1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs 28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29 llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, 31 CallArgList &Args, CallArgList *RtlArgs) { 32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33 isa<CXXOperatorCallExpr>(CE)); 34 assert(MD->isInstance() && 35 "Trying to emit a member or operator call expr on a static method!"); 36 ASTContext &C = CGF.getContext(); 37 38 // Push the this ptr. 39 const CXXRecordDecl *RD = 40 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 41 Args.add(RValue::get(This), 42 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 43 44 // If there is an implicit parameter (e.g. VTT), emit it. 45 if (ImplicitParam) { 46 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 47 } 48 49 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 50 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 51 52 // And the rest of the call args. 53 if (RtlArgs) { 54 // Special case: if the caller emitted the arguments right-to-left already 55 // (prior to emitting the *this argument), we're done. This happens for 56 // assignment operators. 57 Args.addFrom(*RtlArgs); 58 } else if (CE) { 59 // Special case: skip first argument of CXXOperatorCall (it is "this"). 60 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 61 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 62 CE->getDirectCallee()); 63 } else { 64 assert( 65 FPT->getNumParams() == 0 && 66 "No CallExpr specified for function with non-zero number of arguments"); 67 } 68 return required; 69 } 70 71 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 72 const CXXMethodDecl *MD, const CGCallee &Callee, 73 ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE, CallArgList *RtlArgs) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 80 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required); 81 return EmitCall(FnInfo, Callee, ReturnValue, Args); 82 } 83 84 RValue CodeGenFunction::EmitCXXDestructorCall( 85 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 86 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 87 StructorType Type) { 88 CallArgList Args; 89 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 90 ImplicitParamTy, CE, Args, nullptr); 91 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 92 Callee, ReturnValueSlot(), Args); 93 } 94 95 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 96 const CXXPseudoDestructorExpr *E) { 97 QualType DestroyedType = E->getDestroyedType(); 98 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 99 // Automatic Reference Counting: 100 // If the pseudo-expression names a retainable object with weak or 101 // strong lifetime, the object shall be released. 102 Expr *BaseExpr = E->getBase(); 103 Address BaseValue = Address::invalid(); 104 Qualifiers BaseQuals; 105 106 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 107 if (E->isArrow()) { 108 BaseValue = EmitPointerWithAlignment(BaseExpr); 109 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 110 BaseQuals = PTy->getPointeeType().getQualifiers(); 111 } else { 112 LValue BaseLV = EmitLValue(BaseExpr); 113 BaseValue = BaseLV.getAddress(); 114 QualType BaseTy = BaseExpr->getType(); 115 BaseQuals = BaseTy.getQualifiers(); 116 } 117 118 switch (DestroyedType.getObjCLifetime()) { 119 case Qualifiers::OCL_None: 120 case Qualifiers::OCL_ExplicitNone: 121 case Qualifiers::OCL_Autoreleasing: 122 break; 123 124 case Qualifiers::OCL_Strong: 125 EmitARCRelease(Builder.CreateLoad(BaseValue, 126 DestroyedType.isVolatileQualified()), 127 ARCPreciseLifetime); 128 break; 129 130 case Qualifiers::OCL_Weak: 131 EmitARCDestroyWeak(BaseValue); 132 break; 133 } 134 } else { 135 // C++ [expr.pseudo]p1: 136 // The result shall only be used as the operand for the function call 137 // operator (), and the result of such a call has type void. The only 138 // effect is the evaluation of the postfix-expression before the dot or 139 // arrow. 140 EmitIgnoredExpr(E->getBase()); 141 } 142 143 return RValue::get(nullptr); 144 } 145 146 static CXXRecordDecl *getCXXRecord(const Expr *E) { 147 QualType T = E->getType(); 148 if (const PointerType *PTy = T->getAs<PointerType>()) 149 T = PTy->getPointeeType(); 150 const RecordType *Ty = T->castAs<RecordType>(); 151 return cast<CXXRecordDecl>(Ty->getDecl()); 152 } 153 154 // Note: This function also emit constructor calls to support a MSVC 155 // extensions allowing explicit constructor function call. 156 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 157 ReturnValueSlot ReturnValue) { 158 const Expr *callee = CE->getCallee()->IgnoreParens(); 159 160 if (isa<BinaryOperator>(callee)) 161 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 162 163 const MemberExpr *ME = cast<MemberExpr>(callee); 164 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 165 166 if (MD->isStatic()) { 167 // The method is static, emit it as we would a regular call. 168 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 169 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 170 ReturnValue); 171 } 172 173 bool HasQualifier = ME->hasQualifier(); 174 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 175 bool IsArrow = ME->isArrow(); 176 const Expr *Base = ME->getBase(); 177 178 return EmitCXXMemberOrOperatorMemberCallExpr( 179 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 180 } 181 182 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 183 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 184 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 185 const Expr *Base) { 186 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 187 188 // Compute the object pointer. 189 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 190 191 const CXXMethodDecl *DevirtualizedMethod = nullptr; 192 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 193 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 194 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 195 assert(DevirtualizedMethod); 196 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 197 const Expr *Inner = Base->ignoreParenBaseCasts(); 198 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 199 MD->getReturnType().getCanonicalType()) 200 // If the return types are not the same, this might be a case where more 201 // code needs to run to compensate for it. For example, the derived 202 // method might return a type that inherits form from the return 203 // type of MD and has a prefix. 204 // For now we just avoid devirtualizing these covariant cases. 205 DevirtualizedMethod = nullptr; 206 else if (getCXXRecord(Inner) == DevirtualizedClass) 207 // If the class of the Inner expression is where the dynamic method 208 // is defined, build the this pointer from it. 209 Base = Inner; 210 else if (getCXXRecord(Base) != DevirtualizedClass) { 211 // If the method is defined in a class that is not the best dynamic 212 // one or the one of the full expression, we would have to build 213 // a derived-to-base cast to compute the correct this pointer, but 214 // we don't have support for that yet, so do a virtual call. 215 DevirtualizedMethod = nullptr; 216 } 217 } 218 219 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 220 // operator before the LHS. 221 CallArgList RtlArgStorage; 222 CallArgList *RtlArgs = nullptr; 223 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 224 if (OCE->isAssignmentOp()) { 225 RtlArgs = &RtlArgStorage; 226 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 227 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 228 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 229 } 230 } 231 232 Address This = Address::invalid(); 233 if (IsArrow) 234 This = EmitPointerWithAlignment(Base); 235 else 236 This = EmitLValue(Base).getAddress(); 237 238 239 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 240 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 241 if (isa<CXXConstructorDecl>(MD) && 242 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 243 return RValue::get(nullptr); 244 245 if (!MD->getParent()->mayInsertExtraPadding()) { 246 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 247 // We don't like to generate the trivial copy/move assignment operator 248 // when it isn't necessary; just produce the proper effect here. 249 LValue RHS = isa<CXXOperatorCallExpr>(CE) 250 ? MakeNaturalAlignAddrLValue( 251 (*RtlArgs)[0].RV.getScalarVal(), 252 (*(CE->arg_begin() + 1))->getType()) 253 : EmitLValue(*CE->arg_begin()); 254 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 255 return RValue::get(This.getPointer()); 256 } 257 258 if (isa<CXXConstructorDecl>(MD) && 259 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 260 // Trivial move and copy ctor are the same. 261 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 262 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 263 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 264 return RValue::get(This.getPointer()); 265 } 266 llvm_unreachable("unknown trivial member function"); 267 } 268 } 269 270 // Compute the function type we're calling. 271 const CXXMethodDecl *CalleeDecl = 272 DevirtualizedMethod ? DevirtualizedMethod : MD; 273 const CGFunctionInfo *FInfo = nullptr; 274 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 275 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 276 Dtor, StructorType::Complete); 277 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 278 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 279 Ctor, StructorType::Complete); 280 else 281 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 282 283 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 284 285 // C++11 [class.mfct.non-static]p2: 286 // If a non-static member function of a class X is called for an object that 287 // is not of type X, or of a type derived from X, the behavior is undefined. 