex: 950 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 951 /*isInit*/ true); 952 return; 953 case TEK_Aggregate: { 954 AggValueSlot Slot 955 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 956 AggValueSlot::IsDestructed, 957 AggValueSlot::DoesNotNeedGCBarriers, 958 AggValueSlot::IsNotAliased, 959 MayOverlap, AggValueSlot::IsNotZeroed, 960 AggValueSlot::IsSanitizerChecked); 961 CGF.EmitAggExpr(Init, Slot); 962 return; 963 } 964 } 965 llvm_unreachable("bad evaluation kind"); 966 } 967 968 void CodeGenFunction::EmitNewArrayInitializer( 969 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 970 Address BeginPtr, llvm::Value *NumElements, 971 llvm::Value *AllocSizeWithoutCookie) { 972 // If we have a type with trivial initialization and no initializer, 973 // there's nothing to do. 974 if (!E->hasInitializer()) 975 return; 976 977 Address CurPtr = BeginPtr; 978 979 unsigned InitListElements = 0; 980 981 const Expr *Init = E->getInitializer(); 982 Address EndOfInit = Address::invalid(); 983 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 984 EHScopeStack::stable_iterator Cleanup; 985 llvm::Instruction *CleanupDominator = nullptr; 986 987 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 988 CharUnits ElementAlign = 989 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 990 991 // Attempt to perform zero-initialization using memset. 992 auto TryMemsetInitialization = [&]() -> bool { 993 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 994 // we can initialize with a memset to -1. 995 if (!CGM.getTypes().isZeroInitializable(ElementType)) 996 return false; 997 998 // Optimization: since zero initialization will just set the memory 999 // to all zeroes, generate a single memset to do it in one shot. 1000 1001 // Subtract out the size of any elements we've already initialized. 1002 auto *RemainingSize = AllocSizeWithoutCookie; 1003 if (InitListElements) { 1004 // We know this can't overflow; we check this when doing the allocation. 1005 auto *InitializedSize = llvm::ConstantInt::get( 1006 RemainingSize->getType(), 1007 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1008 InitListElements); 1009 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1010 } 1011 1012 // Create the memset. 1013 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1014 return true; 1015 }; 1016 1017 // If the initializer is an initializer list, first do the explicit elements. 1018 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1019 // Initializing from a (braced) string literal is a special case; the init 1020 // list element does not initialize a (single) array element. 1021 if (ILE->isStringLiteralInit()) { 1022 // Initialize the initial portion of length equal to that of the string 1023 // literal. The allocation must be for at least this much; we emitted a 1024 // check for that earlier. 1025 AggValueSlot Slot = 1026 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1027 AggValueSlot::IsDestructed, 1028 AggValueSlot::DoesNotNeedGCBarriers, 1029 AggValueSlot::IsNotAliased, 1030 AggValueSlot::DoesNotOverlap, 1031 AggValueSlot::IsNotZeroed, 1032 AggValueSlot::IsSanitizerChecked); 1033 EmitAggExpr(ILE->getInit(0), Slot); 1034 1035 // Move past these elements. 1036 InitListElements = 1037 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1038 ->getSize().getZExtValue(); 1039 CurPtr = 1040 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1041 Builder.getSize(InitListElements), 1042 "string.init.end"), 1043 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1044 ElementSize)); 1045 1046 // Zero out the rest, if any remain. 1047 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1048 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1049 bool OK = TryMemsetInitialization(); 1050 (void)OK; 1051 assert(OK && "couldn't memset character type?"); 1052 } 1053 return; 1054 } 1055 1056 InitListElements = ILE->getNumInits(); 1057 1058 // If this is a multi-dimensional array new, we will initialize multiple 1059 // elements with each init list element. 1060 QualType AllocType = E->getAllocatedType(); 1061 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1062 AllocType->getAsArrayTypeUnsafe())) { 1063 ElementTy = ConvertTypeForMem(AllocType); 1064 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1065 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1066 } 1067 1068 // Enter a partial-destruction Cleanup if necessary. 1069 if (needsEHCleanup(DtorKind)) { 1070 // In principle we could tell the Cleanup where we are more 1071 // directly, but the control flow can get so varied here that it 1072 // would actually be quite complex. Therefore we go through an 1073 // alloca. 1074 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1075 "array.init.end"); 1076 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1077 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1078 ElementType, ElementAlign, 1079 getDestroyer(DtorKind)); 1080 Cleanup = EHStack.stable_begin(); 1081 } 1082 1083 CharUnits StartAlign = CurPtr.getAlignment(); 1084 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1085 // Tell the cleanup that it needs to destroy up to this 1086 // element. TODO: some of these stores can be trivially 1087 // observed to be unnecessary. 1088 if (EndOfInit.isValid()) { 1089 auto FinishedPtr = 1090 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1091 Builder.CreateStore(FinishedPtr, EndOfInit); 1092 } 1093 // FIXME: If the last initializer is an incomplete initializer list for 1094 // an array, and we have an array filler, we can fold together the two 1095 // initialization loops. 1096 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1097 ILE->getInit(i)->getType(), CurPtr, 1098 AggValueSlot::DoesNotOverlap); 1099 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1100 Builder.getSize(1), 1101 "array.exp.next"), 1102 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1103 } 1104 1105 // The remaining elements are filled with the array filler expression. 