1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41          isa<CXXOperatorCallExpr>(CE));
42   assert(MD->isInstance() &&
43          "Trying to emit a member or operator call expr on a static method!");
44 
45   // Push the this ptr.
46   const CXXRecordDecl *RD =
47       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49 
50   // If there is an implicit parameter (e.g. VTT), emit it.
51   if (ImplicitParam) {
52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53   }
54 
55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57   unsigned PrefixSize = Args.size() - 1;
58 
59   // And the rest of the call args.
60   if (RtlArgs) {
61     // Special case: if the caller emitted the arguments right-to-left already
62     // (prior to emitting the *this argument), we're done. This happens for
63     // assignment operators.
64     Args.addFrom(*RtlArgs);
65   } else if (CE) {
66     // Special case: skip first argument of CXXOperatorCall (it is "this").
67     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69                      CE->getDirectCallee());
70   } else {
71     assert(
72         FPT->getNumParams() == 0 &&
73         "No CallExpr specified for function with non-zero number of arguments");
74   }
75   return {required, PrefixSize};
76 }
77 
78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79     const CXXMethodDecl *MD, const CGCallee &Callee,
80     ReturnValueSlot ReturnValue,
81     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82     const CallExpr *CE, CallArgList *RtlArgs) {
83   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84   CallArgList Args;
85   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90                   CE ? CE->getExprLoc() : SourceLocation());
91 }
92 
93 RValue CodeGenFunction::EmitCXXDestructorCall(
94     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97 
98   assert(!ThisTy.isNull());
99   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
100          "Pointer/Object mixup");
101 
102   LangAS SrcAS = ThisTy.getAddressSpace();
103   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104   if (SrcAS != DstAS) {
105     QualType DstTy = DtorDecl->getThisType();
106     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108                                                  NewType);
109   }
110 
111   CallArgList Args;
112   commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113                                     ImplicitParamTy, CE, Args, nullptr);
114   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115                   ReturnValueSlot(), Args, nullptr,
116                   CE ? CE->getExprLoc() : SourceLocation{});
117 }
118 
119 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
120                                             const CXXPseudoDestructorExpr *E) {
121   QualType DestroyedType = E->getDestroyedType();
122   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
123     // Automatic Reference Counting:
124     //   If the pseudo-expression names a retainable object with weak or
125     //   strong lifetime, the object shall be released.
126     Expr *BaseExpr = E->getBase();
127     Address BaseValue = Address::invalid();
128     Qualifiers BaseQuals;
129 
130     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
131     if (E->isArrow()) {
132       BaseValue = EmitPointerWithAlignment(BaseExpr);
133       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
134       BaseQuals = PTy->getPointeeType().getQualifiers();
135     } else {
136       LValue BaseLV = EmitLValue(BaseExpr);
137       BaseValue = BaseLV.getAddress(*this);
138       QualType BaseTy = BaseExpr->getType();
139       BaseQuals = BaseTy.getQualifiers();
140     }
141 
142     switch (DestroyedType.getObjCLifetime()) {
143     case Qualifiers::OCL_None:
144     case Qualifiers::OCL_ExplicitNone:
145     case Qualifiers::OCL_Autoreleasing:
146       break;
147 
148     case Qualifiers::OCL_Strong:
149       EmitARCRelease(Builder.CreateLoad(BaseValue,
150                         DestroyedType.isVolatileQualified()),
151                      ARCPreciseLifetime);
152       break;
153 
154     case Qualifiers::OCL_Weak:
155       EmitARCDestroyWeak(BaseValue);
156       break;
157     }
158   } else {
159     // C++ [expr.pseudo]p1:
160     //   The result shall only be used as the operand for the function call
161     //   operator (), and the result of such a call has type void. The only
162     //   effect is the evaluation of the postfix-expression before the dot or
163     //   arrow.
164     EmitIgnoredExpr(E->getBase());
165   }
166 
167   return RValue::get(nullptr);
168 }
169 
170 static CXXRecordDecl *getCXXRecord(const Expr *E) {
171   QualType T = E->getType();
172   if (const PointerType *PTy = T->getAs<PointerType>())
173     T = PTy->getPointeeType();
174   const RecordType *Ty = T->castAs<RecordType>();
175   return cast<CXXRecordDecl>(Ty->getDecl());
176 }
177 
178 // Note: This function also emit constructor calls to support a MSVC
179 // extensions allowing explicit constructor function call.
180 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
181                                               ReturnValueSlot ReturnValue) {
182   const Expr *callee = CE->getCallee()->IgnoreParens();
183 
184   if (isa<BinaryOperator>(callee))
185     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
186 
187   const MemberExpr *ME = cast<MemberExpr>(callee);
188   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
189 
190   if (MD->isStatic()) {
191     // The method is static, emit it as we would a regular call.
192     CGCallee callee =
193         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
194     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
195                     ReturnValue);
196   }
197 
198   bool HasQualifier = ME->hasQualifier();
199   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
200   bool IsArrow = ME->isArrow();
201   const Expr *Base = ME->getBase();
202 
203   return EmitCXXMemberOrOperatorMemberCallExpr(
204       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
205 }
206 
207 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
208     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
209     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
210     const Expr *Base) {
211   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
212 
213   // Compute the object pointer.
214   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
215 
216   const CXXMethodDecl *DevirtualizedMethod = nullptr;
217   if (CanUseVirtualCall &&
218       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
219     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
220     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
221     assert(DevirtualizedMethod);
222     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
223     const Expr *Inner = Base->IgnoreParenBaseCasts();
224     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
225         MD->getReturnType().getCanonicalType())
226       // If the return types are not the same, this might be a case where more
227       // code needs to run to compensate for it. For example, the derived
228       // method might return a type that inherits form from the return
229       // type of MD and has a prefix.
230       // For now we just avoid devirtualizing these covariant cases.
231       DevirtualizedMethod = nullptr;
232     else if (getCXXRecord(Inner) == DevirtualizedClass)
233       // If the class of the Inner expression is where the dynamic method
234       // is defined, build the this pointer from it.
235       Base = Inner;
236     else if (getCXXRecord(Base) != DevirtualizedClass) {
237       // If the method is defined in a class that is not the best dynamic
238       // one or the one of the full expression, we would have to build
239       // a derived-to-base cast to compute the correct this pointer, but
240       // we don't have support for that yet, so do a virtual call.
241       DevirtualizedMethod = nullptr;
242     }
243   }
244 
245   bool TrivialForCodegen =
246       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
247   bool TrivialAssignment =
248       TrivialForCodegen &&
249       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
250       !MD->getParent()->mayInsertExtraPadding();
251 
252   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
253   // operator before the LHS.
254   CallArgList RtlArgStorage;
255   CallArgList *RtlArgs = nullptr;
256   LValue TrivialAssignmentRHS;
257   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
258     if (OCE->isAssignmentOp()) {
259       if (TrivialAssignment) {
260         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
261       } else {
262         RtlArgs = &RtlArgStorage;
263         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
264                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
265                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
266       }
267     }
268   }
269 
270   LValue This;
271   if (IsArrow) {
272     LValueBaseInfo BaseInfo;
273     TBAAAccessInfo TBAAInfo;
274     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
275     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
276   } else {
277     This = EmitLValue(Base);
278   }
279 
280   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
281     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
282     // constructing a new complete object of type Ctor.
283     assert(!RtlArgs);
284     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
285     CallArgList Args;
286     commonEmitCXXMemberOrOperatorCall(
287         *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
288         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
289 
290     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
291                            /*Delegating=*/false, This.getAddress(*this), Args,
292                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
293                            /*NewPointerIsChecked=*/false);
294     return RValue::get(nullptr);
295   }
296 
297   if (TrivialForCodegen) {
298     if (isa<CXXDestructorDecl>(MD))
299       return RValue::get(nullptr);
300 
301     if (TrivialAssignment) {
302       // We don't like to generate the trivial copy/move assignment operator
303       // when it isn't necessary; just produce the proper effect here.
304       // It's important that we use the result of EmitLValue here rather than
305       // emitting call arguments, in order to preserve TBAA information from
306       // the RHS.
307       LValue RHS = isa<CXXOperatorCallExpr>(CE)
308                        ? TrivialAssignmentRHS
309                        : EmitLValue(*CE->arg_begin());
310       EmitAggregateAssign(This, RHS, CE->getType());
311       return RValue::get(This.getPointer(*this));
312     }
313 
314     assert(MD->getParent()->mayInsertExtraPadding() &&
315            "unknown trivial member function");
316   }
317 
318   // Compute the function type we're calling.
319   const CXXMethodDecl *CalleeDecl =
320       DevirtualizedMethod ? DevirtualizedMethod : MD;
321   const CGFunctionInfo *FInfo = nullptr;
322   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
323     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
324         GlobalDecl(Dtor, Dtor_Complete));
325   else
326     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
327 
328   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
329 
330   // C++11 [class.mfct.non-static]p2:
331   //   If a non-static member function of a class X is called for an object that
332   //   is not of type X, or of a type derived from X, the behavior is undefined.
