1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGObjCRuntime.h" 19 #include "CGDebugInfo.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 llvm::Value *Callee, 28 ReturnValueSlot ReturnValue, 29 llvm::Value *This, 30 llvm::Value *VTT, 31 CallExpr::const_arg_iterator ArgBeg, 32 CallExpr::const_arg_iterator ArgEnd) { 33 assert(MD->isInstance() && 34 "Trying to emit a member call expr on a static method!"); 35 36 CallArgList Args; 37 38 // Push the this ptr. 39 Args.add(RValue::get(This), MD->getThisType(getContext())); 40 41 // If there is a VTT parameter, emit it. 42 if (VTT) { 43 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 44 Args.add(RValue::get(VTT), T); 45 } 46 47 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 48 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 49 50 // And the rest of the call args. 51 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 52 53 return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args, 54 FPT->getExtInfo(), 55 required), 56 Callee, ReturnValue, Args, MD); 57 } 58 59 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 60 const Expr *E = Base; 61 62 while (true) { 63 E = E->IgnoreParens(); 64 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 65 if (CE->getCastKind() == CK_DerivedToBase || 66 CE->getCastKind() == CK_UncheckedDerivedToBase || 67 CE->getCastKind() == CK_NoOp) { 68 E = CE->getSubExpr(); 69 continue; 70 } 71 } 72 73 break; 74 } 75 76 QualType DerivedType = E->getType(); 77 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 78 DerivedType = PTy->getPointeeType(); 79 80 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 81 } 82 83 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 84 // quite what we want. 85 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 86 while (true) { 87 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 88 E = PE->getSubExpr(); 89 continue; 90 } 91 92 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 93 if (CE->getCastKind() == CK_NoOp) { 94 E = CE->getSubExpr(); 95 continue; 96 } 97 } 98 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 99 if (UO->getOpcode() == UO_Extension) { 100 E = UO->getSubExpr(); 101 continue; 102 } 103 } 104 return E; 105 } 106 } 107 108 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 109 /// expr can be devirtualized. 110 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 111 const Expr *Base, 112 const CXXMethodDecl *MD) { 113 114 // When building with -fapple-kext, all calls must go through the vtable since 115 // the kernel linker can do runtime patching of vtables. 116 if (Context.getLangOptions().AppleKext) 117 return false; 118 119 // If the most derived class is marked final, we know that no subclass can 120 // override this member function and so we can devirtualize it. For example: 121 // 122 // struct A { virtual void f(); } 123 // struct B final : A { }; 124 // 125 // void f(B *b) { 126 // b->f(); 127 // } 128 // 129 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 130 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 131 return true; 132 133 // If the member function is marked 'final', we know that it can't be 134 // overridden and can therefore devirtualize it. 135 if (MD->hasAttr<FinalAttr>()) 136 return true; 137 138 // Similarly, if the class itself is marked 'final' it can't be overridden 139 // and we can therefore devirtualize the member function call. 140 if (MD->getParent()->hasAttr<FinalAttr>()) 141 return true; 142 143 Base = skipNoOpCastsAndParens(Base); 144 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 145 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 146 // This is a record decl. We know the type and can devirtualize it. 147 return VD->getType()->isRecordType(); 148 } 149 150 return false; 151 } 152 153 // We can always devirtualize calls on temporary object expressions. 154 if (isa<CXXConstructExpr>(Base)) 155 return true; 156 157 // And calls on bound temporaries. 158 if (isa<CXXBindTemporaryExpr>(Base)) 159 return true; 160 161 // Check if this is a call expr that returns a record type. 162 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 163 return CE->getCallReturnType()->isRecordType(); 164 165 // We can't devirtualize the call. 166 return false; 167 } 168 169 // Note: This function also emit constructor calls to support a MSVC 170 // extensions allowing explicit constructor function call. 171 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 172 ReturnValueSlot ReturnValue) { 173 const Expr *callee = CE->getCallee()->IgnoreParens(); 174 175 if (isa<BinaryOperator>(callee)) 176 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 177 178 const MemberExpr *ME = cast<MemberExpr>(callee); 179 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 180 181 CGDebugInfo *DI = getDebugInfo(); 182 if (DI && CGM.getCodeGenOpts().LimitDebugInfo 183 && !isa<CallExpr>(ME->getBase())) { 184 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 185 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 186 DI->getOrCreateRecordType(PTy->getPointeeType(), 187 MD->getParent()->getLocation()); 188 } 189 } 190 191 if (MD->isStatic()) { 192 // The method is static, emit it as we would a regular call. 193 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 194 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 195 ReturnValue, CE->arg_begin(), CE->arg_end()); 196 } 197 198 // Compute the object pointer. 199 llvm::Value *This; 200 if (ME->isArrow()) 201 This = EmitScalarExpr(ME->getBase()); 202 else 203 This = EmitLValue(ME->getBase()).getAddress(); 204 205 if (MD->isTrivial()) { 206 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 207 if (isa<CXXConstructorDecl>(MD) && 208 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 209 return RValue::get(0); 210 211 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 212 // We don't like to generate the trivial copy/move assignment operator 213 // when it isn't necessary; just produce the proper effect here. 214 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 215 EmitAggregateCopy(This, RHS, CE->getType()); 216 return RValue::get(This); 217 } 218 219 if (isa<CXXConstructorDecl>(MD) && 220 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 221 // Trivial move and copy ctor are the same. 222 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 223 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 224 CE->arg_begin(), CE->arg_end()); 225 return RValue::get(This); 226 } 227 llvm_unreachable("unknown trivial member function"); 228 } 229 230 // Compute the function type we're calling. 231 const CGFunctionInfo *FInfo = 0; 232 if (isa<CXXDestructorDecl>(MD)) 233 FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 234 Dtor_Complete); 235 else if (isa<CXXConstructorDecl>(MD)) 236 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 237 cast<CXXConstructorDecl>(MD), 238 Ctor_Complete); 239 else 240 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 241 242 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 243 244 // C++ [class.virtual]p12: 245 // Explicit qualification with the scope operator (5.1) suppresses the 246 // virtual call mechanism. 