1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/IR/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 SourceLocation CallLoc, 28 llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, 30 llvm::Value *This, 31 llvm::Value *ImplicitParam, 32 QualType ImplicitParamTy, 33 CallExpr::const_arg_iterator ArgBeg, 34 CallExpr::const_arg_iterator ArgEnd) { 35 assert(MD->isInstance() && 36 "Trying to emit a member call expr on a static method!"); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 42 : TCK_MemberCall, 43 CallLoc, This, getContext().getRecordType(MD->getParent())); 44 45 CallArgList Args; 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 60 61 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62 Callee, ReturnValue, Args, MD); 63 } 64 65 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 66 // quite what we want. 67 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 68 while (true) { 69 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 70 E = PE->getSubExpr(); 71 continue; 72 } 73 74 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 75 if (CE->getCastKind() == CK_NoOp) { 76 E = CE->getSubExpr(); 77 continue; 78 } 79 } 80 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 81 if (UO->getOpcode() == UO_Extension) { 82 E = UO->getSubExpr(); 83 continue; 84 } 85 } 86 return E; 87 } 88 } 89 90 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 91 /// expr can be devirtualized. 92 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 93 const Expr *Base, 94 const CXXMethodDecl *MD) { 95 96 // When building with -fapple-kext, all calls must go through the vtable since 97 // the kernel linker can do runtime patching of vtables. 98 if (Context.getLangOpts().AppleKext) 99 return false; 100 101 // If the most derived class is marked final, we know that no subclass can 102 // override this member function and so we can devirtualize it. For example: 103 // 104 // struct A { virtual void f(); } 105 // struct B final : A { }; 106 // 107 // void f(B *b) { 108 // b->f(); 109 // } 110 // 111 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 112 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 113 return true; 114 115 // If the member function is marked 'final', we know that it can't be 116 // overridden and can therefore devirtualize it. 117 if (MD->hasAttr<FinalAttr>()) 118 return true; 119 120 // Similarly, if the class itself is marked 'final' it can't be overridden 121 // and we can therefore devirtualize the member function call. 122 if (MD->getParent()->hasAttr<FinalAttr>()) 123 return true; 124 125 Base = skipNoOpCastsAndParens(Base); 126 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 127 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 128 // This is a record decl. We know the type and can devirtualize it. 129 return VD->getType()->isRecordType(); 130 } 131 132 return false; 133 } 134 135 // We can devirtualize calls on an object accessed by a class member access 136 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 137 // a derived class object constructed in the same location. 138 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 139 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 140 return VD->getType()->isRecordType(); 141 142 // We can always devirtualize calls on temporary object expressions. 143 if (isa<CXXConstructExpr>(Base)) 144 return true; 145 146 // And calls on bound temporaries. 147 if (isa<CXXBindTemporaryExpr>(Base)) 148 return true; 149 150 // Check if this is a call expr that returns a record type. 151 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 152 return CE->getCallReturnType()->isRecordType(); 153 154 // We can't devirtualize the call. 155 return false; 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 CGDebugInfo *DI = getDebugInfo(); 179 if (DI && 180 CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo && 181 !isa<CallExpr>(ME->getBase())) { 182 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 183 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 184 DI->getOrCreateRecordType(PTy->getPointeeType(), 185 MD->getParent()->getLocation()); 186 } 187 } 188 189 if (MD->isStatic()) { 190 // The method is static, emit it as we would a regular call. 191 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 192 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 193 ReturnValue, CE->arg_begin(), CE->arg_end()); 194 } 195 196 // Compute the object pointer. 197 const Expr *Base = ME->getBase(); 198 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 199 200 const CXXMethodDecl *DevirtualizedMethod = NULL; 201 if (CanUseVirtualCall && 202 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 205 assert(DevirtualizedMethod); 206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 207 const Expr *Inner = Base->ignoreParenBaseCasts(); 208 if (getCXXRecord(Inner) == DevirtualizedClass) 209 // If the class of the Inner expression is where the dynamic method 210 // is defined, build the this pointer from it. 211 Base = Inner; 212 else if (getCXXRecord(Base) != DevirtualizedClass) { 213 // If the method is defined in a class that is not the best dynamic 214 // one or the one of the full expression, we would have to build 215 // a derived-to-base cast to compute the correct this pointer, but 216 // we don't have support for that yet, so do a virtual call. 217 DevirtualizedMethod = NULL; 218 } 219 // If the return types are not the same, this might be a case where more 220 // code needs to run to compensate for it. For example, the derived 221 // method might return a type that inherits form from the return 222 // type of MD and has a prefix. 223 // For now we just avoid devirtualizing these covariant cases. 224 if (DevirtualizedMethod && 225 DevirtualizedMethod->getResultType().getCanonicalType() != 226 MD->getResultType().getCanonicalType()) 227 DevirtualizedMethod = NULL; 228 } 229 230 llvm::Value *This; 231 if (ME->isArrow()) 232 This = EmitScalarExpr(Base); 233 else 234 This = EmitLValue(Base).getAddress(); 235 236 237 if (MD->isTrivial()) { 238 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 239 if (isa<CXXConstructorDecl>(MD) && 240 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 241 return RValue::get(0); 242 243 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 244 // We don't like to generate the trivial copy/move assignment operator 245 // when it isn't necessary; just produce the proper effect here. 246 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 247 EmitAggregateAssign(This, RHS, CE->getType()); 248 return RValue::get(This); 249 } 250 251 if (isa<CXXConstructorDecl>(MD) && 252 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 253 // Trivial move and copy ctor are the same. 254 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 255 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 256 CE->arg_begin(), CE->arg_end()); 257 return RValue::get(This); 258 } 259 llvm_unreachable("unknown trivial member function"); 260 } 261 262 // Compute the function type we're calling. 263 const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 264 const CGFunctionInfo *FInfo = 0; 265 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 266 FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 267 Dtor_Complete); 268 else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 269 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 270 Ctor_Complete); 271 else 272 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 273 274 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 275 276 // C++ [class.virtual]p12: 277 // Explicit qualification with the scope operator (5.1) suppresses the 278 // virtual call mechanism. 