288 SourceLocation CallLoc; 289 ASTContext &C = getContext(); 290 if (CE) 291 CallLoc = CE->getExprLoc(); 292 293 EmitTypeCheck(isa<CXXConstructorDecl>(CalleeDecl) 294 ? CodeGenFunction::TCK_ConstructorCall 295 : CodeGenFunction::TCK_MemberCall, 296 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent())); 297 298 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 299 // 'CalleeDecl' instead. 300 301 // C++ [class.virtual]p12: 302 // Explicit qualification with the scope operator (5.1) suppresses the 303 // virtual call mechanism. 304 // 305 // We also don't emit a virtual call if the base expression has a record type 306 // because then we know what the type is. 307 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 308 309 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 310 assert(CE->arg_begin() == CE->arg_end() && 311 "Destructor shouldn't have explicit parameters"); 312 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 313 if (UseVirtualCall) { 314 CGM.getCXXABI().EmitVirtualDestructorCall( 315 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 316 } else { 317 CGCallee Callee; 318 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 319 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 320 else if (!DevirtualizedMethod) 321 Callee = CGCallee::forDirect( 322 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 323 Dtor); 324 else { 325 const CXXDestructorDecl *DDtor = 326 cast<CXXDestructorDecl>(DevirtualizedMethod); 327 Callee = CGCallee::forDirect( 328 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 329 DDtor); 330 } 331 EmitCXXMemberOrOperatorCall( 332 CalleeDecl, Callee, ReturnValue, This.getPointer(), 333 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 334 } 335 return RValue::get(nullptr); 336 } 337 338 CGCallee Callee; 339 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 340 Callee = CGCallee::forDirect( 341 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 342 Ctor); 343 } else if (UseVirtualCall) { 344 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 345 CE->getLocStart()); 346 } else { 347 if (SanOpts.has(SanitizerKind::CFINVCall) && 348 MD->getParent()->isDynamicClass()) { 349 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 350 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 351 CE->getLocStart()); 352 } 353 354 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 355 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 356 else if (!DevirtualizedMethod) 357 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 358 else { 359 Callee = CGCallee::forDirect( 360 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 361 DevirtualizedMethod); 362 } 363 } 364 365 if (MD->isVirtual()) { 366 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 367 *this, CalleeDecl, This, UseVirtualCall); 368 } 369 370 return EmitCXXMemberOrOperatorCall( 371 CalleeDecl, Callee, ReturnValue, This.getPointer(), 372 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 373 } 374 375 RValue 376 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 377 ReturnValueSlot ReturnValue) { 378 const BinaryOperator *BO = 379 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 380 const Expr *BaseExpr = BO->getLHS(); 381 const Expr *MemFnExpr = BO->getRHS(); 382 383 const MemberPointerType *MPT = 384 MemFnExpr->getType()->castAs<MemberPointerType>(); 385 386 const FunctionProtoType *FPT = 387 MPT->getPointeeType()->castAs<FunctionProtoType>(); 388 const CXXRecordDecl *RD = 389 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 390 391 // Emit the 'this' pointer. 392 Address This = Address::invalid(); 393 if (BO->getOpcode() == BO_PtrMemI) 394 This = EmitPointerWithAlignment(BaseExpr); 395 else 396 This = EmitLValue(BaseExpr).getAddress(); 397 398 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 399 QualType(MPT->getClass(), 0)); 400 401 // Get the member function pointer. 402 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 403 404 // Ask the ABI to load the callee. Note that This is modified. 405 llvm::Value *ThisPtrForCall = nullptr; 406 CGCallee Callee = 407 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 408 ThisPtrForCall, MemFnPtr, MPT); 409 410 CallArgList Args; 411 412 QualType ThisType = 413 getContext().getPointerType(getContext().getTagDeclType(RD)); 414 415 // Push the this ptr. 416 Args.add(RValue::get(ThisPtrForCall), ThisType); 417 418 RequiredArgs required = 419 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 420 421 // And the rest of the call args 422 EmitCallArgs(Args, FPT, E->arguments()); 423 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 424 Callee, ReturnValue, Args); 425 } 426 427 RValue 428 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 429 const CXXMethodDecl *MD, 430 ReturnValueSlot ReturnValue) { 431 assert(MD->isInstance() && 432 "Trying to emit a member call expr on a static method!"); 433 return EmitCXXMemberOrOperatorMemberCallExpr( 434 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 435 /*IsArrow=*/false, E->getArg(0)); 436 } 437 438 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 439 ReturnValueSlot ReturnValue) { 440 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 441 } 442 443 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 444 Address DestPtr, 445 const CXXRecordDecl *Base) { 446 if (Base->isEmpty()) 447 return; 448 449 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 450 451 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 452 CharUnits NVSize = Layout.getNonVirtualSize(); 453 454 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 455 // present, they are initialized by the most derived class before calling the 456 // constructor. 457 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 458 Stores.emplace_back(CharUnits::Zero(), NVSize); 459 460 // Each store is split by the existence of a vbptr. 461 CharUnits VBPtrWidth = CGF.getPointerSize(); 462 std::vector<CharUnits> VBPtrOffsets = 463 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 464 for (CharUnits VBPtrOffset : VBPtrOffsets) { 465 // Stop before we hit any virtual base pointers located in virtual bases. 466 if (VBPtrOffset >= NVSize) 467 break; 468 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 469 CharUnits LastStoreOffset = LastStore.first; 470 CharUnits LastStoreSize = LastStore.second; 471 472 CharUnits SplitBeforeOffset = LastStoreOffset; 473 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 474 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 475 if (!SplitBeforeSize.isZero()) 476 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 477 478 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 479 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 480 assert(!SplitAfterSize.isNegative() && "negative store size!"); 481 if (!SplitAfterSize.isZero()) 482 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 483 } 484 485 // If the type contains a pointer to data member we can't memset it to zero. 486 // Instead, create a null constant and copy it to the destination. 487 // TODO: there are other patterns besides zero that we can usefully memset, 488 // like -1, which happens to be the pattern used by member-pointers. 489 // TODO: isZeroInitializable can be over-conservative in the case where a 490 // virtual base contains a member pointer. 491 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 492 if (!NullConstantForBase->isNullValue()) { 493 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 494 CGF.CGM.getModule(), NullConstantForBase->getType(), 495 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 496 NullConstantForBase, Twine()); 497 498 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 499 DestPtr.getAlignment()); 500 NullVariable->setAlignment(Align.getQuantity()); 501 502 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 503 504 // Get and call the appropriate llvm.memcpy overload. 505 for (std::pair<CharUnits, CharUnits> Store : Stores) { 506 CharUnits StoreOffset = Store.first; 507 CharUnits StoreSize = Store.second; 508 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 509 CGF.Builder.CreateMemCpy( 510 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 511 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 512 StoreSizeVal); 513 } 514 515 // Otherwise, just memset the whole thing to zero. This is legal 516 // because in LLVM, all default initializers (other than the ones we just 517 // handled above) are guaranteed to have a bit pattern of all zeros. 518 } else { 519 for (std::pair<CharUnits, CharUnits> Store : Stores) { 520 CharUnits StoreOffset = Store.first; 521 CharUnits StoreSize = Store.second; 522 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 523 CGF.Builder.CreateMemSet( 524 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 525 CGF.Builder.getInt8(0), StoreSizeVal); 526 } 527 } 528 } 529 530 void 531 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 532 AggValueSlot Dest) { 533 assert(!Dest.isIgnored() && "Must have a destination!"); 534 const CXXConstructorDecl *CD = E->getConstructor(); 535 536 // If we require zero initialization before (or instead of) calling the 537 // constructor, as can be the case with a non-user-provided default 538 // constructor, emit the zero initialization now, unless destination is 539 // already zeroed. 