1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGObjCRuntime.h"
19 #include "CGDebugInfo.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Support/CallSite.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
27                                           llvm::Value *Callee,
28                                           ReturnValueSlot ReturnValue,
29                                           llvm::Value *This,
30                                           llvm::Value *VTT,
31                                           CallExpr::const_arg_iterator ArgBeg,
32                                           CallExpr::const_arg_iterator ArgEnd) {
33   assert(MD->isInstance() &&
34          "Trying to emit a member call expr on a static method!");
35 
36   CallArgList Args;
37 
38   // Push the this ptr.
39   Args.add(RValue::get(This), MD->getThisType(getContext()));
40 
41   // If there is a VTT parameter, emit it.
42   if (VTT) {
43     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
44     Args.add(RValue::get(VTT), T);
45   }
46 
47   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
48   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
49 
50   // And the rest of the call args.
51   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
52 
53   return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args,
54                                                      FPT->getExtInfo(),
55                                                      required),
56                   Callee, ReturnValue, Args, MD);
57 }
58 
59 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
60   const Expr *E = Base;
61 
62   while (true) {
63     E = E->IgnoreParens();
64     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
65       if (CE->getCastKind() == CK_DerivedToBase ||
66           CE->getCastKind() == CK_UncheckedDerivedToBase ||
67           CE->getCastKind() == CK_NoOp) {
68         E = CE->getSubExpr();
69         continue;
70       }
71     }
72 
73     break;
74   }
75 
76   QualType DerivedType = E->getType();
77   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
78     DerivedType = PTy->getPointeeType();
79 
80   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
81 }
82 
83 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
84 // quite what we want.
85 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
86   while (true) {
87     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
88       E = PE->getSubExpr();
89       continue;
90     }
91 
92     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
93       if (CE->getCastKind() == CK_NoOp) {
94         E = CE->getSubExpr();
95         continue;
96       }
97     }
98     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
99       if (UO->getOpcode() == UO_Extension) {
100         E = UO->getSubExpr();
101         continue;
102       }
103     }
104     return E;
105   }
106 }
107 
108 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
109 /// expr can be devirtualized.
110 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
111                                                const Expr *Base,
112                                                const CXXMethodDecl *MD) {
113 
114   // When building with -fapple-kext, all calls must go through the vtable since
115   // the kernel linker can do runtime patching of vtables.
116   if (Context.getLangOptions().AppleKext)
117     return false;
118 
119   // If the most derived class is marked final, we know that no subclass can
120   // override this member function and so we can devirtualize it. For example:
121   //
122   // struct A { virtual void f(); }
123   // struct B final : A { };
124   //
125   // void f(B *b) {
126   //   b->f();
127   // }
128   //
129   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
130   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
131     return true;
132 
133   // If the member function is marked 'final', we know that it can't be
134   // overridden and can therefore devirtualize it.
135   if (MD->hasAttr<FinalAttr>())
136     return true;
137 
138   // Similarly, if the class itself is marked 'final' it can't be overridden
139   // and we can therefore devirtualize the member function call.
140   if (MD->getParent()->hasAttr<FinalAttr>())
141     return true;
142 
143   Base = skipNoOpCastsAndParens(Base);
144   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
145     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
146       // This is a record decl. We know the type and can devirtualize it.
147       return VD->getType()->isRecordType();
148     }
149 
150     return false;
151   }
152 
153   // We can always devirtualize calls on temporary object expressions.
154   if (isa<CXXConstructExpr>(Base))
155     return true;
156 
157   // And calls on bound temporaries.
158   if (isa<CXXBindTemporaryExpr>(Base))
159     return true;
160 
161   // Check if this is a call expr that returns a record type.
162   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
163     return CE->getCallReturnType()->isRecordType();
164 
165   // We can't devirtualize the call.
166   return false;
167 }
168 
169 // Note: This function also emit constructor calls to support a MSVC
170 // extensions allowing explicit constructor function call.
171 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
172                                               ReturnValueSlot ReturnValue) {
173   const Expr *callee = CE->getCallee()->IgnoreParens();
174 
175   if (isa<BinaryOperator>(callee))
176     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
177 
178   const MemberExpr *ME = cast<MemberExpr>(callee);
179   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
180 
181   CGDebugInfo *DI = getDebugInfo();
182   if (DI && CGM.getCodeGenOpts().LimitDebugInfo
183       && !isa<CallExpr>(ME->getBase())) {
184     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
185     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
186       DI->getOrCreateRecordType(PTy->getPointeeType(),
187                                 MD->getParent()->getLocation());
188     }
189   }
190 
191   if (MD->isStatic()) {
192     // The method is static, emit it as we would a regular call.
193     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
194     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
195                     ReturnValue, CE->arg_begin(), CE->arg_end());
196   }
197 
198   // Compute the object pointer.
199   llvm::Value *This;
200   if (ME->isArrow())
201     This = EmitScalarExpr(ME->getBase());
202   else
203     This = EmitLValue(ME->getBase()).getAddress();
204 
205   if (MD->isTrivial()) {
206     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
207     if (isa<CXXConstructorDecl>(MD) &&
208         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
209       return RValue::get(0);
210 
211     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
212       // We don't like to generate the trivial copy/move assignment operator
213       // when it isn't necessary; just produce the proper effect here.
214       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
215       EmitAggregateCopy(This, RHS, CE->getType());
216       return RValue::get(This);
217     }
218 
219     if (isa<CXXConstructorDecl>(MD) &&
220         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
221       // Trivial move and copy ctor are the same.
222       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
223       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
224                                      CE->arg_begin(), CE->arg_end());
225       return RValue::get(This);
226     }
227     llvm_unreachable("unknown trivial member function");
228   }
229 
230   // Compute the function type we're calling.
231   const CGFunctionInfo *FInfo = 0;
232   if (isa<CXXDestructorDecl>(MD))
233     FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
234                                                  Dtor_Complete);
235   else if (isa<CXXConstructorDecl>(MD))
236     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
237                                                  cast<CXXConstructorDecl>(MD),
238                                                  Ctor_Complete);
239   else
240     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);
241 
242   llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
243 
244   // C++ [class.virtual]p12:
245   //   Explicit qualification with the scope operator (5.1) suppresses the
246   //   virtual call mechanism.
247   //
248   // We also don't emit a virtual call if the base expression has a record type
249   // because then we know what the type is.