279 // 280 // We also don't emit a virtual call if the base expression has a record type 281 // because then we know what the type is. 282 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 283 llvm::Value *Callee; 284 285 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 286 assert(CE->arg_begin() == CE->arg_end() && 287 "Destructor shouldn't have explicit parameters"); 288 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 289 if (UseVirtualCall) { 290 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 291 CE->getExprLoc(), This); 292 } else { 293 if (getLangOpts().AppleKext && 294 MD->isVirtual() && 295 ME->hasQualifier()) 296 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 297 else if (!DevirtualizedMethod) 298 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 299 else { 300 const CXXDestructorDecl *DDtor = 301 cast<CXXDestructorDecl>(DevirtualizedMethod); 302 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 303 } 304 EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 305 /*ImplicitParam=*/0, QualType(), 0, 0); 306 } 307 return RValue::get(0); 308 } 309 310 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 311 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 312 } else if (UseVirtualCall) { 313 Callee = BuildVirtualCall(MD, This, Ty); 314 } else { 315 if (getLangOpts().AppleKext && 316 MD->isVirtual() && 317 ME->hasQualifier()) 318 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 319 else if (!DevirtualizedMethod) 320 Callee = CGM.GetAddrOfFunction(MD, Ty); 321 else { 322 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 323 } 324 } 325 326 return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 327 /*ImplicitParam=*/0, QualType(), 328 CE->arg_begin(), CE->arg_end()); 329 } 330 331 RValue 332 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 333 ReturnValueSlot ReturnValue) { 334 const BinaryOperator *BO = 335 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 336 const Expr *BaseExpr = BO->getLHS(); 337 const Expr *MemFnExpr = BO->getRHS(); 338 339 const MemberPointerType *MPT = 340 MemFnExpr->getType()->castAs<MemberPointerType>(); 341 342 const FunctionProtoType *FPT = 343 MPT->getPointeeType()->castAs<FunctionProtoType>(); 344 const CXXRecordDecl *RD = 345 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 346 347 // Get the member function pointer. 348 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 349 350 // Emit the 'this' pointer. 351 llvm::Value *This; 352 353 if (BO->getOpcode() == BO_PtrMemI) 354 This = EmitScalarExpr(BaseExpr); 355 else 356 This = EmitLValue(BaseExpr).getAddress(); 357 358 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 359 QualType(MPT->getClass(), 0)); 360 361 // Ask the ABI to load the callee. Note that This is modified. 362 llvm::Value *Callee = 363 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 364 365 CallArgList Args; 366 367 QualType ThisType = 368 getContext().getPointerType(getContext().getTagDeclType(RD)); 369 370 // Push the this ptr. 371 Args.add(RValue::get(This), ThisType); 372 373 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 374 375 // And the rest of the call args 376 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 377 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 378 ReturnValue, Args); 379 } 380 381 RValue 382 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 383 const CXXMethodDecl *MD, 384 ReturnValueSlot ReturnValue) { 385 assert(MD->isInstance() && 386 "Trying to emit a member call expr on a static method!"); 387 LValue LV = EmitLValue(E->getArg(0)); 388 llvm::Value *This = LV.getAddress(); 389 390 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 391 MD->isTrivial()) { 392 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 393 QualType Ty = E->getType(); 394 EmitAggregateAssign(This, Src, Ty); 395 return RValue::get(This); 396 } 397 398 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 399 return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 400 /*ImplicitParam=*/0, QualType(), 401 E->arg_begin() + 1, E->arg_end()); 402 } 403 404 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 405 ReturnValueSlot ReturnValue) { 406 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 407 } 408 409 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 410 llvm::Value *DestPtr, 411 const CXXRecordDecl *Base) { 412 if (Base->isEmpty()) 413 return; 414 415 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 416 417 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 418 CharUnits Size = Layout.getNonVirtualSize(); 419 CharUnits Align = Layout.getNonVirtualAlign(); 420 421 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 422 423 // If the type contains a pointer to data member we can't memset it to zero. 424 // Instead, create a null constant and copy it to the destination. 425 // TODO: there are other patterns besides zero that we can usefully memset, 426 // like -1, which happens to be the pattern used by member-pointers. 427 // TODO: isZeroInitializable can be over-conservative in the case where a 428 // virtual base contains a member pointer. 429 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 430 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 431 432 llvm::GlobalVariable *NullVariable = 433 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 434 /*isConstant=*/true, 435 llvm::GlobalVariable::PrivateLinkage, 436 NullConstant, Twine()); 437 NullVariable->setAlignment(Align.getQuantity()); 438 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 439 440 // Get and call the appropriate llvm.memcpy overload. 441 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 442 return; 443 } 444 445 // Otherwise, just memset the whole thing to zero. This is legal 446 // because in LLVM, all default initializers (other than the ones we just 447 // handled above) are guaranteed to have a bit pattern of all zeros. 448 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 449 Align.getQuantity()); 450 } 451 452 void 453 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 454 AggValueSlot Dest) { 455 assert(!Dest.isIgnored() && "Must have a destination!"); 456 const CXXConstructorDecl *CD = E->getConstructor(); 457 458 // If we require zero initialization before (or instead of) calling the 459 // constructor, as can be the case with a non-user-provided default 460 // constructor, emit the zero initialization now, unless destination is 461 // already zeroed. 462 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 463 switch (E->getConstructionKind()) { 464 case CXXConstructExpr::CK_Delegating: 465 case CXXConstructExpr::CK_Complete: 466 EmitNullInitialization(Dest.getAddr(), E->getType()); 467 break; 468 case CXXConstructExpr::CK_VirtualBase: 469 case CXXConstructExpr::CK_NonVirtualBase: 470 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 471 break; 472 } 473 } 474 475 // If this is a call to a trivial default constructor, do nothing. 476 if (CD->isTrivial() && CD->isDefaultConstructor()) 477 return; 478 479 // Elide the constructor if we're constructing from a temporary. 480 // The temporary check is required because Sema sets this on NRVO 481 // returns. 482 if (getLangOpts().ElideConstructors && E->isElidable()) { 483 assert(getContext().hasSameUnqualifiedType(E->getType(), 484 E->getArg(0)->getType())); 485 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 486 EmitAggExpr(E->getArg(0), Dest); 487 return; 488 } 489 } 490 491 if (const ConstantArrayType *arrayType 492 = getContext().getAsConstantArrayType(E->getType())) { 493 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 494 E->arg_begin(), E->arg_end()); 495 } else { 496 CXXCtorType Type = Ctor_Complete; 497 bool ForVirtualBase = false; 498 bool Delegating = false; 499 500 switch (E->getConstructionKind()) { 501 case CXXConstructExpr::CK_Delegating: 502 // We should be emitting a constructor; GlobalDecl will assert this 503 Type = CurGD.getCtorType(); 504 Delegating = true; 505 break; 506 507 case CXXConstructExpr::CK_Complete: 508 Type = Ctor_Complete; 509 break; 510 511 case CXXConstructExpr::CK_VirtualBase: 512 ForVirtualBase = true; 513 // fall-through 514 515 case CXXConstructExpr::CK_NonVirtualBase: 516 Type = Ctor_Base; 517 } 518 519 // Call the constructor. 520 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 521 E->arg_begin(), E->arg_end()); 522 } 523 } 524 525 void 526 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 527 llvm::Value *Src, 528 const Expr *Exp) { 529 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 530 Exp = E->getSubExpr(); 531 assert(isa<CXXConstructExpr>(Exp) && 532 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 533 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 534 const CXXConstructorDecl *CD = E->getConstructor(); 535 RunCleanupsScope Scope(*this); 536 537 // If we require zero initialization before (or instead of) calling the 538 // constructor, as can be the case with a non-user-provided default 539 // constructor, emit the zero initialization now. 540 // FIXME. Do I still need this for a copy ctor synthesis? 