1106 Init = ILE->getArrayFiller(); 1107 1108 // Extract the initializer for the individual array elements by pulling 1109 // out the array filler from all the nested initializer lists. This avoids 1110 // generating a nested loop for the initialization. 1111 while (Init && Init->getType()->isConstantArrayType()) { 1112 auto *SubILE = dyn_cast<InitListExpr>(Init); 1113 if (!SubILE) 1114 break; 1115 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1116 Init = SubILE->getArrayFiller(); 1117 } 1118 1119 // Switch back to initializing one base element at a time. 1120 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1121 } 1122 1123 // If all elements have already been initialized, skip any further 1124 // initialization. 1125 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1126 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1127 // If there was a Cleanup, deactivate it. 1128 if (CleanupDominator) 1129 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1130 return; 1131 } 1132 1133 assert(Init && "have trailing elements to initialize but no initializer"); 1134 1135 // If this is a constructor call, try to optimize it out, and failing that 1136 // emit a single loop to initialize all remaining elements. 1137 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1138 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1139 if (Ctor->isTrivial()) { 1140 // If new expression did not specify value-initialization, then there 1141 // is no initialization. 1142 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1143 return; 1144 1145 if (TryMemsetInitialization()) 1146 return; 1147 } 1148 1149 // Store the new Cleanup position for irregular Cleanups. 1150 // 1151 // FIXME: Share this cleanup with the constructor call emission rather than 1152 // having it create a cleanup of its own. 1153 if (EndOfInit.isValid()) 1154 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1155 1156 // Emit a constructor call loop to initialize the remaining elements. 1157 if (InitListElements) 1158 NumElements = Builder.CreateSub( 1159 NumElements, 1160 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1161 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1162 /*NewPointerIsChecked*/true, 1163 CCE->requiresZeroInitialization()); 1164 return; 1165 } 1166 1167 // If this is value-initialization, we can usually use memset. 1168 ImplicitValueInitExpr IVIE(ElementType); 1169 if (isa<ImplicitValueInitExpr>(Init)) { 1170 if (TryMemsetInitialization()) 1171 return; 1172 1173 // Switch to an ImplicitValueInitExpr for the element type. This handles 1174 // only one case: multidimensional array new of pointers to members. In 1175 // all other cases, we already have an initializer for the array element. 1176 Init = &IVIE; 1177 } 1178 1179 // At this point we should have found an initializer for the individual 1180 // elements of the array. 1181 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1182 "got wrong type of element to initialize"); 1183 1184 // If we have an empty initializer list, we can usually use memset. 1185 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1186 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1187 return; 1188 1189 // If we have a struct whose every field is value-initialized, we can 1190 // usually use memset. 1191 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1192 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1193 if (RType->getDecl()->isStruct()) { 1194 unsigned NumElements = 0; 1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1196 NumElements = CXXRD->getNumBases(); 1197 for (auto *Field : RType->getDecl()->fields()) 1198 if (!Field->isUnnamedBitfield()) 1199 ++NumElements; 1200 // FIXME: Recurse into nested InitListExprs. 1201 if (ILE->getNumInits() == NumElements) 1202 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1203 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1204 --NumElements; 1205 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1206 return; 1207 } 1208 } 1209 } 1210 1211 // Create the loop blocks. 1212 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1213 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1214 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1215 1216 // Find the end of the array, hoisted out of the loop. 1217 llvm::Value *EndPtr = 1218 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1219 1220 // If the number of elements isn't constant, we have to now check if there is 1221 // anything left to initialize. 1222 if (!ConstNum) { 1223 llvm::Value *IsEmpty = 1224 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1225 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1226 } 1227 1228 // Enter the loop. 1229 EmitBlock(LoopBB); 1230 1231 // Set up the current-element phi. 1232 llvm::PHINode *CurPtrPhi = 1233 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1234 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1235 1236 CurPtr = Address(CurPtrPhi, ElementAlign); 1237 1238 // Store the new Cleanup position for irregular Cleanups. 1239 if (EndOfInit.isValid()) 1240 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1241 1242 // Enter a partial-destruction Cleanup if necessary. 1243 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1244 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1245 ElementType, ElementAlign, 1246 getDestroyer(DtorKind)); 1247 Cleanup = EHStack.stable_begin(); 1248 CleanupDominator = Builder.CreateUnreachable(); 1249 } 1250 1251 // Emit the initializer into this element. 1252 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1253 AggValueSlot::DoesNotOverlap); 1254 1255 // Leave the Cleanup if we entered one. 1256 if (CleanupDominator) { 1257 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1258 CleanupDominator->eraseFromParent(); 1259 } 1260 1261 // Advance to the next element by adjusting the pointer type as necessary. 