1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 32 isa<CXXOperatorCallExpr>(CE)); 33 assert(MD->isInstance() && 34 "Trying to emit a member or operator call expr on a static method!"); 35 36 // C++11 [class.mfct.non-static]p2: 37 // If a non-static member function of a class X is called for an object that 38 // is not of type X, or of a type derived from X, the behavior is undefined. 39 SourceLocation CallLoc; 40 if (CE) 41 CallLoc = CE->getExprLoc(); 42 CGF.EmitTypeCheck( 43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 44 : CodeGenFunction::TCK_MemberCall, 45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 if (CE) { 60 // Special case: skip first argument of CXXOperatorCall (it is "this"). 61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 62 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 63 CE->getDirectCallee()); 64 } else { 65 assert( 66 FPT->getNumParams() == 0 && 67 "No CallExpr specified for function with non-zero number of arguments"); 68 } 69 return required; 70 } 71 72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 80 Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXStructorCall( 86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 88 const CallExpr *CE, StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 91 ImplicitParam, ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 93 Callee, ReturnValue, Args, MD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 Address This = Address::invalid(); 170 if (IsArrow) 171 This = EmitPointerWithAlignment(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 189 EmitAggregateAssign(This, RHS, CE->getType()); 190 return RValue::get(This.getPointer()); 191 } 192 193 if (isa<CXXConstructorDecl>(MD) && 194 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 195 // Trivial move and copy ctor are the same. 196 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 197 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 198 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 199 return RValue::get(This.getPointer()); 200 } 201 llvm_unreachable("unknown trivial member function"); 202 } 203 } 204 205 // Compute the function type we're calling. 206 const CXXMethodDecl *CalleeDecl = 207 DevirtualizedMethod ? DevirtualizedMethod : MD; 208 const CGFunctionInfo *FInfo = nullptr; 209 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 210 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 211 Dtor, StructorType::Complete); 212 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 213 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 214 Ctor, StructorType::Complete); 215 else 216 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 217 218 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 219 220 // C++ [class.virtual]p12: 221 // Explicit qualification with the scope operator (5.1) suppresses the 222 // virtual call mechanism. 223 // 224 // We also don't emit a virtual call if the base expression has a record type 225 // because then we know what the type is. 226 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 227 llvm::Value *Callee; 228 229 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 230 assert(CE->arg_begin() == CE->arg_end() && 231 "Destructor shouldn't have explicit parameters"); 232 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 233 if (UseVirtualCall) { 234 CGM.getCXXABI().EmitVirtualDestructorCall( 235 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 236 } else { 237 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 238 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 239 else if (!DevirtualizedMethod) 240 Callee = 241 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 242 else { 243 const CXXDestructorDecl *DDtor = 244 cast<CXXDestructorDecl>(DevirtualizedMethod); 245 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 246 } 247 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 248 /*ImplicitParam=*/nullptr, QualType(), CE); 249 } 250 return RValue::get(nullptr); 251 } 252 253 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 254 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 255 } else if (UseVirtualCall) { 256 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 257 CE->getLocStart()); 258 } else { 259 if (SanOpts.has(SanitizerKind::CFINVCall) && 260 MD->getParent()->isDynamicClass()) { 261 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 262 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 263 CE->getLocStart()); 264 } 265 266 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 267 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 268 else if (!DevirtualizedMethod) 269 Callee = CGM.GetAddrOfFunction(MD, Ty); 270 else { 271 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 272 } 273 } 274 275 if (MD->isVirtual()) { 276 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 277 *this, MD, This, UseVirtualCall); 278 } 279 280 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 281 /*ImplicitParam=*/nullptr, QualType(), CE); 282 } 283 284 RValue 285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 286 ReturnValueSlot ReturnValue) { 287 const BinaryOperator *BO = 288 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 289 const Expr *BaseExpr = BO->getLHS(); 290 const Expr *MemFnExpr = BO->getRHS(); 291 292 const MemberPointerType *MPT = 293 MemFnExpr->getType()->castAs<MemberPointerType>(); 294 295 const FunctionProtoType *FPT = 296 MPT->getPointeeType()->castAs<FunctionProtoType>(); 297 const CXXRecordDecl *RD = 298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 299 300 // Get the member function pointer. 301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 302 303 // Emit the 'this' pointer. 304 Address This = Address::invalid(); 305 if (BO->getOpcode() == BO_PtrMemI) 306 This = EmitPointerWithAlignment(BaseExpr); 307 else 308 This = EmitLValue(BaseExpr).getAddress(); 309 310 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 311 QualType(MPT->getClass(), 0)); 312 313 // Ask the ABI to load the callee. Note that This is modified. 314 llvm::Value *ThisPtrForCall = nullptr; 315 llvm::Value *Callee = 316 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 317 ThisPtrForCall, MemFnPtr, MPT); 318 319 CallArgList Args; 320 321 QualType ThisType = 322 getContext().getPointerType(getContext().getTagDeclType(RD)); 323 324 // Push the this ptr. 325 Args.add(RValue::get(ThisPtrForCall), ThisType); 326 327 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 328 329 // And the rest of the call args 330 EmitCallArgs(Args, FPT, E->arguments(), E->getDirectCallee()); 331 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 332 Callee, ReturnValue, Args); 333 } 334 335 RValue 336 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 337 const CXXMethodDecl *MD, 338 ReturnValueSlot ReturnValue) { 339 assert(MD->isInstance() && 340 "Trying to emit a member call expr on a static method!"); 341 return EmitCXXMemberOrOperatorMemberCallExpr( 342 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 343 /*IsArrow=*/false, E->getArg(0)); 344 } 345 346 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 347 ReturnValueSlot ReturnValue) { 348 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 349 } 350 351 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 352 Address DestPtr, 353 const CXXRecordDecl *Base) { 354 if (Base->isEmpty()) 355 return; 356 357 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 358 359 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 360 CharUnits NVSize = Layout.getNonVirtualSize(); 361 362 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 363 // present, they are initialized by the most derived class before calling the 364 // constructor. 365 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 366 Stores.emplace_back(CharUnits::Zero(), NVSize); 367 368 // Each store is split by the existence of a vbptr. 