541 if (E->requiresZeroInitialization()) 542 EmitNullInitialization(Dest, E->getType()); 543 544 assert(!getContext().getAsConstantArrayType(E->getType()) 545 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 546 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 547 E->arg_begin(), E->arg_end()); 548 } 549 550 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 551 const CXXNewExpr *E) { 552 if (!E->isArray()) 553 return CharUnits::Zero(); 554 555 // No cookie is required if the operator new[] being used is the 556 // reserved placement operator new[]. 557 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 558 return CharUnits::Zero(); 559 560 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 561 } 562 563 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 564 const CXXNewExpr *e, 565 unsigned minElements, 566 llvm::Value *&numElements, 567 llvm::Value *&sizeWithoutCookie) { 568 QualType type = e->getAllocatedType(); 569 570 if (!e->isArray()) { 571 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 572 sizeWithoutCookie 573 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 574 return sizeWithoutCookie; 575 } 576 577 // The width of size_t. 578 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 579 580 // Figure out the cookie size. 581 llvm::APInt cookieSize(sizeWidth, 582 CalculateCookiePadding(CGF, e).getQuantity()); 583 584 // Emit the array size expression. 585 // We multiply the size of all dimensions for NumElements. 586 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 587 numElements = CGF.EmitScalarExpr(e->getArraySize()); 588 assert(isa<llvm::IntegerType>(numElements->getType())); 589 590 // The number of elements can be have an arbitrary integer type; 591 // essentially, we need to multiply it by a constant factor, add a 592 // cookie size, and verify that the result is representable as a 593 // size_t. That's just a gloss, though, and it's wrong in one 594 // important way: if the count is negative, it's an error even if 595 // the cookie size would bring the total size >= 0. 596 bool isSigned 597 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 598 llvm::IntegerType *numElementsType 599 = cast<llvm::IntegerType>(numElements->getType()); 600 unsigned numElementsWidth = numElementsType->getBitWidth(); 601 602 // Compute the constant factor. 603 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 604 while (const ConstantArrayType *CAT 605 = CGF.getContext().getAsConstantArrayType(type)) { 606 type = CAT->getElementType(); 607 arraySizeMultiplier *= CAT->getSize(); 608 } 609 610 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 611 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 612 typeSizeMultiplier *= arraySizeMultiplier; 613 614 // This will be a size_t. 615 llvm::Value *size; 616 617 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 618 // Don't bloat the -O0 code. 619 if (llvm::ConstantInt *numElementsC = 620 dyn_cast<llvm::ConstantInt>(numElements)) { 621 const llvm::APInt &count = numElementsC->getValue(); 622 623 bool hasAnyOverflow = false; 624 625 // If 'count' was a negative number, it's an overflow. 626 if (isSigned && count.isNegative()) 627 hasAnyOverflow = true; 628 629 // We want to do all this arithmetic in size_t. If numElements is 630 // wider than that, check whether it's already too big, and if so, 631 // overflow. 632 else if (numElementsWidth > sizeWidth && 633 numElementsWidth - sizeWidth > count.countLeadingZeros()) 634 hasAnyOverflow = true; 635 636 // Okay, compute a count at the right width. 637 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 638 639 // If there is a brace-initializer, we cannot allocate fewer elements than 640 // there are initializers. If we do, that's treated like an overflow. 641 if (adjustedCount.ult(minElements)) 642 hasAnyOverflow = true; 643 644 // Scale numElements by that. This might overflow, but we don't 645 // care because it only overflows if allocationSize does, too, and 646 // if that overflows then we shouldn't use this. 647 numElements = llvm::ConstantInt::get(CGF.SizeTy, 648 adjustedCount * arraySizeMultiplier); 649 650 // Compute the size before cookie, and track whether it overflowed. 651 bool overflow; 652 llvm::APInt allocationSize 653 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 654 hasAnyOverflow |= overflow; 655 656 // Add in the cookie, and check whether it's overflowed. 657 if (cookieSize != 0) { 658 // Save the current size without a cookie. This shouldn't be 659 // used if there was overflow. 660 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 661 662 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 663 hasAnyOverflow |= overflow; 664 } 665 666 // On overflow, produce a -1 so operator new will fail. 667 if (hasAnyOverflow) { 668 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 669 } else { 670 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 671 } 672 673 // Otherwise, we might need to use the overflow intrinsics. 674 } else { 675 // There are up to five conditions we need to test for: 676 // 1) if isSigned, we need to check whether numElements is negative; 677 // 2) if numElementsWidth > sizeWidth, we need to check whether 678 // numElements is larger than something representable in size_t; 679 // 3) if minElements > 0, we need to check whether numElements is smaller 680 // than that. 681 // 4) we need to compute 682 // sizeWithoutCookie := numElements * typeSizeMultiplier 683 // and check whether it overflows; and 684 // 5) if we need a cookie, we need to compute 685 // size := sizeWithoutCookie + cookieSize 686 // and check whether it overflows. 687 688 llvm::Value *hasOverflow = 0; 689 690 // If numElementsWidth > sizeWidth, then one way or another, we're 691 // going to have to do a comparison for (2), and this happens to 692 // take care of (1), too. 693 if (numElementsWidth > sizeWidth) { 694 llvm::APInt threshold(numElementsWidth, 1); 695 threshold <<= sizeWidth; 696 697 llvm::Value *thresholdV 698 = llvm::ConstantInt::get(numElementsType, threshold); 699 700 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 701 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 702 703 // Otherwise, if we're signed, we want to sext up to size_t. 704 } else if (isSigned) { 705 if (numElementsWidth < sizeWidth) 706 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 707 708 // If there's a non-1 type size multiplier, then we can do the 709 // signedness check at the same time as we do the multiply 710 // because a negative number times anything will cause an 711 // unsigned overflow. Otherwise, we have to do it here. But at least 712 // in this case, we can subsume the >= minElements check. 713 if (typeSizeMultiplier == 1) 714 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 715 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 716 717 // Otherwise, zext up to size_t if necessary. 718 } else if (numElementsWidth < sizeWidth) { 719 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 720 } 721 722 assert(numElements->getType() == CGF.SizeTy); 723 724 if (minElements) { 725 // Don't allow allocation of fewer elements than we have initializers. 726 if (!hasOverflow) { 727 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 728 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 729 } else if (numElementsWidth > sizeWidth) { 730 // The other existing overflow subsumes this check. 731 // We do an unsigned comparison, since any signed value < -1 is 732 // taken care of either above or below. 733 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 734 CGF.Builder.CreateICmpULT(numElements, 735 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 736 } 737 } 738 739 size = numElements; 740 741 // Multiply by the type size if necessary. This multiplier 742 // includes all the factors for nested arrays. 