250   bool UseVirtualCall;
251   UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
252                    && !canDevirtualizeMemberFunctionCalls(getContext(),
253                                                           ME->getBase(), MD);
254   llvm::Value *Callee;
255   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
256     if (UseVirtualCall) {
257       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
258     } else {
259       if (getContext().getLangOptions().AppleKext &&
260           MD->isVirtual() &&
261           ME->hasQualifier())
262         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
263       else
264         Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
265     }
266   } else if (const CXXConstructorDecl *Ctor =
267                dyn_cast<CXXConstructorDecl>(MD)) {
268     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
269   } else if (UseVirtualCall) {
270       Callee = BuildVirtualCall(MD, This, Ty);
271   } else {
272     if (getContext().getLangOptions().AppleKext &&
273         MD->isVirtual() &&
274         ME->hasQualifier())
275       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
276     else
277       Callee = CGM.GetAddrOfFunction(MD, Ty);
278   }
279 
280   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
281                            CE->arg_begin(), CE->arg_end());
282 }
283 
284 RValue
285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
286                                               ReturnValueSlot ReturnValue) {
287   const BinaryOperator *BO =
288       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
289   const Expr *BaseExpr = BO->getLHS();
290   const Expr *MemFnExpr = BO->getRHS();
291 
292   const MemberPointerType *MPT =
293     MemFnExpr->getType()->castAs<MemberPointerType>();
294 
295   const FunctionProtoType *FPT =
296     MPT->getPointeeType()->castAs<FunctionProtoType>();
297   const CXXRecordDecl *RD =
298     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
299 
300   // Get the member function pointer.
301   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
302 
303   // Emit the 'this' pointer.
304   llvm::Value *This;
305 
306   if (BO->getOpcode() == BO_PtrMemI)
307     This = EmitScalarExpr(BaseExpr);
308   else
309     This = EmitLValue(BaseExpr).getAddress();
310 
311   // Ask the ABI to load the callee.  Note that This is modified.
312   llvm::Value *Callee =
313     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
314 
315   CallArgList Args;
316 
317   QualType ThisType =
318     getContext().getPointerType(getContext().getTagDeclType(RD));
319 
320   // Push the this ptr.
321   Args.add(RValue::get(This), ThisType);
322 
323   // And the rest of the call args
324   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
325   return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee,
326                   ReturnValue, Args);
327 }
328 
329 RValue
330 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
331                                                const CXXMethodDecl *MD,
332                                                ReturnValueSlot ReturnValue) {
333   assert(MD->isInstance() &&
334          "Trying to emit a member call expr on a static method!");
335   LValue LV = EmitLValue(E->getArg(0));
336   llvm::Value *This = LV.getAddress();
337 
338   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
339       MD->isTrivial()) {
340     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
341     QualType Ty = E->getType();
342     EmitAggregateCopy(This, Src, Ty);
343     return RValue::get(This);
344   }
345 
346   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
347   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
348                            E->arg_begin() + 1, E->arg_end());
349 }
350 
351 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
352                                                ReturnValueSlot ReturnValue) {
353   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
354 }
355 
356 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
357                                             llvm::Value *DestPtr,
358                                             const CXXRecordDecl *Base) {
359   if (Base->isEmpty())
360     return;
361 
362   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
363 
364   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
365   CharUnits Size = Layout.getNonVirtualSize();
366   CharUnits Align = Layout.getNonVirtualAlign();
367 
368   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
369 
370   // If the type contains a pointer to data member we can't memset it to zero.
371   // Instead, create a null constant and copy it to the destination.
372   // TODO: there are other patterns besides zero that we can usefully memset,
373   // like -1, which happens to be the pattern used by member-pointers.
374   // TODO: isZeroInitializable can be over-conservative in the case where a
375   // virtual base contains a member pointer.
376   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
377     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
378 
379     llvm::GlobalVariable *NullVariable =
380       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
381                                /*isConstant=*/true,
382                                llvm::GlobalVariable::PrivateLinkage,
383                                NullConstant, Twine());
384     NullVariable->setAlignment(Align.getQuantity());
385     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
386 
387     // Get and call the appropriate llvm.memcpy overload.
388     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
389     return;
390   }
391 
392   // Otherwise, just memset the whole thing to zero.  This is legal
393   // because in LLVM, all default initializers (other than the ones we just
394   // handled above) are guaranteed to have a bit pattern of all zeros.
395   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
396                            Align.getQuantity());
397 }
398 
399 void
400 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
401                                       AggValueSlot Dest) {
402   assert(!Dest.isIgnored() && "Must have a destination!");
403   const CXXConstructorDecl *CD = E->getConstructor();
404 
405   // If we require zero initialization before (or instead of) calling the
406   // constructor, as can be the case with a non-user-provided default
407   // constructor, emit the zero initialization now, unless destination is
408   // already zeroed.
409   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
410     switch (E->getConstructionKind()) {
411     case CXXConstructExpr::CK_Delegating:
412       assert(0 && "Delegating constructor should not need zeroing");
413     case CXXConstructExpr::CK_Complete:
414       EmitNullInitialization(Dest.getAddr(), E->getType());
415       break;
416     case CXXConstructExpr::CK_VirtualBase:
417     case CXXConstructExpr::CK_NonVirtualBase:
418       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
419       break;
420     }
421   }
422 
423   // If this is a call to a trivial default constructor, do nothing.
424   if (CD->isTrivial() && CD->isDefaultConstructor())
425     return;
426 
427   // Elide the constructor if we're constructing from a temporary.
428   // The temporary check is required because Sema sets this on NRVO
429   // returns.
430   if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
431     assert(getContext().hasSameUnqualifiedType(E->getType(),
432                                                E->getArg(0)->getType()));
433     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
434       EmitAggExpr(E->getArg(0), Dest);
435       return;
436     }
437   }
438 
439   if (const ConstantArrayType *arrayType
440         = getContext().getAsConstantArrayType(E->getType())) {
441     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
442                                E->arg_begin(), E->arg_end());
443   } else {
444     CXXCtorType Type = Ctor_Complete;
445     bool ForVirtualBase = false;
446 
447     switch (E->getConstructionKind()) {
448      case CXXConstructExpr::CK_Delegating:
449       // We should be emitting a constructor; GlobalDecl will assert this
450       Type = CurGD.getCtorType();
451       break;
452 
453      case CXXConstructExpr::CK_Complete:
454       Type = Ctor_Complete;
455       break;
456 
457      case CXXConstructExpr::CK_VirtualBase:
458       ForVirtualBase = true;
459       // fall-through
460 
461      case CXXConstructExpr::CK_NonVirtualBase:
462       Type = Ctor_Base;
463     }
464 
465     // Call the constructor.
466     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
467                            E->arg_begin(), E->arg_end());
468   }
469 }
470 
471 void
472 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
473                                             llvm::Value *Src,
474                                             const Expr *Exp) {
475   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
476     Exp = E->getSubExpr();
477   assert(isa<CXXConstructExpr>(Exp) &&
478          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
479   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
480   const CXXConstructorDecl *CD = E->getConstructor();
481   RunCleanupsScope Scope(*this);
482 
483   // If we require zero initialization before (or instead of) calling the
484   // constructor, as can be the case with a non-user-provided default
485   // constructor, emit the zero initialization now.