333   SourceLocation CallLoc;
334   ASTContext &C = getContext();
335   if (CE)
336     CallLoc = CE->getExprLoc();
337 
338   SanitizerSet SkippedChecks;
339   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
340     auto *IOA = CMCE->getImplicitObjectArgument();
341     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
342     if (IsImplicitObjectCXXThis)
343       SkippedChecks.set(SanitizerKind::Alignment, true);
344     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
345       SkippedChecks.set(SanitizerKind::Null, true);
346   }
347   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
348                 This.getPointer(*this),
349                 C.getRecordType(CalleeDecl->getParent()),
350                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
351 
352   // C++ [class.virtual]p12:
353   //   Explicit qualification with the scope operator (5.1) suppresses the
354   //   virtual call mechanism.
355   //
356   // We also don't emit a virtual call if the base expression has a record type
357   // because then we know what the type is.
358   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
359 
360   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
361     assert(CE->arg_begin() == CE->arg_end() &&
362            "Destructor shouldn't have explicit parameters");
363     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
364     if (UseVirtualCall) {
365       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
366                                                 This.getAddress(*this),
367                                                 cast<CXXMemberCallExpr>(CE));
368     } else {
369       GlobalDecl GD(Dtor, Dtor_Complete);
370       CGCallee Callee;
371       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
372         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
373       else if (!DevirtualizedMethod)
374         Callee =
375             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
376       else {
377         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
378       }
379 
380       QualType ThisTy =
381           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
382       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
383                             /*ImplicitParam=*/nullptr,
384                             /*ImplicitParamTy=*/QualType(), CE);
385     }
386     return RValue::get(nullptr);
387   }
388 
389   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
390   // 'CalleeDecl' instead.
391 
392   CGCallee Callee;
393   if (UseVirtualCall) {
394     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
395   } else {
396     if (SanOpts.has(SanitizerKind::CFINVCall) &&
397         MD->getParent()->isDynamicClass()) {
398       llvm::Value *VTable;
399       const CXXRecordDecl *RD;
400       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
401           *this, This.getAddress(*this), CalleeDecl->getParent());
402       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
403     }
404 
405     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
406       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
407     else if (!DevirtualizedMethod)
408       Callee =
409           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
410     else {
411       Callee =
412           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
413                               GlobalDecl(DevirtualizedMethod));
414     }
415   }
416 
417   if (MD->isVirtual()) {
418     Address NewThisAddr =
419         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
420             *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
421     This.setAddress(NewThisAddr);
422   }
423 
424   return EmitCXXMemberOrOperatorCall(
425       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
426       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
427 }
428 
429 RValue
430 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
431                                               ReturnValueSlot ReturnValue) {
432   const BinaryOperator *BO =
433       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
434   const Expr *BaseExpr = BO->getLHS();
435   const Expr *MemFnExpr = BO->getRHS();
436 
437   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
438   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
439   const auto *RD =
440       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
441 
442   // Emit the 'this' pointer.
443   Address This = Address::invalid();
444   if (BO->getOpcode() == BO_PtrMemI)
445     This = EmitPointerWithAlignment(BaseExpr);
446   else
447     This = EmitLValue(BaseExpr).getAddress(*this);
448 
449   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
450                 QualType(MPT->getClass(), 0));
451 
452   // Get the member function pointer.
453   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
454 
455   // Ask the ABI to load the callee.  Note that This is modified.
456   llvm::Value *ThisPtrForCall = nullptr;
457   CGCallee Callee =
458     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
459                                              ThisPtrForCall, MemFnPtr, MPT);
460 
461   CallArgList Args;
462 
463   QualType ThisType =
464     getContext().getPointerType(getContext().getTagDeclType(RD));
465 
466   // Push the this ptr.
467   Args.add(RValue::get(ThisPtrForCall), ThisType);
468 
469   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
470 
471   // And the rest of the call args
472   EmitCallArgs(Args, FPT, E->arguments());
473   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
474                                                       /*PrefixSize=*/0),
475                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
476 }
477 
478 RValue
479 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
480                                                const CXXMethodDecl *MD,
481                                                ReturnValueSlot ReturnValue) {
482   assert(MD->isInstance() &&
483          "Trying to emit a member call expr on a static method!");
484   return EmitCXXMemberOrOperatorMemberCallExpr(
485       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
486       /*IsArrow=*/false, E->getArg(0));
487 }
488 
489 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
490                                                ReturnValueSlot ReturnValue) {
491   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
492 }
493 
494 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
495                                             Address DestPtr,
496                                             const CXXRecordDecl *Base) {
497   if (Base->isEmpty())
498     return;
499 
500   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
501 
502   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
503   CharUnits NVSize = Layout.getNonVirtualSize();
504 
505   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
506   // present, they are initialized by the most derived class before calling the
507   // constructor.
508   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
509   Stores.emplace_back(CharUnits::Zero(), NVSize);
510 
511   // Each store is split by the existence of a vbptr.
512   CharUnits VBPtrWidth = CGF.getPointerSize();
513   std::vector<CharUnits> VBPtrOffsets =
514       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
515   for (CharUnits VBPtrOffset : VBPtrOffsets) {
516     // Stop before we hit any virtual base pointers located in virtual bases.
517     if (VBPtrOffset >= NVSize)
518       break;
519     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
520     CharUnits LastStoreOffset = LastStore.first;
521     CharUnits LastStoreSize = LastStore.second;
522 
523     CharUnits SplitBeforeOffset = LastStoreOffset;
524     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
525     assert(!SplitBeforeSize.isNegative() && "negative store size!");
526     if (!SplitBeforeSize.isZero())
527       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
528 
529     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
530     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
531     assert(!SplitAfterSize.isNegative() && "negative store size!");
532     if (!SplitAfterSize.isZero())
533       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
534   }
535 
536   // If the type contains a pointer to data member we can't memset it to zero.
537   // Instead, create a null constant and copy it to the destination.
538   // TODO: there are other patterns besides zero that we can usefully memset,
539   // like -1, which happens to be the pattern used by member-pointers.
540   // TODO: isZeroInitializable can be over-conservative in the case where a
541   // virtual base contains a member pointer.
542   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
543   if (!NullConstantForBase->isNullValue()) {
544     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
545         CGF.CGM.getModule(), NullConstantForBase->getType(),
546         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
547         NullConstantForBase, Twine());
548 
549     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
550                                DestPtr.getAlignment());
551     NullVariable->setAlignment(Align.getAsAlign());
552 
553     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
554 
555     // Get and call the appropriate llvm.memcpy overload.
556     for (std::pair<CharUnits, CharUnits> Store : Stores) {
557       CharUnits StoreOffset = Store.first;
558       CharUnits StoreSize = Store.second;
559       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
560       CGF.Builder.CreateMemCpy(
561           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
562           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
563           StoreSizeVal);
564     }
565 
566   // Otherwise, just memset the whole thing to zero.  This is legal
567   // because in LLVM, all default initializers (other than the ones we just
568   // handled above) are guaranteed to have a bit pattern of all zeros.
569   } else {
570     for (std::pair<CharUnits, CharUnits> Store : Stores) {
571       CharUnits StoreOffset = Store.first;
572       CharUnits StoreSize = Store.second;
573       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
574       CGF.Builder.CreateMemSet(
575           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
576           CGF.Builder.getInt8(0), StoreSizeVal);
577     }
578   }
579 }
580 
581 void
582 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
583                                       AggValueSlot Dest) {
584   assert(!Dest.isIgnored() && "Must have a destination!");
585   const CXXConstructorDecl *CD = E->getConstructor();
586 
587   // If we require zero initialization before (or instead of) calling the
588   // constructor, as can be the case with a non-user-provided default
589   // constructor, emit the zero initialization now, unless destination is
590   // already zeroed.
591   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
592     switch (E->getConstructionKind()) {
593     case CXXConstructExpr::CK_Delegating:
594     case CXXConstructExpr::CK_Complete:
595       EmitNullInitialization(Dest.getAddress(), E->getType());
596       break;
597     case CXXConstructExpr::CK_VirtualBase:
598     case CXXConstructExpr::CK_NonVirtualBase:
599       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
600                                       CD->getParent());
601       break;
602     }
603   }
604 
605   // If this is a call to a trivial default constructor, do nothing.
606   if (CD->isTrivial() && CD->isDefaultConstructor())
607     return;
608 
609   // Elide the constructor if we're constructing from a temporary.
610   // The temporary check is required because Sema sets this on NRVO
611   // returns.
612   if (getLangOpts().ElideConstructors && E->isElidable()) {
613     assert(getContext().hasSameUnqualifiedType(E->getType(),
614                                                E->getArg(0)->getType()));
615     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
616       EmitAggExpr(E->getArg(0), Dest);
617       return;
618     }
619   }
620 
621   if (const ArrayType *arrayType
622         = getContext().getAsArrayType(E->getType())) {
623     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
624                                Dest.isSanitizerChecked());
625   } else {
626     CXXCtorType Type = Ctor_Complete;
627     bool ForVirtualBase = false;
628     bool Delegating = false;
629 
630     switch (E->getConstructionKind()) {
631      case CXXConstructExpr::CK_Delegating:
632       // We should be emitting a constructor; GlobalDecl will assert this
633       Type = CurGD.getCtorType();
634       Delegating = true;
635       break;
636 
637      case CXXConstructExpr::CK_Complete:
638       Type = Ctor_Complete;
639       break;
640 
641      case CXXConstructExpr::CK_VirtualBase:
642       ForVirtualBase = true;
643       LLVM_FALLTHROUGH;
644 
645      case CXXConstructExpr::CK_NonVirtualBase:
646       Type = Ctor_Base;
647      }
648 
649      // Call the constructor.