743 // 744 // This step also causes numElements to be scaled up by the 745 // nested-array factor if necessary. Overflow on this computation 746 // can be ignored because the result shouldn't be used if 747 // allocation fails. 748 if (typeSizeMultiplier != 1) { 749 llvm::Value *umul_with_overflow 750 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 751 752 llvm::Value *tsmV = 753 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 754 llvm::Value *result = 755 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 756 757 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 758 if (hasOverflow) 759 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 760 else 761 hasOverflow = overflowed; 762 763 size = CGF.Builder.CreateExtractValue(result, 0); 764 765 // Also scale up numElements by the array size multiplier. 766 if (arraySizeMultiplier != 1) { 767 // If the base element type size is 1, then we can re-use the 768 // multiply we just did. 769 if (typeSize.isOne()) { 770 assert(arraySizeMultiplier == typeSizeMultiplier); 771 numElements = size; 772 773 // Otherwise we need a separate multiply. 774 } else { 775 llvm::Value *asmV = 776 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 777 numElements = CGF.Builder.CreateMul(numElements, asmV); 778 } 779 } 780 } else { 781 // numElements doesn't need to be scaled. 782 assert(arraySizeMultiplier == 1); 783 } 784 785 // Add in the cookie size if necessary. 786 if (cookieSize != 0) { 787 sizeWithoutCookie = size; 788 789 llvm::Value *uadd_with_overflow 790 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 791 792 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 793 llvm::Value *result = 794 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 795 796 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 797 if (hasOverflow) 798 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 799 else 800 hasOverflow = overflowed; 801 802 size = CGF.Builder.CreateExtractValue(result, 0); 803 } 804 805 // If we had any possibility of dynamic overflow, make a select to 806 // overwrite 'size' with an all-ones value, which should cause 807 // operator new to throw. 808 if (hasOverflow) 809 size = CGF.Builder.CreateSelect(hasOverflow, 810 llvm::Constant::getAllOnesValue(CGF.SizeTy), 811 size); 812 } 813 814 if (cookieSize == 0) 815 sizeWithoutCookie = size; 816 else 817 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 818 819 return size; 820 } 821 822 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 823 QualType AllocType, llvm::Value *NewPtr) { 824 825 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 826 switch (CGF.getEvaluationKind(AllocType)) { 827 case TEK_Scalar: 828 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 829 Alignment), 830 false); 831 return; 832 case TEK_Complex: 833 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 834 Alignment), 835 /*isInit*/ true); 836 return; 837 case TEK_Aggregate: { 838 AggValueSlot Slot 839 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 840 AggValueSlot::IsDestructed, 841 AggValueSlot::DoesNotNeedGCBarriers, 842 AggValueSlot::IsNotAliased); 843 CGF.EmitAggExpr(Init, Slot); 844 return; 845 } 846 } 847 llvm_unreachable("bad evaluation kind"); 848 } 849 850 void 851 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 852 QualType elementType, 853 llvm::Value *beginPtr, 854 llvm::Value *numElements) { 855 if (!E->hasInitializer()) 856 return; // We have a POD type. 857 858 llvm::Value *explicitPtr = beginPtr; 859 // Find the end of the array, hoisted out of the loop. 860 llvm::Value *endPtr = 861 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 862 863 unsigned initializerElements = 0; 864 865 const Expr *Init = E->getInitializer(); 866 llvm::AllocaInst *endOfInit = 0; 867 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 868 EHScopeStack::stable_iterator cleanup; 869 llvm::Instruction *cleanupDominator = 0; 870 // If the initializer is an initializer list, first do the explicit elements. 871 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 872 initializerElements = ILE->getNumInits(); 873 874 // Enter a partial-destruction cleanup if necessary. 875 if (needsEHCleanup(dtorKind)) { 876 // In principle we could tell the cleanup where we are more 877 // directly, but the control flow can get so varied here that it 878 // would actually be quite complex. Therefore we go through an 879 // alloca. 880 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 881 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 882 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 883 getDestroyer(dtorKind)); 884 cleanup = EHStack.stable_begin(); 885 } 886 887 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 888 // Tell the cleanup that it needs to destroy up to this 889 // element. TODO: some of these stores can be trivially 890 // observed to be unnecessary. 891 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 892 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 893 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 894 } 895 896 // The remaining elements are filled with the array filler expression. 897 Init = ILE->getArrayFiller(); 898 } 899 900 // Create the continuation block. 901 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 902 903 // If the number of elements isn't constant, we have to now check if there is 904 // anything left to initialize. 905 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 906 // If all elements have already been initialized, skip the whole loop. 907 if (constNum->getZExtValue() <= initializerElements) { 908 // If there was a cleanup, deactivate it. 909 if (cleanupDominator) 910 DeactivateCleanupBlock(cleanup, cleanupDominator); 911 return; 912 } 913 } else { 914 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 915 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 916 "array.isempty"); 917 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 918 EmitBlock(nonEmptyBB); 919 } 920 921 // Enter the loop. 922 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 923 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 924 925 EmitBlock(loopBB); 926 927 // Set up the current-element phi. 928 llvm::PHINode *curPtr = 929 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 930 curPtr->addIncoming(explicitPtr, entryBB); 931 932 // Store the new cleanup position for irregular cleanups. 933 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 934 935 // Enter a partial-destruction cleanup if necessary. 936 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 937 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 938 getDestroyer(dtorKind)); 939 cleanup = EHStack.stable_begin(); 940 cleanupDominator = Builder.CreateUnreachable(); 941 } 942 943 // Emit the initializer into this element. 944 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 945 946 // Leave the cleanup if we entered one. 947 if (cleanupDominator) { 948 DeactivateCleanupBlock(cleanup, cleanupDominator); 949 cleanupDominator->eraseFromParent(); 950 } 951 952 // Advance to the next element. 953 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 954 955 // Check whether we've gotten to the end of the array and, if so, 956 // exit the loop. 957 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 958 Builder.CreateCondBr(isEnd, contBB, loopBB); 959 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 960 961 EmitBlock(contBB); 962 } 963 964 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 965 llvm::Value *NewPtr, llvm::Value *Size) { 966 CGF.EmitCastToVoidPtr(NewPtr); 967 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 968 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 969 Alignment.getQuantity(), false); 970 } 971 972 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 973 QualType ElementType, 974 llvm::Value *NewPtr, 975 llvm::Value *NumElements, 976 llvm::Value *AllocSizeWithoutCookie) { 977 const Expr *Init = E->getInitializer(); 978 if (E->isArray()) { 979 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 980 CXXConstructorDecl *Ctor = CCE->getConstructor(); 981 if (Ctor->isTrivial()) { 982 // If new expression did not specify value-initialization, then there 983 // is no initialization. 