1262 llvm::Value *NextPtr = 1263 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1264 "array.next"); 1265 1266 // Check whether we've gotten to the end of the array and, if so, 1267 // exit the loop. 1268 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1269 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1270 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1271 1272 EmitBlock(ContBB); 1273 } 1274 1275 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1276 QualType ElementType, llvm::Type *ElementTy, 1277 Address NewPtr, llvm::Value *NumElements, 1278 llvm::Value *AllocSizeWithoutCookie) { 1279 ApplyDebugLocation DL(CGF, E); 1280 if (E->isArray()) 1281 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1282 AllocSizeWithoutCookie); 1283 else if (const Expr *Init = E->getInitializer()) 1284 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1285 AggValueSlot::DoesNotOverlap); 1286 } 1287 1288 /// Emit a call to an operator new or operator delete function, as implicitly 1289 /// created by new-expressions and delete-expressions. 1290 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1291 const FunctionDecl *CalleeDecl, 1292 const FunctionProtoType *CalleeType, 1293 const CallArgList &Args) { 1294 llvm::Instruction *CallOrInvoke; 1295 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1296 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1297 RValue RV = 1298 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1299 Args, CalleeType, /*chainCall=*/false), 1300 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1301 1302 /// C++1y [expr.new]p10: 1303 /// [In a new-expression,] an implementation is allowed to omit a call 1304 /// to a replaceable global allocation function. 1305 /// 1306 /// We model such elidable calls with the 'builtin' attribute. 1307 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1308 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1309 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1310 // FIXME: Add addAttribute to CallSite. 1311 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1312 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1313 llvm::Attribute::Builtin); 1314 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1315 II->addAttribute(llvm::AttributeList::FunctionIndex, 1316 llvm::Attribute::Builtin); 1317 else 1318 llvm_unreachable("unexpected kind of call instruction"); 1319 } 1320 1321 return RV; 1322 } 1323 1324 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1325 const CallExpr *TheCall, 1326 bool IsDelete) { 1327 CallArgList Args; 1328 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1329 // Find the allocation or deallocation function that we're calling. 1330 ASTContext &Ctx = getContext(); 1331 DeclarationName Name = Ctx.DeclarationNames 1332 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1333 1334 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1335 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1336 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1337 return EmitNewDeleteCall(*this, FD, Type, Args); 1338 llvm_unreachable("predeclared global operator new/delete is missing"); 1339 } 1340 1341 namespace { 1342 /// The parameters to pass to a usual operator delete. 1343 struct UsualDeleteParams { 1344 bool DestroyingDelete = false; 1345 bool Size = false; 1346 bool Alignment = false; 1347 }; 1348 } 1349 1350 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1351 UsualDeleteParams Params; 1352 1353 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1354 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1355 1356 // The first argument is always a void*. 1357 ++AI; 1358 1359 // The next parameter may be a std::destroying_delete_t. 1360 if (FD->isDestroyingOperatorDelete()) { 1361 Params.DestroyingDelete = true; 1362 assert(AI != AE); 1363 ++AI; 1364 } 1365 1366 // Figure out what other parameters we should be implicitly passing. 1367 if (AI != AE && (*AI)->isIntegerType()) { 1368 Params.Size = true; 1369 ++AI; 1370 } 1371 1372 if (AI != AE && (*AI)->isAlignValT()) { 1373 Params.Alignment = true; 1374 ++AI; 1375 } 1376 1377 assert(AI == AE && "unexpected usual deallocation function parameter"); 1378 return Params; 1379 } 1380 1381 namespace { 1382 /// A cleanup to call the given 'operator delete' function upon abnormal 1383 /// exit from a new expression. Templated on a traits type that deals with 1384 /// ensuring that the arguments dominate the cleanup if necessary. 1385 template<typename Traits> 1386 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1387 /// Type used to hold llvm::Value*s. 1388 typedef typename Traits::ValueTy ValueTy; 1389 /// Type used to hold RValues. 1390 typedef typename Traits::RValueTy RValueTy; 1391 struct PlacementArg { 1392 RValueTy ArgValue; 1393 QualType ArgType; 1394 }; 1395 1396 unsigned NumPlacementArgs : 31; 1397 unsigned PassAlignmentToPlacementDelete : 1; 1398 const FunctionDecl *OperatorDelete; 1399 ValueTy Ptr; 1400 ValueTy AllocSize; 1401 CharUnits AllocAlign; 1402 1403 PlacementArg *getPlacementArgs() { 1404 return reinterpret_cast<PlacementArg *>(this + 1); 1405 } 1406 1407 public: 1408 static size_t getExtraSize(size_t NumPlacementArgs) { 1409 return NumPlacementArgs * sizeof(PlacementArg); 1410 } 1411 1412 CallDeleteDuringNew(size_t NumPlacementArgs, 1413 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1414 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1415 CharUnits AllocAlign) 1416 : NumPlacementArgs(NumPlacementArgs), 1417 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1418 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1419 AllocAlign(AllocAlign) {} 1420 1421 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1422 assert(I < NumPlacementArgs && "index out of range"); 1423 getPlacementArgs()[I] = {Arg, Type}; 1424 } 1425 1426 void Emit(CodeGenFunction &CGF, Flags flags) override { 1427 const FunctionProtoType *FPT = 1428 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1429 CallArgList DeleteArgs; 1430 1431 // The first argument is always a void* (or C* for a destroying operator 1432 // delete for class type C). 