369 CharUnits VBPtrWidth = CGF.getPointerSize(); 370 std::vector<CharUnits> VBPtrOffsets = 371 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 372 for (CharUnits VBPtrOffset : VBPtrOffsets) { 373 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 374 CharUnits LastStoreOffset = LastStore.first; 375 CharUnits LastStoreSize = LastStore.second; 376 377 CharUnits SplitBeforeOffset = LastStoreOffset; 378 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 379 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 380 if (!SplitBeforeSize.isZero()) 381 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 382 383 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 384 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 385 assert(!SplitAfterSize.isNegative() && "negative store size!"); 386 if (!SplitAfterSize.isZero()) 387 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 388 } 389 390 // If the type contains a pointer to data member we can't memset it to zero. 391 // Instead, create a null constant and copy it to the destination. 392 // TODO: there are other patterns besides zero that we can usefully memset, 393 // like -1, which happens to be the pattern used by member-pointers. 394 // TODO: isZeroInitializable can be over-conservative in the case where a 395 // virtual base contains a member pointer. 396 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 397 if (!NullConstantForBase->isNullValue()) { 398 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 399 CGF.CGM.getModule(), NullConstantForBase->getType(), 400 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 401 NullConstantForBase, Twine()); 402 403 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 404 DestPtr.getAlignment()); 405 NullVariable->setAlignment(Align.getQuantity()); 406 407 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 408 409 // Get and call the appropriate llvm.memcpy overload. 410 for (std::pair<CharUnits, CharUnits> Store : Stores) { 411 CharUnits StoreOffset = Store.first; 412 CharUnits StoreSize = Store.second; 413 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 414 CGF.Builder.CreateMemCpy( 415 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 416 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 417 StoreSizeVal); 418 } 419 420 // Otherwise, just memset the whole thing to zero. This is legal 421 // because in LLVM, all default initializers (other than the ones we just 422 // handled above) are guaranteed to have a bit pattern of all zeros. 423 } else { 424 for (std::pair<CharUnits, CharUnits> Store : Stores) { 425 CharUnits StoreOffset = Store.first; 426 CharUnits StoreSize = Store.second; 427 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 428 CGF.Builder.CreateMemSet( 429 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 430 CGF.Builder.getInt8(0), StoreSizeVal); 431 } 432 } 433 } 434 435 void 436 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 437 AggValueSlot Dest) { 438 assert(!Dest.isIgnored() && "Must have a destination!"); 439 const CXXConstructorDecl *CD = E->getConstructor(); 440 441 // If we require zero initialization before (or instead of) calling the 442 // constructor, as can be the case with a non-user-provided default 443 // constructor, emit the zero initialization now, unless destination is 444 // already zeroed. 445 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 446 switch (E->getConstructionKind()) { 447 case CXXConstructExpr::CK_Delegating: 448 case CXXConstructExpr::CK_Complete: 449 EmitNullInitialization(Dest.getAddress(), E->getType()); 450 break; 451 case CXXConstructExpr::CK_VirtualBase: 452 case CXXConstructExpr::CK_NonVirtualBase: 453 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 454 CD->getParent()); 455 break; 456 } 457 } 458 459 // If this is a call to a trivial default constructor, do nothing. 460 if (CD->isTrivial() && CD->isDefaultConstructor()) 461 return; 462 463 // Elide the constructor if we're constructing from a temporary. 464 // The temporary check is required because Sema sets this on NRVO 465 // returns. 466 if (getLangOpts().ElideConstructors && E->isElidable()) { 467 assert(getContext().hasSameUnqualifiedType(E->getType(), 468 E->getArg(0)->getType())); 469 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 470 EmitAggExpr(E->getArg(0), Dest); 471 return; 472 } 473 } 474 475 if (const ConstantArrayType *arrayType 476 = getContext().getAsConstantArrayType(E->getType())) { 477 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 478 } else { 479 CXXCtorType Type = Ctor_Complete; 480 bool ForVirtualBase = false; 481 bool Delegating = false; 482 483 switch (E->getConstructionKind()) { 484 case CXXConstructExpr::CK_Delegating: 485 // We should be emitting a constructor; GlobalDecl will assert this 486 Type = CurGD.getCtorType(); 487 Delegating = true; 488 break; 489 490 case CXXConstructExpr::CK_Complete: 491 Type = Ctor_Complete; 492 break; 493 494 case CXXConstructExpr::CK_VirtualBase: 495 ForVirtualBase = true; 496 // fall-through 497 498 case CXXConstructExpr::CK_NonVirtualBase: 499 Type = Ctor_Base; 500 } 501 502 // Call the constructor. 503 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 504 Dest.getAddress(), E); 505 } 506 } 507 508 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 509 const Expr *Exp) { 510 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 511 Exp = E->getSubExpr(); 512 assert(isa<CXXConstructExpr>(Exp) && 513 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 514 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 515 const CXXConstructorDecl *CD = E->getConstructor(); 516 RunCleanupsScope Scope(*this); 517 518 // If we require zero initialization before (or instead of) calling the 519 // constructor, as can be the case with a non-user-provided default 520 // constructor, emit the zero initialization now. 521 // FIXME. Do I still need this for a copy ctor synthesis? 522 if (E->requiresZeroInitialization()) 523 EmitNullInitialization(Dest, E->getType()); 524 525 assert(!getContext().getAsConstantArrayType(E->getType()) 526 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 527 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 528 } 529 530 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 531 const CXXNewExpr *E) { 532 if (!E->isArray()) 533 return CharUnits::Zero(); 534 535 // No cookie is required if the operator new[] being used is the 536 // reserved placement operator new[]. 537 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 538 return CharUnits::Zero(); 539 540 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 541 } 542 543 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 544 const CXXNewExpr *e, 545 unsigned minElements, 546 llvm::Value *&numElements, 547 llvm::Value *&sizeWithoutCookie) { 548 QualType type = e->getAllocatedType(); 549 550 if (!e->isArray()) { 551 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 552 sizeWithoutCookie 553 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 554 return sizeWithoutCookie; 555 } 556 557 // The width of size_t. 558 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 559 560 // Figure out the cookie size. 561 llvm::APInt cookieSize(sizeWidth, 562 CalculateCookiePadding(CGF, e).getQuantity()); 563 564 // Emit the array size expression. 565 // We multiply the size of all dimensions for NumElements. 566 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 567 numElements = CGF.EmitScalarExpr(e->getArraySize()); 568 assert(isa<llvm::IntegerType>(numElements->getType())); 569 570 // The number of elements can be have an arbitrary integer type; 571 // essentially, we need to multiply it by a constant factor, add a 572 // cookie size, and verify that the result is representable as a 573 // size_t. That's just a gloss, though, and it's wrong in one 574 // important way: if the count is negative, it's an error even if 575 // the cookie size would bring the total size >= 0. 576 bool isSigned 577 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 578 llvm::IntegerType *numElementsType 579 = cast<llvm::IntegerType>(numElements->getType()); 580 unsigned numElementsWidth = numElementsType->getBitWidth(); 581 582 // Compute the constant factor. 