650      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
651   }
652 }
653 
654 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
655                                                  const Expr *Exp) {
656   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
657     Exp = E->getSubExpr();
658   assert(isa<CXXConstructExpr>(Exp) &&
659          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
660   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
661   const CXXConstructorDecl *CD = E->getConstructor();
662   RunCleanupsScope Scope(*this);
663 
664   // If we require zero initialization before (or instead of) calling the
665   // constructor, as can be the case with a non-user-provided default
666   // constructor, emit the zero initialization now.
667   // FIXME. Do I still need this for a copy ctor synthesis?
668   if (E->requiresZeroInitialization())
669     EmitNullInitialization(Dest, E->getType());
670 
671   assert(!getContext().getAsConstantArrayType(E->getType())
672          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
673   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
674 }
675 
676 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
677                                         const CXXNewExpr *E) {
678   if (!E->isArray())
679     return CharUnits::Zero();
680 
681   // No cookie is required if the operator new[] being used is the
682   // reserved placement operator new[].
683   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
684     return CharUnits::Zero();
685 
686   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
687 }
688 
689 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
690                                         const CXXNewExpr *e,
691                                         unsigned minElements,
692                                         llvm::Value *&numElements,
693                                         llvm::Value *&sizeWithoutCookie) {
694   QualType type = e->getAllocatedType();
695 
696   if (!e->isArray()) {
697     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
698     sizeWithoutCookie
699       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
700     return sizeWithoutCookie;
701   }
702 
703   // The width of size_t.
704   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
705 
706   // Figure out the cookie size.
707   llvm::APInt cookieSize(sizeWidth,
708                          CalculateCookiePadding(CGF, e).getQuantity());
709 
710   // Emit the array size expression.
711   // We multiply the size of all dimensions for NumElements.
712   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
713   numElements =
714     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
715   if (!numElements)
716     numElements = CGF.EmitScalarExpr(*e->getArraySize());
717   assert(isa<llvm::IntegerType>(numElements->getType()));
718 
719   // The number of elements can be have an arbitrary integer type;
720   // essentially, we need to multiply it by a constant factor, add a
721   // cookie size, and verify that the result is representable as a
722   // size_t.  That's just a gloss, though, and it's wrong in one
723   // important way: if the count is negative, it's an error even if
724   // the cookie size would bring the total size >= 0.
725   bool isSigned
726     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
727   llvm::IntegerType *numElementsType
728     = cast<llvm::IntegerType>(numElements->getType());
729   unsigned numElementsWidth = numElementsType->getBitWidth();
730 
731   // Compute the constant factor.
732   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
733   while (const ConstantArrayType *CAT
734              = CGF.getContext().getAsConstantArrayType(type)) {
735     type = CAT->getElementType();
736     arraySizeMultiplier *= CAT->getSize();
737   }
738 
739   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
740   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
741   typeSizeMultiplier *= arraySizeMultiplier;
742 
743   // This will be a size_t.
744   llvm::Value *size;
745 
746   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
747   // Don't bloat the -O0 code.
748   if (llvm::ConstantInt *numElementsC =
749         dyn_cast<llvm::ConstantInt>(numElements)) {
750     const llvm::APInt &count = numElementsC->getValue();
751 
752     bool hasAnyOverflow = false;
753 
754     // If 'count' was a negative number, it's an overflow.
755     if (isSigned && count.isNegative())
756       hasAnyOverflow = true;
757 
758     // We want to do all this arithmetic in size_t.  If numElements is
759     // wider than that, check whether it's already too big, and if so,
760     // overflow.
761     else if (numElementsWidth > sizeWidth &&
762              numElementsWidth - sizeWidth > count.countLeadingZeros())
763       hasAnyOverflow = true;
764 
765     // Okay, compute a count at the right width.
766     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
767 
768     // If there is a brace-initializer, we cannot allocate fewer elements than
769     // there are initializers. If we do, that's treated like an overflow.
770     if (adjustedCount.ult(minElements))
771       hasAnyOverflow = true;
772 
773     // Scale numElements by that.  This might overflow, but we don't
774     // care because it only overflows if allocationSize does, too, and
775     // if that overflows then we shouldn't use this.
776     numElements = llvm::ConstantInt::get(CGF.SizeTy,
777                                          adjustedCount * arraySizeMultiplier);
778 
779     // Compute the size before cookie, and track whether it overflowed.
780     bool overflow;
781     llvm::APInt allocationSize
782       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
783     hasAnyOverflow |= overflow;
784 
785     // Add in the cookie, and check whether it's overflowed.
786     if (cookieSize != 0) {
787       // Save the current size without a cookie.  This shouldn't be
788       // used if there was overflow.
789       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
790 
791       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
792       hasAnyOverflow |= overflow;
793     }
794 
795     // On overflow, produce a -1 so operator new will fail.
796     if (hasAnyOverflow) {
797       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
798     } else {
799       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
800     }
801 
802   // Otherwise, we might need to use the overflow intrinsics.
803   } else {
804     // There are up to five conditions we need to test for:
805     // 1) if isSigned, we need to check whether numElements is negative;
806     // 2) if numElementsWidth > sizeWidth, we need to check whether
807     //   numElements is larger than something representable in size_t;
808     // 3) if minElements > 0, we need to check whether numElements is smaller
809     //    than that.
810     // 4) we need to compute
811     //      sizeWithoutCookie := numElements * typeSizeMultiplier
812     //    and check whether it overflows; and
813     // 5) if we need a cookie, we need to compute
814     //      size := sizeWithoutCookie + cookieSize
815     //    and check whether it overflows.
816 
817     llvm::Value *hasOverflow = nullptr;
818 
819     // If numElementsWidth > sizeWidth, then one way or another, we're
820     // going to have to do a comparison for (2), and this happens to
821     // take care of (1), too.
822     if (numElementsWidth > sizeWidth) {
823       llvm::APInt threshold(numElementsWidth, 1);
824       threshold <<= sizeWidth;
825 
826       llvm::Value *thresholdV
827         = llvm::ConstantInt::get(numElementsType, threshold);
828 
829       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
830       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
831 
832     // Otherwise, if we're signed, we want to sext up to size_t.
833     } else if (isSigned) {
834       if (numElementsWidth < sizeWidth)
835         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
836 
837       // If there's a non-1 type size multiplier, then we can do the
838       // signedness check at the same time as we do the multiply
839       // because a negative number times anything will cause an
840       // unsigned overflow.  Otherwise, we have to do it here. But at least
841       // in this case, we can subsume the >= minElements check.
842       if (typeSizeMultiplier == 1)
843         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
844                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
845 
846     // Otherwise, zext up to size_t if necessary.
847     } else if (numElementsWidth < sizeWidth) {
848       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
849     }
850 
851     assert(numElements->getType() == CGF.SizeTy);
852 
853     if (minElements) {
854       // Don't allow allocation of fewer elements than we have initializers.
855       if (!hasOverflow) {
856         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
857                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
858       } else if (numElementsWidth > sizeWidth) {
859         // The other existing overflow subsumes this check.
860         // We do an unsigned comparison, since any signed value < -1 is
861         // taken care of either above or below.
862         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
863                           CGF.Builder.CreateICmpULT(numElements,
864                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
865       }
866     }
867 
868     size = numElements;
869 
870     // Multiply by the type size if necessary.  This multiplier
871     // includes all the factors for nested arrays.
872     //
873     // This step also causes numElements to be scaled up by the
874     // nested-array factor if necessary.  Overflow on this computation
875     // can be ignored because the result shouldn't be used if
876     // allocation fails.
877     if (typeSizeMultiplier != 1) {
878       llvm::Function *umul_with_overflow
879         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
880 
881       llvm::Value *tsmV =
882         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
883       llvm::Value *result =
884           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
885 
886       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
887       if (hasOverflow)
888         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
889       else
890         hasOverflow = overflowed;
891 
892       size = CGF.Builder.CreateExtractValue(result, 0);
893 
894       // Also scale up numElements by the array size multiplier.
895       if (arraySizeMultiplier != 1) {
896         // If the base element type size is 1, then we can re-use the
897         // multiply we just did.
898         if (typeSize.isOne()) {
899           assert(arraySizeMultiplier == typeSizeMultiplier);
900           numElements = size;
901 
902         // Otherwise we need a separate multiply.
903         } else {
904           llvm::Value *asmV =
905             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
906           numElements = CGF.Builder.CreateMul(numElements, asmV);
907         }
908       }
909     } else {
910       // numElements doesn't need to be scaled.
911       assert(arraySizeMultiplier == 1);
912     }
913 
914     // Add in the cookie size if necessary.