1433 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1434 1435 // Figure out what other parameters we should be implicitly passing. 1436 UsualDeleteParams Params; 1437 if (NumPlacementArgs) { 1438 // A placement deallocation function is implicitly passed an alignment 1439 // if the placement allocation function was, but is never passed a size. 1440 Params.Alignment = PassAlignmentToPlacementDelete; 1441 } else { 1442 // For a non-placement new-expression, 'operator delete' can take a 1443 // size and/or an alignment if it has the right parameters. 1444 Params = getUsualDeleteParams(OperatorDelete); 1445 } 1446 1447 assert(!Params.DestroyingDelete && 1448 "should not call destroying delete in a new-expression"); 1449 1450 // The second argument can be a std::size_t (for non-placement delete). 1451 if (Params.Size) 1452 DeleteArgs.add(Traits::get(CGF, AllocSize), 1453 CGF.getContext().getSizeType()); 1454 1455 // The next (second or third) argument can be a std::align_val_t, which 1456 // is an enum whose underlying type is std::size_t. 1457 // FIXME: Use the right type as the parameter type. Note that in a call 1458 // to operator delete(size_t, ...), we may not have it available. 1459 if (Params.Alignment) 1460 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1461 CGF.SizeTy, AllocAlign.getQuantity())), 1462 CGF.getContext().getSizeType()); 1463 1464 // Pass the rest of the arguments, which must match exactly. 1465 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1466 auto Arg = getPlacementArgs()[I]; 1467 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1468 } 1469 1470 // Call 'operator delete'. 1471 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1472 } 1473 }; 1474 } 1475 1476 /// Enter a cleanup to call 'operator delete' if the initializer in a 1477 /// new-expression throws. 1478 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1479 const CXXNewExpr *E, 1480 Address NewPtr, 1481 llvm::Value *AllocSize, 1482 CharUnits AllocAlign, 1483 const CallArgList &NewArgs) { 1484 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1485 1486 // If we're not inside a conditional branch, then the cleanup will 1487 // dominate and we can do the easier (and more efficient) thing. 1488 if (!CGF.isInConditionalBranch()) { 1489 struct DirectCleanupTraits { 1490 typedef llvm::Value *ValueTy; 1491 typedef RValue RValueTy; 1492 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1493 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1494 }; 1495 1496 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1497 1498 DirectCleanup *Cleanup = CGF.EHStack 1499 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1500 E->getNumPlacementArgs(), 1501 E->getOperatorDelete(), 1502 NewPtr.getPointer(), 1503 AllocSize, 1504 E->passAlignment(), 1505 AllocAlign); 1506 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1507 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1508 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1509 } 1510 1511 return; 1512 } 1513 1514 // Otherwise, we need to save all this stuff. 1515 DominatingValue<RValue>::saved_type SavedNewPtr = 1516 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1517 DominatingValue<RValue>::saved_type SavedAllocSize = 1518 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1519 1520 struct ConditionalCleanupTraits { 1521 typedef DominatingValue<RValue>::saved_type ValueTy; 1522 typedef DominatingValue<RValue>::saved_type RValueTy; 1523 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1524 return V.restore(CGF); 1525 } 1526 }; 1527 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1528 1529 ConditionalCleanup *Cleanup = CGF.EHStack 1530 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1531 E->getNumPlacementArgs(), 1532 E->getOperatorDelete(), 1533 SavedNewPtr, 1534 SavedAllocSize, 1535 E->passAlignment(), 1536 AllocAlign); 1537 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1538 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1539 Cleanup->setPlacementArg( 1540 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1541 } 1542 1543 CGF.initFullExprCleanup(); 1544 } 1545 1546 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1547 // The element type being allocated. 1548 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1549 1550 // 1. Build a call to the allocation function. 1551 FunctionDecl *allocator = E->getOperatorNew(); 1552 1553 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1554 unsigned minElements = 0; 1555 if (E->isArray() && E->hasInitializer()) { 1556 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1557 if (ILE && ILE->isStringLiteralInit()) 1558 minElements = 1559 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1560 ->getSize().getZExtValue(); 1561 else if (ILE) 1562 minElements = ILE->getNumInits(); 1563 } 1564 1565 llvm::Value *numElements = nullptr; 1566 llvm::Value *allocSizeWithoutCookie = nullptr; 1567 llvm::Value *allocSize = 1568 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1569 allocSizeWithoutCookie); 1570 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1571 1572 // Emit the allocation call. If the allocator is a global placement 1573 // operator, just "inline" it directly. 1574 Address allocation = Address::invalid(); 1575 CallArgList allocatorArgs; 1576 if (allocator->isReservedGlobalPlacementOperator()) { 1577 assert(E->getNumPlacementArgs() == 1); 1578 const Expr *arg = *E->placement_arguments().begin(); 1579 1580 LValueBaseInfo BaseInfo; 1581 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1582 1583 // The pointer expression will, in many cases, be an opaque void*. 1584 // In these cases, discard the computed alignment and use the 1585 // formal alignment of the allocated type. 1586 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1587 allocation = Address(allocation.getPointer(), allocAlign); 1588 1589 // Set up allocatorArgs for the call to operator delete if it's not 1590 // the reserved global operator. 