486   // FIXME. Do I still need this for a copy ctor synthesis?
487   if (E->requiresZeroInitialization())
488     EmitNullInitialization(Dest, E->getType());
489 
490   assert(!getContext().getAsConstantArrayType(E->getType())
491          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
492   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
493                                  E->arg_begin(), E->arg_end());
494 }
495 
496 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
497                                         const CXXNewExpr *E) {
498   if (!E->isArray())
499     return CharUnits::Zero();
500 
501   // No cookie is required if the operator new[] being used is the
502   // reserved placement operator new[].
503   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
504     return CharUnits::Zero();
505 
506   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
507 }
508 
509 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
510                                         const CXXNewExpr *e,
511                                         llvm::Value *&numElements,
512                                         llvm::Value *&sizeWithoutCookie) {
513   QualType type = e->getAllocatedType();
514 
515   if (!e->isArray()) {
516     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
517     sizeWithoutCookie
518       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
519     return sizeWithoutCookie;
520   }
521 
522   // The width of size_t.
523   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
524 
525   // Figure out the cookie size.
526   llvm::APInt cookieSize(sizeWidth,
527                          CalculateCookiePadding(CGF, e).getQuantity());
528 
529   // Emit the array size expression.
530   // We multiply the size of all dimensions for NumElements.
531   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
532   numElements = CGF.EmitScalarExpr(e->getArraySize());
533   assert(isa<llvm::IntegerType>(numElements->getType()));
534 
535   // The number of elements can be have an arbitrary integer type;
536   // essentially, we need to multiply it by a constant factor, add a
537   // cookie size, and verify that the result is representable as a
538   // size_t.  That's just a gloss, though, and it's wrong in one
539   // important way: if the count is negative, it's an error even if
540   // the cookie size would bring the total size >= 0.
541   bool isSigned
542     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
543   llvm::IntegerType *numElementsType
544     = cast<llvm::IntegerType>(numElements->getType());
545   unsigned numElementsWidth = numElementsType->getBitWidth();
546 
547   // Compute the constant factor.
548   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
549   while (const ConstantArrayType *CAT
550              = CGF.getContext().getAsConstantArrayType(type)) {
551     type = CAT->getElementType();
552     arraySizeMultiplier *= CAT->getSize();
553   }
554 
555   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
556   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
557   typeSizeMultiplier *= arraySizeMultiplier;
558 
559   // This will be a size_t.
560   llvm::Value *size;
561 
562   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
563   // Don't bloat the -O0 code.
564   if (llvm::ConstantInt *numElementsC =
565         dyn_cast<llvm::ConstantInt>(numElements)) {
566     const llvm::APInt &count = numElementsC->getValue();
567 
568     bool hasAnyOverflow = false;
569 
570     // If 'count' was a negative number, it's an overflow.
571     if (isSigned && count.isNegative())
572       hasAnyOverflow = true;
573 
574     // We want to do all this arithmetic in size_t.  If numElements is
575     // wider than that, check whether it's already too big, and if so,
576     // overflow.
577     else if (numElementsWidth > sizeWidth &&
578              numElementsWidth - sizeWidth > count.countLeadingZeros())
579       hasAnyOverflow = true;
580 
581     // Okay, compute a count at the right width.
582     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
583 
584     // Scale numElements by that.  This might overflow, but we don't
585     // care because it only overflows if allocationSize does, too, and
586     // if that overflows then we shouldn't use this.
587     numElements = llvm::ConstantInt::get(CGF.SizeTy,
588                                          adjustedCount * arraySizeMultiplier);
589 
590     // Compute the size before cookie, and track whether it overflowed.
591     bool overflow;
592     llvm::APInt allocationSize
593       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
594     hasAnyOverflow |= overflow;
595 
596     // Add in the cookie, and check whether it's overflowed.
597     if (cookieSize != 0) {
598       // Save the current size without a cookie.  This shouldn't be
599       // used if there was overflow.
600       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
601 
602       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
603       hasAnyOverflow |= overflow;
604     }
605 
606     // On overflow, produce a -1 so operator new will fail.
607     if (hasAnyOverflow) {
608       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
609     } else {
610       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
611     }
612 
613   // Otherwise, we might need to use the overflow intrinsics.
614   } else {
615     // There are up to four conditions we need to test for:
616     // 1) if isSigned, we need to check whether numElements is negative;
617     // 2) if numElementsWidth > sizeWidth, we need to check whether
618     //   numElements is larger than something representable in size_t;
619     // 3) we need to compute
620     //      sizeWithoutCookie := numElements * typeSizeMultiplier
621     //    and check whether it overflows; and
622     // 4) if we need a cookie, we need to compute
623     //      size := sizeWithoutCookie + cookieSize
624     //    and check whether it overflows.
625 
626     llvm::Value *hasOverflow = 0;
627 
628     // If numElementsWidth > sizeWidth, then one way or another, we're
629     // going to have to do a comparison for (2), and this happens to
630     // take care of (1), too.
631     if (numElementsWidth > sizeWidth) {
632       llvm::APInt threshold(numElementsWidth, 1);
633       threshold <<= sizeWidth;
634 
635       llvm::Value *thresholdV
636         = llvm::ConstantInt::get(numElementsType, threshold);
637 
638       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
639       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
640 
641     // Otherwise, if we're signed, we want to sext up to size_t.
642     } else if (isSigned) {
643       if (numElementsWidth < sizeWidth)
644         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
645 
646       // If there's a non-1 type size multiplier, then we can do the
647       // signedness check at the same time as we do the multiply
648       // because a negative number times anything will cause an
649       // unsigned overflow.  Otherwise, we have to do it here.
650       if (typeSizeMultiplier == 1)
651         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
652                                       llvm::ConstantInt::get(CGF.SizeTy, 0));
653 
654     // Otherwise, zext up to size_t if necessary.
655     } else if (numElementsWidth < sizeWidth) {
656       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
657     }
658 
659     assert(numElements->getType() == CGF.SizeTy);
660 
661     size = numElements;
662 
663     // Multiply by the type size if necessary.  This multiplier
664     // includes all the factors for nested arrays.
665     //
666     // This step also causes numElements to be scaled up by the
667     // nested-array factor if necessary.  Overflow on this computation
668     // can be ignored because the result shouldn't be used if
669     // allocation fails.