583 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 584 while (const ConstantArrayType *CAT 585 = CGF.getContext().getAsConstantArrayType(type)) { 586 type = CAT->getElementType(); 587 arraySizeMultiplier *= CAT->getSize(); 588 } 589 590 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 591 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 592 typeSizeMultiplier *= arraySizeMultiplier; 593 594 // This will be a size_t. 595 llvm::Value *size; 596 597 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 598 // Don't bloat the -O0 code. 599 if (llvm::ConstantInt *numElementsC = 600 dyn_cast<llvm::ConstantInt>(numElements)) { 601 const llvm::APInt &count = numElementsC->getValue(); 602 603 bool hasAnyOverflow = false; 604 605 // If 'count' was a negative number, it's an overflow. 606 if (isSigned && count.isNegative()) 607 hasAnyOverflow = true; 608 609 // We want to do all this arithmetic in size_t. If numElements is 610 // wider than that, check whether it's already too big, and if so, 611 // overflow. 612 else if (numElementsWidth > sizeWidth && 613 numElementsWidth - sizeWidth > count.countLeadingZeros()) 614 hasAnyOverflow = true; 615 616 // Okay, compute a count at the right width. 617 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 618 619 // If there is a brace-initializer, we cannot allocate fewer elements than 620 // there are initializers. If we do, that's treated like an overflow. 621 if (adjustedCount.ult(minElements)) 622 hasAnyOverflow = true; 623 624 // Scale numElements by that. This might overflow, but we don't 625 // care because it only overflows if allocationSize does, too, and 626 // if that overflows then we shouldn't use this. 627 numElements = llvm::ConstantInt::get(CGF.SizeTy, 628 adjustedCount * arraySizeMultiplier); 629 630 // Compute the size before cookie, and track whether it overflowed. 631 bool overflow; 632 llvm::APInt allocationSize 633 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 634 hasAnyOverflow |= overflow; 635 636 // Add in the cookie, and check whether it's overflowed. 637 if (cookieSize != 0) { 638 // Save the current size without a cookie. This shouldn't be 639 // used if there was overflow. 640 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 641 642 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 643 hasAnyOverflow |= overflow; 644 } 645 646 // On overflow, produce a -1 so operator new will fail. 647 if (hasAnyOverflow) { 648 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 649 } else { 650 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 651 } 652 653 // Otherwise, we might need to use the overflow intrinsics. 654 } else { 655 // There are up to five conditions we need to test for: 656 // 1) if isSigned, we need to check whether numElements is negative; 657 // 2) if numElementsWidth > sizeWidth, we need to check whether 658 // numElements is larger than something representable in size_t; 659 // 3) if minElements > 0, we need to check whether numElements is smaller 660 // than that. 661 // 4) we need to compute 662 // sizeWithoutCookie := numElements * typeSizeMultiplier 663 // and check whether it overflows; and 664 // 5) if we need a cookie, we need to compute 665 // size := sizeWithoutCookie + cookieSize 666 // and check whether it overflows. 667 668 llvm::Value *hasOverflow = nullptr; 669 670 // If numElementsWidth > sizeWidth, then one way or another, we're 671 // going to have to do a comparison for (2), and this happens to 672 // take care of (1), too. 673 if (numElementsWidth > sizeWidth) { 674 llvm::APInt threshold(numElementsWidth, 1); 675 threshold <<= sizeWidth; 676 677 llvm::Value *thresholdV 678 = llvm::ConstantInt::get(numElementsType, threshold); 679 680 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 681 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 682 683 // Otherwise, if we're signed, we want to sext up to size_t. 684 } else if (isSigned) { 685 if (numElementsWidth < sizeWidth) 686 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 687 688 // If there's a non-1 type size multiplier, then we can do the 689 // signedness check at the same time as we do the multiply 690 // because a negative number times anything will cause an 691 // unsigned overflow. Otherwise, we have to do it here. But at least 692 // in this case, we can subsume the >= minElements check. 693 if (typeSizeMultiplier == 1) 694 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 695 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 696 697 // Otherwise, zext up to size_t if necessary. 698 } else if (numElementsWidth < sizeWidth) { 699 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 700 } 701 702 assert(numElements->getType() == CGF.SizeTy); 703 704 if (minElements) { 705 // Don't allow allocation of fewer elements than we have initializers. 706 if (!hasOverflow) { 707 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 708 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 709 } else if (numElementsWidth > sizeWidth) { 710 // The other existing overflow subsumes this check. 711 // We do an unsigned comparison, since any signed value < -1 is 712 // taken care of either above or below. 713 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 714 CGF.Builder.CreateICmpULT(numElements, 715 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 716 } 717 } 718 719 size = numElements; 720 721 // Multiply by the type size if necessary. This multiplier 722 // includes all the factors for nested arrays. 723 // 724 // This step also causes numElements to be scaled up by the 725 // nested-array factor if necessary. Overflow on this computation 726 // can be ignored because the result shouldn't be used if 727 // allocation fails. 728 if (typeSizeMultiplier != 1) { 729 llvm::Value *umul_with_overflow 730 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 731 732 llvm::Value *tsmV = 733 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 734 llvm::Value *result = 735 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 736 737 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 738 if (hasOverflow) 739 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 740 else 741 hasOverflow = overflowed; 742 743 size = CGF.Builder.CreateExtractValue(result, 0); 744 745 // Also scale up numElements by the array size multiplier. 746 if (arraySizeMultiplier != 1) { 747 // If the base element type size is 1, then we can re-use the 748 // multiply we just did. 749 if (typeSize.isOne()) { 750 assert(arraySizeMultiplier == typeSizeMultiplier); 751 numElements = size; 752 753 // Otherwise we need a separate multiply. 754 } else { 755 llvm::Value *asmV = 756 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 757 numElements = CGF.Builder.CreateMul(numElements, asmV); 758 } 759 } 760 } else { 761 // numElements doesn't need to be scaled. 762 assert(arraySizeMultiplier == 1); 763 } 764 765 // Add in the cookie size if necessary. 766 if (cookieSize != 0) { 767 sizeWithoutCookie = size; 768 769 llvm::Value *uadd_with_overflow 770 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 771 772 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 773 llvm::Value *result = 774 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 775 776 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 777 if (hasOverflow) 778 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 779 else 780 hasOverflow = overflowed; 781 782 size = CGF.Builder.CreateExtractValue(result, 0); 783 } 784 785 // If we had any possibility of dynamic overflow, make a select to 786 // overwrite 'size' with an all-ones value, which should cause 787 // operator new to throw. 788 if (hasOverflow) 789 size = CGF.Builder.CreateSelect(hasOverflow, 790 llvm::Constant::getAllOnesValue(CGF.SizeTy), 791 size); 792 } 793 794 if (cookieSize == 0) 795 sizeWithoutCookie = size; 796 else 797 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 798 799 return size; 800 } 801 802 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 803 QualType AllocType, Address NewPtr) { 804 // FIXME: Refactor with EmitExprAsInit. 