540 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 541 switch (E->getConstructionKind()) { 542 case CXXConstructExpr::CK_Delegating: 543 case CXXConstructExpr::CK_Complete: 544 EmitNullInitialization(Dest.getAddress(), E->getType()); 545 break; 546 case CXXConstructExpr::CK_VirtualBase: 547 case CXXConstructExpr::CK_NonVirtualBase: 548 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 549 CD->getParent()); 550 break; 551 } 552 } 553 554 // If this is a call to a trivial default constructor, do nothing. 555 if (CD->isTrivial() && CD->isDefaultConstructor()) 556 return; 557 558 // Elide the constructor if we're constructing from a temporary. 559 // The temporary check is required because Sema sets this on NRVO 560 // returns. 561 if (getLangOpts().ElideConstructors && E->isElidable()) { 562 assert(getContext().hasSameUnqualifiedType(E->getType(), 563 E->getArg(0)->getType())); 564 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 565 EmitAggExpr(E->getArg(0), Dest); 566 return; 567 } 568 } 569 570 if (const ArrayType *arrayType 571 = getContext().getAsArrayType(E->getType())) { 572 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 573 } else { 574 CXXCtorType Type = Ctor_Complete; 575 bool ForVirtualBase = false; 576 bool Delegating = false; 577 578 switch (E->getConstructionKind()) { 579 case CXXConstructExpr::CK_Delegating: 580 // We should be emitting a constructor; GlobalDecl will assert this 581 Type = CurGD.getCtorType(); 582 Delegating = true; 583 break; 584 585 case CXXConstructExpr::CK_Complete: 586 Type = Ctor_Complete; 587 break; 588 589 case CXXConstructExpr::CK_VirtualBase: 590 ForVirtualBase = true; 591 // fall-through 592 593 case CXXConstructExpr::CK_NonVirtualBase: 594 Type = Ctor_Base; 595 } 596 597 // Call the constructor. 598 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 599 Dest.getAddress(), E); 600 } 601 } 602 603 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 604 const Expr *Exp) { 605 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 606 Exp = E->getSubExpr(); 607 assert(isa<CXXConstructExpr>(Exp) && 608 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 609 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 610 const CXXConstructorDecl *CD = E->getConstructor(); 611 RunCleanupsScope Scope(*this); 612 613 // If we require zero initialization before (or instead of) calling the 614 // constructor, as can be the case with a non-user-provided default 615 // constructor, emit the zero initialization now. 616 // FIXME. Do I still need this for a copy ctor synthesis? 617 if (E->requiresZeroInitialization()) 618 EmitNullInitialization(Dest, E->getType()); 619 620 assert(!getContext().getAsConstantArrayType(E->getType()) 621 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 622 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 623 } 624 625 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 626 const CXXNewExpr *E) { 627 if (!E->isArray()) 628 return CharUnits::Zero(); 629 630 // No cookie is required if the operator new[] being used is the 631 // reserved placement operator new[]. 632 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 633 return CharUnits::Zero(); 634 635 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 636 } 637 638 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 639 const CXXNewExpr *e, 640 unsigned minElements, 641 llvm::Value *&numElements, 642 llvm::Value *&sizeWithoutCookie) { 643 QualType type = e->getAllocatedType(); 644 645 if (!e->isArray()) { 646 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 647 sizeWithoutCookie 648 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 649 return sizeWithoutCookie; 650 } 651 652 // The width of size_t. 653 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 654 655 // Figure out the cookie size. 656 llvm::APInt cookieSize(sizeWidth, 657 CalculateCookiePadding(CGF, e).getQuantity()); 658 659 // Emit the array size expression. 660 // We multiply the size of all dimensions for NumElements. 661 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 662 numElements = CGF.EmitScalarExpr(e->getArraySize()); 663 assert(isa<llvm::IntegerType>(numElements->getType())); 664 665 // The number of elements can be have an arbitrary integer type; 666 // essentially, we need to multiply it by a constant factor, add a 667 // cookie size, and verify that the result is representable as a 668 // size_t. That's just a gloss, though, and it's wrong in one 669 // important way: if the count is negative, it's an error even if 670 // the cookie size would bring the total size >= 0. 671 bool isSigned 672 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 673 llvm::IntegerType *numElementsType 674 = cast<llvm::IntegerType>(numElements->getType()); 675 unsigned numElementsWidth = numElementsType->getBitWidth(); 676 677 // Compute the constant factor. 678 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 679 while (const ConstantArrayType *CAT 680 = CGF.getContext().getAsConstantArrayType(type)) { 681 type = CAT->getElementType(); 682 arraySizeMultiplier *= CAT->getSize(); 683 } 684 685 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 686 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 687 typeSizeMultiplier *= arraySizeMultiplier; 688 689 // This will be a size_t. 690 llvm::Value *size; 691 692 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 693 // Don't bloat the -O0 code. 694 if (llvm::ConstantInt *numElementsC = 695 dyn_cast<llvm::ConstantInt>(numElements)) { 696 const llvm::APInt &count = numElementsC->getValue(); 697 698 bool hasAnyOverflow = false; 699 700 // If 'count' was a negative number, it's an overflow. 701 if (isSigned && count.isNegative()) 702 hasAnyOverflow = true; 703 704 // We want to do all this arithmetic in size_t. If numElements is 705 // wider than that, check whether it's already too big, and if so, 706 // overflow. 707 else if (numElementsWidth > sizeWidth && 708 numElementsWidth - sizeWidth > count.countLeadingZeros()) 709 hasAnyOverflow = true; 710 711 // Okay, compute a count at the right width. 712 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 713 714 // If there is a brace-initializer, we cannot allocate fewer elements than 715 // there are initializers. If we do, that's treated like an overflow. 716 if (adjustedCount.ult(minElements)) 717 hasAnyOverflow = true; 718 719 // Scale numElements by that. This might overflow, but we don't 720 // care because it only overflows if allocationSize does, too, and 721 // if that overflows then we shouldn't use this. 722 numElements = llvm::ConstantInt::get(CGF.SizeTy, 723 adjustedCount * arraySizeMultiplier); 724 725 // Compute the size before cookie, and track whether it overflowed. 726 bool overflow; 727 llvm::APInt allocationSize 728 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 729 hasAnyOverflow |= overflow; 730 731 // Add in the cookie, and check whether it's overflowed. 732 if (cookieSize != 0) { 733 // Save the current size without a cookie. This shouldn't be 734 // used if there was overflow. 735 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 736 737 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 738 hasAnyOverflow |= overflow; 739 } 740 741 // On overflow, produce a -1 so operator new will fail. 742 if (hasAnyOverflow) { 743 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 744 } else { 745 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 746 } 747 748 // Otherwise, we might need to use the overflow intrinsics. 749 } else { 750 // There are up to five conditions we need to test for: 751 // 1) if isSigned, we need to check whether numElements is negative; 752 // 2) if numElementsWidth > sizeWidth, we need to check whether 753 // numElements is larger than something representable in size_t; 754 // 3) if minElements > 0, we need to check whether numElements is smaller 755 // than that. 756 // 4) we need to compute 757 // sizeWithoutCookie := numElements * typeSizeMultiplier 758 // and check whether it overflows; and 759 // 5) if we need a cookie, we need to compute 760 // size := sizeWithoutCookie + cookieSize 761 // and check whether it overflows. 762 763 llvm::Value *hasOverflow = nullptr; 764 765 // If numElementsWidth > sizeWidth, then one way or another, we're 766 // going to have to do a comparison for (2), and this happens to 767 // take care of (1), too. 768 if (numElementsWidth > sizeWidth) { 769 llvm::APInt threshold(numElementsWidth, 1); 770 threshold <<= sizeWidth; 771 772 llvm::Value *thresholdV 773 = llvm::ConstantInt::get(numElementsType, threshold); 774 775 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 776 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 777 778 // Otherwise, if we're signed, we want to sext up to size_t. 779 } else if (isSigned) { 780 if (numElementsWidth < sizeWidth) 781 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 782 783 // If there's a non-1 type size multiplier, then we can do the 784 // signedness check at the same time as we do the multiply 785 // because a negative number times anything will cause an 786 // unsigned overflow. Otherwise, we have to do it here. But at least 787 // in this case, we can subsume the >= minElements check. 788 if (typeSizeMultiplier == 1) 789 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 790 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 791 792 // Otherwise, zext up to size_t if necessary. 793 } else if (numElementsWidth < sizeWidth) { 794 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 795 } 796 797 assert(numElements->getType() == CGF.SizeTy); 798 799 if (minElements) { 800 // Don't allow allocation of fewer elements than we have initializers. 801 if (!hasOverflow) { 802 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 803 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 804 } else if (numElementsWidth > sizeWidth) { 805 // The other existing overflow subsumes this check. 