247 // 248 // We also don't emit a virtual call if the base expression has a record type 249 // because then we know what the type is. 250 bool UseVirtualCall; 251 UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 252 && !canDevirtualizeMemberFunctionCalls(getContext(), 253 ME->getBase(), MD); 254 llvm::Value *Callee; 255 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 256 if (UseVirtualCall) { 257 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 258 } else { 259 if (getContext().getLangOptions().AppleKext && 260 MD->isVirtual() && 261 ME->hasQualifier()) 262 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 263 else 264 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 265 } 266 } else if (const CXXConstructorDecl *Ctor = 267 dyn_cast<CXXConstructorDecl>(MD)) { 268 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 269 } else if (UseVirtualCall) { 270 Callee = BuildVirtualCall(MD, This, Ty); 271 } else { 272 if (getContext().getLangOptions().AppleKext && 273 MD->isVirtual() && 274 ME->hasQualifier()) 275 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 276 else 277 Callee = CGM.GetAddrOfFunction(MD, Ty); 278 } 279 280 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 281 CE->arg_begin(), CE->arg_end()); 282 } 283 284 RValue 285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 286 ReturnValueSlot ReturnValue) { 287 const BinaryOperator *BO = 288 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 289 const Expr *BaseExpr = BO->getLHS(); 290 const Expr *MemFnExpr = BO->getRHS(); 291 292 const MemberPointerType *MPT = 293 MemFnExpr->getType()->castAs<MemberPointerType>(); 294 295 const FunctionProtoType *FPT = 296 MPT->getPointeeType()->castAs<FunctionProtoType>(); 297 const CXXRecordDecl *RD = 298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 299 300 // Get the member function pointer. 301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 302 303 // Emit the 'this' pointer. 304 llvm::Value *This; 305 306 if (BO->getOpcode() == BO_PtrMemI) 307 This = EmitScalarExpr(BaseExpr); 308 else 309 This = EmitLValue(BaseExpr).getAddress(); 310 311 // Ask the ABI to load the callee. Note that This is modified. 312 llvm::Value *Callee = 313 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 314 315 CallArgList Args; 316 317 QualType ThisType = 318 getContext().getPointerType(getContext().getTagDeclType(RD)); 319 320 // Push the this ptr. 321 Args.add(RValue::get(This), ThisType); 322 323 // And the rest of the call args 324 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 325 return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee, 326 ReturnValue, Args); 327 } 328 329 RValue 330 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 331 const CXXMethodDecl *MD, 332 ReturnValueSlot ReturnValue) { 333 assert(MD->isInstance() && 334 "Trying to emit a member call expr on a static method!"); 335 LValue LV = EmitLValue(E->getArg(0)); 336 llvm::Value *This = LV.getAddress(); 337 338 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 339 MD->isTrivial()) { 340 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 341 QualType Ty = E->getType(); 342 EmitAggregateCopy(This, Src, Ty); 343 return RValue::get(This); 344 } 345 346 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 347 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 348 E->arg_begin() + 1, E->arg_end()); 349 } 350 351 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 352 ReturnValueSlot ReturnValue) { 353 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 354 } 355 356 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 357 llvm::Value *DestPtr, 358 const CXXRecordDecl *Base) { 359 if (Base->isEmpty()) 360 return; 361 362 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 363 364 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 365 CharUnits Size = Layout.getNonVirtualSize(); 366 CharUnits Align = Layout.getNonVirtualAlign(); 367 368 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 369 370 // If the type contains a pointer to data member we can't memset it to zero. 371 // Instead, create a null constant and copy it to the destination. 372 // TODO: there are other patterns besides zero that we can usefully memset, 373 // like -1, which happens to be the pattern used by member-pointers. 374 // TODO: isZeroInitializable can be over-conservative in the case where a 375 // virtual base contains a member pointer. 376 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 377 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 378 379 llvm::GlobalVariable *NullVariable = 380 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 381 /*isConstant=*/true, 382 llvm::GlobalVariable::PrivateLinkage, 383 NullConstant, Twine()); 384 NullVariable->setAlignment(Align.getQuantity()); 385 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 386 387 // Get and call the appropriate llvm.memcpy overload. 388 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 389 return; 390 } 391 392 // Otherwise, just memset the whole thing to zero. This is legal 393 // because in LLVM, all default initializers (other than the ones we just 394 // handled above) are guaranteed to have a bit pattern of all zeros. 395 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 396 Align.getQuantity()); 397 } 398 399 void 400 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 401 AggValueSlot Dest) { 402 assert(!Dest.isIgnored() && "Must have a destination!"); 403 const CXXConstructorDecl *CD = E->getConstructor(); 404 405 // If we require zero initialization before (or instead of) calling the 406 // constructor, as can be the case with a non-user-provided default 407 // constructor, emit the zero initialization now, unless destination is 408 // already zeroed. 409 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 410 switch (E->getConstructionKind()) { 411 case CXXConstructExpr::CK_Delegating: 412 assert(0 && "Delegating constructor should not need zeroing"); 413 case CXXConstructExpr::CK_Complete: 414 EmitNullInitialization(Dest.getAddr(), E->getType()); 415 break; 416 case CXXConstructExpr::CK_VirtualBase: 417 case CXXConstructExpr::CK_NonVirtualBase: 418 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 419 break; 420 } 421 } 422 423 // If this is a call to a trivial default constructor, do nothing. 424 if (CD->isTrivial() && CD->isDefaultConstructor()) 425 return; 426 427 // Elide the constructor if we're constructing from a temporary. 428 // The temporary check is required because Sema sets this on NRVO 429 // returns. 430 if (getContext().getLangOptions().ElideConstructors && E->isElidable()) { 431 assert(getContext().hasSameUnqualifiedType(E->getType(), 432 E->getArg(0)->getType())); 433 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 434 EmitAggExpr(E->getArg(0), Dest); 435 return; 436 } 437 } 438 439 if (const ConstantArrayType *arrayType 440 = getContext().getAsConstantArrayType(E->getType())) { 441 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 442 E->arg_begin(), E->arg_end()); 443 } else { 444 CXXCtorType Type = Ctor_Complete; 445 bool ForVirtualBase = false; 446 447 switch (E->getConstructionKind()) { 448 case CXXConstructExpr::CK_Delegating: 449 // We should be emitting a constructor; GlobalDecl will assert this 450 Type = CurGD.getCtorType(); 451 break; 452 453 case CXXConstructExpr::CK_Complete: 454 Type = Ctor_Complete; 455 break; 456 457 case CXXConstructExpr::CK_VirtualBase: 458 ForVirtualBase = true; 459 // fall-through 460 461 case CXXConstructExpr::CK_NonVirtualBase: 462 Type = Ctor_Base; 463 } 464 465 // Call the constructor. 