915     if (cookieSize != 0) {
916       sizeWithoutCookie = size;
917 
918       llvm::Function *uadd_with_overflow
919         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
920 
921       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
922       llvm::Value *result =
923           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
924 
925       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
926       if (hasOverflow)
927         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
928       else
929         hasOverflow = overflowed;
930 
931       size = CGF.Builder.CreateExtractValue(result, 0);
932     }
933 
934     // If we had any possibility of dynamic overflow, make a select to
935     // overwrite 'size' with an all-ones value, which should cause
936     // operator new to throw.
937     if (hasOverflow)
938       size = CGF.Builder.CreateSelect(hasOverflow,
939                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
940                                       size);
941   }
942 
943   if (cookieSize == 0)
944     sizeWithoutCookie = size;
945   else
946     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
947 
948   return size;
949 }
950 
951 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
952                                     QualType AllocType, Address NewPtr,
953                                     AggValueSlot::Overlap_t MayOverlap) {
954   // FIXME: Refactor with EmitExprAsInit.
955   switch (CGF.getEvaluationKind(AllocType)) {
956   case TEK_Scalar:
957     CGF.EmitScalarInit(Init, nullptr,
958                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
959     return;
960   case TEK_Complex:
961     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
962                                   /*isInit*/ true);
963     return;
964   case TEK_Aggregate: {
965     AggValueSlot Slot
966       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
967                               AggValueSlot::IsDestructed,
968                               AggValueSlot::DoesNotNeedGCBarriers,
969                               AggValueSlot::IsNotAliased,
970                               MayOverlap, AggValueSlot::IsNotZeroed,
971                               AggValueSlot::IsSanitizerChecked);
972     CGF.EmitAggExpr(Init, Slot);
973     return;
974   }
975   }
976   llvm_unreachable("bad evaluation kind");
977 }
978 
979 void CodeGenFunction::EmitNewArrayInitializer(
980     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
981     Address BeginPtr, llvm::Value *NumElements,
982     llvm::Value *AllocSizeWithoutCookie) {
983   // If we have a type with trivial initialization and no initializer,
984   // there's nothing to do.
985   if (!E->hasInitializer())
986     return;
987 
988   Address CurPtr = BeginPtr;
989 
990   unsigned InitListElements = 0;
991 
992   const Expr *Init = E->getInitializer();
993   Address EndOfInit = Address::invalid();
994   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
995   EHScopeStack::stable_iterator Cleanup;
996   llvm::Instruction *CleanupDominator = nullptr;
997 
998   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
999   CharUnits ElementAlign =
1000     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1001 
1002   // Attempt to perform zero-initialization using memset.
1003   auto TryMemsetInitialization = [&]() -> bool {
1004     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1005     // we can initialize with a memset to -1.
1006     if (!CGM.getTypes().isZeroInitializable(ElementType))
1007       return false;
1008 
1009     // Optimization: since zero initialization will just set the memory
1010     // to all zeroes, generate a single memset to do it in one shot.
1011 
1012     // Subtract out the size of any elements we've already initialized.
1013     auto *RemainingSize = AllocSizeWithoutCookie;
1014     if (InitListElements) {
1015       // We know this can't overflow; we check this when doing the allocation.
1016       auto *InitializedSize = llvm::ConstantInt::get(
1017           RemainingSize->getType(),
1018           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1019               InitListElements);
1020       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1021     }
1022 
1023     // Create the memset.
1024     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1025     return true;
1026   };
1027 
1028   // If the initializer is an initializer list, first do the explicit elements.
1029   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1030     // Initializing from a (braced) string literal is a special case; the init
1031     // list element does not initialize a (single) array element.
1032     if (ILE->isStringLiteralInit()) {
1033       // Initialize the initial portion of length equal to that of the string
1034       // literal. The allocation must be for at least this much; we emitted a
1035       // check for that earlier.
1036       AggValueSlot Slot =
1037           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1038                                 AggValueSlot::IsDestructed,
1039                                 AggValueSlot::DoesNotNeedGCBarriers,
1040                                 AggValueSlot::IsNotAliased,
1041                                 AggValueSlot::DoesNotOverlap,
1042                                 AggValueSlot::IsNotZeroed,
1043                                 AggValueSlot::IsSanitizerChecked);
1044       EmitAggExpr(ILE->getInit(0), Slot);
1045 
1046       // Move past these elements.
1047       InitListElements =
1048           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1049               ->getSize().getZExtValue();
1050       CurPtr =
1051           Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1052                                             CurPtr.getPointer(),
1053                                             Builder.getSize(InitListElements),
1054                                             "string.init.end"),
1055                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1056                                                           ElementSize));
1057 
1058       // Zero out the rest, if any remain.
1059       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1060       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1061         bool OK = TryMemsetInitialization();
1062         (void)OK;
1063         assert(OK && "couldn't memset character type?");
1064       }
1065       return;
1066     }
1067 
1068     InitListElements = ILE->getNumInits();
1069 
1070     // If this is a multi-dimensional array new, we will initialize multiple
1071     // elements with each init list element.
1072     QualType AllocType = E->getAllocatedType();
1073     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1074             AllocType->getAsArrayTypeUnsafe())) {
1075       ElementTy = ConvertTypeForMem(AllocType);
1076       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1077       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1078     }
1079 
1080     // Enter a partial-destruction Cleanup if necessary.
1081     if (needsEHCleanup(DtorKind)) {
1082       // In principle we could tell the Cleanup where we are more
1083       // directly, but the control flow can get so varied here that it
1084       // would actually be quite complex.  Therefore we go through an
1085       // alloca.
1086       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1087                                    "array.init.end");
1088       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1089       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1090                                        ElementType, ElementAlign,
1091                                        getDestroyer(DtorKind));
1092       Cleanup = EHStack.stable_begin();
1093     }
1094 
1095     CharUnits StartAlign = CurPtr.getAlignment();
1096     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1097       // Tell the cleanup that it needs to destroy up to this
1098       // element.  TODO: some of these stores can be trivially
1099       // observed to be unnecessary.
1100       if (EndOfInit.isValid()) {
1101         auto FinishedPtr =
1102           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1103         Builder.CreateStore(FinishedPtr, EndOfInit);
1104       }
1105       // FIXME: If the last initializer is an incomplete initializer list for
1106       // an array, and we have an array filler, we can fold together the two
1107       // initialization loops.
1108       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1109                               ILE->getInit(i)->getType(), CurPtr,
1110                               AggValueSlot::DoesNotOverlap);
1111       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1112                                                  CurPtr.getPointer(),
1113                                                  Builder.getSize(1),
1114                                                  "array.exp.next"),
1115                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1116     }
1117 
1118     // The remaining elements are filled with the array filler expression.
1119     Init = ILE->getArrayFiller();
1120 
1121     // Extract the initializer for the individual array elements by pulling
1122     // out the array filler from all the nested initializer lists. This avoids
1123     // generating a nested loop for the initialization.
1124     while (Init && Init->getType()->isConstantArrayType()) {
1125       auto *SubILE = dyn_cast<InitListExpr>(Init);
1126       if (!SubILE)
1127         break;
1128       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1129       Init = SubILE->getArrayFiller();
1130     }
1131 
1132     // Switch back to initializing one base element at a time.
1133     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1134   }
1135 
1136   // If all elements have already been initialized, skip any further
1137   // initialization.
1138   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1139   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1140     // If there was a Cleanup, deactivate it.
1141     if (CleanupDominator)
1142       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1143     return;
1144   }
1145 
1146   assert(Init && "have trailing elements to initialize but no initializer");
1147 
1148   // If this is a constructor call, try to optimize it out, and failing that
1149   // emit a single loop to initialize all remaining elements.
1150   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1151     CXXConstructorDecl *Ctor = CCE->getConstructor();
1152     if (Ctor->isTrivial()) {
1153       // If new expression did not specify value-initialization, then there
1154       // is no initialization.
1155       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1156         return;
1157 
1158       if (TryMemsetInitialization())
1159         return;
1160     }
1161 
1162     // Store the new Cleanup position for irregular Cleanups.
1163     //
1164     // FIXME: Share this cleanup with the constructor call emission rather than
1165     // having it create a cleanup of its own.
1166     if (EndOfInit.isValid())
1167       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1168 
1169     // Emit a constructor call loop to initialize the remaining elements.
1170     if (InitListElements)
1171       NumElements = Builder.CreateSub(
1172           NumElements,
1173           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1174     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1175                                /*NewPointerIsChecked*/true,
1176                                CCE->requiresZeroInitialization());
1177     return;
1178   }
1179 
1180   // If this is value-initialization, we can usually use memset.
1181   ImplicitValueInitExpr IVIE(ElementType);
1182   if (isa<ImplicitValueInitExpr>(Init)) {
1183     if (TryMemsetInitialization())
1184       return;
1185 
1186     // Switch to an ImplicitValueInitExpr for the element type. This handles
1187     // only one case: multidimensional array new of pointers to members. In
1188     // all other cases, we already have an initializer for the array element.
