1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGObjCRuntime.h" 19 #include "CGDebugInfo.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 SourceLocation CallLoc, 28 llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, 30 llvm::Value *This, 31 llvm::Value *VTT, 32 CallExpr::const_arg_iterator ArgBeg, 33 CallExpr::const_arg_iterator ArgEnd) { 34 assert(MD->isInstance() && 35 "Trying to emit a member call expr on a static method!"); 36 37 // C++11 [class.mfct.non-static]p2: 38 // If a non-static member function of a class X is called for an object that 39 // is not of type X, or of a type derived from X, the behavior is undefined. 40 EmitTypeCheck(TCK_MemberCall, CallLoc, This, 41 getContext().getRecordType(MD->getParent())); 42 43 CallArgList Args; 44 45 // Push the this ptr. 46 Args.add(RValue::get(This), MD->getThisType(getContext())); 47 48 // If there is a VTT parameter, emit it. 49 if (VTT) { 50 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 51 Args.add(RValue::get(VTT), T); 52 } 53 54 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 55 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 56 57 // And the rest of the call args. 58 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 59 60 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 61 Callee, ReturnValue, Args, MD); 62 } 63 64 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 65 // quite what we want. 66 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 67 while (true) { 68 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 69 E = PE->getSubExpr(); 70 continue; 71 } 72 73 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 74 if (CE->getCastKind() == CK_NoOp) { 75 E = CE->getSubExpr(); 76 continue; 77 } 78 } 79 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 80 if (UO->getOpcode() == UO_Extension) { 81 E = UO->getSubExpr(); 82 continue; 83 } 84 } 85 return E; 86 } 87 } 88 89 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 90 /// expr can be devirtualized. 91 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 92 const Expr *Base, 93 const CXXMethodDecl *MD) { 94 95 // When building with -fapple-kext, all calls must go through the vtable since 96 // the kernel linker can do runtime patching of vtables. 97 if (Context.getLangOpts().AppleKext) 98 return false; 99 100 // If the most derived class is marked final, we know that no subclass can 101 // override this member function and so we can devirtualize it. For example: 102 // 103 // struct A { virtual void f(); } 104 // struct B final : A { }; 105 // 106 // void f(B *b) { 107 // b->f(); 108 // } 109 // 110 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 111 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 112 return true; 113 114 // If the member function is marked 'final', we know that it can't be 115 // overridden and can therefore devirtualize it. 116 if (MD->hasAttr<FinalAttr>()) 117 return true; 118 119 // Similarly, if the class itself is marked 'final' it can't be overridden 120 // and we can therefore devirtualize the member function call. 121 if (MD->getParent()->hasAttr<FinalAttr>()) 122 return true; 123 124 Base = skipNoOpCastsAndParens(Base); 125 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 126 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 127 // This is a record decl. We know the type and can devirtualize it. 128 return VD->getType()->isRecordType(); 129 } 130 131 return false; 132 } 133 134 // We can devirtualize calls on an object accessed by a class member access 135 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 136 // a derived class object constructed in the same location. 137 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 138 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 139 return VD->getType()->isRecordType(); 140 141 // We can always devirtualize calls on temporary object expressions. 142 if (isa<CXXConstructExpr>(Base)) 143 return true; 144 145 // And calls on bound temporaries. 146 if (isa<CXXBindTemporaryExpr>(Base)) 147 return true; 148 149 // Check if this is a call expr that returns a record type. 150 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 151 return CE->getCallReturnType()->isRecordType(); 152 153 // We can't devirtualize the call. 154 return false; 155 } 156 157 static CXXRecordDecl *getCXXRecord(const Expr *E) { 158 QualType T = E->getType(); 159 if (const PointerType *PTy = T->getAs<PointerType>()) 160 T = PTy->getPointeeType(); 161 const RecordType *Ty = T->castAs<RecordType>(); 162 return cast<CXXRecordDecl>(Ty->getDecl()); 163 } 164 165 // Note: This function also emit constructor calls to support a MSVC 166 // extensions allowing explicit constructor function call. 167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 168 ReturnValueSlot ReturnValue) { 169 const Expr *callee = CE->getCallee()->IgnoreParens(); 170 171 if (isa<BinaryOperator>(callee)) 172 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 173 174 const MemberExpr *ME = cast<MemberExpr>(callee); 175 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 176 177 CGDebugInfo *DI = getDebugInfo(); 178 if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo 179 && !isa<CallExpr>(ME->getBase())) { 180 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 181 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 182 DI->getOrCreateRecordType(PTy->getPointeeType(), 183 MD->getParent()->getLocation()); 184 } 185 } 186 187 if (MD->isStatic()) { 188 // The method is static, emit it as we would a regular call. 189 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 190 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 191 ReturnValue, CE->arg_begin(), CE->arg_end()); 192 } 193 194 // Compute the object pointer. 