984 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 985 return; 986 987 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 988 // Optimization: since zero initialization will just set the memory 989 // to all zeroes, generate a single memset to do it in one shot. 990 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 991 return; 992 } 993 } 994 995 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 996 CCE->arg_begin(), CCE->arg_end(), 997 CCE->requiresZeroInitialization()); 998 return; 999 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 1000 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 1001 // Optimization: since zero initialization will just set the memory 1002 // to all zeroes, generate a single memset to do it in one shot. 1003 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 1004 return; 1005 } 1006 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 1007 return; 1008 } 1009 1010 if (!Init) 1011 return; 1012 1013 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1014 } 1015 1016 namespace { 1017 /// A cleanup to call the given 'operator delete' function upon 1018 /// abnormal exit from a new expression. 1019 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1020 size_t NumPlacementArgs; 1021 const FunctionDecl *OperatorDelete; 1022 llvm::Value *Ptr; 1023 llvm::Value *AllocSize; 1024 1025 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1026 1027 public: 1028 static size_t getExtraSize(size_t NumPlacementArgs) { 1029 return NumPlacementArgs * sizeof(RValue); 1030 } 1031 1032 CallDeleteDuringNew(size_t NumPlacementArgs, 1033 const FunctionDecl *OperatorDelete, 1034 llvm::Value *Ptr, 1035 llvm::Value *AllocSize) 1036 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1037 Ptr(Ptr), AllocSize(AllocSize) {} 1038 1039 void setPlacementArg(unsigned I, RValue Arg) { 1040 assert(I < NumPlacementArgs && "index out of range"); 1041 getPlacementArgs()[I] = Arg; 1042 } 1043 1044 void Emit(CodeGenFunction &CGF, Flags flags) { 1045 const FunctionProtoType *FPT 1046 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1047 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1048 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1049 1050 CallArgList DeleteArgs; 1051 1052 // The first argument is always a void*. 1053 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1054 DeleteArgs.add(RValue::get(Ptr), *AI++); 1055 1056 // A member 'operator delete' can take an extra 'size_t' argument. 1057 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1058 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1059 1060 // Pass the rest of the arguments, which must match exactly. 1061 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1062 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1063 1064 // Call 'operator delete'. 1065 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1066 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1067 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1068 } 1069 }; 1070 1071 /// A cleanup to call the given 'operator delete' function upon 1072 /// abnormal exit from a new expression when the new expression is 1073 /// conditional. 1074 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1075 size_t NumPlacementArgs; 1076 const FunctionDecl *OperatorDelete; 1077 DominatingValue<RValue>::saved_type Ptr; 1078 DominatingValue<RValue>::saved_type AllocSize; 1079 1080 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1081 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1082 } 1083 1084 public: 1085 static size_t getExtraSize(size_t NumPlacementArgs) { 1086 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1087 } 1088 1089 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1090 const FunctionDecl *OperatorDelete, 1091 DominatingValue<RValue>::saved_type Ptr, 1092 DominatingValue<RValue>::saved_type AllocSize) 1093 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1094 Ptr(Ptr), AllocSize(AllocSize) {} 1095 1096 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1097 assert(I < NumPlacementArgs && "index out of range"); 1098 getPlacementArgs()[I] = Arg; 1099 } 1100 1101 void Emit(CodeGenFunction &CGF, Flags flags) { 1102 const FunctionProtoType *FPT 1103 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1104 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1105 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1106 1107 CallArgList DeleteArgs; 1108 1109 // The first argument is always a void*. 1110 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1111 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1112 1113 // A member 'operator delete' can take an extra 'size_t' argument. 1114 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1115 RValue RV = AllocSize.restore(CGF); 1116 DeleteArgs.add(RV, *AI++); 1117 } 1118 1119 // Pass the rest of the arguments, which must match exactly. 1120 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1121 RValue RV = getPlacementArgs()[I].restore(CGF); 1122 DeleteArgs.add(RV, *AI++); 1123 } 1124 1125 // Call 'operator delete'. 1126 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1127 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1128 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1129 } 1130 }; 1131 } 1132 1133 /// Enter a cleanup to call 'operator delete' if the initializer in a 1134 /// new-expression throws. 1135 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1136 const CXXNewExpr *E, 1137 llvm::Value *NewPtr, 1138 llvm::Value *AllocSize, 1139 const CallArgList &NewArgs) { 1140 // If we're not inside a conditional branch, then the cleanup will 1141 // dominate and we can do the easier (and more efficient) thing. 1142 if (!CGF.isInConditionalBranch()) { 1143 CallDeleteDuringNew *Cleanup = CGF.EHStack 1144 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1145 E->getNumPlacementArgs(), 1146 E->getOperatorDelete(), 1147 NewPtr, AllocSize); 1148 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1149 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1150 1151 return; 1152 } 1153 1154 // Otherwise, we need to save all this stuff. 1155 DominatingValue<RValue>::saved_type SavedNewPtr = 1156 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1157 DominatingValue<RValue>::saved_type SavedAllocSize = 1158 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1159 1160 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1161 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1162 E->getNumPlacementArgs(), 1163 E->getOperatorDelete(), 1164 SavedNewPtr, 1165 SavedAllocSize); 1166 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1167 Cleanup->setPlacementArg(I, 1168 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1169 1170 CGF.initFullExprCleanup(); 1171 } 1172 1173 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1174 // The element type being allocated. 1175 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1176 1177 // 1. Build a call to the allocation function. 1178 FunctionDecl *allocator = E->getOperatorNew(); 1179 const FunctionProtoType *allocatorType = 1180 allocator->getType()->castAs<FunctionProtoType>(); 1181 1182 CallArgList allocatorArgs; 1183 1184 // The allocation size is the first argument. 1185 QualType sizeType = getContext().getSizeType(); 1186 1187 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1188 unsigned minElements = 0; 1189 if (E->isArray() && E->hasInitializer()) { 1190 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1191 minElements = ILE->getNumInits(); 1192 } 1193 1194 llvm::Value *numElements = 0; 1195 llvm::Value *allocSizeWithoutCookie = 0; 1196 llvm::Value *allocSize = 1197 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1198 allocSizeWithoutCookie); 1199 1200 allocatorArgs.add(RValue::get(allocSize), sizeType); 1201 1202 // Emit the rest of the arguments. 1203 // FIXME: Ideally, this should just use EmitCallArgs. 1204 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1205 1206 // First, use the types from the function type. 1207 // We start at 1 here because the first argument (the allocation size) 1208 // has already been emitted. 