466 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 467 E->arg_begin(), E->arg_end()); 468 } 469 } 470 471 void 472 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 473 llvm::Value *Src, 474 const Expr *Exp) { 475 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 476 Exp = E->getSubExpr(); 477 assert(isa<CXXConstructExpr>(Exp) && 478 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 479 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 480 const CXXConstructorDecl *CD = E->getConstructor(); 481 RunCleanupsScope Scope(*this); 482 483 // If we require zero initialization before (or instead of) calling the 484 // constructor, as can be the case with a non-user-provided default 485 // constructor, emit the zero initialization now. 486 // FIXME. Do I still need this for a copy ctor synthesis? 487 if (E->requiresZeroInitialization()) 488 EmitNullInitialization(Dest, E->getType()); 489 490 assert(!getContext().getAsConstantArrayType(E->getType()) 491 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 492 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 493 E->arg_begin(), E->arg_end()); 494 } 495 496 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 497 const CXXNewExpr *E) { 498 if (!E->isArray()) 499 return CharUnits::Zero(); 500 501 // No cookie is required if the operator new[] being used is the 502 // reserved placement operator new[]. 503 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 504 return CharUnits::Zero(); 505 506 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 507 } 508 509 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 510 const CXXNewExpr *e, 511 llvm::Value *&numElements, 512 llvm::Value *&sizeWithoutCookie) { 513 QualType type = e->getAllocatedType(); 514 515 if (!e->isArray()) { 516 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 517 sizeWithoutCookie 518 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 519 return sizeWithoutCookie; 520 } 521 522 // The width of size_t. 523 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 524 525 // Figure out the cookie size. 526 llvm::APInt cookieSize(sizeWidth, 527 CalculateCookiePadding(CGF, e).getQuantity()); 528 529 // Emit the array size expression. 530 // We multiply the size of all dimensions for NumElements. 531 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 532 numElements = CGF.EmitScalarExpr(e->getArraySize()); 533 assert(isa<llvm::IntegerType>(numElements->getType())); 534 535 // The number of elements can be have an arbitrary integer type; 536 // essentially, we need to multiply it by a constant factor, add a 537 // cookie size, and verify that the result is representable as a 538 // size_t. That's just a gloss, though, and it's wrong in one 539 // important way: if the count is negative, it's an error even if 540 // the cookie size would bring the total size >= 0. 541 bool isSigned 542 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 543 llvm::IntegerType *numElementsType 544 = cast<llvm::IntegerType>(numElements->getType()); 545 unsigned numElementsWidth = numElementsType->getBitWidth(); 546 547 // Compute the constant factor. 548 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 549 while (const ConstantArrayType *CAT 550 = CGF.getContext().getAsConstantArrayType(type)) { 551 type = CAT->getElementType(); 552 arraySizeMultiplier *= CAT->getSize(); 553 } 554 555 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 556 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 557 typeSizeMultiplier *= arraySizeMultiplier; 558 559 // This will be a size_t. 560 llvm::Value *size; 561 562 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 563 // Don't bloat the -O0 code. 564 if (llvm::ConstantInt *numElementsC = 565 dyn_cast<llvm::ConstantInt>(numElements)) { 566 const llvm::APInt &count = numElementsC->getValue(); 567 568 bool hasAnyOverflow = false; 569 570 // If 'count' was a negative number, it's an overflow. 571 if (isSigned && count.isNegative()) 572 hasAnyOverflow = true; 573 574 // We want to do all this arithmetic in size_t. If numElements is 575 // wider than that, check whether it's already too big, and if so, 576 // overflow. 577 else if (numElementsWidth > sizeWidth && 578 numElementsWidth - sizeWidth > count.countLeadingZeros()) 579 hasAnyOverflow = true; 580 581 // Okay, compute a count at the right width. 582 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 583 584 // Scale numElements by that. This might overflow, but we don't 585 // care because it only overflows if allocationSize does, too, and 586 // if that overflows then we shouldn't use this. 587 numElements = llvm::ConstantInt::get(CGF.SizeTy, 588 adjustedCount * arraySizeMultiplier); 589 590 // Compute the size before cookie, and track whether it overflowed. 591 bool overflow; 592 llvm::APInt allocationSize 593 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 594 hasAnyOverflow |= overflow; 595 596 // Add in the cookie, and check whether it's overflowed. 597 if (cookieSize != 0) { 598 // Save the current size without a cookie. This shouldn't be 599 // used if there was overflow. 600 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 601 602 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 603 hasAnyOverflow |= overflow; 604 } 605 606 // On overflow, produce a -1 so operator new will fail. 607 if (hasAnyOverflow) { 608 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 609 } else { 610 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 611 } 612 613 // Otherwise, we might need to use the overflow intrinsics. 614 } else { 615 // There are up to four conditions we need to test for: 616 // 1) if isSigned, we need to check whether numElements is negative; 617 // 2) if numElementsWidth > sizeWidth, we need to check whether 618 // numElements is larger than something representable in size_t; 619 // 3) we need to compute 620 // sizeWithoutCookie := numElements * typeSizeMultiplier 621 // and check whether it overflows; and 622 // 4) if we need a cookie, we need to compute 623 // size := sizeWithoutCookie + cookieSize 624 // and check whether it overflows. 625 626 llvm::Value *hasOverflow = 0; 627 628 // If numElementsWidth > sizeWidth, then one way or another, we're 629 // going to have to do a comparison for (2), and this happens to 630 // take care of (1), too. 631 if (numElementsWidth > sizeWidth) { 632 llvm::APInt threshold(numElementsWidth, 1); 633 threshold <<= sizeWidth; 634 635 llvm::Value *thresholdV 636 = llvm::ConstantInt::get(numElementsType, threshold); 637 638 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 639 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 640 641 // Otherwise, if we're signed, we want to sext up to size_t. 642 } else if (isSigned) { 643 if (numElementsWidth < sizeWidth) 644 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 645 646 // If there's a non-1 type size multiplier, then we can do the 647 // signedness check at the same time as we do the multiply 648 // because a negative number times anything will cause an 649 // unsigned overflow. Otherwise, we have to do it here. 650 if (typeSizeMultiplier == 1) 651 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 652 llvm::ConstantInt::get(CGF.SizeTy, 0)); 653 654 // Otherwise, zext up to size_t if necessary. 655 } else if (numElementsWidth < sizeWidth) { 656 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 657 } 658 659 assert(numElements->getType() == CGF.SizeTy); 660 661 size = numElements; 662 663 // Multiply by the type size if necessary. This multiplier 664 // includes all the factors for nested arrays. 