1591 if (E->getOperatorDelete() && 1592 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1593 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1594 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1595 } 1596 1597 } else { 1598 const FunctionProtoType *allocatorType = 1599 allocator->getType()->castAs<FunctionProtoType>(); 1600 unsigned ParamsToSkip = 0; 1601 1602 // The allocation size is the first argument. 1603 QualType sizeType = getContext().getSizeType(); 1604 allocatorArgs.add(RValue::get(allocSize), sizeType); 1605 ++ParamsToSkip; 1606 1607 if (allocSize != allocSizeWithoutCookie) { 1608 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1609 allocAlign = std::max(allocAlign, cookieAlign); 1610 } 1611 1612 // The allocation alignment may be passed as the second argument. 1613 if (E->passAlignment()) { 1614 QualType AlignValT = sizeType; 1615 if (allocatorType->getNumParams() > 1) { 1616 AlignValT = allocatorType->getParamType(1); 1617 assert(getContext().hasSameUnqualifiedType( 1618 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1619 sizeType) && 1620 "wrong type for alignment parameter"); 1621 ++ParamsToSkip; 1622 } else { 1623 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1624 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1625 } 1626 allocatorArgs.add( 1627 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1628 AlignValT); 1629 } 1630 1631 // FIXME: Why do we not pass a CalleeDecl here? 1632 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1633 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1634 1635 RValue RV = 1636 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1637 1638 // If this was a call to a global replaceable allocation function that does 1639 // not take an alignment argument, the allocator is known to produce 1640 // storage that's suitably aligned for any object that fits, up to a known 1641 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1642 CharUnits allocationAlign = allocAlign; 1643 if (!E->passAlignment() && 1644 allocator->isReplaceableGlobalAllocationFunction()) { 1645 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1646 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1647 allocationAlign = std::max( 1648 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1649 } 1650 1651 allocation = Address(RV.getScalarVal(), allocationAlign); 1652 } 1653 1654 // Emit a null check on the allocation result if the allocation 1655 // function is allowed to return null (because it has a non-throwing 1656 // exception spec or is the reserved placement new) and we have an 1657 // interesting initializer. 1658 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1659 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1660 1661 llvm::BasicBlock *nullCheckBB = nullptr; 1662 llvm::BasicBlock *contBB = nullptr; 1663 1664 // The null-check means that the initializer is conditionally 1665 // evaluated. 1666 ConditionalEvaluation conditional(*this); 1667 1668 if (nullCheck) { 1669 conditional.begin(*this); 1670 1671 nullCheckBB = Builder.GetInsertBlock(); 1672 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1673 contBB = createBasicBlock("new.cont"); 1674 1675 llvm::Value *isNull = 1676 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1677 Builder.CreateCondBr(isNull, contBB, notNullBB); 1678 EmitBlock(notNullBB); 1679 } 1680 1681 // If there's an operator delete, enter a cleanup to call it if an 1682 // exception is thrown. 1683 EHScopeStack::stable_iterator operatorDeleteCleanup; 1684 llvm::Instruction *cleanupDominator = nullptr; 1685 if (E->getOperatorDelete() && 1686 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1687 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1688 allocatorArgs); 1689 operatorDeleteCleanup = EHStack.stable_begin(); 1690 cleanupDominator = Builder.CreateUnreachable(); 1691 } 1692 1693 assert((allocSize == allocSizeWithoutCookie) == 1694 CalculateCookiePadding(*this, E).isZero()); 1695 if (allocSize != allocSizeWithoutCookie) { 1696 assert(E->isArray()); 1697 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1698 numElements, 1699 E, allocType); 1700 } 1701 1702 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1703 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1704 1705 // Passing pointer through launder.invariant.group to avoid propagation of 1706 // vptrs information which may be included in previous type. 1707 // To not break LTO with different optimizations levels, we do it regardless 1708 // of optimization level. 1709 if (CGM.getCodeGenOpts().StrictVTablePointers && 1710 allocator->isReservedGlobalPlacementOperator()) 1711 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1712 result.getAlignment()); 1713 1714 // Emit sanitizer checks for pointer value now, so that in the case of an 1715 // array it was checked only once and not at each constructor call. 1716 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1717 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1718 result.getPointer(), allocType); 1719 1720 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1721 allocSizeWithoutCookie); 1722 if (E->isArray()) { 1723 // NewPtr is a pointer to the base element type. If we're 1724 // allocating an array of arrays, we'll need to cast back to the 1725 // array pointer type. 1726 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1727 if (result.getType() != resultType) 1728 result = Builder.CreateBitCast(result, resultType); 1729 } 1730 1731 // Deactivate the 'operator delete' cleanup if we finished 1732 // initialization. 