805 switch (CGF.getEvaluationKind(AllocType)) { 806 case TEK_Scalar: 807 CGF.EmitScalarInit(Init, nullptr, 808 CGF.MakeAddrLValue(NewPtr, AllocType), false); 809 return; 810 case TEK_Complex: 811 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 812 /*isInit*/ true); 813 return; 814 case TEK_Aggregate: { 815 AggValueSlot Slot 816 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 817 AggValueSlot::IsDestructed, 818 AggValueSlot::DoesNotNeedGCBarriers, 819 AggValueSlot::IsNotAliased); 820 CGF.EmitAggExpr(Init, Slot); 821 return; 822 } 823 } 824 llvm_unreachable("bad evaluation kind"); 825 } 826 827 void CodeGenFunction::EmitNewArrayInitializer( 828 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 829 Address BeginPtr, llvm::Value *NumElements, 830 llvm::Value *AllocSizeWithoutCookie) { 831 // If we have a type with trivial initialization and no initializer, 832 // there's nothing to do. 833 if (!E->hasInitializer()) 834 return; 835 836 Address CurPtr = BeginPtr; 837 838 unsigned InitListElements = 0; 839 840 const Expr *Init = E->getInitializer(); 841 Address EndOfInit = Address::invalid(); 842 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 843 EHScopeStack::stable_iterator Cleanup; 844 llvm::Instruction *CleanupDominator = nullptr; 845 846 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 847 CharUnits ElementAlign = 848 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 849 850 // If the initializer is an initializer list, first do the explicit elements. 851 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 852 InitListElements = ILE->getNumInits(); 853 854 // If this is a multi-dimensional array new, we will initialize multiple 855 // elements with each init list element. 856 QualType AllocType = E->getAllocatedType(); 857 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 858 AllocType->getAsArrayTypeUnsafe())) { 859 ElementTy = ConvertTypeForMem(AllocType); 860 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 861 InitListElements *= getContext().getConstantArrayElementCount(CAT); 862 } 863 864 // Enter a partial-destruction Cleanup if necessary. 865 if (needsEHCleanup(DtorKind)) { 866 // In principle we could tell the Cleanup where we are more 867 // directly, but the control flow can get so varied here that it 868 // would actually be quite complex. Therefore we go through an 869 // alloca. 870 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 871 "array.init.end"); 872 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 873 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 874 ElementType, ElementAlign, 875 getDestroyer(DtorKind)); 876 Cleanup = EHStack.stable_begin(); 877 } 878 879 CharUnits StartAlign = CurPtr.getAlignment(); 880 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 881 // Tell the cleanup that it needs to destroy up to this 882 // element. TODO: some of these stores can be trivially 883 // observed to be unnecessary. 884 if (EndOfInit.isValid()) { 885 auto FinishedPtr = 886 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 887 Builder.CreateStore(FinishedPtr, EndOfInit); 888 } 889 // FIXME: If the last initializer is an incomplete initializer list for 890 // an array, and we have an array filler, we can fold together the two 891 // initialization loops. 892 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 893 ILE->getInit(i)->getType(), CurPtr); 894 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 895 Builder.getSize(1), 896 "array.exp.next"), 897 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 898 } 899 900 // The remaining elements are filled with the array filler expression. 901 Init = ILE->getArrayFiller(); 902 903 // Extract the initializer for the individual array elements by pulling 904 // out the array filler from all the nested initializer lists. This avoids 905 // generating a nested loop for the initialization. 906 while (Init && Init->getType()->isConstantArrayType()) { 907 auto *SubILE = dyn_cast<InitListExpr>(Init); 908 if (!SubILE) 909 break; 910 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 911 Init = SubILE->getArrayFiller(); 912 } 913 914 // Switch back to initializing one base element at a time. 915 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 916 } 917 918 // Attempt to perform zero-initialization using memset. 919 auto TryMemsetInitialization = [&]() -> bool { 920 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 921 // we can initialize with a memset to -1. 922 if (!CGM.getTypes().isZeroInitializable(ElementType)) 923 return false; 924 925 // Optimization: since zero initialization will just set the memory 926 // to all zeroes, generate a single memset to do it in one shot. 927 928 // Subtract out the size of any elements we've already initialized. 929 auto *RemainingSize = AllocSizeWithoutCookie; 930 if (InitListElements) { 931 // We know this can't overflow; we check this when doing the allocation. 932 auto *InitializedSize = llvm::ConstantInt::get( 933 RemainingSize->getType(), 934 getContext().getTypeSizeInChars(ElementType).getQuantity() * 935 InitListElements); 936 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 937 } 938 939 // Create the memset. 940 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 941 return true; 942 }; 943 944 // If all elements have already been initialized, skip any further 945 // initialization. 946 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 947 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 948 // If there was a Cleanup, deactivate it. 949 if (CleanupDominator) 950 DeactivateCleanupBlock(Cleanup, CleanupDominator); 951 return; 952 } 953 954 assert(Init && "have trailing elements to initialize but no initializer"); 955 956 // If this is a constructor call, try to optimize it out, and failing that 957 // emit a single loop to initialize all remaining elements. 958 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 959 CXXConstructorDecl *Ctor = CCE->getConstructor(); 960 if (Ctor->isTrivial()) { 961 // If new expression did not specify value-initialization, then there 962 // is no initialization. 963 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 964 return; 965 966 if (TryMemsetInitialization()) 967 return; 968 } 969 970 // Store the new Cleanup position for irregular Cleanups. 971 // 972 // FIXME: Share this cleanup with the constructor call emission rather than 973 // having it create a cleanup of its own. 974 if (EndOfInit.isValid()) 975 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 976 977 // Emit a constructor call loop to initialize the remaining elements. 978 if (InitListElements) 979 NumElements = Builder.CreateSub( 980 NumElements, 981 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 982 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 983 CCE->requiresZeroInitialization()); 984 return; 985 } 986 987 // If this is value-initialization, we can usually use memset. 988 ImplicitValueInitExpr IVIE(ElementType); 989 if (isa<ImplicitValueInitExpr>(Init)) { 990 if (TryMemsetInitialization()) 991 return; 992 993 // Switch to an ImplicitValueInitExpr for the element type. This handles 994 // only one case: multidimensional array new of pointers to members. In 995 // all other cases, we already have an initializer for the array element. 996 Init = &IVIE; 997 } 998 999 // At this point we should have found an initializer for the individual 1000 // elements of the array. 1001 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1002 "got wrong type of element to initialize"); 1003 1004 // If we have an empty initializer list, we can usually use memset. 1005 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1006 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1007 return; 1008 1009 // If we have a struct whose every field is value-initialized, we can 1010 // usually use memset. 1011 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1012 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1013 if (RType->getDecl()->isStruct()) { 1014 unsigned NumFields = 0; 1015 for (auto *Field : RType->getDecl()->fields()) 1016 if (!Field->isUnnamedBitfield()) 1017 ++NumFields; 1018 if (ILE->getNumInits() == NumFields) 1019 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1020 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1021 --NumFields; 1022 if (ILE->getNumInits() == NumFields && TryMemsetInitialization()) 1023 return; 1024 } 1025 } 1026 } 1027 1028 // Create the loop blocks. 