665 // 666 // This step also causes numElements to be scaled up by the 667 // nested-array factor if necessary. Overflow on this computation 668 // can be ignored because the result shouldn't be used if 669 // allocation fails. 670 if (typeSizeMultiplier != 1) { 671 llvm::Value *umul_with_overflow 672 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 673 674 llvm::Value *tsmV = 675 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 676 llvm::Value *result = 677 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 678 679 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 680 if (hasOverflow) 681 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 682 else 683 hasOverflow = overflowed; 684 685 size = CGF.Builder.CreateExtractValue(result, 0); 686 687 // Also scale up numElements by the array size multiplier. 688 if (arraySizeMultiplier != 1) { 689 // If the base element type size is 1, then we can re-use the 690 // multiply we just did. 691 if (typeSize.isOne()) { 692 assert(arraySizeMultiplier == typeSizeMultiplier); 693 numElements = size; 694 695 // Otherwise we need a separate multiply. 696 } else { 697 llvm::Value *asmV = 698 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 699 numElements = CGF.Builder.CreateMul(numElements, asmV); 700 } 701 } 702 } else { 703 // numElements doesn't need to be scaled. 704 assert(arraySizeMultiplier == 1); 705 } 706 707 // Add in the cookie size if necessary. 708 if (cookieSize != 0) { 709 sizeWithoutCookie = size; 710 711 llvm::Value *uadd_with_overflow 712 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 713 714 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 715 llvm::Value *result = 716 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 717 718 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 719 if (hasOverflow) 720 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 721 else 722 hasOverflow = overflowed; 723 724 size = CGF.Builder.CreateExtractValue(result, 0); 725 } 726 727 // If we had any possibility of dynamic overflow, make a select to 728 // overwrite 'size' with an all-ones value, which should cause 729 // operator new to throw. 730 if (hasOverflow) 731 size = CGF.Builder.CreateSelect(hasOverflow, 732 llvm::Constant::getAllOnesValue(CGF.SizeTy), 733 size); 734 } 735 736 if (cookieSize == 0) 737 sizeWithoutCookie = size; 738 else 739 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 740 741 return size; 742 } 743 744 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E, 745 llvm::Value *NewPtr) { 746 747 const Expr *Init = E->getInitializer(); 748 QualType AllocType = E->getAllocatedType(); 749 750 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 751 if (!CGF.hasAggregateLLVMType(AllocType)) 752 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 753 Alignment), 754 false); 755 else if (AllocType->isAnyComplexType()) 756 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 757 AllocType.isVolatileQualified()); 758 else { 759 AggValueSlot Slot 760 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 761 AggValueSlot::IsDestructed, 762 AggValueSlot::DoesNotNeedGCBarriers, 763 AggValueSlot::IsNotAliased); 764 CGF.EmitAggExpr(Init, Slot); 765 } 766 } 767 768 void 769 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 770 QualType elementType, 771 llvm::Value *beginPtr, 772 llvm::Value *numElements) { 773 if (!E->hasInitializer()) 774 return; // We have a POD type. 775 776 // Check if the number of elements is constant. 777 bool checkZero = true; 778 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 779 // If it's constant zero, skip the whole loop. 780 if (constNum->isZero()) return; 781 782 checkZero = false; 783 } 784 785 // Find the end of the array, hoisted out of the loop. 786 llvm::Value *endPtr = 787 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 788 789 // Create the continuation block. 790 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 791 792 // If we need to check for zero, do so now. 793 if (checkZero) { 794 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 795 llvm::Value *isEmpty = Builder.CreateICmpEQ(beginPtr, endPtr, 796 "array.isempty"); 797 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 798 EmitBlock(nonEmptyBB); 799 } 800 801 // Enter the loop. 802 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 803 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 804 805 EmitBlock(loopBB); 806 807 // Set up the current-element phi. 808 llvm::PHINode *curPtr = 809 Builder.CreatePHI(beginPtr->getType(), 2, "array.cur"); 810 curPtr->addIncoming(beginPtr, entryBB); 811 812 // Enter a partial-destruction cleanup if necessary. 813 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 814 EHScopeStack::stable_iterator cleanup; 815 llvm::Instruction *cleanupDominator = 0; 816 if (needsEHCleanup(dtorKind)) { 817 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 818 getDestroyer(dtorKind)); 819 cleanup = EHStack.stable_begin(); 820 cleanupDominator = Builder.CreateUnreachable(); 821 } 822 823 // Emit the initializer into this element. 824 StoreAnyExprIntoOneUnit(*this, E, curPtr); 825 826 // Leave the cleanup if we entered one. 827 if (cleanupDominator) { 828 DeactivateCleanupBlock(cleanup, cleanupDominator); 829 cleanupDominator->eraseFromParent(); 830 } 831 832 // Advance to the next element. 833 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 834 835 // Check whether we've gotten to the end of the array and, if so, 836 // exit the loop. 837 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 838 Builder.CreateCondBr(isEnd, contBB, loopBB); 839 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 840 841 EmitBlock(contBB); 842 } 843 844 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 845 llvm::Value *NewPtr, llvm::Value *Size) { 846 CGF.EmitCastToVoidPtr(NewPtr); 847 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 848 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 849 Alignment.getQuantity(), false); 850 } 851 852 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 853 QualType ElementType, 854 llvm::Value *NewPtr, 855 llvm::Value *NumElements, 856 llvm::Value *AllocSizeWithoutCookie) { 857 const Expr *Init = E->getInitializer(); 858 if (E->isArray()) { 859 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 860 CXXConstructorDecl *Ctor = CCE->getConstructor(); 861 bool RequiresZeroInitialization = false; 862 if (Ctor->getParent()->hasTrivialDefaultConstructor()) { 863 // If new expression did not specify value-initialization, then there 864 // is no initialization. 865 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 866 return; 867 868 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 869 // Optimization: since zero initialization will just set the memory 870 // to all zeroes, generate a single memset to do it in one shot. 871 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 872 return; 873 } 874 875 RequiresZeroInitialization = true; 876 } 877 878 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 879 CCE->arg_begin(), CCE->arg_end(), 880 RequiresZeroInitialization); 881 return; 882 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 883 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 884 // Optimization: since zero initialization will just set the memory 885 // to all zeroes, generate a single memset to do it in one shot. 886 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 887 return; 888 } 889 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 890 return; 891 } 892 893 if (!Init) 894 return; 895 896 StoreAnyExprIntoOneUnit(CGF, E, NewPtr); 897 } 898 899 namespace { 900 /// A cleanup to call the given 'operator delete' function upon 901 /// abnormal exit from a new expression. 