670     if (typeSizeMultiplier != 1) {
671       llvm::Value *umul_with_overflow
672         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
673 
674       llvm::Value *tsmV =
675         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
676       llvm::Value *result =
677         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
678 
679       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
680       if (hasOverflow)
681         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
682       else
683         hasOverflow = overflowed;
684 
685       size = CGF.Builder.CreateExtractValue(result, 0);
686 
687       // Also scale up numElements by the array size multiplier.
688       if (arraySizeMultiplier != 1) {
689         // If the base element type size is 1, then we can re-use the
690         // multiply we just did.
691         if (typeSize.isOne()) {
692           assert(arraySizeMultiplier == typeSizeMultiplier);
693           numElements = size;
694 
695         // Otherwise we need a separate multiply.
696         } else {
697           llvm::Value *asmV =
698             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
699           numElements = CGF.Builder.CreateMul(numElements, asmV);
700         }
701       }
702     } else {
703       // numElements doesn't need to be scaled.
704       assert(arraySizeMultiplier == 1);
705     }
706 
707     // Add in the cookie size if necessary.
708     if (cookieSize != 0) {
709       sizeWithoutCookie = size;
710 
711       llvm::Value *uadd_with_overflow
712         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
713 
714       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
715       llvm::Value *result =
716         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
717 
718       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
719       if (hasOverflow)
720         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
721       else
722         hasOverflow = overflowed;
723 
724       size = CGF.Builder.CreateExtractValue(result, 0);
725     }
726 
727     // If we had any possibility of dynamic overflow, make a select to
728     // overwrite 'size' with an all-ones value, which should cause
729     // operator new to throw.
730     if (hasOverflow)
731       size = CGF.Builder.CreateSelect(hasOverflow,
732                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
733                                       size);
734   }
735 
736   if (cookieSize == 0)
737     sizeWithoutCookie = size;
738   else
739     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
740 
741   return size;
742 }
743 
744 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
745                                     llvm::Value *NewPtr) {
746 
747   const Expr *Init = E->getInitializer();
748   QualType AllocType = E->getAllocatedType();
749 
750   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
751   if (!CGF.hasAggregateLLVMType(AllocType))
752     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
753                                                    Alignment),
754                        false);
755   else if (AllocType->isAnyComplexType())
756     CGF.EmitComplexExprIntoAddr(Init, NewPtr,
757                                 AllocType.isVolatileQualified());
758   else {
759     AggValueSlot Slot
760       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
761                               AggValueSlot::IsDestructed,
762                               AggValueSlot::DoesNotNeedGCBarriers,
763                               AggValueSlot::IsNotAliased);
764     CGF.EmitAggExpr(Init, Slot);
765   }
766 }
767 
768 void
769 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
770                                          QualType elementType,
771                                          llvm::Value *beginPtr,
772                                          llvm::Value *numElements) {
773   if (!E->hasInitializer())
774     return; // We have a POD type.
775 
776   // Check if the number of elements is constant.
777   bool checkZero = true;
778   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
779     // If it's constant zero, skip the whole loop.
780     if (constNum->isZero()) return;
781 
782     checkZero = false;
783   }
784 
785   // Find the end of the array, hoisted out of the loop.
786   llvm::Value *endPtr =
787     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
788 
789   // Create the continuation block.
790   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
791 
792   // If we need to check for zero, do so now.
793   if (checkZero) {
794     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
795     llvm::Value *isEmpty = Builder.CreateICmpEQ(beginPtr, endPtr,
796                                                 "array.isempty");
797     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
798     EmitBlock(nonEmptyBB);
799   }
800 
801   // Enter the loop.
802   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
803   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
804 
805   EmitBlock(loopBB);
806 
807   // Set up the current-element phi.
808   llvm::PHINode *curPtr =
809     Builder.CreatePHI(beginPtr->getType(), 2, "array.cur");
810   curPtr->addIncoming(beginPtr, entryBB);
811 
812   // Enter a partial-destruction cleanup if necessary.
813   QualType::DestructionKind dtorKind = elementType.isDestructedType();
814   EHScopeStack::stable_iterator cleanup;
815   llvm::Instruction *cleanupDominator = 0;
816   if (needsEHCleanup(dtorKind)) {
817     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
818                                    getDestroyer(dtorKind));
819     cleanup = EHStack.stable_begin();
820     cleanupDominator = Builder.CreateUnreachable();
821   }
822 
823   // Emit the initializer into this element.
824   StoreAnyExprIntoOneUnit(*this, E, curPtr);
825 
826   // Leave the cleanup if we entered one.
827   if (cleanupDominator) {
828     DeactivateCleanupBlock(cleanup, cleanupDominator);
829     cleanupDominator->eraseFromParent();
830   }
831 
832   // Advance to the next element.
833   llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
834 
835   // Check whether we've gotten to the end of the array and, if so,
836   // exit the loop.
837   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
838   Builder.CreateCondBr(isEnd, contBB, loopBB);
839   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
840 
841   EmitBlock(contBB);
842 }
843 
844 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
845                            llvm::Value *NewPtr, llvm::Value *Size) {
846   CGF.EmitCastToVoidPtr(NewPtr);
847   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
848   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
849                            Alignment.getQuantity(), false);
850 }
851 
852 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
853                                QualType ElementType,
854                                llvm::Value *NewPtr,
855                                llvm::Value *NumElements,
856                                llvm::Value *AllocSizeWithoutCookie) {
857   const Expr *Init = E->getInitializer();
858   if (E->isArray()) {
859     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
860       CXXConstructorDecl *Ctor = CCE->getConstructor();
861       bool RequiresZeroInitialization = false;
862       if (Ctor->getParent()->hasTrivialDefaultConstructor()) {
863         // If new expression did not specify value-initialization, then there
864         // is no initialization.
865         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
866           return;
867 
868         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
869           // Optimization: since zero initialization will just set the memory
870           // to all zeroes, generate a single memset to do it in one shot.
871           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
872           return;
873         }
874 
875         RequiresZeroInitialization = true;
876       }
877 
878       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
879                                      CCE->arg_begin(),  CCE->arg_end(),
880                                      RequiresZeroInitialization);
881       return;
882     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
883                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
884       // Optimization: since zero initialization will just set the memory
885       // to all zeroes, generate a single memset to do it in one shot.
886       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
887       return;
888     }
889     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
890     return;
891   }
892 
893   if (!Init)
894     return;
895 
896   StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
897 }
898 
899 namespace {
900   /// A cleanup to call the given 'operator delete' function upon
901   /// abnormal exit from a new expression.