1029 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1030 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1031 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1032 1033 // Find the end of the array, hoisted out of the loop. 1034 llvm::Value *EndPtr = 1035 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1036 1037 // If the number of elements isn't constant, we have to now check if there is 1038 // anything left to initialize. 1039 if (!ConstNum) { 1040 llvm::Value *IsEmpty = 1041 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1042 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1043 } 1044 1045 // Enter the loop. 1046 EmitBlock(LoopBB); 1047 1048 // Set up the current-element phi. 1049 llvm::PHINode *CurPtrPhi = 1050 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1051 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1052 1053 CurPtr = Address(CurPtrPhi, ElementAlign); 1054 1055 // Store the new Cleanup position for irregular Cleanups. 1056 if (EndOfInit.isValid()) 1057 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1058 1059 // Enter a partial-destruction Cleanup if necessary. 1060 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1061 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1062 ElementType, ElementAlign, 1063 getDestroyer(DtorKind)); 1064 Cleanup = EHStack.stable_begin(); 1065 CleanupDominator = Builder.CreateUnreachable(); 1066 } 1067 1068 // Emit the initializer into this element. 1069 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1070 1071 // Leave the Cleanup if we entered one. 1072 if (CleanupDominator) { 1073 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1074 CleanupDominator->eraseFromParent(); 1075 } 1076 1077 // Advance to the next element by adjusting the pointer type as necessary. 1078 llvm::Value *NextPtr = 1079 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1080 "array.next"); 1081 1082 // Check whether we've gotten to the end of the array and, if so, 1083 // exit the loop. 1084 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1085 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1086 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1087 1088 EmitBlock(ContBB); 1089 } 1090 1091 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1092 QualType ElementType, llvm::Type *ElementTy, 1093 Address NewPtr, llvm::Value *NumElements, 1094 llvm::Value *AllocSizeWithoutCookie) { 1095 ApplyDebugLocation DL(CGF, E); 1096 if (E->isArray()) 1097 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1098 AllocSizeWithoutCookie); 1099 else if (const Expr *Init = E->getInitializer()) 1100 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1101 } 1102 1103 /// Emit a call to an operator new or operator delete function, as implicitly 1104 /// created by new-expressions and delete-expressions. 1105 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1106 const FunctionDecl *Callee, 1107 const FunctionProtoType *CalleeType, 1108 const CallArgList &Args) { 1109 llvm::Instruction *CallOrInvoke; 1110 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1111 RValue RV = 1112 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1113 Args, CalleeType, /*chainCall=*/false), 1114 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1115 1116 /// C++1y [expr.new]p10: 1117 /// [In a new-expression,] an implementation is allowed to omit a call 1118 /// to a replaceable global allocation function. 1119 /// 1120 /// We model such elidable calls with the 'builtin' attribute. 1121 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1122 if (Callee->isReplaceableGlobalAllocationFunction() && 1123 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1124 // FIXME: Add addAttribute to CallSite. 1125 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1126 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1127 llvm::Attribute::Builtin); 1128 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1129 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1130 llvm::Attribute::Builtin); 1131 else 1132 llvm_unreachable("unexpected kind of call instruction"); 1133 } 1134 1135 return RV; 1136 } 1137 1138 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1139 const Expr *Arg, 1140 bool IsDelete) { 1141 CallArgList Args; 1142 const Stmt *ArgS = Arg; 1143 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1144 // Find the allocation or deallocation function that we're calling. 1145 ASTContext &Ctx = getContext(); 1146 DeclarationName Name = Ctx.DeclarationNames 1147 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1148 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1149 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1150 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1151 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1152 llvm_unreachable("predeclared global operator new/delete is missing"); 1153 } 1154 1155 namespace { 1156 /// A cleanup to call the given 'operator delete' function upon 1157 /// abnormal exit from a new expression. 1158 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1159 size_t NumPlacementArgs; 1160 const FunctionDecl *OperatorDelete; 1161 llvm::Value *Ptr; 1162 llvm::Value *AllocSize; 1163 1164 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1165 1166 public: 1167 static size_t getExtraSize(size_t NumPlacementArgs) { 1168 return NumPlacementArgs * sizeof(RValue); 1169 } 1170 1171 CallDeleteDuringNew(size_t NumPlacementArgs, 1172 const FunctionDecl *OperatorDelete, 1173 llvm::Value *Ptr, 1174 llvm::Value *AllocSize) 1175 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1176 Ptr(Ptr), AllocSize(AllocSize) {} 1177 1178 void setPlacementArg(unsigned I, RValue Arg) { 1179 assert(I < NumPlacementArgs && "index out of range"); 1180 getPlacementArgs()[I] = Arg; 1181 } 1182 1183 void Emit(CodeGenFunction &CGF, Flags flags) override { 1184 const FunctionProtoType *FPT 1185 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1186 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1187 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1188 1189 CallArgList DeleteArgs; 1190 1191 // The first argument is always a void*. 1192 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1193 DeleteArgs.add(RValue::get(Ptr), *AI++); 1194 1195 // A member 'operator delete' can take an extra 'size_t' argument. 1196 if (FPT->getNumParams() == NumPlacementArgs + 2) 1197 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1198 1199 // Pass the rest of the arguments, which must match exactly. 1200 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1201 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1202 1203 // Call 'operator delete'. 1204 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1205 } 1206 }; 1207 1208 /// A cleanup to call the given 'operator delete' function upon 1209 /// abnormal exit from a new expression when the new expression is 1210 /// conditional. 1211 class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup { 1212 size_t NumPlacementArgs; 1213 const FunctionDecl *OperatorDelete; 1214 DominatingValue<RValue>::saved_type Ptr; 1215 DominatingValue<RValue>::saved_type AllocSize; 1216 1217 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1218 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1219 } 1220 1221 public: 1222 static size_t getExtraSize(size_t NumPlacementArgs) { 1223 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1224 } 1225 1226 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1227 const FunctionDecl *OperatorDelete, 1228 DominatingValue<RValue>::saved_type Ptr, 1229 DominatingValue<RValue>::saved_type AllocSize) 1230 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1231 Ptr(Ptr), AllocSize(AllocSize) {} 1232 1233 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1234 assert(I < NumPlacementArgs && "index out of range"); 1235 getPlacementArgs()[I] = Arg; 1236 } 1237 1238 void Emit(CodeGenFunction &CGF, Flags flags) override { 1239 const FunctionProtoType *FPT 1240 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1241 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1242 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1243 1244 CallArgList DeleteArgs; 1245 1246 // The first argument is always a void*. 