1733 if (operatorDeleteCleanup.isValid()) { 1734 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1735 cleanupDominator->eraseFromParent(); 1736 } 1737 1738 llvm::Value *resultPtr = result.getPointer(); 1739 if (nullCheck) { 1740 conditional.end(*this); 1741 1742 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1743 EmitBlock(contBB); 1744 1745 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1746 PHI->addIncoming(resultPtr, notNullBB); 1747 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1748 nullCheckBB); 1749 1750 resultPtr = PHI; 1751 } 1752 1753 return resultPtr; 1754 } 1755 1756 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1757 llvm::Value *Ptr, QualType DeleteTy, 1758 llvm::Value *NumElements, 1759 CharUnits CookieSize) { 1760 assert((!NumElements && CookieSize.isZero()) || 1761 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1762 1763 const FunctionProtoType *DeleteFTy = 1764 DeleteFD->getType()->getAs<FunctionProtoType>(); 1765 1766 CallArgList DeleteArgs; 1767 1768 auto Params = getUsualDeleteParams(DeleteFD); 1769 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1770 1771 // Pass the pointer itself. 1772 QualType ArgTy = *ParamTypeIt++; 1773 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1774 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1775 1776 // Pass the std::destroying_delete tag if present. 1777 if (Params.DestroyingDelete) { 1778 QualType DDTag = *ParamTypeIt++; 1779 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1780 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1781 DeleteArgs.add(RValue::get(V), DDTag); 1782 } 1783 1784 // Pass the size if the delete function has a size_t parameter. 1785 if (Params.Size) { 1786 QualType SizeType = *ParamTypeIt++; 1787 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1788 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1789 DeleteTypeSize.getQuantity()); 1790 1791 // For array new, multiply by the number of elements. 1792 if (NumElements) 1793 Size = Builder.CreateMul(Size, NumElements); 1794 1795 // If there is a cookie, add the cookie size. 1796 if (!CookieSize.isZero()) 1797 Size = Builder.CreateAdd( 1798 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1799 1800 DeleteArgs.add(RValue::get(Size), SizeType); 1801 } 1802 1803 // Pass the alignment if the delete function has an align_val_t parameter. 1804 if (Params.Alignment) { 1805 QualType AlignValType = *ParamTypeIt++; 1806 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1807 getContext().getTypeAlignIfKnown(DeleteTy)); 1808 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1809 DeleteTypeAlign.getQuantity()); 1810 DeleteArgs.add(RValue::get(Align), AlignValType); 1811 } 1812 1813 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1814 "unknown parameter to usual delete function"); 1815 1816 // Emit the call to delete. 1817 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1818 } 1819 1820 namespace { 1821 /// Calls the given 'operator delete' on a single object. 1822 struct CallObjectDelete final : EHScopeStack::Cleanup { 1823 llvm::Value *Ptr; 1824 const FunctionDecl *OperatorDelete; 1825 QualType ElementType; 1826 1827 CallObjectDelete(llvm::Value *Ptr, 1828 const FunctionDecl *OperatorDelete, 1829 QualType ElementType) 1830 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1831 1832 void Emit(CodeGenFunction &CGF, Flags flags) override { 1833 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1834 } 1835 }; 1836 } 1837 1838 void 1839 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1840 llvm::Value *CompletePtr, 1841 QualType ElementType) { 1842 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1843 OperatorDelete, ElementType); 1844 } 1845 1846 /// Emit the code for deleting a single object with a destroying operator 1847 /// delete. If the element type has a non-virtual destructor, Ptr has already 1848 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1849 /// Ptr points to an object of the static type. 1850 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1851 const CXXDeleteExpr *DE, Address Ptr, 1852 QualType ElementType) { 1853 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1854 if (Dtor && Dtor->isVirtual()) 1855 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1856 Dtor); 1857 else 1858 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1859 } 1860 1861 /// Emit the code for deleting a single object. 1862 static void EmitObjectDelete(CodeGenFunction &CGF, 1863 const CXXDeleteExpr *DE, 1864 Address Ptr, 1865 QualType ElementType) { 1866 // C++11 [expr.delete]p3: 1867 // If the static type of the object to be deleted is different from its 1868 // dynamic type, the static type shall be a base class of the dynamic type 1869 // of the object to be deleted and the static type shall have a virtual 1870 // destructor or the behavior is undefined. 1871 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1872 DE->getExprLoc(), Ptr.getPointer(), 1873 ElementType); 1874 1875 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1876 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1877 1878 // Find the destructor for the type, if applicable. If the 1879 // destructor is virtual, we'll just emit the vcall and return. 1880 const CXXDestructorDecl *Dtor = nullptr; 1881 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1882 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1883 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1884 Dtor = RD->getDestructor(); 1885 1886 if (Dtor->isVirtual()) { 1887 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1888 Dtor); 1889 return; 1890 } 1891 } 1892 } 1893 1894 // Make sure that we call delete even if the dtor throws. 1895 // This doesn't have to a conditional cleanup because we're going 1896 // to pop it off in a second. 1897 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1898 Ptr.getPointer(), 1899 OperatorDelete, ElementType); 1900 1901 if (Dtor) 1902 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1903 /*ForVirtualBase=*/false, 1904 /*Delegating=*/false, 1905 Ptr); 1906 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1907 switch (Lifetime) { 1908 case Qualifiers::OCL_None: 1909 case Qualifiers::OCL_ExplicitNone: 1910 case Qualifiers::OCL_Autoreleasing: 1911 break; 1912 1913 case Qualifiers::OCL_Strong: 1914 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1915 break; 1916 1917 case Qualifiers::OCL_Weak: 1918 CGF.EmitARCDestroyWeak(Ptr); 1919 break; 1920 } 1921 } 1922 1923 CGF.PopCleanupBlock(); 1924 } 1925 1926 namespace { 1927 /// Calls the given 'operator delete' on an array of objects. 