902   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
903     size_t NumPlacementArgs;
904     const FunctionDecl *OperatorDelete;
905     llvm::Value *Ptr;
906     llvm::Value *AllocSize;
907 
908     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
909 
910   public:
911     static size_t getExtraSize(size_t NumPlacementArgs) {
912       return NumPlacementArgs * sizeof(RValue);
913     }
914 
915     CallDeleteDuringNew(size_t NumPlacementArgs,
916                         const FunctionDecl *OperatorDelete,
917                         llvm::Value *Ptr,
918                         llvm::Value *AllocSize)
919       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
920         Ptr(Ptr), AllocSize(AllocSize) {}
921 
922     void setPlacementArg(unsigned I, RValue Arg) {
923       assert(I < NumPlacementArgs && "index out of range");
924       getPlacementArgs()[I] = Arg;
925     }
926 
927     void Emit(CodeGenFunction &CGF, Flags flags) {
928       const FunctionProtoType *FPT
929         = OperatorDelete->getType()->getAs<FunctionProtoType>();
930       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
931              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
932 
933       CallArgList DeleteArgs;
934 
935       // The first argument is always a void*.
936       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
937       DeleteArgs.add(RValue::get(Ptr), *AI++);
938 
939       // A member 'operator delete' can take an extra 'size_t' argument.
940       if (FPT->getNumArgs() == NumPlacementArgs + 2)
941         DeleteArgs.add(RValue::get(AllocSize), *AI++);
942 
943       // Pass the rest of the arguments, which must match exactly.
944       for (unsigned I = 0; I != NumPlacementArgs; ++I)
945         DeleteArgs.add(getPlacementArgs()[I], *AI++);
946 
947       // Call 'operator delete'.
948       CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
949                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
950                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
951     }
952   };
953 
954   /// A cleanup to call the given 'operator delete' function upon
955   /// abnormal exit from a new expression when the new expression is
956   /// conditional.
957   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
958     size_t NumPlacementArgs;
959     const FunctionDecl *OperatorDelete;
960     DominatingValue<RValue>::saved_type Ptr;
961     DominatingValue<RValue>::saved_type AllocSize;
962 
963     DominatingValue<RValue>::saved_type *getPlacementArgs() {
964       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
965     }
966 
967   public:
968     static size_t getExtraSize(size_t NumPlacementArgs) {
969       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
970     }
971 
972     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
973                                    const FunctionDecl *OperatorDelete,
974                                    DominatingValue<RValue>::saved_type Ptr,
975                               DominatingValue<RValue>::saved_type AllocSize)
976       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
977         Ptr(Ptr), AllocSize(AllocSize) {}
978 
979     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
980       assert(I < NumPlacementArgs && "index out of range");
981       getPlacementArgs()[I] = Arg;
982     }
983 
984     void Emit(CodeGenFunction &CGF, Flags flags) {
985       const FunctionProtoType *FPT
986         = OperatorDelete->getType()->getAs<FunctionProtoType>();
987       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
988              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
989 
990       CallArgList DeleteArgs;
991 
992       // The first argument is always a void*.
993       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
994       DeleteArgs.add(Ptr.restore(CGF), *AI++);
995 
996       // A member 'operator delete' can take an extra 'size_t' argument.
997       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
998         RValue RV = AllocSize.restore(CGF);
999         DeleteArgs.add(RV, *AI++);
1000       }
1001 
1002       // Pass the rest of the arguments, which must match exactly.
1003       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1004         RValue RV = getPlacementArgs()[I].restore(CGF);
1005         DeleteArgs.add(RV, *AI++);
1006       }
1007 
1008       // Call 'operator delete'.
1009       CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
1010                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1011                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
1012     }
1013   };
1014 }
1015 
1016 /// Enter a cleanup to call 'operator delete' if the initializer in a
1017 /// new-expression throws.
1018 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1019                                   const CXXNewExpr *E,
1020                                   llvm::Value *NewPtr,
1021                                   llvm::Value *AllocSize,
1022                                   const CallArgList &NewArgs) {
1023   // If we're not inside a conditional branch, then the cleanup will
1024   // dominate and we can do the easier (and more efficient) thing.
1025   if (!CGF.isInConditionalBranch()) {
1026     CallDeleteDuringNew *Cleanup = CGF.EHStack
1027       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1028                                                  E->getNumPlacementArgs(),
1029                                                  E->getOperatorDelete(),
1030                                                  NewPtr, AllocSize);
1031     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1032       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1033 
1034     return;
1035   }
1036 
1037   // Otherwise, we need to save all this stuff.
1038   DominatingValue<RValue>::saved_type SavedNewPtr =
1039     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1040   DominatingValue<RValue>::saved_type SavedAllocSize =
1041     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1042 
1043   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1044     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1045                                                  E->getNumPlacementArgs(),
1046                                                  E->getOperatorDelete(),
1047                                                  SavedNewPtr,
1048                                                  SavedAllocSize);
1049   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1050     Cleanup->setPlacementArg(I,
1051                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1052 
1053   CGF.initFullExprCleanup();
1054 }
1055 
1056 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1057   // The element type being allocated.
1058   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1059 
1060   // 1. Build a call to the allocation function.
1061   FunctionDecl *allocator = E->getOperatorNew();
1062   const FunctionProtoType *allocatorType =
1063     allocator->getType()->castAs<FunctionProtoType>();
1064 
1065   CallArgList allocatorArgs;
1066 
1067   // The allocation size is the first argument.
1068   QualType sizeType = getContext().getSizeType();
1069 
1070   llvm::Value *numElements = 0;
1071   llvm::Value *allocSizeWithoutCookie = 0;
1072   llvm::Value *allocSize =
1073     EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie);
1074 
1075   allocatorArgs.add(RValue::get(allocSize), sizeType);
1076 
1077   // Emit the rest of the arguments.
1078   // FIXME: Ideally, this should just use EmitCallArgs.
1079   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1080 
1081   // First, use the types from the function type.
1082   // We start at 1 here because the first argument (the allocation size)
1083   // has already been emitted.
1084   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1085        ++i, ++placementArg) {
1086     QualType argType = allocatorType->getArgType(i);
1087 
1088     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1089                                                placementArg->getType()) &&
1090            "type mismatch in call argument!");
1091 
1092     EmitCallArg(allocatorArgs, *placementArg, argType);
1093   }
1094 
1095   // Either we've emitted all the call args, or we have a call to a
1096   // variadic function.
1097   assert((placementArg == E->placement_arg_end() ||
1098           allocatorType->isVariadic()) &&
1099          "Extra arguments to non-variadic function!");
1100 
1101   // If we still have any arguments, emit them using the type of the argument.
1102   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1103        placementArg != placementArgsEnd; ++placementArg) {
1104     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1105   }
1106 
1107   // Emit the allocation call.  If the allocator is a global placement
1108   // operator, just "inline" it directly.
1109   RValue RV;
1110   if (allocator->isReservedGlobalPlacementOperator()) {
1111     assert(allocatorArgs.size() == 2);
1112     RV = allocatorArgs[1].RV;
1113     // TODO: kill any unnecessary computations done for the size
1114     // argument.