1189     Init = &IVIE;
1190   }
1191 
1192   // At this point we should have found an initializer for the individual
1193   // elements of the array.
1194   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1195          "got wrong type of element to initialize");
1196 
1197   // If we have an empty initializer list, we can usually use memset.
1198   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1199     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1200       return;
1201 
1202   // If we have a struct whose every field is value-initialized, we can
1203   // usually use memset.
1204   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1205     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1206       if (RType->getDecl()->isStruct()) {
1207         unsigned NumElements = 0;
1208         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1209           NumElements = CXXRD->getNumBases();
1210         for (auto *Field : RType->getDecl()->fields())
1211           if (!Field->isUnnamedBitfield())
1212             ++NumElements;
1213         // FIXME: Recurse into nested InitListExprs.
1214         if (ILE->getNumInits() == NumElements)
1215           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1216             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1217               --NumElements;
1218         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1219           return;
1220       }
1221     }
1222   }
1223 
1224   // Create the loop blocks.
1225   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1226   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1227   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1228 
1229   // Find the end of the array, hoisted out of the loop.
1230   llvm::Value *EndPtr =
1231     Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1232                               NumElements, "array.end");
1233 
1234   // If the number of elements isn't constant, we have to now check if there is
1235   // anything left to initialize.
1236   if (!ConstNum) {
1237     llvm::Value *IsEmpty =
1238       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1239     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1240   }
1241 
1242   // Enter the loop.
1243   EmitBlock(LoopBB);
1244 
1245   // Set up the current-element phi.
1246   llvm::PHINode *CurPtrPhi =
1247     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1248   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1249 
1250   CurPtr = Address(CurPtrPhi, ElementAlign);
1251 
1252   // Store the new Cleanup position for irregular Cleanups.
1253   if (EndOfInit.isValid())
1254     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1255 
1256   // Enter a partial-destruction Cleanup if necessary.
1257   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1258     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1259                                    ElementType, ElementAlign,
1260                                    getDestroyer(DtorKind));
1261     Cleanup = EHStack.stable_begin();
1262     CleanupDominator = Builder.CreateUnreachable();
1263   }
1264 
1265   // Emit the initializer into this element.
1266   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1267                           AggValueSlot::DoesNotOverlap);
1268 
1269   // Leave the Cleanup if we entered one.
1270   if (CleanupDominator) {
1271     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1272     CleanupDominator->eraseFromParent();
1273   }
1274 
1275   // Advance to the next element by adjusting the pointer type as necessary.
1276   llvm::Value *NextPtr =
1277     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1278                                        "array.next");
1279 
1280   // Check whether we've gotten to the end of the array and, if so,
1281   // exit the loop.
1282   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1283   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1284   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1285 
1286   EmitBlock(ContBB);
1287 }
1288 
1289 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1290                                QualType ElementType, llvm::Type *ElementTy,
1291                                Address NewPtr, llvm::Value *NumElements,
1292                                llvm::Value *AllocSizeWithoutCookie) {
1293   ApplyDebugLocation DL(CGF, E);
1294   if (E->isArray())
1295     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1296                                 AllocSizeWithoutCookie);
1297   else if (const Expr *Init = E->getInitializer())
1298     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1299                             AggValueSlot::DoesNotOverlap);
1300 }
1301 
1302 /// Emit a call to an operator new or operator delete function, as implicitly
1303 /// created by new-expressions and delete-expressions.
1304 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1305                                 const FunctionDecl *CalleeDecl,
1306                                 const FunctionProtoType *CalleeType,
1307                                 const CallArgList &Args) {
1308   llvm::CallBase *CallOrInvoke;
1309   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1310   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1311   RValue RV =
1312       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1313                        Args, CalleeType, /*ChainCall=*/false),
1314                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1315 
1316   /// C++1y [expr.new]p10:
1317   ///   [In a new-expression,] an implementation is allowed to omit a call
1318   ///   to a replaceable global allocation function.
1319   ///
1320   /// We model such elidable calls with the 'builtin' attribute.
1321   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1322   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1323       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1324     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1325                                llvm::Attribute::Builtin);
1326   }
1327 
1328   return RV;
1329 }
1330 
1331 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1332                                                  const CallExpr *TheCall,
1333                                                  bool IsDelete) {
1334   CallArgList Args;
1335   EmitCallArgs(Args, Type, TheCall->arguments());
1336   // Find the allocation or deallocation function that we're calling.
1337   ASTContext &Ctx = getContext();
1338   DeclarationName Name = Ctx.DeclarationNames
1339       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1340 
1341   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1342     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1343       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1344         return EmitNewDeleteCall(*this, FD, Type, Args);
1345   llvm_unreachable("predeclared global operator new/delete is missing");
1346 }
1347 
1348 namespace {
1349 /// The parameters to pass to a usual operator delete.
1350 struct UsualDeleteParams {
1351   bool DestroyingDelete = false;
1352   bool Size = false;
1353   bool Alignment = false;
1354 };
1355 }
1356 
1357 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1358   UsualDeleteParams Params;
1359 
1360   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1361   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1362 
1363   // The first argument is always a void*.
1364   ++AI;
1365 
1366   // The next parameter may be a std::destroying_delete_t.
1367   if (FD->isDestroyingOperatorDelete()) {
1368     Params.DestroyingDelete = true;
1369     assert(AI != AE);
1370     ++AI;
1371   }
1372 
1373   // Figure out what other parameters we should be implicitly passing.
1374   if (AI != AE && (*AI)->isIntegerType()) {
1375     Params.Size = true;
1376     ++AI;
1377   }
1378 
1379   if (AI != AE && (*AI)->isAlignValT()) {
1380     Params.Alignment = true;
1381     ++AI;
1382   }
1383 
1384   assert(AI == AE && "unexpected usual deallocation function parameter");
1385   return Params;
1386 }
1387 
1388 namespace {
1389   /// A cleanup to call the given 'operator delete' function upon abnormal
1390   /// exit from a new expression. Templated on a traits type that deals with
1391   /// ensuring that the arguments dominate the cleanup if necessary.
1392   template<typename Traits>
1393   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1394     /// Type used to hold llvm::Value*s.
1395     typedef typename Traits::ValueTy ValueTy;
1396     /// Type used to hold RValues.
1397     typedef typename Traits::RValueTy RValueTy;
1398     struct PlacementArg {
1399       RValueTy ArgValue;
1400       QualType ArgType;
1401     };
1402 
1403     unsigned NumPlacementArgs : 31;
1404     unsigned PassAlignmentToPlacementDelete : 1;
1405     const FunctionDecl *OperatorDelete;
1406     ValueTy Ptr;
1407     ValueTy AllocSize;
1408     CharUnits AllocAlign;
1409 
1410     PlacementArg *getPlacementArgs() {
1411       return reinterpret_cast<PlacementArg *>(this + 1);
1412     }
1413 
1414   public:
1415     static size_t getExtraSize(size_t NumPlacementArgs) {
1416       return NumPlacementArgs * sizeof(PlacementArg);
1417     }
1418 
1419     CallDeleteDuringNew(size_t NumPlacementArgs,
1420                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1421                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1422                         CharUnits AllocAlign)
1423       : NumPlacementArgs(NumPlacementArgs),
1424         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1425         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1426         AllocAlign(AllocAlign) {}
1427 
1428     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1429       assert(I < NumPlacementArgs && "index out of range");
1430       getPlacementArgs()[I] = {Arg, Type};
1431     }
1432 
1433     void Emit(CodeGenFunction &CGF, Flags flags) override {
1434       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1435       CallArgList DeleteArgs;
1436 
1437       // The first argument is always a void* (or C* for a destroying operator
1438       // delete for class type C).
1439       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1440 
1441       // Figure out what other parameters we should be implicitly passing.
1442       UsualDeleteParams Params;
1443       if (NumPlacementArgs) {
1444         // A placement deallocation function is implicitly passed an alignment
1445         // if the placement allocation function was, but is never passed a size.
1446         Params.Alignment = PassAlignmentToPlacementDelete;
1447       } else {
1448         // For a non-placement new-expression, 'operator delete' can take a
1449         // size and/or an alignment if it has the right parameters.
1450         Params = getUsualDeleteParams(OperatorDelete);
1451       }
1452 
1453       assert(!Params.DestroyingDelete &&
1454              "should not call destroying delete in a new-expression");
1455 
1456       // The second argument can be a std::size_t (for non-placement delete).
1457       if (Params.Size)
1458         DeleteArgs.add(Traits::get(CGF, AllocSize),
1459                        CGF.getContext().getSizeType());
1460 
1461       // The next (second or third) argument can be a std::align_val_t, which
1462       // is an enum whose underlying type is std::size_t.
1463       // FIXME: Use the right type as the parameter type. Note that in a call
1464       // to operator delete(size_t, ...), we may not have it available.
1465       if (Params.Alignment)
1466         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1467                            CGF.SizeTy, AllocAlign.getQuantity())),
1468                        CGF.getContext().getSizeType());
1469 
1470       // Pass the rest of the arguments, which must match exactly.
1471       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1472         auto Arg = getPlacementArgs()[I];
1473         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1474       }
1475 
1476       // Call 'operator delete'.