806 // We do an unsigned comparison, since any signed value < -1 is 807 // taken care of either above or below. 808 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 809 CGF.Builder.CreateICmpULT(numElements, 810 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 811 } 812 } 813 814 size = numElements; 815 816 // Multiply by the type size if necessary. This multiplier 817 // includes all the factors for nested arrays. 818 // 819 // This step also causes numElements to be scaled up by the 820 // nested-array factor if necessary. Overflow on this computation 821 // can be ignored because the result shouldn't be used if 822 // allocation fails. 823 if (typeSizeMultiplier != 1) { 824 llvm::Value *umul_with_overflow 825 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 826 827 llvm::Value *tsmV = 828 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 829 llvm::Value *result = 830 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 831 832 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 833 if (hasOverflow) 834 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 835 else 836 hasOverflow = overflowed; 837 838 size = CGF.Builder.CreateExtractValue(result, 0); 839 840 // Also scale up numElements by the array size multiplier. 841 if (arraySizeMultiplier != 1) { 842 // If the base element type size is 1, then we can re-use the 843 // multiply we just did. 844 if (typeSize.isOne()) { 845 assert(arraySizeMultiplier == typeSizeMultiplier); 846 numElements = size; 847 848 // Otherwise we need a separate multiply. 849 } else { 850 llvm::Value *asmV = 851 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 852 numElements = CGF.Builder.CreateMul(numElements, asmV); 853 } 854 } 855 } else { 856 // numElements doesn't need to be scaled. 857 assert(arraySizeMultiplier == 1); 858 } 859 860 // Add in the cookie size if necessary. 861 if (cookieSize != 0) { 862 sizeWithoutCookie = size; 863 864 llvm::Value *uadd_with_overflow 865 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 866 867 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 868 llvm::Value *result = 869 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 870 871 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 872 if (hasOverflow) 873 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 874 else 875 hasOverflow = overflowed; 876 877 size = CGF.Builder.CreateExtractValue(result, 0); 878 } 879 880 // If we had any possibility of dynamic overflow, make a select to 881 // overwrite 'size' with an all-ones value, which should cause 882 // operator new to throw. 883 if (hasOverflow) 884 size = CGF.Builder.CreateSelect(hasOverflow, 885 llvm::Constant::getAllOnesValue(CGF.SizeTy), 886 size); 887 } 888 889 if (cookieSize == 0) 890 sizeWithoutCookie = size; 891 else 892 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 893 894 return size; 895 } 896 897 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 898 QualType AllocType, Address NewPtr) { 899 // FIXME: Refactor with EmitExprAsInit. 900 switch (CGF.getEvaluationKind(AllocType)) { 901 case TEK_Scalar: 902 CGF.EmitScalarInit(Init, nullptr, 903 CGF.MakeAddrLValue(NewPtr, AllocType), false); 904 return; 905 case TEK_Complex: 906 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 907 /*isInit*/ true); 908 return; 909 case TEK_Aggregate: { 910 AggValueSlot Slot 911 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 912 AggValueSlot::IsDestructed, 913 AggValueSlot::DoesNotNeedGCBarriers, 914 AggValueSlot::IsNotAliased); 915 CGF.EmitAggExpr(Init, Slot); 916 return; 917 } 918 } 919 llvm_unreachable("bad evaluation kind"); 920 } 921 922 void CodeGenFunction::EmitNewArrayInitializer( 923 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 924 Address BeginPtr, llvm::Value *NumElements, 925 llvm::Value *AllocSizeWithoutCookie) { 926 // If we have a type with trivial initialization and no initializer, 927 // there's nothing to do. 928 if (!E->hasInitializer()) 929 return; 930 931 Address CurPtr = BeginPtr; 932 933 unsigned InitListElements = 0; 934 935 const Expr *Init = E->getInitializer(); 936 Address EndOfInit = Address::invalid(); 937 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 938 EHScopeStack::stable_iterator Cleanup; 939 llvm::Instruction *CleanupDominator = nullptr; 940 941 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 942 CharUnits ElementAlign = 943 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 944 945 // Attempt to perform zero-initialization using memset. 946 auto TryMemsetInitialization = [&]() -> bool { 947 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 948 // we can initialize with a memset to -1. 949 if (!CGM.getTypes().isZeroInitializable(ElementType)) 950 return false; 951 952 // Optimization: since zero initialization will just set the memory 953 // to all zeroes, generate a single memset to do it in one shot. 954 955 // Subtract out the size of any elements we've already initialized. 956 auto *RemainingSize = AllocSizeWithoutCookie; 957 if (InitListElements) { 958 // We know this can't overflow; we check this when doing the allocation. 959 auto *InitializedSize = llvm::ConstantInt::get( 960 RemainingSize->getType(), 961 getContext().getTypeSizeInChars(ElementType).getQuantity() * 962 InitListElements); 963 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 964 } 965 966 // Create the memset. 967 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 968 return true; 969 }; 970 971 // If the initializer is an initializer list, first do the explicit elements. 972 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 973 // Initializing from a (braced) string literal is a special case; the init 974 // list element does not initialize a (single) array element. 975 if (ILE->isStringLiteralInit()) { 976 // Initialize the initial portion of length equal to that of the string 977 // literal. The allocation must be for at least this much; we emitted a 978 // check for that earlier. 979 AggValueSlot Slot = 980 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 981 AggValueSlot::IsDestructed, 982 AggValueSlot::DoesNotNeedGCBarriers, 983 AggValueSlot::IsNotAliased); 984 EmitAggExpr(ILE->getInit(0), Slot); 985 986 // Move past these elements. 987 InitListElements = 988 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 989 ->getSize().getZExtValue(); 990 CurPtr = 991 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 992 Builder.getSize(InitListElements), 993 "string.init.end"), 994 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 995 ElementSize)); 996 997 // Zero out the rest, if any remain. 998 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 999 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1000 bool OK = TryMemsetInitialization(); 1001 (void)OK; 1002 assert(OK && "couldn't memset character type?"); 1003 } 1004 return; 1005 } 1006 1007 InitListElements = ILE->getNumInits(); 1008 1009 // If this is a multi-dimensional array new, we will initialize multiple 1010 // elements with each init list element. 1011 QualType AllocType = E->getAllocatedType(); 1012 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1013 AllocType->getAsArrayTypeUnsafe())) { 1014 ElementTy = ConvertTypeForMem(AllocType); 1015 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1016 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1017 } 1018 1019 // Enter a partial-destruction Cleanup if necessary. 1020 if (needsEHCleanup(DtorKind)) { 1021 // In principle we could tell the Cleanup where we are more 1022 // directly, but the control flow can get so varied here that it 1023 // would actually be quite complex. Therefore we go through an 1024 // alloca. 1025 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1026 "array.init.end"); 1027 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1028 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1029 ElementType, ElementAlign, 1030 getDestroyer(DtorKind)); 1031 Cleanup = EHStack.stable_begin(); 1032 } 1033 1034 CharUnits StartAlign = CurPtr.getAlignment(); 1035 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1036 // Tell the cleanup that it needs to destroy up to this 1037 // element. TODO: some of these stores can be trivially 1038 // observed to be unnecessary. 1039 if (EndOfInit.isValid()) { 1040 auto FinishedPtr = 1041 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1042 Builder.CreateStore(FinishedPtr, EndOfInit); 1043 } 1044 // FIXME: If the last initializer is an incomplete initializer list for 1045 // an array, and we have an array filler, we can fold together the two 1046 // initialization loops. 1047 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1048 ILE->getInit(i)->getType(), CurPtr); 1049 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1050 Builder.getSize(1), 1051 "array.exp.next"), 1052 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1053 } 1054 1055 // The remaining elements are filled with the array filler expression. 1056 Init = ILE->getArrayFiller(); 1057 1058 // Extract the initializer for the individual array elements by pulling 1059 // out the array filler from all the nested initializer lists. This avoids 1060 // generating a nested loop for the initialization. 1061 while (Init && Init->getType()->isConstantArrayType()) { 1062 auto *SubILE = dyn_cast<InitListExpr>(Init); 1063 if (!SubILE) 1064 break; 1065 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1066 Init = SubILE->getArrayFiller(); 1067 } 1068 1069 // Switch back to initializing one base element at a time. 1070 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1071 } 1072 1073 // If all elements have already been initialized, skip any further 1074 // initialization. 