1115   } else {
1116     RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs,
1117                                                      allocatorType),
1118                   CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1119                   allocatorArgs, allocator);
1120   }
1121 
1122   // Emit a null check on the allocation result if the allocation
1123   // function is allowed to return null (because it has a non-throwing
1124   // exception spec; for this part, we inline
1125   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1126   // interesting initializer.
1127   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1128     (!allocType.isPODType(getContext()) || E->hasInitializer());
1129 
1130   llvm::BasicBlock *nullCheckBB = 0;
1131   llvm::BasicBlock *contBB = 0;
1132 
1133   llvm::Value *allocation = RV.getScalarVal();
1134   unsigned AS =
1135     cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
1136 
1137   // The null-check means that the initializer is conditionally
1138   // evaluated.
1139   ConditionalEvaluation conditional(*this);
1140 
1141   if (nullCheck) {
1142     conditional.begin(*this);
1143 
1144     nullCheckBB = Builder.GetInsertBlock();
1145     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1146     contBB = createBasicBlock("new.cont");
1147 
1148     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1149     Builder.CreateCondBr(isNull, contBB, notNullBB);
1150     EmitBlock(notNullBB);
1151   }
1152 
1153   // If there's an operator delete, enter a cleanup to call it if an
1154   // exception is thrown.
1155   EHScopeStack::stable_iterator operatorDeleteCleanup;
1156   llvm::Instruction *cleanupDominator = 0;
1157   if (E->getOperatorDelete() &&
1158       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1159     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1160     operatorDeleteCleanup = EHStack.stable_begin();
1161     cleanupDominator = Builder.CreateUnreachable();
1162   }
1163 
1164   assert((allocSize == allocSizeWithoutCookie) ==
1165          CalculateCookiePadding(*this, E).isZero());
1166   if (allocSize != allocSizeWithoutCookie) {
1167     assert(E->isArray());
1168     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1169                                                        numElements,
1170                                                        E, allocType);
1171   }
1172 
1173   llvm::Type *elementPtrTy
1174     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1175   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1176 
1177   EmitNewInitializer(*this, E, allocType, result, numElements,
1178                      allocSizeWithoutCookie);
1179   if (E->isArray()) {
1180     // NewPtr is a pointer to the base element type.  If we're
1181     // allocating an array of arrays, we'll need to cast back to the
1182     // array pointer type.
1183     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1184     if (result->getType() != resultType)
1185       result = Builder.CreateBitCast(result, resultType);
1186   }
1187 
1188   // Deactivate the 'operator delete' cleanup if we finished
1189   // initialization.
1190   if (operatorDeleteCleanup.isValid()) {
1191     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1192     cleanupDominator->eraseFromParent();
1193   }
1194 
1195   if (nullCheck) {
1196     conditional.end(*this);
1197 
1198     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1199     EmitBlock(contBB);
1200 
1201     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1202     PHI->addIncoming(result, notNullBB);
1203     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1204                      nullCheckBB);
1205 
1206     result = PHI;
1207   }
1208 
1209   return result;
1210 }
1211 
1212 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1213                                      llvm::Value *Ptr,
1214                                      QualType DeleteTy) {
1215   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1216 
1217   const FunctionProtoType *DeleteFTy =
1218     DeleteFD->getType()->getAs<FunctionProtoType>();
1219 
1220   CallArgList DeleteArgs;
1221 
1222   // Check if we need to pass the size to the delete operator.
1223   llvm::Value *Size = 0;
1224   QualType SizeTy;
1225   if (DeleteFTy->getNumArgs() == 2) {
1226     SizeTy = DeleteFTy->getArgType(1);
1227     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1228     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1229                                   DeleteTypeSize.getQuantity());
1230   }
1231 
1232   QualType ArgTy = DeleteFTy->getArgType(0);
1233   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1234   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1235 
1236   if (Size)
1237     DeleteArgs.add(RValue::get(Size), SizeTy);
1238 
1239   // Emit the call to delete.
1240   EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy),
1241            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1242            DeleteArgs, DeleteFD);
1243 }
1244 
1245 namespace {
1246   /// Calls the given 'operator delete' on a single object.
1247   struct CallObjectDelete : EHScopeStack::Cleanup {
1248     llvm::Value *Ptr;
1249     const FunctionDecl *OperatorDelete;
1250     QualType ElementType;
1251 
1252     CallObjectDelete(llvm::Value *Ptr,
1253                      const FunctionDecl *OperatorDelete,
1254                      QualType ElementType)
1255       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1256 
1257     void Emit(CodeGenFunction &CGF, Flags flags) {
1258       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1259     }
1260   };
1261 }
1262 
1263 /// Emit the code for deleting a single object.
1264 static void EmitObjectDelete(CodeGenFunction &CGF,
1265                              const FunctionDecl *OperatorDelete,
1266                              llvm::Value *Ptr,
1267                              QualType ElementType,
1268                              bool UseGlobalDelete) {
1269   // Find the destructor for the type, if applicable.  If the
1270   // destructor is virtual, we'll just emit the vcall and return.
1271   const CXXDestructorDecl *Dtor = 0;
1272   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1273     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1274     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1275       Dtor = RD->getDestructor();
1276 
1277       if (Dtor->isVirtual()) {
1278         if (UseGlobalDelete) {
1279           // If we're supposed to call the global delete, make sure we do so
1280           // even if the destructor throws.
1281           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1282                                                     Ptr, OperatorDelete,
1283                                                     ElementType);
1284         }
1285 
1286         llvm::Type *Ty =
1287           CGF.getTypes().GetFunctionType(
1288                          CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
1289 
1290         llvm::Value *Callee
1291           = CGF.BuildVirtualCall(Dtor,
1292                                  UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
1293                                  Ptr, Ty);
1294         CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1295                               0, 0);
1296 
1297         if (UseGlobalDelete) {
1298           CGF.PopCleanupBlock();
1299         }
1300 
1301         return;
1302       }
1303     }
1304   }
1305 
1306   // Make sure that we call delete even if the dtor throws.
1307   // This doesn't have to a conditional cleanup because we're going
1308   // to pop it off in a second.
1309   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1310                                             Ptr, OperatorDelete, ElementType);
1311 
1312   if (Dtor)
1313     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1314                               /*ForVirtualBase=*/false, Ptr);
1315   else if (CGF.getLangOptions().ObjCAutoRefCount &&
1316            ElementType->isObjCLifetimeType()) {
1317     switch (ElementType.getObjCLifetime()) {
1318     case Qualifiers::OCL_None:
1319     case Qualifiers::OCL_ExplicitNone:
1320     case Qualifiers::OCL_Autoreleasing:
1321       break;
1322 
1323     case Qualifiers::OCL_Strong: {
1324       // Load the pointer value.