1477       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1478     }
1479   };
1480 }
1481 
1482 /// Enter a cleanup to call 'operator delete' if the initializer in a
1483 /// new-expression throws.
1484 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1485                                   const CXXNewExpr *E,
1486                                   Address NewPtr,
1487                                   llvm::Value *AllocSize,
1488                                   CharUnits AllocAlign,
1489                                   const CallArgList &NewArgs) {
1490   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1491 
1492   // If we're not inside a conditional branch, then the cleanup will
1493   // dominate and we can do the easier (and more efficient) thing.
1494   if (!CGF.isInConditionalBranch()) {
1495     struct DirectCleanupTraits {
1496       typedef llvm::Value *ValueTy;
1497       typedef RValue RValueTy;
1498       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1499       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1500     };
1501 
1502     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1503 
1504     DirectCleanup *Cleanup = CGF.EHStack
1505       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1506                                            E->getNumPlacementArgs(),
1507                                            E->getOperatorDelete(),
1508                                            NewPtr.getPointer(),
1509                                            AllocSize,
1510                                            E->passAlignment(),
1511                                            AllocAlign);
1512     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1513       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1514       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1515     }
1516 
1517     return;
1518   }
1519 
1520   // Otherwise, we need to save all this stuff.
1521   DominatingValue<RValue>::saved_type SavedNewPtr =
1522     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1523   DominatingValue<RValue>::saved_type SavedAllocSize =
1524     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1525 
1526   struct ConditionalCleanupTraits {
1527     typedef DominatingValue<RValue>::saved_type ValueTy;
1528     typedef DominatingValue<RValue>::saved_type RValueTy;
1529     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1530       return V.restore(CGF);
1531     }
1532   };
1533   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1534 
1535   ConditionalCleanup *Cleanup = CGF.EHStack
1536     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1537                                               E->getNumPlacementArgs(),
1538                                               E->getOperatorDelete(),
1539                                               SavedNewPtr,
1540                                               SavedAllocSize,
1541                                               E->passAlignment(),
1542                                               AllocAlign);
1543   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1544     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1545     Cleanup->setPlacementArg(
1546         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1547   }
1548 
1549   CGF.initFullExprCleanup();
1550 }
1551 
1552 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1553   // The element type being allocated.
1554   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1555 
1556   // 1. Build a call to the allocation function.
1557   FunctionDecl *allocator = E->getOperatorNew();
1558 
1559   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1560   unsigned minElements = 0;
1561   if (E->isArray() && E->hasInitializer()) {
1562     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1563     if (ILE && ILE->isStringLiteralInit())
1564       minElements =
1565           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1566               ->getSize().getZExtValue();
1567     else if (ILE)
1568       minElements = ILE->getNumInits();
1569   }
1570 
1571   llvm::Value *numElements = nullptr;
1572   llvm::Value *allocSizeWithoutCookie = nullptr;
1573   llvm::Value *allocSize =
1574     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1575                         allocSizeWithoutCookie);
1576   CharUnits allocAlign = getContext().getPreferredTypeAlignInChars(allocType);
1577 
1578   // Emit the allocation call.  If the allocator is a global placement
1579   // operator, just "inline" it directly.
1580   Address allocation = Address::invalid();
1581   CallArgList allocatorArgs;
1582   if (allocator->isReservedGlobalPlacementOperator()) {
1583     assert(E->getNumPlacementArgs() == 1);
1584     const Expr *arg = *E->placement_arguments().begin();
1585 
1586     LValueBaseInfo BaseInfo;
1587     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1588 
1589     // The pointer expression will, in many cases, be an opaque void*.
1590     // In these cases, discard the computed alignment and use the
1591     // formal alignment of the allocated type.
1592     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1593       allocation = Address(allocation.getPointer(), allocAlign);
1594 
1595     // Set up allocatorArgs for the call to operator delete if it's not
1596     // the reserved global operator.
1597     if (E->getOperatorDelete() &&
1598         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1599       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1600       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1601     }
1602 
1603   } else {
1604     const FunctionProtoType *allocatorType =
1605       allocator->getType()->castAs<FunctionProtoType>();
1606     unsigned ParamsToSkip = 0;
1607 
1608     // The allocation size is the first argument.
1609     QualType sizeType = getContext().getSizeType();
1610     allocatorArgs.add(RValue::get(allocSize), sizeType);
1611     ++ParamsToSkip;
1612 
1613     if (allocSize != allocSizeWithoutCookie) {
1614       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1615       allocAlign = std::max(allocAlign, cookieAlign);
1616     }
1617 
1618     // The allocation alignment may be passed as the second argument.
1619     if (E->passAlignment()) {
1620       QualType AlignValT = sizeType;
1621       if (allocatorType->getNumParams() > 1) {
1622         AlignValT = allocatorType->getParamType(1);
1623         assert(getContext().hasSameUnqualifiedType(
1624                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1625                    sizeType) &&
1626                "wrong type for alignment parameter");
1627         ++ParamsToSkip;
1628       } else {
1629         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1630         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1631       }
1632       allocatorArgs.add(
1633           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1634           AlignValT);
1635     }
1636 
1637     // FIXME: Why do we not pass a CalleeDecl here?
1638     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1639                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1640 
1641     RValue RV =
1642       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1643 
1644     // Set !heapallocsite metadata on the call to operator new.
1645     if (getDebugInfo())
1646       if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1647         getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1648                                                  E->getExprLoc());
1649 
1650     // If this was a call to a global replaceable allocation function that does
1651     // not take an alignment argument, the allocator is known to produce
1652     // storage that's suitably aligned for any object that fits, up to a known
1653     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1654     CharUnits allocationAlign = allocAlign;
1655     if (!E->passAlignment() &&
1656         allocator->isReplaceableGlobalAllocationFunction()) {
1657       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1658           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1659       allocationAlign = std::max(
1660           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1661     }
1662 
1663     allocation = Address(RV.getScalarVal(), allocationAlign);
1664   }
1665 
1666   // Emit a null check on the allocation result if the allocation
1667   // function is allowed to return null (because it has a non-throwing
1668   // exception spec or is the reserved placement new) and we have an
1669   // interesting initializer will be running sanitizers on the initialization.
1670   bool nullCheck = E->shouldNullCheckAllocation() &&
1671                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1672                     sanitizePerformTypeCheck());
1673 
1674   llvm::BasicBlock *nullCheckBB = nullptr;
1675   llvm::BasicBlock *contBB = nullptr;
1676 
1677   // The null-check means that the initializer is conditionally
1678   // evaluated.
1679   ConditionalEvaluation conditional(*this);
1680 
1681   if (nullCheck) {
1682     conditional.begin(*this);
1683 
1684     nullCheckBB = Builder.GetInsertBlock();
1685     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1686     contBB = createBasicBlock("new.cont");
1687 
1688     llvm::Value *isNull =
1689       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1690     Builder.CreateCondBr(isNull, contBB, notNullBB);
1691     EmitBlock(notNullBB);
1692   }
1693 
1694   // If there's an operator delete, enter a cleanup to call it if an
1695   // exception is thrown.
1696   EHScopeStack::stable_iterator operatorDeleteCleanup;
1697   llvm::Instruction *cleanupDominator = nullptr;
1698   if (E->getOperatorDelete() &&
1699       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1700     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1701                           allocatorArgs);
1702     operatorDeleteCleanup = EHStack.stable_begin();
1703     cleanupDominator = Builder.CreateUnreachable();
1704   }
1705 
1706   assert((allocSize == allocSizeWithoutCookie) ==
1707          CalculateCookiePadding(*this, E).isZero());
1708   if (allocSize != allocSizeWithoutCookie) {
1709     assert(E->isArray());
1710     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1711                                                        numElements,
1712                                                        E, allocType);
1713   }
1714 
1715   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1716   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1717 
1718   // Passing pointer through launder.invariant.group to avoid propagation of
1719   // vptrs information which may be included in previous type.
1720   // To not break LTO with different optimizations levels, we do it regardless
1721   // of optimization level.
1722   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1723       allocator->isReservedGlobalPlacementOperator())
1724     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1725                      result.getAlignment());
1726 
1727   // Emit sanitizer checks for pointer value now, so that in the case of an
1728   // array it was checked only once and not at each constructor call. We may
1729   // have already checked that the pointer is non-null.
1730   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1731   // we'll null check the wrong pointer here.
1732   SanitizerSet SkippedChecks;
1733   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1734   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1735                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1736                 result.getPointer(), allocType, result.getAlignment(),
1737                 SkippedChecks, numElements);
1738 
1739   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1740                      allocSizeWithoutCookie);
1741   if (E->isArray()) {
1742     // NewPtr is a pointer to the base element type.  If we're
1743     // allocating an array of arrays, we'll need to cast back to the
1744     // array pointer type.
1745     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1746     if (result.getType() != resultType)
1747       result = Builder.CreateBitCast(result, resultType);
1748   }
1749 
1750   // Deactivate the 'operator delete' cleanup if we finished
1751   // initialization.