1247 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1248 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1249 1250 // A member 'operator delete' can take an extra 'size_t' argument. 1251 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1252 RValue RV = AllocSize.restore(CGF); 1253 DeleteArgs.add(RV, *AI++); 1254 } 1255 1256 // Pass the rest of the arguments, which must match exactly. 1257 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1258 RValue RV = getPlacementArgs()[I].restore(CGF); 1259 DeleteArgs.add(RV, *AI++); 1260 } 1261 1262 // Call 'operator delete'. 1263 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1264 } 1265 }; 1266 } 1267 1268 /// Enter a cleanup to call 'operator delete' if the initializer in a 1269 /// new-expression throws. 1270 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1271 const CXXNewExpr *E, 1272 Address NewPtr, 1273 llvm::Value *AllocSize, 1274 const CallArgList &NewArgs) { 1275 // If we're not inside a conditional branch, then the cleanup will 1276 // dominate and we can do the easier (and more efficient) thing. 1277 if (!CGF.isInConditionalBranch()) { 1278 CallDeleteDuringNew *Cleanup = CGF.EHStack 1279 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1280 E->getNumPlacementArgs(), 1281 E->getOperatorDelete(), 1282 NewPtr.getPointer(), 1283 AllocSize); 1284 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1285 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1286 1287 return; 1288 } 1289 1290 // Otherwise, we need to save all this stuff. 1291 DominatingValue<RValue>::saved_type SavedNewPtr = 1292 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1293 DominatingValue<RValue>::saved_type SavedAllocSize = 1294 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1295 1296 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1297 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1298 E->getNumPlacementArgs(), 1299 E->getOperatorDelete(), 1300 SavedNewPtr, 1301 SavedAllocSize); 1302 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1303 Cleanup->setPlacementArg(I, 1304 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1305 1306 CGF.initFullExprCleanup(); 1307 } 1308 1309 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1310 // The element type being allocated. 1311 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1312 1313 // 1. Build a call to the allocation function. 1314 FunctionDecl *allocator = E->getOperatorNew(); 1315 1316 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1317 unsigned minElements = 0; 1318 if (E->isArray() && E->hasInitializer()) { 1319 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1320 minElements = ILE->getNumInits(); 1321 } 1322 1323 llvm::Value *numElements = nullptr; 1324 llvm::Value *allocSizeWithoutCookie = nullptr; 1325 llvm::Value *allocSize = 1326 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1327 allocSizeWithoutCookie); 1328 1329 // Emit the allocation call. If the allocator is a global placement 1330 // operator, just "inline" it directly. 1331 Address allocation = Address::invalid(); 1332 CallArgList allocatorArgs; 1333 if (allocator->isReservedGlobalPlacementOperator()) { 1334 assert(E->getNumPlacementArgs() == 1); 1335 const Expr *arg = *E->placement_arguments().begin(); 1336 1337 AlignmentSource alignSource; 1338 allocation = EmitPointerWithAlignment(arg, &alignSource); 1339 1340 // The pointer expression will, in many cases, be an opaque void*. 1341 // In these cases, discard the computed alignment and use the 1342 // formal alignment of the allocated type. 1343 if (alignSource != AlignmentSource::Decl) { 1344 allocation = Address(allocation.getPointer(), 1345 getContext().getTypeAlignInChars(allocType)); 1346 } 1347 1348 // Set up allocatorArgs for the call to operator delete if it's not 1349 // the reserved global operator. 1350 if (E->getOperatorDelete() && 1351 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1352 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1353 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1354 } 1355 1356 } else { 1357 const FunctionProtoType *allocatorType = 1358 allocator->getType()->castAs<FunctionProtoType>(); 1359 1360 // The allocation size is the first argument. 1361 QualType sizeType = getContext().getSizeType(); 1362 allocatorArgs.add(RValue::get(allocSize), sizeType); 1363 1364 // We start at 1 here because the first argument (the allocation size) 1365 // has already been emitted. 1366 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1367 /* CalleeDecl */ nullptr, 1368 /*ParamsToSkip*/ 1); 1369 1370 RValue RV = 1371 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1372 1373 // For now, only assume that the allocation function returns 1374 // something satisfactorily aligned for the element type, plus 1375 // the cookie if we have one. 1376 CharUnits allocationAlign = 1377 getContext().getTypeAlignInChars(allocType); 1378 if (allocSize != allocSizeWithoutCookie) { 1379 CharUnits cookieAlign = getSizeAlign(); // FIXME? 1380 allocationAlign = std::max(allocationAlign, cookieAlign); 1381 } 1382 1383 allocation = Address(RV.getScalarVal(), allocationAlign); 1384 } 1385 1386 // Emit a null check on the allocation result if the allocation 1387 // function is allowed to return null (because it has a non-throwing 1388 // exception spec or is the reserved placement new) and we have an 1389 // interesting initializer. 1390 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1391 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1392 1393 llvm::BasicBlock *nullCheckBB = nullptr; 1394 llvm::BasicBlock *contBB = nullptr; 1395 1396 // The null-check means that the initializer is conditionally 1397 // evaluated. 1398 ConditionalEvaluation conditional(*this); 1399 1400 if (nullCheck) { 1401 conditional.begin(*this); 1402 1403 nullCheckBB = Builder.GetInsertBlock(); 1404 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1405 contBB = createBasicBlock("new.cont"); 1406 1407 llvm::Value *isNull = 1408 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1409 Builder.CreateCondBr(isNull, contBB, notNullBB); 1410 EmitBlock(notNullBB); 1411 } 1412 1413 // If there's an operator delete, enter a cleanup to call it if an 1414 // exception is thrown. 1415 EHScopeStack::stable_iterator operatorDeleteCleanup; 1416 llvm::Instruction *cleanupDominator = nullptr; 1417 if (E->getOperatorDelete() && 1418 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1419 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1420 operatorDeleteCleanup = EHStack.stable_begin(); 1421 cleanupDominator = Builder.CreateUnreachable(); 1422 } 1423 1424 assert((allocSize == allocSizeWithoutCookie) == 1425 CalculateCookiePadding(*this, E).isZero()); 1426 if (allocSize != allocSizeWithoutCookie) { 1427 assert(E->isArray()); 1428 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1429 numElements, 1430 E, allocType); 1431 } 1432 1433 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1434 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1435 1436 // Passing pointer through invariant.group.barrier to avoid propagation of 1437 // vptrs information which may be included in previous type. 1438 if (CGM.getCodeGenOpts().StrictVTablePointers && 1439 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1440 allocator->isReservedGlobalPlacementOperator()) 1441 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1442 result.getAlignment()); 1443 1444 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1445 allocSizeWithoutCookie); 1446 if (E->isArray()) { 1447 // NewPtr is a pointer to the base element type. If we're 1448 // allocating an array of arrays, we'll need to cast back to the 1449 // array pointer type. 1450 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1451 if (result.getType() != resultType) 1452 result = Builder.CreateBitCast(result, resultType); 1453 } 1454 1455 // Deactivate the 'operator delete' cleanup if we finished 1456 // initialization. 