1075 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1076 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1077 // If there was a Cleanup, deactivate it. 1078 if (CleanupDominator) 1079 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1080 return; 1081 } 1082 1083 assert(Init && "have trailing elements to initialize but no initializer"); 1084 1085 // If this is a constructor call, try to optimize it out, and failing that 1086 // emit a single loop to initialize all remaining elements. 1087 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1088 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1089 if (Ctor->isTrivial()) { 1090 // If new expression did not specify value-initialization, then there 1091 // is no initialization. 1092 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1093 return; 1094 1095 if (TryMemsetInitialization()) 1096 return; 1097 } 1098 1099 // Store the new Cleanup position for irregular Cleanups. 1100 // 1101 // FIXME: Share this cleanup with the constructor call emission rather than 1102 // having it create a cleanup of its own. 1103 if (EndOfInit.isValid()) 1104 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1105 1106 // Emit a constructor call loop to initialize the remaining elements. 1107 if (InitListElements) 1108 NumElements = Builder.CreateSub( 1109 NumElements, 1110 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1111 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1112 CCE->requiresZeroInitialization()); 1113 return; 1114 } 1115 1116 // If this is value-initialization, we can usually use memset. 1117 ImplicitValueInitExpr IVIE(ElementType); 1118 if (isa<ImplicitValueInitExpr>(Init)) { 1119 if (TryMemsetInitialization()) 1120 return; 1121 1122 // Switch to an ImplicitValueInitExpr for the element type. This handles 1123 // only one case: multidimensional array new of pointers to members. In 1124 // all other cases, we already have an initializer for the array element. 1125 Init = &IVIE; 1126 } 1127 1128 // At this point we should have found an initializer for the individual 1129 // elements of the array. 1130 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1131 "got wrong type of element to initialize"); 1132 1133 // If we have an empty initializer list, we can usually use memset. 1134 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1135 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1136 return; 1137 1138 // If we have a struct whose every field is value-initialized, we can 1139 // usually use memset. 1140 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1141 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1142 if (RType->getDecl()->isStruct()) { 1143 unsigned NumElements = 0; 1144 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1145 NumElements = CXXRD->getNumBases(); 1146 for (auto *Field : RType->getDecl()->fields()) 1147 if (!Field->isUnnamedBitfield()) 1148 ++NumElements; 1149 // FIXME: Recurse into nested InitListExprs. 1150 if (ILE->getNumInits() == NumElements) 1151 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1152 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1153 --NumElements; 1154 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1155 return; 1156 } 1157 } 1158 } 1159 1160 // Create the loop blocks. 1161 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1162 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1163 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1164 1165 // Find the end of the array, hoisted out of the loop. 1166 llvm::Value *EndPtr = 1167 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1168 1169 // If the number of elements isn't constant, we have to now check if there is 1170 // anything left to initialize. 1171 if (!ConstNum) { 1172 llvm::Value *IsEmpty = 1173 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1174 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1175 } 1176 1177 // Enter the loop. 1178 EmitBlock(LoopBB); 1179 1180 // Set up the current-element phi. 1181 llvm::PHINode *CurPtrPhi = 1182 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1183 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1184 1185 CurPtr = Address(CurPtrPhi, ElementAlign); 1186 1187 // Store the new Cleanup position for irregular Cleanups. 1188 if (EndOfInit.isValid()) 1189 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1190 1191 // Enter a partial-destruction Cleanup if necessary. 1192 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1193 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1194 ElementType, ElementAlign, 1195 getDestroyer(DtorKind)); 1196 Cleanup = EHStack.stable_begin(); 1197 CleanupDominator = Builder.CreateUnreachable(); 1198 } 1199 1200 // Emit the initializer into this element. 1201 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1202 1203 // Leave the Cleanup if we entered one. 1204 if (CleanupDominator) { 1205 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1206 CleanupDominator->eraseFromParent(); 1207 } 1208 1209 // Advance to the next element by adjusting the pointer type as necessary. 1210 llvm::Value *NextPtr = 1211 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1212 "array.next"); 1213 1214 // Check whether we've gotten to the end of the array and, if so, 1215 // exit the loop. 1216 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1217 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1218 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1219 1220 EmitBlock(ContBB); 1221 } 1222 1223 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1224 QualType ElementType, llvm::Type *ElementTy, 1225 Address NewPtr, llvm::Value *NumElements, 1226 llvm::Value *AllocSizeWithoutCookie) { 1227 ApplyDebugLocation DL(CGF, E); 1228 if (E->isArray()) 1229 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1230 AllocSizeWithoutCookie); 1231 else if (const Expr *Init = E->getInitializer()) 1232 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1233 } 1234 1235 /// Emit a call to an operator new or operator delete function, as implicitly 1236 /// created by new-expressions and delete-expressions. 1237 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1238 const FunctionDecl *CalleeDecl, 1239 const FunctionProtoType *CalleeType, 1240 const CallArgList &Args) { 1241 llvm::Instruction *CallOrInvoke; 1242 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1243 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1244 RValue RV = 1245 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1246 Args, CalleeType, /*chainCall=*/false), 1247 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1248 1249 /// C++1y [expr.new]p10: 1250 /// [In a new-expression,] an implementation is allowed to omit a call 1251 /// to a replaceable global allocation function. 1252 /// 1253 /// We model such elidable calls with the 'builtin' attribute. 1254 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1255 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1256 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1257 // FIXME: Add addAttribute to CallSite. 1258 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1259 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1260 llvm::Attribute::Builtin); 1261 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1262 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1263 llvm::Attribute::Builtin); 1264 else 1265 llvm_unreachable("unexpected kind of call instruction"); 1266 } 1267 1268 return RV; 1269 } 1270 1271 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1272 const Expr *Arg, 1273 bool IsDelete) { 1274 CallArgList Args; 1275 const Stmt *ArgS = Arg; 1276 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1277 // Find the allocation or deallocation function that we're calling. 1278 ASTContext &Ctx = getContext(); 1279 DeclarationName Name = Ctx.DeclarationNames 1280 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1281 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1282 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1283 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1284 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1285 llvm_unreachable("predeclared global operator new/delete is missing"); 1286 } 1287 1288 static std::pair<bool, bool> 1289 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1290 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1291 1292 // The first argument is always a void*. 1293 ++AI; 1294 1295 // Figure out what other parameters we should be implicitly passing. 1296 bool PassSize = false; 1297 bool PassAlignment = false; 1298 1299 if (AI != AE && (*AI)->isIntegerType()) { 1300 PassSize = true; 1301 ++AI; 1302 } 1303 1304 if (AI != AE && (*AI)->isAlignValT()) { 1305 PassAlignment = true; 1306 ++AI; 1307 } 1308 1309 assert(AI == AE && "unexpected usual deallocation function parameter"); 1310 return {PassSize, PassAlignment}; 1311 } 1312 1313 namespace { 1314 /// A cleanup to call the given 'operator delete' function upon abnormal 1315 /// exit from a new expression. Templated on a traits type that deals with 1316 /// ensuring that the arguments dominate the cleanup if necessary. 1317 template<typename Traits> 1318 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1319 /// Type used to hold llvm::Value*s. 1320 typedef typename Traits::ValueTy ValueTy; 1321 /// Type used to hold RValues. 