1752   if (operatorDeleteCleanup.isValid()) {
1753     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1754     cleanupDominator->eraseFromParent();
1755   }
1756 
1757   llvm::Value *resultPtr = result.getPointer();
1758   if (nullCheck) {
1759     conditional.end(*this);
1760 
1761     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1762     EmitBlock(contBB);
1763 
1764     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1765     PHI->addIncoming(resultPtr, notNullBB);
1766     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1767                      nullCheckBB);
1768 
1769     resultPtr = PHI;
1770   }
1771 
1772   return resultPtr;
1773 }
1774 
1775 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1776                                      llvm::Value *Ptr, QualType DeleteTy,
1777                                      llvm::Value *NumElements,
1778                                      CharUnits CookieSize) {
1779   assert((!NumElements && CookieSize.isZero()) ||
1780          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1781 
1782   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1783   CallArgList DeleteArgs;
1784 
1785   auto Params = getUsualDeleteParams(DeleteFD);
1786   auto ParamTypeIt = DeleteFTy->param_type_begin();
1787 
1788   // Pass the pointer itself.
1789   QualType ArgTy = *ParamTypeIt++;
1790   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1791   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1792 
1793   // Pass the std::destroying_delete tag if present.
1794   llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1795   if (Params.DestroyingDelete) {
1796     QualType DDTag = *ParamTypeIt++;
1797     llvm::Type *Ty = getTypes().ConvertType(DDTag);
1798     CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1799     DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1800     DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1801     DeleteArgs.add(RValue::getAggregate(Address(DestroyingDeleteTag, Align)), DDTag);
1802   }
1803 
1804   // Pass the size if the delete function has a size_t parameter.
1805   if (Params.Size) {
1806     QualType SizeType = *ParamTypeIt++;
1807     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1808     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1809                                                DeleteTypeSize.getQuantity());
1810 
1811     // For array new, multiply by the number of elements.
1812     if (NumElements)
1813       Size = Builder.CreateMul(Size, NumElements);
1814 
1815     // If there is a cookie, add the cookie size.
1816     if (!CookieSize.isZero())
1817       Size = Builder.CreateAdd(
1818           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1819 
1820     DeleteArgs.add(RValue::get(Size), SizeType);
1821   }
1822 
1823   // Pass the alignment if the delete function has an align_val_t parameter.
1824   if (Params.Alignment) {
1825     QualType AlignValType = *ParamTypeIt++;
1826     CharUnits DeleteTypeAlign =
1827         getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1828             DeleteTy, true /* NeedsPreferredAlignment */));
1829     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1830                                                 DeleteTypeAlign.getQuantity());
1831     DeleteArgs.add(RValue::get(Align), AlignValType);
1832   }
1833 
1834   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1835          "unknown parameter to usual delete function");
1836 
1837   // Emit the call to delete.
1838   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1839 
1840   // If call argument lowering didn't use the destroying_delete_t alloca,
1841   // remove it again.
1842   if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1843     DestroyingDeleteTag->eraseFromParent();
1844 }
1845 
1846 namespace {
1847   /// Calls the given 'operator delete' on a single object.
1848   struct CallObjectDelete final : EHScopeStack::Cleanup {
1849     llvm::Value *Ptr;
1850     const FunctionDecl *OperatorDelete;
1851     QualType ElementType;
1852 
1853     CallObjectDelete(llvm::Value *Ptr,
1854                      const FunctionDecl *OperatorDelete,
1855                      QualType ElementType)
1856       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1857 
1858     void Emit(CodeGenFunction &CGF, Flags flags) override {
1859       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1860     }
1861   };
1862 }
1863 
1864 void
1865 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1866                                              llvm::Value *CompletePtr,
1867                                              QualType ElementType) {
1868   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1869                                         OperatorDelete, ElementType);
1870 }
1871 
1872 /// Emit the code for deleting a single object with a destroying operator
1873 /// delete. If the element type has a non-virtual destructor, Ptr has already
1874 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1875 /// Ptr points to an object of the static type.
1876 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1877                                        const CXXDeleteExpr *DE, Address Ptr,
1878                                        QualType ElementType) {
1879   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1880   if (Dtor && Dtor->isVirtual())
1881     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1882                                                 Dtor);
1883   else
1884     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1885 }
1886 
1887 /// Emit the code for deleting a single object.
1888 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1889 /// if not.
1890 static bool EmitObjectDelete(CodeGenFunction &CGF,
1891                              const CXXDeleteExpr *DE,
1892                              Address Ptr,
1893                              QualType ElementType,
1894                              llvm::BasicBlock *UnconditionalDeleteBlock) {
1895   // C++11 [expr.delete]p3:
1896   //   If the static type of the object to be deleted is different from its
1897   //   dynamic type, the static type shall be a base class of the dynamic type
1898   //   of the object to be deleted and the static type shall have a virtual
1899   //   destructor or the behavior is undefined.
1900   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1901                     DE->getExprLoc(), Ptr.getPointer(),
1902                     ElementType);
1903 
1904   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1905   assert(!OperatorDelete->isDestroyingOperatorDelete());
1906 
1907   // Find the destructor for the type, if applicable.  If the
1908   // destructor is virtual, we'll just emit the vcall and return.
1909   const CXXDestructorDecl *Dtor = nullptr;
1910   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1911     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1912     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1913       Dtor = RD->getDestructor();
1914 
1915       if (Dtor->isVirtual()) {
1916         bool UseVirtualCall = true;
1917         const Expr *Base = DE->getArgument();
1918         if (auto *DevirtualizedDtor =
1919                 dyn_cast_or_null<const CXXDestructorDecl>(
1920                     Dtor->getDevirtualizedMethod(
1921                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1922           UseVirtualCall = false;
1923           const CXXRecordDecl *DevirtualizedClass =
1924               DevirtualizedDtor->getParent();
1925           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1926             // Devirtualized to the class of the base type (the type of the
1927             // whole expression).
1928             Dtor = DevirtualizedDtor;
1929           } else {
1930             // Devirtualized to some other type. Would need to cast the this
1931             // pointer to that type but we don't have support for that yet, so
1932             // do a virtual call. FIXME: handle the case where it is
1933             // devirtualized to the derived type (the type of the inner
1934             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1935             UseVirtualCall = true;
1936           }
1937         }
1938         if (UseVirtualCall) {
1939           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1940                                                       Dtor);
1941           return false;
1942         }
1943       }
1944     }
1945   }
1946 
1947   // Make sure that we call delete even if the dtor throws.
1948   // This doesn't have to a conditional cleanup because we're going
1949   // to pop it off in a second.
1950   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1951                                             Ptr.getPointer(),
1952                                             OperatorDelete, ElementType);
1953 
1954   if (Dtor)
1955     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1956                               /*ForVirtualBase=*/false,
1957                               /*Delegating=*/false,
1958                               Ptr, ElementType);
1959   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1960     switch (Lifetime) {
1961     case Qualifiers::OCL_None:
1962     case Qualifiers::OCL_ExplicitNone:
1963     case Qualifiers::OCL_Autoreleasing:
1964       break;
1965 
1966     case Qualifiers::OCL_Strong:
1967       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1968       break;
1969 
1970     case Qualifiers::OCL_Weak:
1971       CGF.EmitARCDestroyWeak(Ptr);
1972       break;
1973     }
1974   }
1975 
1976   // When optimizing for size, call 'operator delete' unconditionally.
1977   if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1978     CGF.EmitBlock(UnconditionalDeleteBlock);
1979     CGF.PopCleanupBlock();
1980     return true;
1981   }
1982 
1983   CGF.PopCleanupBlock();
1984   return false;
1985 }
1986 
1987 namespace {
1988   /// Calls the given 'operator delete' on an array of objects.
1989   struct CallArrayDelete final : EHScopeStack::Cleanup {
1990     llvm::Value *Ptr;
1991     const FunctionDecl *OperatorDelete;
1992     llvm::Value *NumElements;
1993     QualType ElementType;
1994     CharUnits CookieSize;
1995 
1996     CallArrayDelete(llvm::Value *Ptr,
1997                     const FunctionDecl *OperatorDelete,
1998                     llvm::Value *NumElements,
1999                     QualType ElementType,
2000                     CharUnits CookieSize)
2001       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2002         ElementType(ElementType), CookieSize(CookieSize) {}
2003 
2004     void Emit(CodeGenFunction &CGF, Flags flags) override {
2005       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2006                          CookieSize);
2007     }
2008   };
2009 }
2010 
2011 /// Emit the code for deleting an array of objects.
2012 static void EmitArrayDelete(CodeGenFunction &CGF,
2013                             const CXXDeleteExpr *E,
2014                             Address deletedPtr,
2015                             QualType elementType) {
2016   llvm::Value *numElements = nullptr;
2017   llvm::Value *allocatedPtr = nullptr;
2018   CharUnits cookieSize;
2019   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2020                                       numElements, allocatedPtr, cookieSize);
2021 
2022   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2023 
2024   // Make sure that we call delete even if one of the dtors throws.
2025   const FunctionDecl *operatorDelete = E->getOperatorDelete();
2026   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2027                                            allocatedPtr, operatorDelete,
2028                                            numElements, elementType,
2029                                            cookieSize);
2030 
2031   // Destroy the elements.