1457 if (operatorDeleteCleanup.isValid()) { 1458 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1459 cleanupDominator->eraseFromParent(); 1460 } 1461 1462 llvm::Value *resultPtr = result.getPointer(); 1463 if (nullCheck) { 1464 conditional.end(*this); 1465 1466 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1467 EmitBlock(contBB); 1468 1469 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1470 PHI->addIncoming(resultPtr, notNullBB); 1471 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1472 nullCheckBB); 1473 1474 resultPtr = PHI; 1475 } 1476 1477 return resultPtr; 1478 } 1479 1480 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1481 llvm::Value *Ptr, 1482 QualType DeleteTy) { 1483 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1484 1485 const FunctionProtoType *DeleteFTy = 1486 DeleteFD->getType()->getAs<FunctionProtoType>(); 1487 1488 CallArgList DeleteArgs; 1489 1490 // Check if we need to pass the size to the delete operator. 1491 llvm::Value *Size = nullptr; 1492 QualType SizeTy; 1493 if (DeleteFTy->getNumParams() == 2) { 1494 SizeTy = DeleteFTy->getParamType(1); 1495 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1496 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1497 DeleteTypeSize.getQuantity()); 1498 } 1499 1500 QualType ArgTy = DeleteFTy->getParamType(0); 1501 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1502 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1503 1504 if (Size) 1505 DeleteArgs.add(RValue::get(Size), SizeTy); 1506 1507 // Emit the call to delete. 1508 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1509 } 1510 1511 namespace { 1512 /// Calls the given 'operator delete' on a single object. 1513 struct CallObjectDelete final : EHScopeStack::Cleanup { 1514 llvm::Value *Ptr; 1515 const FunctionDecl *OperatorDelete; 1516 QualType ElementType; 1517 1518 CallObjectDelete(llvm::Value *Ptr, 1519 const FunctionDecl *OperatorDelete, 1520 QualType ElementType) 1521 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1522 1523 void Emit(CodeGenFunction &CGF, Flags flags) override { 1524 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1525 } 1526 }; 1527 } 1528 1529 void 1530 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1531 llvm::Value *CompletePtr, 1532 QualType ElementType) { 1533 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1534 OperatorDelete, ElementType); 1535 } 1536 1537 /// Emit the code for deleting a single object. 1538 static void EmitObjectDelete(CodeGenFunction &CGF, 1539 const CXXDeleteExpr *DE, 1540 Address Ptr, 1541 QualType ElementType) { 1542 // Find the destructor for the type, if applicable. If the 1543 // destructor is virtual, we'll just emit the vcall and return. 1544 const CXXDestructorDecl *Dtor = nullptr; 1545 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1546 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1547 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1548 Dtor = RD->getDestructor(); 1549 1550 if (Dtor->isVirtual()) { 1551 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1552 Dtor); 1553 return; 1554 } 1555 } 1556 } 1557 1558 // Make sure that we call delete even if the dtor throws. 1559 // This doesn't have to a conditional cleanup because we're going 1560 // to pop it off in a second. 1561 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1562 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1563 Ptr.getPointer(), 1564 OperatorDelete, ElementType); 1565 1566 if (Dtor) 1567 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1568 /*ForVirtualBase=*/false, 1569 /*Delegating=*/false, 1570 Ptr); 1571 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1572 switch (Lifetime) { 1573 case Qualifiers::OCL_None: 1574 case Qualifiers::OCL_ExplicitNone: 1575 case Qualifiers::OCL_Autoreleasing: 1576 break; 1577 1578 case Qualifiers::OCL_Strong: 1579 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1580 break; 1581 1582 case Qualifiers::OCL_Weak: 1583 CGF.EmitARCDestroyWeak(Ptr); 1584 break; 1585 } 1586 } 1587 1588 CGF.PopCleanupBlock(); 1589 } 1590 1591 namespace { 1592 /// Calls the given 'operator delete' on an array of objects. 1593 struct CallArrayDelete final : EHScopeStack::Cleanup { 1594 llvm::Value *Ptr; 1595 const FunctionDecl *OperatorDelete; 1596 llvm::Value *NumElements; 1597 QualType ElementType; 1598 CharUnits CookieSize; 1599 1600 CallArrayDelete(llvm::Value *Ptr, 1601 const FunctionDecl *OperatorDelete, 1602 llvm::Value *NumElements, 1603 QualType ElementType, 1604 CharUnits CookieSize) 1605 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1606 ElementType(ElementType), CookieSize(CookieSize) {} 1607 1608 void Emit(CodeGenFunction &CGF, Flags flags) override { 1609 const FunctionProtoType *DeleteFTy = 1610 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1611 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1612 1613 CallArgList Args; 1614 1615 // Pass the pointer as the first argument. 1616 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1617 llvm::Value *DeletePtr 1618 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1619 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1620 1621 // Pass the original requested size as the second argument. 1622 if (DeleteFTy->getNumParams() == 2) { 1623 QualType size_t = DeleteFTy->getParamType(1); 1624 llvm::IntegerType *SizeTy 1625 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1626 1627 CharUnits ElementTypeSize = 1628 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1629 1630 // The size of an element, multiplied by the number of elements. 1631 llvm::Value *Size 1632 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1633 if (NumElements) 1634 Size = CGF.Builder.CreateMul(Size, NumElements); 1635 1636 // Plus the size of the cookie if applicable. 1637 if (!CookieSize.isZero()) { 1638 llvm::Value *CookieSizeV 1639 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1640 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1641 } 1642 1643 Args.add(RValue::get(Size), size_t); 1644 } 1645 1646 // Emit the call to delete. 1647 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1648 } 1649 }; 1650 } 1651 1652 /// Emit the code for deleting an array of objects. 1653 static void EmitArrayDelete(CodeGenFunction &CGF, 1654 const CXXDeleteExpr *E, 1655 Address deletedPtr, 1656 QualType elementType) { 1657 llvm::Value *numElements = nullptr; 1658 llvm::Value *allocatedPtr = nullptr; 1659 CharUnits cookieSize; 1660 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1661 numElements, allocatedPtr, cookieSize); 1662 1663 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1664 1665 // Make sure that we call delete even if one of the dtors throws. 1666 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1667 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1668 allocatedPtr, operatorDelete, 1669 numElements, elementType, 1670 cookieSize); 1671 1672 // Destroy the elements. 1673 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1674 assert(numElements && "no element count for a type with a destructor!"); 1675 1676 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1677 CharUnits elementAlign = 1678 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1679 1680 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1681 llvm::Value *arrayEnd = 1682 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1683 1684 // Note that it is legal to allocate a zero-length array, and we 1685 // can never fold the check away because the length should always 1686 // come from a cookie. 1687 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1688 CGF.getDestroyer(dtorKind), 1689 /*checkZeroLength*/ true, 1690 CGF.needsEHCleanup(dtorKind)); 1691 } 1692 1693 // Pop the cleanup block. 1694 CGF.PopCleanupBlock(); 1695 } 1696 1697 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1698 const Expr *Arg = E->getArgument(); 1699 Address Ptr = EmitPointerWithAlignment(Arg); 1700 1701 // Null check the pointer. 1702 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1703 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1704 1705 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1706 1707 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1708 EmitBlock(DeleteNotNull); 1709 1710 // We might be deleting a pointer to array. If so, GEP down to the 1711 // first non-array element. 