1209 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1210 ++i, ++placementArg) { 1211 QualType argType = allocatorType->getArgType(i); 1212 1213 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1214 placementArg->getType()) && 1215 "type mismatch in call argument!"); 1216 1217 EmitCallArg(allocatorArgs, *placementArg, argType); 1218 } 1219 1220 // Either we've emitted all the call args, or we have a call to a 1221 // variadic function. 1222 assert((placementArg == E->placement_arg_end() || 1223 allocatorType->isVariadic()) && 1224 "Extra arguments to non-variadic function!"); 1225 1226 // If we still have any arguments, emit them using the type of the argument. 1227 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1228 placementArg != placementArgsEnd; ++placementArg) { 1229 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1230 } 1231 1232 // Emit the allocation call. If the allocator is a global placement 1233 // operator, just "inline" it directly. 1234 RValue RV; 1235 if (allocator->isReservedGlobalPlacementOperator()) { 1236 assert(allocatorArgs.size() == 2); 1237 RV = allocatorArgs[1].RV; 1238 // TODO: kill any unnecessary computations done for the size 1239 // argument. 1240 } else { 1241 RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1242 allocatorType), 1243 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1244 allocatorArgs, allocator); 1245 } 1246 1247 // Emit a null check on the allocation result if the allocation 1248 // function is allowed to return null (because it has a non-throwing 1249 // exception spec; for this part, we inline 1250 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1251 // interesting initializer. 1252 bool nullCheck = allocatorType->isNothrow(getContext()) && 1253 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1254 1255 llvm::BasicBlock *nullCheckBB = 0; 1256 llvm::BasicBlock *contBB = 0; 1257 1258 llvm::Value *allocation = RV.getScalarVal(); 1259 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1260 1261 // The null-check means that the initializer is conditionally 1262 // evaluated. 1263 ConditionalEvaluation conditional(*this); 1264 1265 if (nullCheck) { 1266 conditional.begin(*this); 1267 1268 nullCheckBB = Builder.GetInsertBlock(); 1269 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1270 contBB = createBasicBlock("new.cont"); 1271 1272 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1273 Builder.CreateCondBr(isNull, contBB, notNullBB); 1274 EmitBlock(notNullBB); 1275 } 1276 1277 // If there's an operator delete, enter a cleanup to call it if an 1278 // exception is thrown. 1279 EHScopeStack::stable_iterator operatorDeleteCleanup; 1280 llvm::Instruction *cleanupDominator = 0; 1281 if (E->getOperatorDelete() && 1282 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1283 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1284 operatorDeleteCleanup = EHStack.stable_begin(); 1285 cleanupDominator = Builder.CreateUnreachable(); 1286 } 1287 1288 assert((allocSize == allocSizeWithoutCookie) == 1289 CalculateCookiePadding(*this, E).isZero()); 1290 if (allocSize != allocSizeWithoutCookie) { 1291 assert(E->isArray()); 1292 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1293 numElements, 1294 E, allocType); 1295 } 1296 1297 llvm::Type *elementPtrTy 1298 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1299 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1300 1301 EmitNewInitializer(*this, E, allocType, result, numElements, 1302 allocSizeWithoutCookie); 1303 if (E->isArray()) { 1304 // NewPtr is a pointer to the base element type. If we're 1305 // allocating an array of arrays, we'll need to cast back to the 1306 // array pointer type. 1307 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1308 if (result->getType() != resultType) 1309 result = Builder.CreateBitCast(result, resultType); 1310 } 1311 1312 // Deactivate the 'operator delete' cleanup if we finished 1313 // initialization. 1314 if (operatorDeleteCleanup.isValid()) { 1315 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1316 cleanupDominator->eraseFromParent(); 1317 } 1318 1319 if (nullCheck) { 1320 conditional.end(*this); 1321 1322 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1323 EmitBlock(contBB); 1324 1325 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1326 PHI->addIncoming(result, notNullBB); 1327 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1328 nullCheckBB); 1329 1330 result = PHI; 1331 } 1332 1333 return result; 1334 } 1335 1336 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1337 llvm::Value *Ptr, 1338 QualType DeleteTy) { 1339 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1340 1341 const FunctionProtoType *DeleteFTy = 1342 DeleteFD->getType()->getAs<FunctionProtoType>(); 1343 1344 CallArgList DeleteArgs; 1345 1346 // Check if we need to pass the size to the delete operator. 1347 llvm::Value *Size = 0; 1348 QualType SizeTy; 1349 if (DeleteFTy->getNumArgs() == 2) { 1350 SizeTy = DeleteFTy->getArgType(1); 1351 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1352 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1353 DeleteTypeSize.getQuantity()); 1354 } 1355 1356 QualType ArgTy = DeleteFTy->getArgType(0); 1357 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1358 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1359 1360 if (Size) 1361 DeleteArgs.add(RValue::get(Size), SizeTy); 1362 1363 // Emit the call to delete. 1364 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 1365 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1366 DeleteArgs, DeleteFD); 1367 } 1368 1369 namespace { 1370 /// Calls the given 'operator delete' on a single object. 1371 struct CallObjectDelete : EHScopeStack::Cleanup { 1372 llvm::Value *Ptr; 1373 const FunctionDecl *OperatorDelete; 1374 QualType ElementType; 1375 1376 CallObjectDelete(llvm::Value *Ptr, 1377 const FunctionDecl *OperatorDelete, 1378 QualType ElementType) 1379 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1380 1381 void Emit(CodeGenFunction &CGF, Flags flags) { 1382 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1383 } 1384 }; 1385 } 1386 1387 /// Emit the code for deleting a single object. 1388 static void EmitObjectDelete(CodeGenFunction &CGF, 1389 const FunctionDecl *OperatorDelete, 1390 llvm::Value *Ptr, 1391 QualType ElementType, 1392 bool UseGlobalDelete) { 1393 // Find the destructor for the type, if applicable. If the 1394 // destructor is virtual, we'll just emit the vcall and return. 1395 const CXXDestructorDecl *Dtor = 0; 1396 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1397 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1398 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1399 Dtor = RD->getDestructor(); 1400 1401 if (Dtor->isVirtual()) { 1402 if (UseGlobalDelete) { 1403 // If we're supposed to call the global delete, make sure we do so 1404 // even if the destructor throws. 1405 1406 // Derive the complete-object pointer, which is what we need 1407 // to pass to the deallocation function. 1408 llvm::Value *completePtr = 1409 CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 1410 1411 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1412 completePtr, OperatorDelete, 1413 ElementType); 1414 } 1415 1416 // FIXME: Provide a source location here. 1417 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1418 CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1419 SourceLocation(), Ptr); 1420 1421 if (UseGlobalDelete) { 1422 CGF.PopCleanupBlock(); 1423 } 1424 1425 return; 1426 } 1427 } 1428 } 1429 1430 // Make sure that we call delete even if the dtor throws. 1431 // This doesn't have to a conditional cleanup because we're going 1432 // to pop it off in a second. 1433 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1434 Ptr, OperatorDelete, ElementType); 1435 1436 if (Dtor) 1437 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1438 /*ForVirtualBase=*/false, 1439 /*Delegating=*/false, 1440 Ptr); 1441 else if (CGF.getLangOpts().ObjCAutoRefCount && 1442 ElementType->isObjCLifetimeType()) { 1443 switch (ElementType.getObjCLifetime()) { 1444 case Qualifiers::OCL_None: 1445 case Qualifiers::OCL_ExplicitNone: 1446 case Qualifiers::OCL_Autoreleasing: 1447 break; 1448 1449 case Qualifiers::OCL_Strong: { 1450 // Load the pointer value. 