1322 typedef typename Traits::RValueTy RValueTy; 1323 struct PlacementArg { 1324 RValueTy ArgValue; 1325 QualType ArgType; 1326 }; 1327 1328 unsigned NumPlacementArgs : 31; 1329 unsigned PassAlignmentToPlacementDelete : 1; 1330 const FunctionDecl *OperatorDelete; 1331 ValueTy Ptr; 1332 ValueTy AllocSize; 1333 CharUnits AllocAlign; 1334 1335 PlacementArg *getPlacementArgs() { 1336 return reinterpret_cast<PlacementArg *>(this + 1); 1337 } 1338 1339 public: 1340 static size_t getExtraSize(size_t NumPlacementArgs) { 1341 return NumPlacementArgs * sizeof(PlacementArg); 1342 } 1343 1344 CallDeleteDuringNew(size_t NumPlacementArgs, 1345 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1346 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1347 CharUnits AllocAlign) 1348 : NumPlacementArgs(NumPlacementArgs), 1349 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1350 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1351 AllocAlign(AllocAlign) {} 1352 1353 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1354 assert(I < NumPlacementArgs && "index out of range"); 1355 getPlacementArgs()[I] = {Arg, Type}; 1356 } 1357 1358 void Emit(CodeGenFunction &CGF, Flags flags) override { 1359 const FunctionProtoType *FPT = 1360 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1361 CallArgList DeleteArgs; 1362 1363 // The first argument is always a void*. 1364 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1365 1366 // Figure out what other parameters we should be implicitly passing. 1367 bool PassSize = false; 1368 bool PassAlignment = false; 1369 if (NumPlacementArgs) { 1370 // A placement deallocation function is implicitly passed an alignment 1371 // if the placement allocation function was, but is never passed a size. 1372 PassAlignment = PassAlignmentToPlacementDelete; 1373 } else { 1374 // For a non-placement new-expression, 'operator delete' can take a 1375 // size and/or an alignment if it has the right parameters. 1376 std::tie(PassSize, PassAlignment) = 1377 shouldPassSizeAndAlignToUsualDelete(FPT); 1378 } 1379 1380 // The second argument can be a std::size_t (for non-placement delete). 1381 if (PassSize) 1382 DeleteArgs.add(Traits::get(CGF, AllocSize), 1383 CGF.getContext().getSizeType()); 1384 1385 // The next (second or third) argument can be a std::align_val_t, which 1386 // is an enum whose underlying type is std::size_t. 1387 // FIXME: Use the right type as the parameter type. Note that in a call 1388 // to operator delete(size_t, ...), we may not have it available. 1389 if (PassAlignment) 1390 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1391 CGF.SizeTy, AllocAlign.getQuantity())), 1392 CGF.getContext().getSizeType()); 1393 1394 // Pass the rest of the arguments, which must match exactly. 1395 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1396 auto Arg = getPlacementArgs()[I]; 1397 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1398 } 1399 1400 // Call 'operator delete'. 1401 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1402 } 1403 }; 1404 } 1405 1406 /// Enter a cleanup to call 'operator delete' if the initializer in a 1407 /// new-expression throws. 1408 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1409 const CXXNewExpr *E, 1410 Address NewPtr, 1411 llvm::Value *AllocSize, 1412 CharUnits AllocAlign, 1413 const CallArgList &NewArgs) { 1414 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1415 1416 // If we're not inside a conditional branch, then the cleanup will 1417 // dominate and we can do the easier (and more efficient) thing. 1418 if (!CGF.isInConditionalBranch()) { 1419 struct DirectCleanupTraits { 1420 typedef llvm::Value *ValueTy; 1421 typedef RValue RValueTy; 1422 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1423 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1424 }; 1425 1426 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1427 1428 DirectCleanup *Cleanup = CGF.EHStack 1429 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1430 E->getNumPlacementArgs(), 1431 E->getOperatorDelete(), 1432 NewPtr.getPointer(), 1433 AllocSize, 1434 E->passAlignment(), 1435 AllocAlign); 1436 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1437 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1438 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1439 } 1440 1441 return; 1442 } 1443 1444 // Otherwise, we need to save all this stuff. 1445 DominatingValue<RValue>::saved_type SavedNewPtr = 1446 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1447 DominatingValue<RValue>::saved_type SavedAllocSize = 1448 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1449 1450 struct ConditionalCleanupTraits { 1451 typedef DominatingValue<RValue>::saved_type ValueTy; 1452 typedef DominatingValue<RValue>::saved_type RValueTy; 1453 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1454 return V.restore(CGF); 1455 } 1456 }; 1457 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1458 1459 ConditionalCleanup *Cleanup = CGF.EHStack 1460 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1461 E->getNumPlacementArgs(), 1462 E->getOperatorDelete(), 1463 SavedNewPtr, 1464 SavedAllocSize, 1465 E->passAlignment(), 1466 AllocAlign); 1467 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1468 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1469 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1470 Arg.Ty); 1471 } 1472 1473 CGF.initFullExprCleanup(); 1474 } 1475 1476 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1477 // The element type being allocated. 1478 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1479 1480 // 1. Build a call to the allocation function. 1481 FunctionDecl *allocator = E->getOperatorNew(); 1482 1483 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1484 unsigned minElements = 0; 1485 if (E->isArray() && E->hasInitializer()) { 1486 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1487 if (ILE && ILE->isStringLiteralInit()) 1488 minElements = 1489 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1490 ->getSize().getZExtValue(); 1491 else if (ILE) 1492 minElements = ILE->getNumInits(); 1493 } 1494 1495 llvm::Value *numElements = nullptr; 1496 llvm::Value *allocSizeWithoutCookie = nullptr; 1497 llvm::Value *allocSize = 1498 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1499 allocSizeWithoutCookie); 1500 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1501 1502 // Emit the allocation call. If the allocator is a global placement 1503 // operator, just "inline" it directly. 1504 Address allocation = Address::invalid(); 1505 CallArgList allocatorArgs; 1506 if (allocator->isReservedGlobalPlacementOperator()) { 1507 assert(E->getNumPlacementArgs() == 1); 1508 const Expr *arg = *E->placement_arguments().begin(); 1509 1510 AlignmentSource alignSource; 1511 allocation = EmitPointerWithAlignment(arg, &alignSource); 1512 1513 // The pointer expression will, in many cases, be an opaque void*. 1514 // In these cases, discard the computed alignment and use the 1515 // formal alignment of the allocated type. 1516 if (alignSource != AlignmentSource::Decl) 1517 allocation = Address(allocation.getPointer(), allocAlign); 1518 1519 // Set up allocatorArgs for the call to operator delete if it's not 1520 // the reserved global operator. 1521 if (E->getOperatorDelete() && 1522 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1523 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1524 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1525 } 1526 1527 } else { 1528 const FunctionProtoType *allocatorType = 1529 allocator->getType()->castAs<FunctionProtoType>(); 1530 unsigned ParamsToSkip = 0; 1531 1532 // The allocation size is the first argument. 1533 QualType sizeType = getContext().getSizeType(); 1534 allocatorArgs.add(RValue::get(allocSize), sizeType); 1535 ++ParamsToSkip; 1536 1537 if (allocSize != allocSizeWithoutCookie) { 1538 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1539 allocAlign = std::max(allocAlign, cookieAlign); 1540 } 1541 1542 // The allocation alignment may be passed as the second argument. 1543 if (E->passAlignment()) { 1544 QualType AlignValT = sizeType; 1545 if (allocatorType->getNumParams() > 1) { 1546 AlignValT = allocatorType->getParamType(1); 1547 assert(getContext().hasSameUnqualifiedType( 1548 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1549 sizeType) && 1550 "wrong type for alignment parameter"); 1551 ++ParamsToSkip; 1552 } else { 1553 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1554 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1555 } 1556 allocatorArgs.add( 1557 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1558 AlignValT); 1559 } 1560 1561 // FIXME: Why do we not pass a CalleeDecl here? 1562 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1563 /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip); 1564 1565 RValue RV = 1566 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1567 1568 // If this was a call to a global replaceable allocation function that does 1569 // not take an alignment argument, the allocator is known to produce 1570 // storage that's suitably aligned for any object that fits, up to a known 1571 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1572 CharUnits allocationAlign = allocAlign; 1573 if (!E->passAlignment() && 1574 allocator->isReplaceableGlobalAllocationFunction()) { 1575 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1576 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1577 allocationAlign = std::max( 1578 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1579 } 1580 1581 allocation = Address(RV.getScalarVal(), allocationAlign); 1582 } 1583 1584 // Emit a null check on the allocation result if the allocation 1585 // function is allowed to return null (because it has a non-throwing 1586 // exception spec or is the reserved placement new) and we have an 1587 // interesting initializer. 