1928 struct CallArrayDelete final : EHScopeStack::Cleanup { 1929 llvm::Value *Ptr; 1930 const FunctionDecl *OperatorDelete; 1931 llvm::Value *NumElements; 1932 QualType ElementType; 1933 CharUnits CookieSize; 1934 1935 CallArrayDelete(llvm::Value *Ptr, 1936 const FunctionDecl *OperatorDelete, 1937 llvm::Value *NumElements, 1938 QualType ElementType, 1939 CharUnits CookieSize) 1940 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1941 ElementType(ElementType), CookieSize(CookieSize) {} 1942 1943 void Emit(CodeGenFunction &CGF, Flags flags) override { 1944 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1945 CookieSize); 1946 } 1947 }; 1948 } 1949 1950 /// Emit the code for deleting an array of objects. 1951 static void EmitArrayDelete(CodeGenFunction &CGF, 1952 const CXXDeleteExpr *E, 1953 Address deletedPtr, 1954 QualType elementType) { 1955 llvm::Value *numElements = nullptr; 1956 llvm::Value *allocatedPtr = nullptr; 1957 CharUnits cookieSize; 1958 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1959 numElements, allocatedPtr, cookieSize); 1960 1961 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1962 1963 // Make sure that we call delete even if one of the dtors throws. 1964 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1965 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1966 allocatedPtr, operatorDelete, 1967 numElements, elementType, 1968 cookieSize); 1969 1970 // Destroy the elements. 1971 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1972 assert(numElements && "no element count for a type with a destructor!"); 1973 1974 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1975 CharUnits elementAlign = 1976 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1977 1978 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1979 llvm::Value *arrayEnd = 1980 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1981 1982 // Note that it is legal to allocate a zero-length array, and we 1983 // can never fold the check away because the length should always 1984 // come from a cookie. 1985 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1986 CGF.getDestroyer(dtorKind), 1987 /*checkZeroLength*/ true, 1988 CGF.needsEHCleanup(dtorKind)); 1989 } 1990 1991 // Pop the cleanup block. 1992 CGF.PopCleanupBlock(); 1993 } 1994 1995 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1996 const Expr *Arg = E->getArgument(); 1997 Address Ptr = EmitPointerWithAlignment(Arg); 1998 1999 // Null check the pointer. 2000 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2001 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2002 2003 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2004 2005 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2006 EmitBlock(DeleteNotNull); 2007 2008 QualType DeleteTy = E->getDestroyedType(); 2009 2010 // A destroying operator delete overrides the entire operation of the 2011 // delete expression. 2012 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2013 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2014 EmitBlock(DeleteEnd); 2015 return; 2016 } 2017 2018 // We might be deleting a pointer to array. If so, GEP down to the 2019 // first non-array element. 2020 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2021 if (DeleteTy->isConstantArrayType()) { 2022 llvm::Value *Zero = Builder.getInt32(0); 2023 SmallVector<llvm::Value*,8> GEP; 2024 2025 GEP.push_back(Zero); // point at the outermost array 2026 2027 // For each layer of array type we're pointing at: 2028 while (const ConstantArrayType *Arr 2029 = getContext().getAsConstantArrayType(DeleteTy)) { 2030 // 1. Unpeel the array type. 2031 DeleteTy = Arr->getElementType(); 2032 2033 // 2. GEP to the first element of the array. 2034 GEP.push_back(Zero); 2035 } 2036 2037 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2038 Ptr.getAlignment()); 2039 } 2040 2041 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2042 2043 if (E->isArrayForm()) { 2044 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2045 } else { 2046 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2047 } 2048 2049 EmitBlock(DeleteEnd); 2050 } 2051 2052 static bool isGLValueFromPointerDeref(const Expr *E) { 2053 E = E->IgnoreParens(); 2054 2055 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2056 if (!CE->getSubExpr()->isGLValue()) 2057 return false; 2058 return isGLValueFromPointerDeref(CE->getSubExpr()); 2059 } 2060 2061 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2062 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2063 2064 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2065 if (BO->getOpcode() == BO_Comma) 2066 return isGLValueFromPointerDeref(BO->getRHS()); 2067 2068 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2069 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2070 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2071 2072 // C++11 [expr.sub]p1: 2073 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2074 if (isa<ArraySubscriptExpr>(E)) 2075 return true; 2076 2077 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2078 if (UO->getOpcode() == UO_Deref) 2079 return true; 2080 2081 return false; 2082 } 2083 2084 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2085 llvm::Type *StdTypeInfoPtrTy) { 2086 // Get the vtable pointer. 2087 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2088 2089 QualType SrcRecordTy = E->getType(); 2090 2091 // C++ [class.cdtor]p4: 2092 // If the operand of typeid refers to the object under construction or 2093 // destruction and the static type of the operand is neither the constructor 2094 // or destructor’s class nor one of its bases, the behavior is undefined. 2095 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2096 ThisPtr.getPointer(), SrcRecordTy); 2097 2098 // C++ [expr.typeid]p2: 2099 // If the glvalue expression is obtained by applying the unary * operator to 2100 // a pointer and the pointer is a null pointer value, the typeid expression 2101 // throws the std::bad_typeid exception. 