902 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 903 size_t NumPlacementArgs; 904 const FunctionDecl *OperatorDelete; 905 llvm::Value *Ptr; 906 llvm::Value *AllocSize; 907 908 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 909 910 public: 911 static size_t getExtraSize(size_t NumPlacementArgs) { 912 return NumPlacementArgs * sizeof(RValue); 913 } 914 915 CallDeleteDuringNew(size_t NumPlacementArgs, 916 const FunctionDecl *OperatorDelete, 917 llvm::Value *Ptr, 918 llvm::Value *AllocSize) 919 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 920 Ptr(Ptr), AllocSize(AllocSize) {} 921 922 void setPlacementArg(unsigned I, RValue Arg) { 923 assert(I < NumPlacementArgs && "index out of range"); 924 getPlacementArgs()[I] = Arg; 925 } 926 927 void Emit(CodeGenFunction &CGF, Flags flags) { 928 const FunctionProtoType *FPT 929 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 930 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 931 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 932 933 CallArgList DeleteArgs; 934 935 // The first argument is always a void*. 936 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 937 DeleteArgs.add(RValue::get(Ptr), *AI++); 938 939 // A member 'operator delete' can take an extra 'size_t' argument. 940 if (FPT->getNumArgs() == NumPlacementArgs + 2) 941 DeleteArgs.add(RValue::get(AllocSize), *AI++); 942 943 // Pass the rest of the arguments, which must match exactly. 944 for (unsigned I = 0; I != NumPlacementArgs; ++I) 945 DeleteArgs.add(getPlacementArgs()[I], *AI++); 946 947 // Call 'operator delete'. 948 CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT), 949 CGF.CGM.GetAddrOfFunction(OperatorDelete), 950 ReturnValueSlot(), DeleteArgs, OperatorDelete); 951 } 952 }; 953 954 /// A cleanup to call the given 'operator delete' function upon 955 /// abnormal exit from a new expression when the new expression is 956 /// conditional. 957 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 958 size_t NumPlacementArgs; 959 const FunctionDecl *OperatorDelete; 960 DominatingValue<RValue>::saved_type Ptr; 961 DominatingValue<RValue>::saved_type AllocSize; 962 963 DominatingValue<RValue>::saved_type *getPlacementArgs() { 964 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 965 } 966 967 public: 968 static size_t getExtraSize(size_t NumPlacementArgs) { 969 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 970 } 971 972 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 973 const FunctionDecl *OperatorDelete, 974 DominatingValue<RValue>::saved_type Ptr, 975 DominatingValue<RValue>::saved_type AllocSize) 976 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 977 Ptr(Ptr), AllocSize(AllocSize) {} 978 979 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 980 assert(I < NumPlacementArgs && "index out of range"); 981 getPlacementArgs()[I] = Arg; 982 } 983 984 void Emit(CodeGenFunction &CGF, Flags flags) { 985 const FunctionProtoType *FPT 986 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 987 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 988 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 989 990 CallArgList DeleteArgs; 991 992 // The first argument is always a void*. 993 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 994 DeleteArgs.add(Ptr.restore(CGF), *AI++); 995 996 // A member 'operator delete' can take an extra 'size_t' argument. 997 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 998 RValue RV = AllocSize.restore(CGF); 999 DeleteArgs.add(RV, *AI++); 1000 } 1001 1002 // Pass the rest of the arguments, which must match exactly. 1003 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1004 RValue RV = getPlacementArgs()[I].restore(CGF); 1005 DeleteArgs.add(RV, *AI++); 1006 } 1007 1008 // Call 'operator delete'. 1009 CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT), 1010 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1011 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1012 } 1013 }; 1014 } 1015 1016 /// Enter a cleanup to call 'operator delete' if the initializer in a 1017 /// new-expression throws. 1018 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1019 const CXXNewExpr *E, 1020 llvm::Value *NewPtr, 1021 llvm::Value *AllocSize, 1022 const CallArgList &NewArgs) { 1023 // If we're not inside a conditional branch, then the cleanup will 1024 // dominate and we can do the easier (and more efficient) thing. 1025 if (!CGF.isInConditionalBranch()) { 1026 CallDeleteDuringNew *Cleanup = CGF.EHStack 1027 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1028 E->getNumPlacementArgs(), 1029 E->getOperatorDelete(), 1030 NewPtr, AllocSize); 1031 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1032 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1033 1034 return; 1035 } 1036 1037 // Otherwise, we need to save all this stuff. 1038 DominatingValue<RValue>::saved_type SavedNewPtr = 1039 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1040 DominatingValue<RValue>::saved_type SavedAllocSize = 1041 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1042 1043 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1044 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1045 E->getNumPlacementArgs(), 1046 E->getOperatorDelete(), 1047 SavedNewPtr, 1048 SavedAllocSize); 1049 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1050 Cleanup->setPlacementArg(I, 1051 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1052 1053 CGF.initFullExprCleanup(); 1054 } 1055 1056 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1057 // The element type being allocated. 1058 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1059 1060 // 1. Build a call to the allocation function. 1061 FunctionDecl *allocator = E->getOperatorNew(); 1062 const FunctionProtoType *allocatorType = 1063 allocator->getType()->castAs<FunctionProtoType>(); 1064 1065 CallArgList allocatorArgs; 1066 1067 // The allocation size is the first argument. 1068 QualType sizeType = getContext().getSizeType(); 1069 1070 llvm::Value *numElements = 0; 1071 llvm::Value *allocSizeWithoutCookie = 0; 1072 llvm::Value *allocSize = 1073 EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie); 1074 1075 allocatorArgs.add(RValue::get(allocSize), sizeType); 1076 1077 // Emit the rest of the arguments. 1078 // FIXME: Ideally, this should just use EmitCallArgs. 1079 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1080 1081 // First, use the types from the function type. 1082 // We start at 1 here because the first argument (the allocation size) 1083 // has already been emitted. 1084 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1085 ++i, ++placementArg) { 1086 QualType argType = allocatorType->getArgType(i); 1087 1088 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1089 placementArg->getType()) && 1090 "type mismatch in call argument!"); 1091 1092 EmitCallArg(allocatorArgs, *placementArg, argType); 1093 } 1094 1095 // Either we've emitted all the call args, or we have a call to a 1096 // variadic function. 