1325       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1326                                              ElementType.isVolatileQualified());
1327 
1328       CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1329       break;
1330     }
1331 
1332     case Qualifiers::OCL_Weak:
1333       CGF.EmitARCDestroyWeak(Ptr);
1334       break;
1335     }
1336   }
1337 
1338   CGF.PopCleanupBlock();
1339 }
1340 
1341 namespace {
1342   /// Calls the given 'operator delete' on an array of objects.
1343   struct CallArrayDelete : EHScopeStack::Cleanup {
1344     llvm::Value *Ptr;
1345     const FunctionDecl *OperatorDelete;
1346     llvm::Value *NumElements;
1347     QualType ElementType;
1348     CharUnits CookieSize;
1349 
1350     CallArrayDelete(llvm::Value *Ptr,
1351                     const FunctionDecl *OperatorDelete,
1352                     llvm::Value *NumElements,
1353                     QualType ElementType,
1354                     CharUnits CookieSize)
1355       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1356         ElementType(ElementType), CookieSize(CookieSize) {}
1357 
1358     void Emit(CodeGenFunction &CGF, Flags flags) {
1359       const FunctionProtoType *DeleteFTy =
1360         OperatorDelete->getType()->getAs<FunctionProtoType>();
1361       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1362 
1363       CallArgList Args;
1364 
1365       // Pass the pointer as the first argument.
1366       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1367       llvm::Value *DeletePtr
1368         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1369       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1370 
1371       // Pass the original requested size as the second argument.
1372       if (DeleteFTy->getNumArgs() == 2) {
1373         QualType size_t = DeleteFTy->getArgType(1);
1374         llvm::IntegerType *SizeTy
1375           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1376 
1377         CharUnits ElementTypeSize =
1378           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1379 
1380         // The size of an element, multiplied by the number of elements.
1381         llvm::Value *Size
1382           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1383         Size = CGF.Builder.CreateMul(Size, NumElements);
1384 
1385         // Plus the size of the cookie if applicable.
1386         if (!CookieSize.isZero()) {
1387           llvm::Value *CookieSizeV
1388             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1389           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1390         }
1391 
1392         Args.add(RValue::get(Size), size_t);
1393       }
1394 
1395       // Emit the call to delete.
1396       CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy),
1397                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1398                    ReturnValueSlot(), Args, OperatorDelete);
1399     }
1400   };
1401 }
1402 
1403 /// Emit the code for deleting an array of objects.
1404 static void EmitArrayDelete(CodeGenFunction &CGF,
1405                             const CXXDeleteExpr *E,
1406                             llvm::Value *deletedPtr,
1407                             QualType elementType) {
1408   llvm::Value *numElements = 0;
1409   llvm::Value *allocatedPtr = 0;
1410   CharUnits cookieSize;
1411   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1412                                       numElements, allocatedPtr, cookieSize);
1413 
1414   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1415 
1416   // Make sure that we call delete even if one of the dtors throws.
1417   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1418   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1419                                            allocatedPtr, operatorDelete,
1420                                            numElements, elementType,
1421                                            cookieSize);
1422 
1423   // Destroy the elements.
1424   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1425     assert(numElements && "no element count for a type with a destructor!");
1426 
1427     llvm::Value *arrayEnd =
1428       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1429 
1430     // Note that it is legal to allocate a zero-length array, and we
1431     // can never fold the check away because the length should always
1432     // come from a cookie.
1433     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1434                          CGF.getDestroyer(dtorKind),
1435                          /*checkZeroLength*/ true,
1436                          CGF.needsEHCleanup(dtorKind));
1437   }
1438 
1439   // Pop the cleanup block.
1440   CGF.PopCleanupBlock();
1441 }
1442 
1443 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1444 
1445   // Get at the argument before we performed the implicit conversion
1446   // to void*.
1447   const Expr *Arg = E->getArgument();
1448   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
1449     if (ICE->getCastKind() != CK_UserDefinedConversion &&
1450         ICE->getType()->isVoidPointerType())
1451       Arg = ICE->getSubExpr();
1452     else
1453       break;
1454   }
1455 
1456   llvm::Value *Ptr = EmitScalarExpr(Arg);
1457 
1458   // Null check the pointer.
1459   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1460   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1461 
1462   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1463 
1464   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1465   EmitBlock(DeleteNotNull);
1466 
1467   // We might be deleting a pointer to array.  If so, GEP down to the
1468   // first non-array element.
1469   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1470   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1471   if (DeleteTy->isConstantArrayType()) {
1472     llvm::Value *Zero = Builder.getInt32(0);
1473     SmallVector<llvm::Value*,8> GEP;
1474 
1475     GEP.push_back(Zero); // point at the outermost array
1476 
1477     // For each layer of array type we're pointing at:
1478     while (const ConstantArrayType *Arr
1479              = getContext().getAsConstantArrayType(DeleteTy)) {
1480       // 1. Unpeel the array type.
1481       DeleteTy = Arr->getElementType();
1482 
1483       // 2. GEP to the first element of the array.
1484       GEP.push_back(Zero);
1485     }
1486 
1487     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1488   }
1489 
1490   assert(ConvertTypeForMem(DeleteTy) ==
1491          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1492 
1493   if (E->isArrayForm()) {
1494     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1495   } else {
1496     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1497                      E->isGlobalDelete());
1498   }
1499 
1500   EmitBlock(DeleteEnd);
1501 }
1502 
1503 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1504   // void __cxa_bad_typeid();
1505   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1506 
1507   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1508 }
1509 
1510 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1511   llvm::Value *Fn = getBadTypeidFn(CGF);
1512   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1513   CGF.Builder.CreateUnreachable();
1514 }
1515 
1516 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1517                                          const Expr *E,
1518                                          llvm::Type *StdTypeInfoPtrTy) {
1519   // Get the vtable pointer.
1520   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1521 
1522   // C++ [expr.typeid]p2:
1523   //   If the glvalue expression is obtained by applying the unary * operator to
1524   //   a pointer and the pointer is a null pointer value, the typeid expression
1525   //   throws the std::bad_typeid exception.
1526   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1527     if (UO->getOpcode() == UO_Deref) {
1528       llvm::BasicBlock *BadTypeidBlock =
1529         CGF.createBasicBlock("typeid.bad_typeid");
1530       llvm::BasicBlock *EndBlock =
1531         CGF.createBasicBlock("typeid.end");
1532 
1533       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1534       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1535 
1536       CGF.EmitBlock(BadTypeidBlock);
1537       EmitBadTypeidCall(CGF);
1538       CGF.EmitBlock(EndBlock);
1539     }
1540   }
1541 
1542   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1543                                         StdTypeInfoPtrTy->getPointerTo());
1544 
1545   // Load the type info.