2102 // 2103 // However, this paragraph's intent is not clear. We choose a very generous 2104 // interpretation which implores us to consider comma operators, conditional 2105 // operators, parentheses and other such constructs. 2106 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2107 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2108 llvm::BasicBlock *BadTypeidBlock = 2109 CGF.createBasicBlock("typeid.bad_typeid"); 2110 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2111 2112 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2113 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2114 2115 CGF.EmitBlock(BadTypeidBlock); 2116 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2117 CGF.EmitBlock(EndBlock); 2118 } 2119 2120 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2121 StdTypeInfoPtrTy); 2122 } 2123 2124 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2125 llvm::Type *StdTypeInfoPtrTy = 2126 ConvertType(E->getType())->getPointerTo(); 2127 2128 if (E->isTypeOperand()) { 2129 llvm::Constant *TypeInfo = 2130 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2131 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2132 } 2133 2134 // C++ [expr.typeid]p2: 2135 // When typeid is applied to a glvalue expression whose type is a 2136 // polymorphic class type, the result refers to a std::type_info object 2137 // representing the type of the most derived object (that is, the dynamic 2138 // type) to which the glvalue refers. 2139 if (E->isPotentiallyEvaluated()) 2140 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2141 StdTypeInfoPtrTy); 2142 2143 QualType OperandTy = E->getExprOperand()->getType(); 2144 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2145 StdTypeInfoPtrTy); 2146 } 2147 2148 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2149 QualType DestTy) { 2150 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2151 if (DestTy->isPointerType()) 2152 return llvm::Constant::getNullValue(DestLTy); 2153 2154 /// C++ [expr.dynamic.cast]p9: 2155 /// A failed cast to reference type throws std::bad_cast 2156 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2157 return nullptr; 2158 2159 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2160 return llvm::UndefValue::get(DestLTy); 2161 } 2162 2163 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2164 const CXXDynamicCastExpr *DCE) { 2165 CGM.EmitExplicitCastExprType(DCE, this); 2166 QualType DestTy = DCE->getTypeAsWritten(); 2167 2168 QualType SrcTy = DCE->getSubExpr()->getType(); 2169 2170 // C++ [expr.dynamic.cast]p7: 2171 // If T is "pointer to cv void," then the result is a pointer to the most 2172 // derived object pointed to by v. 2173 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2174 2175 bool isDynamicCastToVoid; 2176 QualType SrcRecordTy; 2177 QualType DestRecordTy; 2178 if (DestPTy) { 2179 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2180 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2181 DestRecordTy = DestPTy->getPointeeType(); 2182 } else { 2183 isDynamicCastToVoid = false; 2184 SrcRecordTy = SrcTy; 2185 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2186 } 2187 2188 // C++ [class.cdtor]p5: 2189 // If the operand of the dynamic_cast refers to the object under 2190 // construction or destruction and the static type of the operand is not a 2191 // pointer to or object of the constructor or destructor’s own class or one 2192 // of its bases, the dynamic_cast results in undefined behavior. 2193 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2194 SrcRecordTy); 2195 2196 if (DCE->isAlwaysNull()) 2197 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2198 return T; 2199 2200 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2201 2202 // C++ [expr.dynamic.cast]p4: 2203 // If the value of v is a null pointer value in the pointer case, the result 2204 // is the null pointer value of type T. 2205 bool ShouldNullCheckSrcValue = 2206 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2207 SrcRecordTy); 2208 2209 llvm::BasicBlock *CastNull = nullptr; 2210 llvm::BasicBlock *CastNotNull = nullptr; 2211 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2212 2213 if (ShouldNullCheckSrcValue) { 2214 CastNull = createBasicBlock("dynamic_cast.null"); 2215 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2216 2217 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2218 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2219 EmitBlock(CastNotNull); 2220 } 2221 2222 llvm::Value *Value; 2223 if (isDynamicCastToVoid) { 2224 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2225 DestTy); 2226 } else { 2227 assert(DestRecordTy->isRecordType() && 2228 "destination type must be a record type!"); 2229 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2230 DestTy, DestRecordTy, CastEnd); 2231 CastNotNull = Builder.GetInsertBlock(); 2232 } 2233 2234 if (ShouldNullCheckSrcValue) { 2235 EmitBranch(CastEnd); 2236 2237 EmitBlock(CastNull); 2238 EmitBranch(CastEnd); 2239 } 2240 2241 EmitBlock(CastEnd); 2242 2243 if (ShouldNullCheckSrcValue) { 2244 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2245 PHI->addIncoming(Value, CastNotNull); 2246 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2247 2248 Value = PHI; 2249 } 2250 2251 return Value; 2252 } 2253 2254 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2255 RunCleanupsScope Scope(*this); 2256 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2257 2258 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2259 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2260 e = E->capture_init_end(); 2261 i != e; ++i, ++CurField) { 2262 // Emit initialization 2263 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2264 if (CurField->hasCapturedVLAType()) { 2265 auto VAT = CurField->getCapturedVLAType(); 2266 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2267 } else { 2268 EmitInitializerForField(*CurField, LV, *i); 2269 } 2270 } 2271 } 2272