1451 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1452 ElementType.isVolatileQualified()); 1453 1454 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1455 break; 1456 } 1457 1458 case Qualifiers::OCL_Weak: 1459 CGF.EmitARCDestroyWeak(Ptr); 1460 break; 1461 } 1462 } 1463 1464 CGF.PopCleanupBlock(); 1465 } 1466 1467 namespace { 1468 /// Calls the given 'operator delete' on an array of objects. 1469 struct CallArrayDelete : EHScopeStack::Cleanup { 1470 llvm::Value *Ptr; 1471 const FunctionDecl *OperatorDelete; 1472 llvm::Value *NumElements; 1473 QualType ElementType; 1474 CharUnits CookieSize; 1475 1476 CallArrayDelete(llvm::Value *Ptr, 1477 const FunctionDecl *OperatorDelete, 1478 llvm::Value *NumElements, 1479 QualType ElementType, 1480 CharUnits CookieSize) 1481 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1482 ElementType(ElementType), CookieSize(CookieSize) {} 1483 1484 void Emit(CodeGenFunction &CGF, Flags flags) { 1485 const FunctionProtoType *DeleteFTy = 1486 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1487 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1488 1489 CallArgList Args; 1490 1491 // Pass the pointer as the first argument. 1492 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1493 llvm::Value *DeletePtr 1494 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1495 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1496 1497 // Pass the original requested size as the second argument. 1498 if (DeleteFTy->getNumArgs() == 2) { 1499 QualType size_t = DeleteFTy->getArgType(1); 1500 llvm::IntegerType *SizeTy 1501 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1502 1503 CharUnits ElementTypeSize = 1504 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1505 1506 // The size of an element, multiplied by the number of elements. 1507 llvm::Value *Size 1508 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1509 Size = CGF.Builder.CreateMul(Size, NumElements); 1510 1511 // Plus the size of the cookie if applicable. 1512 if (!CookieSize.isZero()) { 1513 llvm::Value *CookieSizeV 1514 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1515 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1516 } 1517 1518 Args.add(RValue::get(Size), size_t); 1519 } 1520 1521 // Emit the call to delete. 1522 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 1523 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1524 ReturnValueSlot(), Args, OperatorDelete); 1525 } 1526 }; 1527 } 1528 1529 /// Emit the code for deleting an array of objects. 1530 static void EmitArrayDelete(CodeGenFunction &CGF, 1531 const CXXDeleteExpr *E, 1532 llvm::Value *deletedPtr, 1533 QualType elementType) { 1534 llvm::Value *numElements = 0; 1535 llvm::Value *allocatedPtr = 0; 1536 CharUnits cookieSize; 1537 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1538 numElements, allocatedPtr, cookieSize); 1539 1540 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1541 1542 // Make sure that we call delete even if one of the dtors throws. 1543 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1544 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1545 allocatedPtr, operatorDelete, 1546 numElements, elementType, 1547 cookieSize); 1548 1549 // Destroy the elements. 1550 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1551 assert(numElements && "no element count for a type with a destructor!"); 1552 1553 llvm::Value *arrayEnd = 1554 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1555 1556 // Note that it is legal to allocate a zero-length array, and we 1557 // can never fold the check away because the length should always 1558 // come from a cookie. 1559 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1560 CGF.getDestroyer(dtorKind), 1561 /*checkZeroLength*/ true, 1562 CGF.needsEHCleanup(dtorKind)); 1563 } 1564 1565 // Pop the cleanup block. 1566 CGF.PopCleanupBlock(); 1567 } 1568 1569 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1570 const Expr *Arg = E->getArgument(); 1571 llvm::Value *Ptr = EmitScalarExpr(Arg); 1572 1573 // Null check the pointer. 1574 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1575 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1576 1577 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1578 1579 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1580 EmitBlock(DeleteNotNull); 1581 1582 // We might be deleting a pointer to array. If so, GEP down to the 1583 // first non-array element. 1584 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1585 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1586 if (DeleteTy->isConstantArrayType()) { 1587 llvm::Value *Zero = Builder.getInt32(0); 1588 SmallVector<llvm::Value*,8> GEP; 1589 1590 GEP.push_back(Zero); // point at the outermost array 1591 1592 // For each layer of array type we're pointing at: 1593 while (const ConstantArrayType *Arr 1594 = getContext().getAsConstantArrayType(DeleteTy)) { 1595 // 1. Unpeel the array type. 1596 DeleteTy = Arr->getElementType(); 1597 1598 // 2. GEP to the first element of the array. 1599 GEP.push_back(Zero); 1600 } 1601 1602 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1603 } 1604 1605 assert(ConvertTypeForMem(DeleteTy) == 1606 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1607 1608 if (E->isArrayForm()) { 1609 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1610 } else { 1611 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1612 E->isGlobalDelete()); 1613 } 1614 1615 EmitBlock(DeleteEnd); 1616 } 1617 1618 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1619 // void __cxa_bad_typeid(); 1620 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1621 1622 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1623 } 1624 1625 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1626 llvm::Value *Fn = getBadTypeidFn(CGF); 1627 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1628 CGF.Builder.CreateUnreachable(); 1629 } 1630 1631 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1632 const Expr *E, 1633 llvm::Type *StdTypeInfoPtrTy) { 1634 // Get the vtable pointer. 1635 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1636 1637 // C++ [expr.typeid]p2: 1638 // If the glvalue expression is obtained by applying the unary * operator to 1639 // a pointer and the pointer is a null pointer value, the typeid expression 1640 // throws the std::bad_typeid exception. 1641 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1642 if (UO->getOpcode() == UO_Deref) { 1643 llvm::BasicBlock *BadTypeidBlock = 1644 CGF.createBasicBlock("typeid.bad_typeid"); 1645 llvm::BasicBlock *EndBlock = 1646 CGF.createBasicBlock("typeid.end"); 1647 1648 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1649 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1650 1651 CGF.EmitBlock(BadTypeidBlock); 1652 EmitBadTypeidCall(CGF); 1653 CGF.EmitBlock(EndBlock); 1654 } 1655 } 1656 1657 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1658 StdTypeInfoPtrTy->getPointerTo()); 1659 1660 // Load the type info. 1661 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1662 return CGF.Builder.CreateLoad(Value); 1663 } 1664 1665 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1666 llvm::Type *StdTypeInfoPtrTy = 1667 ConvertType(E->getType())->getPointerTo(); 1668 1669 if (E->isTypeOperand()) { 1670 llvm::Constant *TypeInfo = 1671 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1672 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1673 } 1674 1675 // C++ [expr.typeid]p2: 1676 // When typeid is applied to a glvalue expression whose type is a 1677 // polymorphic class type, the result refers to a std::type_info object 1678 // representing the type of the most derived object (that is, the dynamic 1679 // type) to which the glvalue refers. 1680 if (E->isPotentiallyEvaluated()) 1681 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1682 StdTypeInfoPtrTy); 1683 1684 QualType OperandTy = E->getExprOperand()->getType(); 1685 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1686 StdTypeInfoPtrTy); 1687 } 1688 1689 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1690 // void *__dynamic_cast(const void *sub, 1691 // const abi::__class_type_info *src, 1692 // const abi::__class_type_info *dst, 1693 // std::ptrdiff_t src2dst_offset); 1694 1695 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1696 llvm::Type *PtrDiffTy = 1697 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1698 1699 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1700 1701 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1702 1703 // Mark the function as nounwind readonly. 