1097 assert((placementArg == E->placement_arg_end() || 1098 allocatorType->isVariadic()) && 1099 "Extra arguments to non-variadic function!"); 1100 1101 // If we still have any arguments, emit them using the type of the argument. 1102 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1103 placementArg != placementArgsEnd; ++placementArg) { 1104 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1105 } 1106 1107 // Emit the allocation call. If the allocator is a global placement 1108 // operator, just "inline" it directly. 1109 RValue RV; 1110 if (allocator->isReservedGlobalPlacementOperator()) { 1111 assert(allocatorArgs.size() == 2); 1112 RV = allocatorArgs[1].RV; 1113 // TODO: kill any unnecessary computations done for the size 1114 // argument. 1115 } else { 1116 RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs, 1117 allocatorType), 1118 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1119 allocatorArgs, allocator); 1120 } 1121 1122 // Emit a null check on the allocation result if the allocation 1123 // function is allowed to return null (because it has a non-throwing 1124 // exception spec; for this part, we inline 1125 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1126 // interesting initializer. 1127 bool nullCheck = allocatorType->isNothrow(getContext()) && 1128 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1129 1130 llvm::BasicBlock *nullCheckBB = 0; 1131 llvm::BasicBlock *contBB = 0; 1132 1133 llvm::Value *allocation = RV.getScalarVal(); 1134 unsigned AS = 1135 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1136 1137 // The null-check means that the initializer is conditionally 1138 // evaluated. 1139 ConditionalEvaluation conditional(*this); 1140 1141 if (nullCheck) { 1142 conditional.begin(*this); 1143 1144 nullCheckBB = Builder.GetInsertBlock(); 1145 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1146 contBB = createBasicBlock("new.cont"); 1147 1148 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1149 Builder.CreateCondBr(isNull, contBB, notNullBB); 1150 EmitBlock(notNullBB); 1151 } 1152 1153 // If there's an operator delete, enter a cleanup to call it if an 1154 // exception is thrown. 1155 EHScopeStack::stable_iterator operatorDeleteCleanup; 1156 llvm::Instruction *cleanupDominator = 0; 1157 if (E->getOperatorDelete() && 1158 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1159 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1160 operatorDeleteCleanup = EHStack.stable_begin(); 1161 cleanupDominator = Builder.CreateUnreachable(); 1162 } 1163 1164 assert((allocSize == allocSizeWithoutCookie) == 1165 CalculateCookiePadding(*this, E).isZero()); 1166 if (allocSize != allocSizeWithoutCookie) { 1167 assert(E->isArray()); 1168 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1169 numElements, 1170 E, allocType); 1171 } 1172 1173 llvm::Type *elementPtrTy 1174 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1175 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1176 1177 EmitNewInitializer(*this, E, allocType, result, numElements, 1178 allocSizeWithoutCookie); 1179 if (E->isArray()) { 1180 // NewPtr is a pointer to the base element type. If we're 1181 // allocating an array of arrays, we'll need to cast back to the 1182 // array pointer type. 1183 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1184 if (result->getType() != resultType) 1185 result = Builder.CreateBitCast(result, resultType); 1186 } 1187 1188 // Deactivate the 'operator delete' cleanup if we finished 1189 // initialization. 1190 if (operatorDeleteCleanup.isValid()) { 1191 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1192 cleanupDominator->eraseFromParent(); 1193 } 1194 1195 if (nullCheck) { 1196 conditional.end(*this); 1197 1198 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1199 EmitBlock(contBB); 1200 1201 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1202 PHI->addIncoming(result, notNullBB); 1203 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1204 nullCheckBB); 1205 1206 result = PHI; 1207 } 1208 1209 return result; 1210 } 1211 1212 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1213 llvm::Value *Ptr, 1214 QualType DeleteTy) { 1215 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1216 1217 const FunctionProtoType *DeleteFTy = 1218 DeleteFD->getType()->getAs<FunctionProtoType>(); 1219 1220 CallArgList DeleteArgs; 1221 1222 // Check if we need to pass the size to the delete operator. 1223 llvm::Value *Size = 0; 1224 QualType SizeTy; 1225 if (DeleteFTy->getNumArgs() == 2) { 1226 SizeTy = DeleteFTy->getArgType(1); 1227 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1228 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1229 DeleteTypeSize.getQuantity()); 1230 } 1231 1232 QualType ArgTy = DeleteFTy->getArgType(0); 1233 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1234 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1235 1236 if (Size) 1237 DeleteArgs.add(RValue::get(Size), SizeTy); 1238 1239 // Emit the call to delete. 1240 EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy), 1241 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1242 DeleteArgs, DeleteFD); 1243 } 1244 1245 namespace { 1246 /// Calls the given 'operator delete' on a single object. 1247 struct CallObjectDelete : EHScopeStack::Cleanup { 1248 llvm::Value *Ptr; 1249 const FunctionDecl *OperatorDelete; 1250 QualType ElementType; 1251 1252 CallObjectDelete(llvm::Value *Ptr, 1253 const FunctionDecl *OperatorDelete, 1254 QualType ElementType) 1255 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1256 1257 void Emit(CodeGenFunction &CGF, Flags flags) { 1258 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1259 } 1260 }; 1261 } 1262 1263 /// Emit the code for deleting a single object. 1264 static void EmitObjectDelete(CodeGenFunction &CGF, 1265 const FunctionDecl *OperatorDelete, 1266 llvm::Value *Ptr, 1267 QualType ElementType, 1268 bool UseGlobalDelete) { 1269 // Find the destructor for the type, if applicable. If the 1270 // destructor is virtual, we'll just emit the vcall and return. 1271 const CXXDestructorDecl *Dtor = 0; 1272 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1273 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1274 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1275 Dtor = RD->getDestructor(); 1276 1277 if (Dtor->isVirtual()) { 1278 if (UseGlobalDelete) { 1279 // If we're supposed to call the global delete, make sure we do so 1280 // even if the destructor throws. 1281 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1282 Ptr, OperatorDelete, 1283 ElementType); 1284 } 1285 1286 llvm::Type *Ty = 1287 CGF.getTypes().GetFunctionType( 1288 CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 1289 1290 llvm::Value *Callee 1291 = CGF.BuildVirtualCall(Dtor, 1292 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1293 Ptr, Ty); 1294 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1295 0, 0); 1296 1297 if (UseGlobalDelete) { 1298 CGF.PopCleanupBlock(); 1299 } 1300 1301 return; 1302 } 1303 } 1304 } 1305 1306 // Make sure that we call delete even if the dtor throws. 1307 // This doesn't have to a conditional cleanup because we're going 1308 // to pop it off in a second. 1309 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1310 Ptr, OperatorDelete, ElementType); 1311 1312 if (Dtor) 1313 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1314 /*ForVirtualBase=*/false, Ptr); 1315 else if (CGF.getLangOptions().ObjCAutoRefCount && 1316 ElementType->isObjCLifetimeType()) { 1317 switch (ElementType.getObjCLifetime()) { 1318 case Qualifiers::OCL_None: 1319 case Qualifiers::OCL_ExplicitNone: 1320 case Qualifiers::OCL_Autoreleasing: 1321 break; 1322 1323 case Qualifiers::OCL_Strong: { 1324 // Load the pointer value. 