1712 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1713 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1714 if (DeleteTy->isConstantArrayType()) { 1715 llvm::Value *Zero = Builder.getInt32(0); 1716 SmallVector<llvm::Value*,8> GEP; 1717 1718 GEP.push_back(Zero); // point at the outermost array 1719 1720 // For each layer of array type we're pointing at: 1721 while (const ConstantArrayType *Arr 1722 = getContext().getAsConstantArrayType(DeleteTy)) { 1723 // 1. Unpeel the array type. 1724 DeleteTy = Arr->getElementType(); 1725 1726 // 2. GEP to the first element of the array. 1727 GEP.push_back(Zero); 1728 } 1729 1730 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1731 Ptr.getAlignment()); 1732 } 1733 1734 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1735 1736 if (E->isArrayForm()) { 1737 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1738 } else { 1739 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1740 } 1741 1742 EmitBlock(DeleteEnd); 1743 } 1744 1745 static bool isGLValueFromPointerDeref(const Expr *E) { 1746 E = E->IgnoreParens(); 1747 1748 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1749 if (!CE->getSubExpr()->isGLValue()) 1750 return false; 1751 return isGLValueFromPointerDeref(CE->getSubExpr()); 1752 } 1753 1754 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1755 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1756 1757 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1758 if (BO->getOpcode() == BO_Comma) 1759 return isGLValueFromPointerDeref(BO->getRHS()); 1760 1761 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1762 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1763 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1764 1765 // C++11 [expr.sub]p1: 1766 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1767 if (isa<ArraySubscriptExpr>(E)) 1768 return true; 1769 1770 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1771 if (UO->getOpcode() == UO_Deref) 1772 return true; 1773 1774 return false; 1775 } 1776 1777 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1778 llvm::Type *StdTypeInfoPtrTy) { 1779 // Get the vtable pointer. 1780 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1781 1782 // C++ [expr.typeid]p2: 1783 // If the glvalue expression is obtained by applying the unary * operator to 1784 // a pointer and the pointer is a null pointer value, the typeid expression 1785 // throws the std::bad_typeid exception. 1786 // 1787 // However, this paragraph's intent is not clear. We choose a very generous 1788 // interpretation which implores us to consider comma operators, conditional 1789 // operators, parentheses and other such constructs. 1790 QualType SrcRecordTy = E->getType(); 1791 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1792 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1793 llvm::BasicBlock *BadTypeidBlock = 1794 CGF.createBasicBlock("typeid.bad_typeid"); 1795 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1796 1797 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1798 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1799 1800 CGF.EmitBlock(BadTypeidBlock); 1801 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1802 CGF.EmitBlock(EndBlock); 1803 } 1804 1805 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1806 StdTypeInfoPtrTy); 1807 } 1808 1809 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1810 llvm::Type *StdTypeInfoPtrTy = 1811 ConvertType(E->getType())->getPointerTo(); 1812 1813 if (E->isTypeOperand()) { 1814 llvm::Constant *TypeInfo = 1815 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1816 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1817 } 1818 1819 // C++ [expr.typeid]p2: 1820 // When typeid is applied to a glvalue expression whose type is a 1821 // polymorphic class type, the result refers to a std::type_info object 1822 // representing the type of the most derived object (that is, the dynamic 1823 // type) to which the glvalue refers. 1824 if (E->isPotentiallyEvaluated()) 1825 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1826 StdTypeInfoPtrTy); 1827 1828 QualType OperandTy = E->getExprOperand()->getType(); 1829 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1830 StdTypeInfoPtrTy); 1831 } 1832 1833 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1834 QualType DestTy) { 1835 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1836 if (DestTy->isPointerType()) 1837 return llvm::Constant::getNullValue(DestLTy); 1838 1839 /// C++ [expr.dynamic.cast]p9: 1840 /// A failed cast to reference type throws std::bad_cast 1841 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1842 return nullptr; 1843 1844 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1845 return llvm::UndefValue::get(DestLTy); 1846 } 1847 1848 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1849 const CXXDynamicCastExpr *DCE) { 1850 CGM.EmitExplicitCastExprType(DCE, this); 1851 QualType DestTy = DCE->getTypeAsWritten(); 1852 1853 if (DCE->isAlwaysNull()) 1854 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1855 return T; 1856 1857 QualType SrcTy = DCE->getSubExpr()->getType(); 1858 1859 // C++ [expr.dynamic.cast]p7: 1860 // If T is "pointer to cv void," then the result is a pointer to the most 1861 // derived object pointed to by v. 1862 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1863 1864 bool isDynamicCastToVoid; 1865 QualType SrcRecordTy; 1866 QualType DestRecordTy; 1867 if (DestPTy) { 1868 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1869 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1870 DestRecordTy = DestPTy->getPointeeType(); 1871 } else { 1872 isDynamicCastToVoid = false; 1873 SrcRecordTy = SrcTy; 1874 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1875 } 1876 1877 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1878 1879 // C++ [expr.dynamic.cast]p4: 1880 // If the value of v is a null pointer value in the pointer case, the result 1881 // is the null pointer value of type T. 1882 bool ShouldNullCheckSrcValue = 1883 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1884 SrcRecordTy); 1885 1886 llvm::BasicBlock *CastNull = nullptr; 1887 llvm::BasicBlock *CastNotNull = nullptr; 1888 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1889 1890 if (ShouldNullCheckSrcValue) { 1891 CastNull = createBasicBlock("dynamic_cast.null"); 1892 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1893 1894 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 1895 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1896 EmitBlock(CastNotNull); 1897 } 1898 1899 llvm::Value *Value; 1900 if (isDynamicCastToVoid) { 1901 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 1902 DestTy); 1903 } else { 1904 assert(DestRecordTy->isRecordType() && 1905 "destination type must be a record type!"); 1906 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 1907 DestTy, DestRecordTy, CastEnd); 1908 CastNotNull = Builder.GetInsertBlock(); 1909 } 1910 1911 if (ShouldNullCheckSrcValue) { 1912 EmitBranch(CastEnd); 1913 1914 EmitBlock(CastNull); 1915 EmitBranch(CastEnd); 1916 } 1917 1918 EmitBlock(CastEnd); 1919 1920 if (ShouldNullCheckSrcValue) { 1921 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1922 PHI->addIncoming(Value, CastNotNull); 1923 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1924 1925 Value = PHI; 1926 } 1927 1928 return Value; 1929 } 1930 1931 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1932 RunCleanupsScope Scope(*this); 1933 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 1934 1935 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1936 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1937 e = E->capture_init_end(); 1938 i != e; ++i, ++CurField) { 1939 // Emit initialization 1940 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1941 if (CurField->hasCapturedVLAType()) { 1942 auto VAT = CurField->getCapturedVLAType(); 1943 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1944 } else { 1945 ArrayRef<VarDecl *> ArrayIndexes; 1946 if (CurField->getType()->isArrayType()) 1947 ArrayIndexes = E->getCaptureInitIndexVars(i); 1948 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1949 } 1950 } 1951 } 1952