1546   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1547   return CGF.Builder.CreateLoad(Value);
1548 }
1549 
1550 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1551   llvm::Type *StdTypeInfoPtrTy =
1552     ConvertType(E->getType())->getPointerTo();
1553 
1554   if (E->isTypeOperand()) {
1555     llvm::Constant *TypeInfo =
1556       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1557     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1558   }
1559 
1560   // C++ [expr.typeid]p2:
1561   //   When typeid is applied to a glvalue expression whose type is a
1562   //   polymorphic class type, the result refers to a std::type_info object
1563   //   representing the type of the most derived object (that is, the dynamic
1564   //   type) to which the glvalue refers.
1565   if (E->getExprOperand()->isGLValue()) {
1566     if (const RecordType *RT =
1567           E->getExprOperand()->getType()->getAs<RecordType>()) {
1568       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1569       if (RD->isPolymorphic())
1570         return EmitTypeidFromVTable(*this, E->getExprOperand(),
1571                                     StdTypeInfoPtrTy);
1572     }
1573   }
1574 
1575   QualType OperandTy = E->getExprOperand()->getType();
1576   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1577                                StdTypeInfoPtrTy);
1578 }
1579 
1580 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1581   // void *__dynamic_cast(const void *sub,
1582   //                      const abi::__class_type_info *src,
1583   //                      const abi::__class_type_info *dst,
1584   //                      std::ptrdiff_t src2dst_offset);
1585 
1586   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1587   llvm::Type *PtrDiffTy =
1588     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1589 
1590   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1591 
1592   llvm::FunctionType *FTy =
1593     llvm::FunctionType::get(Int8PtrTy, Args, false);
1594 
1595   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
1596 }
1597 
1598 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1599   // void __cxa_bad_cast();
1600   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1601   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1602 }
1603 
1604 static void EmitBadCastCall(CodeGenFunction &CGF) {
1605   llvm::Value *Fn = getBadCastFn(CGF);
1606   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1607   CGF.Builder.CreateUnreachable();
1608 }
1609 
1610 static llvm::Value *
1611 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1612                     QualType SrcTy, QualType DestTy,
1613                     llvm::BasicBlock *CastEnd) {
1614   llvm::Type *PtrDiffLTy =
1615     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1616   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1617 
1618   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1619     if (PTy->getPointeeType()->isVoidType()) {
1620       // C++ [expr.dynamic.cast]p7:
1621       //   If T is "pointer to cv void," then the result is a pointer to the
1622       //   most derived object pointed to by v.
1623 
1624       // Get the vtable pointer.
1625       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1626 
1627       // Get the offset-to-top from the vtable.
1628       llvm::Value *OffsetToTop =
1629         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1630       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1631 
1632       // Finally, add the offset to the pointer.
1633       Value = CGF.EmitCastToVoidPtr(Value);
1634       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1635 
1636       return CGF.Builder.CreateBitCast(Value, DestLTy);
1637     }
1638   }
1639 
1640   QualType SrcRecordTy;
1641   QualType DestRecordTy;
1642 
1643   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1644     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1645     DestRecordTy = DestPTy->getPointeeType();
1646   } else {
1647     SrcRecordTy = SrcTy;
1648     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1649   }
1650 
1651   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1652   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1653 
1654   llvm::Value *SrcRTTI =
1655     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1656   llvm::Value *DestRTTI =
1657     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1658 
1659   // FIXME: Actually compute a hint here.
1660   llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
1661 
1662   // Emit the call to __dynamic_cast.
1663   Value = CGF.EmitCastToVoidPtr(Value);
1664   Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1665                                   SrcRTTI, DestRTTI, OffsetHint);
1666   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1667 
1668   /// C++ [expr.dynamic.cast]p9:
1669   ///   A failed cast to reference type throws std::bad_cast
1670   if (DestTy->isReferenceType()) {
1671     llvm::BasicBlock *BadCastBlock =
1672       CGF.createBasicBlock("dynamic_cast.bad_cast");
1673 
1674     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1675     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1676 
1677     CGF.EmitBlock(BadCastBlock);
1678     EmitBadCastCall(CGF);
1679   }
1680 
1681   return Value;
1682 }
1683 
1684 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1685                                           QualType DestTy) {
1686   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1687   if (DestTy->isPointerType())
1688     return llvm::Constant::getNullValue(DestLTy);
1689 
1690   /// C++ [expr.dynamic.cast]p9:
1691   ///   A failed cast to reference type throws std::bad_cast
1692   EmitBadCastCall(CGF);
1693 
1694   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1695   return llvm::UndefValue::get(DestLTy);
1696 }
1697 
1698 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1699                                               const CXXDynamicCastExpr *DCE) {
1700   QualType DestTy = DCE->getTypeAsWritten();
1701 
1702   if (DCE->isAlwaysNull())
1703     return EmitDynamicCastToNull(*this, DestTy);
1704 
1705   QualType SrcTy = DCE->getSubExpr()->getType();
1706 
1707   // C++ [expr.dynamic.cast]p4:
1708   //   If the value of v is a null pointer value in the pointer case, the result
1709   //   is the null pointer value of type T.
1710   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1711 
1712   llvm::BasicBlock *CastNull = 0;
1713   llvm::BasicBlock *CastNotNull = 0;
1714   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1715 
1716   if (ShouldNullCheckSrcValue) {
1717     CastNull = createBasicBlock("dynamic_cast.null");
1718     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1719 
1720     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1721     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1722     EmitBlock(CastNotNull);
1723   }
1724 
1725   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1726 
1727   if (ShouldNullCheckSrcValue) {
1728     EmitBranch(CastEnd);
1729 
1730     EmitBlock(CastNull);
1731     EmitBranch(CastEnd);
1732   }
1733 
1734   EmitBlock(CastEnd);
1735 
1736   if (ShouldNullCheckSrcValue) {
1737     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1738     PHI->addIncoming(Value, CastNotNull);
1739     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1740 
1741     Value = PHI;
1742   }
1743 
1744   return Value;
1745 }
1746 
1747 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1748   RunCleanupsScope Scope(*this);
1749 
1750   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1751   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1752                                          e = E->capture_init_end();
1753       i != e; ++i, ++CurField) {
1754     // Emit initialization
1755     LValue LV = EmitLValueForFieldInitialization(Slot.getAddr(), *CurField, 0);
1756     ArrayRef<VarDecl *> ArrayIndexes;
1757     if (CurField->getType()->isArrayType())
1758       ArrayIndexes = E->getCaptureInitIndexVars(i);
1759     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1760   }
1761 }
1762