1325 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1326 ElementType.isVolatileQualified()); 1327 1328 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1329 break; 1330 } 1331 1332 case Qualifiers::OCL_Weak: 1333 CGF.EmitARCDestroyWeak(Ptr); 1334 break; 1335 } 1336 } 1337 1338 CGF.PopCleanupBlock(); 1339 } 1340 1341 namespace { 1342 /// Calls the given 'operator delete' on an array of objects. 1343 struct CallArrayDelete : EHScopeStack::Cleanup { 1344 llvm::Value *Ptr; 1345 const FunctionDecl *OperatorDelete; 1346 llvm::Value *NumElements; 1347 QualType ElementType; 1348 CharUnits CookieSize; 1349 1350 CallArrayDelete(llvm::Value *Ptr, 1351 const FunctionDecl *OperatorDelete, 1352 llvm::Value *NumElements, 1353 QualType ElementType, 1354 CharUnits CookieSize) 1355 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1356 ElementType(ElementType), CookieSize(CookieSize) {} 1357 1358 void Emit(CodeGenFunction &CGF, Flags flags) { 1359 const FunctionProtoType *DeleteFTy = 1360 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1361 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1362 1363 CallArgList Args; 1364 1365 // Pass the pointer as the first argument. 1366 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1367 llvm::Value *DeletePtr 1368 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1369 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1370 1371 // Pass the original requested size as the second argument. 1372 if (DeleteFTy->getNumArgs() == 2) { 1373 QualType size_t = DeleteFTy->getArgType(1); 1374 llvm::IntegerType *SizeTy 1375 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1376 1377 CharUnits ElementTypeSize = 1378 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1379 1380 // The size of an element, multiplied by the number of elements. 1381 llvm::Value *Size 1382 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1383 Size = CGF.Builder.CreateMul(Size, NumElements); 1384 1385 // Plus the size of the cookie if applicable. 1386 if (!CookieSize.isZero()) { 1387 llvm::Value *CookieSizeV 1388 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1389 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1390 } 1391 1392 Args.add(RValue::get(Size), size_t); 1393 } 1394 1395 // Emit the call to delete. 1396 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy), 1397 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1398 ReturnValueSlot(), Args, OperatorDelete); 1399 } 1400 }; 1401 } 1402 1403 /// Emit the code for deleting an array of objects. 1404 static void EmitArrayDelete(CodeGenFunction &CGF, 1405 const CXXDeleteExpr *E, 1406 llvm::Value *deletedPtr, 1407 QualType elementType) { 1408 llvm::Value *numElements = 0; 1409 llvm::Value *allocatedPtr = 0; 1410 CharUnits cookieSize; 1411 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1412 numElements, allocatedPtr, cookieSize); 1413 1414 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1415 1416 // Make sure that we call delete even if one of the dtors throws. 1417 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1418 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1419 allocatedPtr, operatorDelete, 1420 numElements, elementType, 1421 cookieSize); 1422 1423 // Destroy the elements. 1424 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1425 assert(numElements && "no element count for a type with a destructor!"); 1426 1427 llvm::Value *arrayEnd = 1428 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1429 1430 // Note that it is legal to allocate a zero-length array, and we 1431 // can never fold the check away because the length should always 1432 // come from a cookie. 1433 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1434 CGF.getDestroyer(dtorKind), 1435 /*checkZeroLength*/ true, 1436 CGF.needsEHCleanup(dtorKind)); 1437 } 1438 1439 // Pop the cleanup block. 1440 CGF.PopCleanupBlock(); 1441 } 1442 1443 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1444 1445 // Get at the argument before we performed the implicit conversion 1446 // to void*. 1447 const Expr *Arg = E->getArgument(); 1448 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 1449 if (ICE->getCastKind() != CK_UserDefinedConversion && 1450 ICE->getType()->isVoidPointerType()) 1451 Arg = ICE->getSubExpr(); 1452 else 1453 break; 1454 } 1455 1456 llvm::Value *Ptr = EmitScalarExpr(Arg); 1457 1458 // Null check the pointer. 1459 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1460 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1461 1462 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1463 1464 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1465 EmitBlock(DeleteNotNull); 1466 1467 // We might be deleting a pointer to array. If so, GEP down to the 1468 // first non-array element. 1469 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1470 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1471 if (DeleteTy->isConstantArrayType()) { 1472 llvm::Value *Zero = Builder.getInt32(0); 1473 SmallVector<llvm::Value*,8> GEP; 1474 1475 GEP.push_back(Zero); // point at the outermost array 1476 1477 // For each layer of array type we're pointing at: 1478 while (const ConstantArrayType *Arr 1479 = getContext().getAsConstantArrayType(DeleteTy)) { 1480 // 1. Unpeel the array type. 1481 DeleteTy = Arr->getElementType(); 1482 1483 // 2. GEP to the first element of the array. 1484 GEP.push_back(Zero); 1485 } 1486 1487 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1488 } 1489 1490 assert(ConvertTypeForMem(DeleteTy) == 1491 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1492 1493 if (E->isArrayForm()) { 1494 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1495 } else { 1496 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1497 E->isGlobalDelete()); 1498 } 1499 1500 EmitBlock(DeleteEnd); 1501 } 1502 1503 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1504 // void __cxa_bad_typeid(); 1505 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1506 1507 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1508 } 1509 1510 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1511 llvm::Value *Fn = getBadTypeidFn(CGF); 1512 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1513 CGF.Builder.CreateUnreachable(); 1514 } 1515 1516 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1517 const Expr *E, 1518 llvm::Type *StdTypeInfoPtrTy) { 1519 // Get the vtable pointer. 1520 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1521 1522 // C++ [expr.typeid]p2: 1523 // If the glvalue expression is obtained by applying the unary * operator to 1524 // a pointer and the pointer is a null pointer value, the typeid expression 1525 // throws the std::bad_typeid exception. 