2032   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2033     assert(numElements && "no element count for a type with a destructor!");
2034 
2035     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2036     CharUnits elementAlign =
2037       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2038 
2039     llvm::Value *arrayBegin = deletedPtr.getPointer();
2040     llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2041       deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2042 
2043     // Note that it is legal to allocate a zero-length array, and we
2044     // can never fold the check away because the length should always
2045     // come from a cookie.
2046     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2047                          CGF.getDestroyer(dtorKind),
2048                          /*checkZeroLength*/ true,
2049                          CGF.needsEHCleanup(dtorKind));
2050   }
2051 
2052   // Pop the cleanup block.
2053   CGF.PopCleanupBlock();
2054 }
2055 
2056 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2057   const Expr *Arg = E->getArgument();
2058   Address Ptr = EmitPointerWithAlignment(Arg);
2059 
2060   // Null check the pointer.
2061   //
2062   // We could avoid this null check if we can determine that the object
2063   // destruction is trivial and doesn't require an array cookie; we can
2064   // unconditionally perform the operator delete call in that case. For now, we
2065   // assume that deleted pointers are null rarely enough that it's better to
2066   // keep the branch. This might be worth revisiting for a -O0 code size win.
2067   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2068   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2069 
2070   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2071 
2072   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2073   EmitBlock(DeleteNotNull);
2074 
2075   QualType DeleteTy = E->getDestroyedType();
2076 
2077   // A destroying operator delete overrides the entire operation of the
2078   // delete expression.
2079   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2080     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2081     EmitBlock(DeleteEnd);
2082     return;
2083   }
2084 
2085   // We might be deleting a pointer to array.  If so, GEP down to the
2086   // first non-array element.
2087   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2088   if (DeleteTy->isConstantArrayType()) {
2089     llvm::Value *Zero = Builder.getInt32(0);
2090     SmallVector<llvm::Value*,8> GEP;
2091 
2092     GEP.push_back(Zero); // point at the outermost array
2093 
2094     // For each layer of array type we're pointing at:
2095     while (const ConstantArrayType *Arr
2096              = getContext().getAsConstantArrayType(DeleteTy)) {
2097       // 1. Unpeel the array type.
2098       DeleteTy = Arr->getElementType();
2099 
2100       // 2. GEP to the first element of the array.
2101       GEP.push_back(Zero);
2102     }
2103 
2104     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2105                                             Ptr.getPointer(), GEP, "del.first"),
2106                   Ptr.getAlignment());
2107   }
2108 
2109   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2110 
2111   if (E->isArrayForm()) {
2112     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2113     EmitBlock(DeleteEnd);
2114   } else {
2115     if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2116       EmitBlock(DeleteEnd);
2117   }
2118 }
2119 
2120 static bool isGLValueFromPointerDeref(const Expr *E) {
2121   E = E->IgnoreParens();
2122 
2123   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2124     if (!CE->getSubExpr()->isGLValue())
2125       return false;
2126     return isGLValueFromPointerDeref(CE->getSubExpr());
2127   }
2128 
2129   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2130     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2131 
2132   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2133     if (BO->getOpcode() == BO_Comma)
2134       return isGLValueFromPointerDeref(BO->getRHS());
2135 
2136   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2137     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2138            isGLValueFromPointerDeref(ACO->getFalseExpr());
2139 
2140   // C++11 [expr.sub]p1:
2141   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2142   if (isa<ArraySubscriptExpr>(E))
2143     return true;
2144 
2145   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2146     if (UO->getOpcode() == UO_Deref)
2147       return true;
2148 
2149   return false;
2150 }
2151 
2152 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2153                                          llvm::Type *StdTypeInfoPtrTy) {
2154   // Get the vtable pointer.
2155   Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2156 
2157   QualType SrcRecordTy = E->getType();
2158 
2159   // C++ [class.cdtor]p4:
2160   //   If the operand of typeid refers to the object under construction or
2161   //   destruction and the static type of the operand is neither the constructor
2162   //   or destructor’s class nor one of its bases, the behavior is undefined.
2163   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2164                     ThisPtr.getPointer(), SrcRecordTy);
2165 
2166   // C++ [expr.typeid]p2:
2167   //   If the glvalue expression is obtained by applying the unary * operator to
2168   //   a pointer and the pointer is a null pointer value, the typeid expression
2169   //   throws the std::bad_typeid exception.
2170   //
2171   // However, this paragraph's intent is not clear.  We choose a very generous
2172   // interpretation which implores us to consider comma operators, conditional
2173   // operators, parentheses and other such constructs.
2174   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2175           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2176     llvm::BasicBlock *BadTypeidBlock =
2177         CGF.createBasicBlock("typeid.bad_typeid");
2178     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2179 
2180     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2181     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2182 
2183     CGF.EmitBlock(BadTypeidBlock);
2184     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2185     CGF.EmitBlock(EndBlock);
2186   }
2187 
2188   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2189                                         StdTypeInfoPtrTy);
2190 }
2191 
2192 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2193   llvm::Type *StdTypeInfoPtrTy =
2194     ConvertType(E->getType())->getPointerTo();
2195 
2196   if (E->isTypeOperand()) {
2197     llvm::Constant *TypeInfo =
2198         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2199     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2200   }
2201 
2202   // C++ [expr.typeid]p2:
2203   //   When typeid is applied to a glvalue expression whose type is a
2204   //   polymorphic class type, the result refers to a std::type_info object
2205   //   representing the type of the most derived object (that is, the dynamic
2206   //   type) to which the glvalue refers.
2207   // If the operand is already most derived object, no need to look up vtable.
2208   if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2209     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2210                                 StdTypeInfoPtrTy);
2211 
2212   QualType OperandTy = E->getExprOperand()->getType();
2213   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2214                                StdTypeInfoPtrTy);
2215 }
2216 
2217 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2218                                           QualType DestTy) {
2219   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2220   if (DestTy->isPointerType())
2221     return llvm::Constant::getNullValue(DestLTy);
2222 
2223   /// C++ [expr.dynamic.cast]p9:
2224   ///   A failed cast to reference type throws std::bad_cast
2225   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2226     return nullptr;
2227 
2228   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2229   return llvm::UndefValue::get(DestLTy);
2230 }
2231 
2232 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2233                                               const CXXDynamicCastExpr *DCE) {
2234   CGM.EmitExplicitCastExprType(DCE, this);
2235   QualType DestTy = DCE->getTypeAsWritten();
2236 
2237   QualType SrcTy = DCE->getSubExpr()->getType();
2238 
2239   // C++ [expr.dynamic.cast]p7:
2240   //   If T is "pointer to cv void," then the result is a pointer to the most
2241   //   derived object pointed to by v.
2242   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2243 
2244   bool isDynamicCastToVoid;
2245   QualType SrcRecordTy;
2246   QualType DestRecordTy;
2247   if (DestPTy) {
2248     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2249     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2250     DestRecordTy = DestPTy->getPointeeType();
2251   } else {
2252     isDynamicCastToVoid = false;
2253     SrcRecordTy = SrcTy;
2254     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2255   }
2256 
2257   // C++ [class.cdtor]p5:
2258   //   If the operand of the dynamic_cast refers to the object under
2259   //   construction or destruction and the static type of the operand is not a
2260   //   pointer to or object of the constructor or destructor’s own class or one
2261   //   of its bases, the dynamic_cast results in undefined behavior.
2262   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2263                 SrcRecordTy);
2264 
2265   if (DCE->isAlwaysNull())
2266     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2267       return T;
2268 
2269   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2270 
2271   // C++ [expr.dynamic.cast]p4:
2272   //   If the value of v is a null pointer value in the pointer case, the result
2273   //   is the null pointer value of type T.
2274   bool ShouldNullCheckSrcValue =
2275       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2276                                                          SrcRecordTy);
2277 
2278   llvm::BasicBlock *CastNull = nullptr;
2279   llvm::BasicBlock *CastNotNull = nullptr;
2280   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2281 
2282   if (ShouldNullCheckSrcValue) {
2283     CastNull = createBasicBlock("dynamic_cast.null");
2284     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2285 
2286     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2287     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2288     EmitBlock(CastNotNull);
2289   }
2290 
2291   llvm::Value *Value;
2292   if (isDynamicCastToVoid) {
2293     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2294                                                   DestTy);
2295   } else {
2296     assert(DestRecordTy->isRecordType() &&
2297            "destination type must be a record type!");
2298     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2299                                                 DestTy, DestRecordTy, CastEnd);
2300     CastNotNull = Builder.GetInsertBlock();
2301   }
2302 
2303   if (ShouldNullCheckSrcValue) {
2304     EmitBranch(CastEnd);
2305 
2306     EmitBlock(CastNull);
2307     EmitBranch(CastEnd);
2308   }
2309 
2310   EmitBlock(CastEnd);
2311 
2312   if (ShouldNullCheckSrcValue) {
2313     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2314     PHI->addIncoming(Value, CastNotNull);
2315     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2316 
2317     Value = PHI;
2318   }
2319 
2320   return Value;
2321 }
2322