1704 llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1705 llvm::Attribute::ReadOnly }; 1706 llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1707 CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1708 1709 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1710 } 1711 1712 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1713 // void __cxa_bad_cast(); 1714 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1715 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1716 } 1717 1718 static void EmitBadCastCall(CodeGenFunction &CGF) { 1719 llvm::Value *Fn = getBadCastFn(CGF); 1720 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1721 CGF.Builder.CreateUnreachable(); 1722 } 1723 1724 /// \brief Compute the src2dst_offset hint as described in the 1725 /// Itanium C++ ABI [2.9.7] 1726 static CharUnits computeOffsetHint(ASTContext &Context, 1727 const CXXRecordDecl *Src, 1728 const CXXRecordDecl *Dst) { 1729 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1730 /*DetectVirtual=*/false); 1731 1732 // If Dst is not derived from Src we can skip the whole computation below and 1733 // return that Src is not a public base of Dst. Record all inheritance paths. 1734 if (!Dst->isDerivedFrom(Src, Paths)) 1735 return CharUnits::fromQuantity(-2ULL); 1736 1737 unsigned NumPublicPaths = 0; 1738 CharUnits Offset; 1739 1740 // Now walk all possible inheritance paths. 1741 for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1742 I != E; ++I) { 1743 if (I->Access != AS_public) // Ignore non-public inheritance. 1744 continue; 1745 1746 ++NumPublicPaths; 1747 1748 for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1749 // If the path contains a virtual base class we can't give any hint. 1750 // -1: no hint. 1751 if (J->Base->isVirtual()) 1752 return CharUnits::fromQuantity(-1ULL); 1753 1754 if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1755 continue; 1756 1757 // Accumulate the base class offsets. 1758 const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1759 Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1760 } 1761 } 1762 1763 // -2: Src is not a public base of Dst. 1764 if (NumPublicPaths == 0) 1765 return CharUnits::fromQuantity(-2ULL); 1766 1767 // -3: Src is a multiple public base type but never a virtual base type. 1768 if (NumPublicPaths > 1) 1769 return CharUnits::fromQuantity(-3ULL); 1770 1771 // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1772 // Return the offset of Src from the origin of Dst. 1773 return Offset; 1774 } 1775 1776 static llvm::Value * 1777 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1778 QualType SrcTy, QualType DestTy, 1779 llvm::BasicBlock *CastEnd) { 1780 llvm::Type *PtrDiffLTy = 1781 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1782 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1783 1784 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1785 if (PTy->getPointeeType()->isVoidType()) { 1786 // C++ [expr.dynamic.cast]p7: 1787 // If T is "pointer to cv void," then the result is a pointer to the 1788 // most derived object pointed to by v. 1789 1790 // Get the vtable pointer. 1791 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1792 1793 // Get the offset-to-top from the vtable. 1794 llvm::Value *OffsetToTop = 1795 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1796 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1797 1798 // Finally, add the offset to the pointer. 1799 Value = CGF.EmitCastToVoidPtr(Value); 1800 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1801 1802 return CGF.Builder.CreateBitCast(Value, DestLTy); 1803 } 1804 } 1805 1806 QualType SrcRecordTy; 1807 QualType DestRecordTy; 1808 1809 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1810 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1811 DestRecordTy = DestPTy->getPointeeType(); 1812 } else { 1813 SrcRecordTy = SrcTy; 1814 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1815 } 1816 1817 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1818 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1819 1820 llvm::Value *SrcRTTI = 1821 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1822 llvm::Value *DestRTTI = 1823 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1824 1825 // Compute the offset hint. 1826 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1827 const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1828 llvm::Value *OffsetHint = 1829 llvm::ConstantInt::get(PtrDiffLTy, 1830 computeOffsetHint(CGF.getContext(), SrcDecl, 1831 DestDecl).getQuantity()); 1832 1833 // Emit the call to __dynamic_cast. 1834 Value = CGF.EmitCastToVoidPtr(Value); 1835 1836 llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1837 Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1838 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1839 1840 /// C++ [expr.dynamic.cast]p9: 1841 /// A failed cast to reference type throws std::bad_cast 1842 if (DestTy->isReferenceType()) { 1843 llvm::BasicBlock *BadCastBlock = 1844 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1845 1846 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1847 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1848 1849 CGF.EmitBlock(BadCastBlock); 1850 EmitBadCastCall(CGF); 1851 } 1852 1853 return Value; 1854 } 1855 1856 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1857 QualType DestTy) { 1858 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1859 if (DestTy->isPointerType()) 1860 return llvm::Constant::getNullValue(DestLTy); 1861 1862 /// C++ [expr.dynamic.cast]p9: 1863 /// A failed cast to reference type throws std::bad_cast 1864 EmitBadCastCall(CGF); 1865 1866 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1867 return llvm::UndefValue::get(DestLTy); 1868 } 1869 1870 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1871 const CXXDynamicCastExpr *DCE) { 1872 QualType DestTy = DCE->getTypeAsWritten(); 1873 1874 if (DCE->isAlwaysNull()) 1875 return EmitDynamicCastToNull(*this, DestTy); 1876 1877 QualType SrcTy = DCE->getSubExpr()->getType(); 1878 1879 // C++ [expr.dynamic.cast]p4: 1880 // If the value of v is a null pointer value in the pointer case, the result 1881 // is the null pointer value of type T. 1882 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1883 1884 llvm::BasicBlock *CastNull = 0; 1885 llvm::BasicBlock *CastNotNull = 0; 1886 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1887 1888 if (ShouldNullCheckSrcValue) { 1889 CastNull = createBasicBlock("dynamic_cast.null"); 1890 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1891 1892 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1893 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1894 EmitBlock(CastNotNull); 1895 } 1896 1897 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1898 1899 if (ShouldNullCheckSrcValue) { 1900 EmitBranch(CastEnd); 1901 1902 EmitBlock(CastNull); 1903 EmitBranch(CastEnd); 1904 } 1905 1906 EmitBlock(CastEnd); 1907 1908 if (ShouldNullCheckSrcValue) { 1909 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1910 PHI->addIncoming(Value, CastNotNull); 1911 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1912 1913 Value = PHI; 1914 } 1915 1916 return Value; 1917 } 1918 1919 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1920 RunCleanupsScope Scope(*this); 1921 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1922 Slot.getAlignment()); 1923 1924 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1925 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1926 e = E->capture_init_end(); 1927 i != e; ++i, ++CurField) { 1928 // Emit initialization 1929 1930 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1931 ArrayRef<VarDecl *> ArrayIndexes; 1932 if (CurField->getType()->isArrayType()) 1933 ArrayIndexes = E->getCaptureInitIndexVars(i); 1934 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1935 } 1936 } 1937