1526 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1527 if (UO->getOpcode() == UO_Deref) { 1528 llvm::BasicBlock *BadTypeidBlock = 1529 CGF.createBasicBlock("typeid.bad_typeid"); 1530 llvm::BasicBlock *EndBlock = 1531 CGF.createBasicBlock("typeid.end"); 1532 1533 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1534 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1535 1536 CGF.EmitBlock(BadTypeidBlock); 1537 EmitBadTypeidCall(CGF); 1538 CGF.EmitBlock(EndBlock); 1539 } 1540 } 1541 1542 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1543 StdTypeInfoPtrTy->getPointerTo()); 1544 1545 // Load the type info. 1546 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1547 return CGF.Builder.CreateLoad(Value); 1548 } 1549 1550 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1551 llvm::Type *StdTypeInfoPtrTy = 1552 ConvertType(E->getType())->getPointerTo(); 1553 1554 if (E->isTypeOperand()) { 1555 llvm::Constant *TypeInfo = 1556 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1557 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1558 } 1559 1560 // C++ [expr.typeid]p2: 1561 // When typeid is applied to a glvalue expression whose type is a 1562 // polymorphic class type, the result refers to a std::type_info object 1563 // representing the type of the most derived object (that is, the dynamic 1564 // type) to which the glvalue refers. 1565 if (E->getExprOperand()->isGLValue()) { 1566 if (const RecordType *RT = 1567 E->getExprOperand()->getType()->getAs<RecordType>()) { 1568 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1569 if (RD->isPolymorphic()) 1570 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1571 StdTypeInfoPtrTy); 1572 } 1573 } 1574 1575 QualType OperandTy = E->getExprOperand()->getType(); 1576 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1577 StdTypeInfoPtrTy); 1578 } 1579 1580 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1581 // void *__dynamic_cast(const void *sub, 1582 // const abi::__class_type_info *src, 1583 // const abi::__class_type_info *dst, 1584 // std::ptrdiff_t src2dst_offset); 1585 1586 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1587 llvm::Type *PtrDiffTy = 1588 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1589 1590 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1591 1592 llvm::FunctionType *FTy = 1593 llvm::FunctionType::get(Int8PtrTy, Args, false); 1594 1595 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1596 } 1597 1598 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1599 // void __cxa_bad_cast(); 1600 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1601 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1602 } 1603 1604 static void EmitBadCastCall(CodeGenFunction &CGF) { 1605 llvm::Value *Fn = getBadCastFn(CGF); 1606 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1607 CGF.Builder.CreateUnreachable(); 1608 } 1609 1610 static llvm::Value * 1611 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1612 QualType SrcTy, QualType DestTy, 1613 llvm::BasicBlock *CastEnd) { 1614 llvm::Type *PtrDiffLTy = 1615 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1616 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1617 1618 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1619 if (PTy->getPointeeType()->isVoidType()) { 1620 // C++ [expr.dynamic.cast]p7: 1621 // If T is "pointer to cv void," then the result is a pointer to the 1622 // most derived object pointed to by v. 1623 1624 // Get the vtable pointer. 1625 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1626 1627 // Get the offset-to-top from the vtable. 1628 llvm::Value *OffsetToTop = 1629 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1630 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1631 1632 // Finally, add the offset to the pointer. 1633 Value = CGF.EmitCastToVoidPtr(Value); 1634 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1635 1636 return CGF.Builder.CreateBitCast(Value, DestLTy); 1637 } 1638 } 1639 1640 QualType SrcRecordTy; 1641 QualType DestRecordTy; 1642 1643 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1644 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1645 DestRecordTy = DestPTy->getPointeeType(); 1646 } else { 1647 SrcRecordTy = SrcTy; 1648 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1649 } 1650 1651 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1652 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1653 1654 llvm::Value *SrcRTTI = 1655 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1656 llvm::Value *DestRTTI = 1657 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1658 1659 // FIXME: Actually compute a hint here. 1660 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1661 1662 // Emit the call to __dynamic_cast. 1663 Value = CGF.EmitCastToVoidPtr(Value); 1664 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1665 SrcRTTI, DestRTTI, OffsetHint); 1666 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1667 1668 /// C++ [expr.dynamic.cast]p9: 1669 /// A failed cast to reference type throws std::bad_cast 1670 if (DestTy->isReferenceType()) { 1671 llvm::BasicBlock *BadCastBlock = 1672 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1673 1674 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1675 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1676 1677 CGF.EmitBlock(BadCastBlock); 1678 EmitBadCastCall(CGF); 1679 } 1680 1681 return Value; 1682 } 1683 1684 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1685 QualType DestTy) { 1686 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1687 if (DestTy->isPointerType()) 1688 return llvm::Constant::getNullValue(DestLTy); 1689 1690 /// C++ [expr.dynamic.cast]p9: 1691 /// A failed cast to reference type throws std::bad_cast 1692 EmitBadCastCall(CGF); 1693 1694 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1695 return llvm::UndefValue::get(DestLTy); 1696 } 1697 1698 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1699 const CXXDynamicCastExpr *DCE) { 1700 QualType DestTy = DCE->getTypeAsWritten(); 1701 1702 if (DCE->isAlwaysNull()) 1703 return EmitDynamicCastToNull(*this, DestTy); 1704 1705 QualType SrcTy = DCE->getSubExpr()->getType(); 1706 1707 // C++ [expr.dynamic.cast]p4: 1708 // If the value of v is a null pointer value in the pointer case, the result 1709 // is the null pointer value of type T. 1710 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1711 1712 llvm::BasicBlock *CastNull = 0; 1713 llvm::BasicBlock *CastNotNull = 0; 1714 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1715 1716 if (ShouldNullCheckSrcValue) { 1717 CastNull = createBasicBlock("dynamic_cast.null"); 1718 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1719 1720 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1721 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1722 EmitBlock(CastNotNull); 1723 } 1724 1725 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1726 1727 if (ShouldNullCheckSrcValue) { 1728 EmitBranch(CastEnd); 1729 1730 EmitBlock(CastNull); 1731 EmitBranch(CastEnd); 1732 } 1733 1734 EmitBlock(CastEnd); 1735 1736 if (ShouldNullCheckSrcValue) { 1737 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1738 PHI->addIncoming(Value, CastNotNull); 1739 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1740 1741 Value = PHI; 1742 } 1743 1744 return Value; 1745 } 1746 1747 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1748 RunCleanupsScope Scope(*this); 1749 1750 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1751 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1752 e = E->capture_init_end(); 1753 i != e; ++i, ++CurField) { 1754 // Emit initialization 1755 LValue LV = EmitLValueForFieldInitialization(Slot.getAddr(), *CurField, 0); 1756 ArrayRef<VarDecl *> ArrayIndexes; 1757 if (CurField->getType()->isArrayType()) 1758 ArrayIndexes = E->getCaptureInitIndexVars(i); 1759 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1760 } 1761 } 1762