1588 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1589 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1590 1591 llvm::BasicBlock *nullCheckBB = nullptr; 1592 llvm::BasicBlock *contBB = nullptr; 1593 1594 // The null-check means that the initializer is conditionally 1595 // evaluated. 1596 ConditionalEvaluation conditional(*this); 1597 1598 if (nullCheck) { 1599 conditional.begin(*this); 1600 1601 nullCheckBB = Builder.GetInsertBlock(); 1602 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1603 contBB = createBasicBlock("new.cont"); 1604 1605 llvm::Value *isNull = 1606 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1607 Builder.CreateCondBr(isNull, contBB, notNullBB); 1608 EmitBlock(notNullBB); 1609 } 1610 1611 // If there's an operator delete, enter a cleanup to call it if an 1612 // exception is thrown. 1613 EHScopeStack::stable_iterator operatorDeleteCleanup; 1614 llvm::Instruction *cleanupDominator = nullptr; 1615 if (E->getOperatorDelete() && 1616 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1617 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1618 allocatorArgs); 1619 operatorDeleteCleanup = EHStack.stable_begin(); 1620 cleanupDominator = Builder.CreateUnreachable(); 1621 } 1622 1623 assert((allocSize == allocSizeWithoutCookie) == 1624 CalculateCookiePadding(*this, E).isZero()); 1625 if (allocSize != allocSizeWithoutCookie) { 1626 assert(E->isArray()); 1627 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1628 numElements, 1629 E, allocType); 1630 } 1631 1632 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1633 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1634 1635 // Passing pointer through invariant.group.barrier to avoid propagation of 1636 // vptrs information which may be included in previous type. 1637 if (CGM.getCodeGenOpts().StrictVTablePointers && 1638 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1639 allocator->isReservedGlobalPlacementOperator()) 1640 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1641 result.getAlignment()); 1642 1643 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1644 allocSizeWithoutCookie); 1645 if (E->isArray()) { 1646 // NewPtr is a pointer to the base element type. If we're 1647 // allocating an array of arrays, we'll need to cast back to the 1648 // array pointer type. 1649 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1650 if (result.getType() != resultType) 1651 result = Builder.CreateBitCast(result, resultType); 1652 } 1653 1654 // Deactivate the 'operator delete' cleanup if we finished 1655 // initialization. 1656 if (operatorDeleteCleanup.isValid()) { 1657 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1658 cleanupDominator->eraseFromParent(); 1659 } 1660 1661 llvm::Value *resultPtr = result.getPointer(); 1662 if (nullCheck) { 1663 conditional.end(*this); 1664 1665 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1666 EmitBlock(contBB); 1667 1668 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1669 PHI->addIncoming(resultPtr, notNullBB); 1670 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1671 nullCheckBB); 1672 1673 resultPtr = PHI; 1674 } 1675 1676 return resultPtr; 1677 } 1678 1679 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1680 llvm::Value *Ptr, QualType DeleteTy, 1681 llvm::Value *NumElements, 1682 CharUnits CookieSize) { 1683 assert((!NumElements && CookieSize.isZero()) || 1684 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1685 1686 const FunctionProtoType *DeleteFTy = 1687 DeleteFD->getType()->getAs<FunctionProtoType>(); 1688 1689 CallArgList DeleteArgs; 1690 1691 std::pair<bool, bool> PassSizeAndAlign = 1692 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1693 1694 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1695 1696 // Pass the pointer itself. 1697 QualType ArgTy = *ParamTypeIt++; 1698 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1699 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1700 1701 // Pass the size if the delete function has a size_t parameter. 1702 if (PassSizeAndAlign.first) { 1703 QualType SizeType = *ParamTypeIt++; 1704 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1705 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1706 DeleteTypeSize.getQuantity()); 1707 1708 // For array new, multiply by the number of elements. 1709 if (NumElements) 1710 Size = Builder.CreateMul(Size, NumElements); 1711 1712 // If there is a cookie, add the cookie size. 1713 if (!CookieSize.isZero()) 1714 Size = Builder.CreateAdd( 1715 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1716 1717 DeleteArgs.add(RValue::get(Size), SizeType); 1718 } 1719 1720 // Pass the alignment if the delete function has an align_val_t parameter. 1721 if (PassSizeAndAlign.second) { 1722 QualType AlignValType = *ParamTypeIt++; 1723 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1724 getContext().getTypeAlignIfKnown(DeleteTy)); 1725 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1726 DeleteTypeAlign.getQuantity()); 1727 DeleteArgs.add(RValue::get(Align), AlignValType); 1728 } 1729 1730 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1731 "unknown parameter to usual delete function"); 1732 1733 // Emit the call to delete. 1734 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1735 } 1736 1737 namespace { 1738 /// Calls the given 'operator delete' on a single object. 1739 struct CallObjectDelete final : EHScopeStack::Cleanup { 1740 llvm::Value *Ptr; 1741 const FunctionDecl *OperatorDelete; 1742 QualType ElementType; 1743 1744 CallObjectDelete(llvm::Value *Ptr, 1745 const FunctionDecl *OperatorDelete, 1746 QualType ElementType) 1747 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1748 1749 void Emit(CodeGenFunction &CGF, Flags flags) override { 1750 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1751 } 1752 }; 1753 } 1754 1755 void 1756 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1757 llvm::Value *CompletePtr, 1758 QualType ElementType) { 1759 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1760 OperatorDelete, ElementType); 1761 } 1762 1763 /// Emit the code for deleting a single object. 1764 static void EmitObjectDelete(CodeGenFunction &CGF, 1765 const CXXDeleteExpr *DE, 1766 Address Ptr, 1767 QualType ElementType) { 1768 // C++11 [expr.delete]p3: 1769 // If the static type of the object to be deleted is different from its 1770 // dynamic type, the static type shall be a base class of the dynamic type 1771 // of the object to be deleted and the static type shall have a virtual 1772 // destructor or the behavior is undefined. 1773 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1774 DE->getExprLoc(), Ptr.getPointer(), 1775 ElementType); 1776 1777 // Find the destructor for the type, if applicable. If the 1778 // destructor is virtual, we'll just emit the vcall and return. 1779 const CXXDestructorDecl *Dtor = nullptr; 1780 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1781 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1782 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1783 Dtor = RD->getDestructor(); 1784 1785 if (Dtor->isVirtual()) { 1786 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1787 Dtor); 1788 return; 1789 } 1790 } 1791 } 1792 1793 // Make sure that we call delete even if the dtor throws. 1794 // This doesn't have to a conditional cleanup because we're going 1795 // to pop it off in a second. 1796 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1797 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1798 Ptr.getPointer(), 1799 OperatorDelete, ElementType); 1800 1801 if (Dtor) 1802 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1803 /*ForVirtualBase=*/false, 1804 /*Delegating=*/false, 1805 Ptr); 1806 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1807 switch (Lifetime) { 1808 case Qualifiers::OCL_None: 1809 case Qualifiers::OCL_ExplicitNone: 1810 case Qualifiers::OCL_Autoreleasing: 1811 break; 1812 1813 case Qualifiers::OCL_Strong: 1814 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1815 break; 1816 1817 case Qualifiers::OCL_Weak: 1818 CGF.EmitARCDestroyWeak(Ptr); 1819 break; 1820 } 1821 } 1822 1823 CGF.PopCleanupBlock(); 1824 } 1825 1826 namespace { 1827 /// Calls the given 'operator delete' on an array of objects. 1828 struct CallArrayDelete final : EHScopeStack::Cleanup { 1829 llvm::Value *Ptr; 1830 const FunctionDecl *OperatorDelete; 1831 llvm::Value *NumElements; 1832 QualType ElementType; 1833 CharUnits CookieSize; 1834 1835 CallArrayDelete(llvm::Value *Ptr, 1836 const FunctionDecl *OperatorDelete, 1837 llvm::Value *NumElements, 1838 QualType ElementType, 1839 CharUnits CookieSize) 1840 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1841 ElementType(ElementType), CookieSize(CookieSize) {} 1842 1843 void Emit(CodeGenFunction &CGF, Flags flags) override { 1844 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1845 CookieSize); 1846 } 1847 }; 1848 } 1849 1850 /// Emit the code for deleting an array of objects. 1851 static void EmitArrayDelete(CodeGenFunction &CGF, 1852 const CXXDeleteExpr *E, 1853 Address deletedPtr, 1854 QualType elementType) { 1855 llvm::Value *numElements = nullptr; 1856 llvm::Value *allocatedPtr = nullptr; 1857 CharUnits cookieSize; 1858 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1859 numElements, allocatedPtr, cookieSize); 1860 1861 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1862 1863 // Make sure that we call delete even if one of the dtors throws. 1864 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1865 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1866 allocatedPtr, operatorDelete, 1867 numElements, elementType, 1868 cookieSize); 1869 1870 // Destroy the elements. 1871 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1872 assert(numElements && "no element count for a type with a destructor!"); 1873 1874 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1875 CharUnits elementAlign = 1876 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1877 1878 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1879 llvm::Value *arrayEnd = 1880 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1881 1882 // Note that it is legal to allocate a zero-length array, and we 1883 // can never fold the check away because the length should always 1884 // come from a cookie. 1885 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1886 CGF.getDestroyer(dtorKind), 1887 /*checkZeroLength*/ true, 1888 CGF.needsEHCleanup(dtorKind)); 1889 } 1890 1891 // Pop the cleanup block. 1892 CGF.PopCleanupBlock(); 1893 } 1894 1895 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1896 const Expr *Arg = E->getArgument(); 1897 Address Ptr = EmitPointerWithAlignment(Arg); 1898 1899 // Null check the pointer. 1900 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1901 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1902 1903 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1904 1905 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1906 EmitBlock(DeleteNotNull); 1907 1908 // We might be deleting a pointer to array. If so, GEP down to the 1909 // first non-array element. 1910 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1911 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1912 if (DeleteTy->isConstantArrayType()) { 1913 llvm::Value *Zero = Builder.getInt32(0); 1914 SmallVector<llvm::Value*,8> GEP; 1915 1916 GEP.push_back(Zero); // point at the outermost array 1917 1918 // For each layer of array type we're pointing at: 1919 while (const ConstantArrayType *Arr 1920 = getContext().getAsConstantArrayType(DeleteTy)) { 1921 // 1. Unpeel the array type. 1922 DeleteTy = Arr->getElementType(); 1923 1924 // 2. GEP to the first element of the array. 1925 GEP.push_back(Zero); 1926 } 1927 1928 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1929 Ptr.getAlignment()); 1930 } 1931 1932 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1933 1934 if (E->isArrayForm()) { 1935 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1936 } else { 1937 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1938 } 1939 1940 EmitBlock(DeleteEnd); 1941 } 1942 1943 static bool isGLValueFromPointerDeref(const Expr *E) { 1944 E = E->IgnoreParens(); 1945 1946 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1947 if (!CE->getSubExpr()->isGLValue()) 1948 return false; 1949 return isGLValueFromPointerDeref(CE->getSubExpr()); 1950 } 1951 1952 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1953 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1954 1955 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1956 if (BO->getOpcode() == BO_Comma) 1957 return isGLValueFromPointerDeref(BO->getRHS()); 1958 1959 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1960 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1961 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1962 1963 // C++11 [expr.sub]p1: 1964 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1965 if (isa<ArraySubscriptExpr>(E)) 1966 return true; 1967 1968 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1969 if (UO->getOpcode() == UO_Deref) 1970 return true; 1971 1972 return false; 1973 } 1974 1975 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1976 llvm::Type *StdTypeInfoPtrTy) { 1977 // Get the vtable pointer. 1978 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1979 1980 // C++ [expr.typeid]p2: 1981 // If the glvalue expression is obtained by applying the unary * operator to 1982 // a pointer and the pointer is a null pointer value, the typeid expression 1983 // throws the std::bad_typeid exception. 1984 // 1985 // However, this paragraph's intent is not clear. We choose a very generous 1986 // interpretation which implores us to consider comma operators, conditional 1987 // operators, parentheses and other such constructs. 1988 QualType SrcRecordTy = E->getType(); 1989 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1990 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1991 llvm::BasicBlock *BadTypeidBlock = 1992 CGF.createBasicBlock("typeid.bad_typeid"); 1993 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1994 1995 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1996 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1997 1998 CGF.EmitBlock(BadTypeidBlock); 1999 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2000 CGF.EmitBlock(EndBlock); 2001 } 2002 2003 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2004 StdTypeInfoPtrTy); 2005 } 2006 2007 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2008 llvm::Type *StdTypeInfoPtrTy = 2009 ConvertType(E->getType())->getPointerTo(); 2010 2011 if (E->isTypeOperand()) { 2012 llvm::Constant *TypeInfo = 2013 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2014 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2015 } 2016 2017 // C++ [expr.typeid]p2: 2018 // When typeid is applied to a glvalue expression whose type is a 2019 // polymorphic class type, the result refers to a std::type_info object 2020 // representing the type of the most derived object (that is, the dynamic 2021 // type) to which the glvalue refers. 2022 if (E->isPotentiallyEvaluated()) 2023 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2024 StdTypeInfoPtrTy); 2025 2026 QualType OperandTy = E->getExprOperand()->getType(); 2027 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2028 StdTypeInfoPtrTy); 2029 } 2030 2031 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2032 QualType DestTy) { 2033 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2034 if (DestTy->isPointerType()) 2035 return llvm::Constant::getNullValue(DestLTy); 2036 2037 /// C++ [expr.dynamic.cast]p9: 2038 /// A failed cast to reference type throws std::bad_cast 2039 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2040 return nullptr; 2041 2042 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2043 return llvm::UndefValue::get(DestLTy); 2044 } 2045 2046 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2047 const CXXDynamicCastExpr *DCE) { 2048 CGM.EmitExplicitCastExprType(DCE, this); 2049 QualType DestTy = DCE->getTypeAsWritten(); 2050 2051 if (DCE->isAlwaysNull()) 2052 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2053 return T; 2054 2055 QualType SrcTy = DCE->getSubExpr()->getType(); 2056 2057 // C++ [expr.dynamic.cast]p7: 2058 // If T is "pointer to cv void," then the result is a pointer to the most 2059 // derived object pointed to by v. 2060 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2061 2062 bool isDynamicCastToVoid; 2063 QualType SrcRecordTy; 2064 QualType DestRecordTy; 2065 if (DestPTy) { 2066 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2067 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2068 DestRecordTy = DestPTy->getPointeeType(); 2069 } else { 2070 isDynamicCastToVoid = false; 2071 SrcRecordTy = SrcTy; 2072 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2073 } 2074 2075 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2076 2077 // C++ [expr.dynamic.cast]p4: 2078 // If the value of v is a null pointer value in the pointer case, the result 2079 // is the null pointer value of type T. 2080 bool ShouldNullCheckSrcValue = 2081 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2082 SrcRecordTy); 2083 2084 llvm::BasicBlock *CastNull = nullptr; 2085 llvm::BasicBlock *CastNotNull = nullptr; 2086 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2087 2088 if (ShouldNullCheckSrcValue) { 2089 CastNull = createBasicBlock("dynamic_cast.null"); 2090 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2091 2092 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2093 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2094 EmitBlock(CastNotNull); 2095 } 2096 2097 llvm::Value *Value; 2098 if (isDynamicCastToVoid) { 2099 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2100 DestTy); 2101 } else { 2102 assert(DestRecordTy->isRecordType() && 2103 "destination type must be a record type!"); 2104 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2105 DestTy, DestRecordTy, CastEnd); 2106 CastNotNull = Builder.GetInsertBlock(); 2107 } 2108 2109 if (ShouldNullCheckSrcValue) { 2110 EmitBranch(CastEnd); 2111 2112 EmitBlock(CastNull); 2113 EmitBranch(CastEnd); 2114 } 2115 2116 EmitBlock(CastEnd); 2117 2118 if (ShouldNullCheckSrcValue) { 2119 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2120 PHI->addIncoming(Value, CastNotNull); 2121 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2122 2123 Value = PHI; 2124 } 2125 2126 return Value; 2127 } 2128 2129 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2130 RunCleanupsScope Scope(*this); 2131 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2132 2133 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2134 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2135 e = E->capture_init_end(); 2136 i != e; ++i, ++CurField) { 2137 // Emit initialization 2138 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2139 if (CurField->hasCapturedVLAType()) { 2140 auto VAT = CurField->getCapturedVLAType(); 2141 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2142 } else { 2143 ArrayRef<VarDecl *> ArrayIndexes; 2144 if (CurField->getType()->isArrayType()) 2145 ArrayIndexes = E->getCaptureInitIndexVars(i); 2146 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 2147 } 2148 } 2149 } 2150