195 const Expr *Base = ME->getBase(); 196 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 197 198 const CXXMethodDecl *DevirtualizedMethod = NULL; 199 if (CanUseVirtualCall && 200 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 201 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 202 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 203 assert(DevirtualizedMethod); 204 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 205 const Expr *Inner = Base->ignoreParenBaseCasts(); 206 if (getCXXRecord(Inner) == DevirtualizedClass) 207 // If the class of the Inner expression is where the dynamic method 208 // is defined, build the this pointer from it. 209 Base = Inner; 210 else if (getCXXRecord(Base) != DevirtualizedClass) { 211 // If the method is defined in a class that is not the best dynamic 212 // one or the one of the full expression, we would have to build 213 // a derived-to-base cast to compute the correct this pointer, but 214 // we don't have support for that yet, so do a virtual call. 215 DevirtualizedMethod = NULL; 216 } 217 // If the return types are not the same, this might be a case where more 218 // code needs to run to compensate for it. For example, the derived 219 // method might return a type that inherits form from the return 220 // type of MD and has a prefix. 221 // For now we just avoid devirtualizing these covariant cases. 222 if (DevirtualizedMethod && 223 DevirtualizedMethod->getResultType().getCanonicalType() != 224 MD->getResultType().getCanonicalType()) 225 DevirtualizedMethod = NULL; 226 } 227 228 llvm::Value *This; 229 if (ME->isArrow()) 230 This = EmitScalarExpr(Base); 231 else 232 This = EmitLValue(Base).getAddress(); 233 234 235 if (MD->isTrivial()) { 236 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 237 if (isa<CXXConstructorDecl>(MD) && 238 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 239 return RValue::get(0); 240 241 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 242 // We don't like to generate the trivial copy/move assignment operator 243 // when it isn't necessary; just produce the proper effect here. 244 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 245 EmitAggregateAssign(This, RHS, CE->getType()); 246 return RValue::get(This); 247 } 248 249 if (isa<CXXConstructorDecl>(MD) && 250 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 251 // Trivial move and copy ctor are the same. 252 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 253 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 254 CE->arg_begin(), CE->arg_end()); 255 return RValue::get(This); 256 } 257 llvm_unreachable("unknown trivial member function"); 258 } 259 260 // Compute the function type we're calling. 261 const CGFunctionInfo *FInfo = 0; 262 if (isa<CXXDestructorDecl>(MD)) 263 FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 264 Dtor_Complete); 265 else if (isa<CXXConstructorDecl>(MD)) 266 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 267 cast<CXXConstructorDecl>(MD), 268 Ctor_Complete); 269 else 270 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 271 272 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 273 274 // C++ [class.virtual]p12: 275 // Explicit qualification with the scope operator (5.1) suppresses the 276 // virtual call mechanism. 277 // 278 // We also don't emit a virtual call if the base expression has a record type 279 // because then we know what the type is. 280 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 281 282 llvm::Value *Callee; 283 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 284 if (UseVirtualCall) { 285 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 286 } else { 287 if (getContext().getLangOpts().AppleKext && 288 MD->isVirtual() && 289 ME->hasQualifier()) 290 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 291 else if (!DevirtualizedMethod) 292 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 293 else { 294 const CXXDestructorDecl *DDtor = 295 cast<CXXDestructorDecl>(DevirtualizedMethod); 296 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 297 } 298 } 299 } else if (const CXXConstructorDecl *Ctor = 300 dyn_cast<CXXConstructorDecl>(MD)) { 301 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 302 } else if (UseVirtualCall) { 303 Callee = BuildVirtualCall(MD, This, Ty); 304 } else { 305 if (getContext().getLangOpts().AppleKext && 306 MD->isVirtual() && 307 ME->hasQualifier()) 308 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 309 else if (!DevirtualizedMethod) 310 Callee = CGM.GetAddrOfFunction(MD, Ty); 311 else { 312 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 313 } 314 } 315 316 return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 317 /*VTT=*/0, CE->arg_begin(), CE->arg_end()); 318 } 319 320 RValue 321 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 322 ReturnValueSlot ReturnValue) { 323 const BinaryOperator *BO = 324 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 325 const Expr *BaseExpr = BO->getLHS(); 326 const Expr *MemFnExpr = BO->getRHS(); 327 328 const MemberPointerType *MPT = 329 MemFnExpr->getType()->castAs<MemberPointerType>(); 330 331 const FunctionProtoType *FPT = 332 MPT->getPointeeType()->castAs<FunctionProtoType>(); 333 const CXXRecordDecl *RD = 334 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 335 336 // Get the member function pointer. 337 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 338 339 // Emit the 'this' pointer. 340 llvm::Value *This; 341 342 if (BO->getOpcode() == BO_PtrMemI) 343 This = EmitScalarExpr(BaseExpr); 344 else 345 This = EmitLValue(BaseExpr).getAddress(); 346 347 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 348 QualType(MPT->getClass(), 0)); 349 350 // Ask the ABI to load the callee. Note that This is modified. 351 llvm::Value *Callee = 352 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 353 354 CallArgList Args; 355 356 QualType ThisType = 357 getContext().getPointerType(getContext().getTagDeclType(RD)); 358 359 // Push the this ptr. 360 Args.add(RValue::get(This), ThisType); 361 362 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 363 364 // And the rest of the call args 365 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 366 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 367 ReturnValue, Args); 368 } 369 370 RValue 371 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 372 const CXXMethodDecl *MD, 373 ReturnValueSlot ReturnValue) { 374 assert(MD->isInstance() && 375 "Trying to emit a member call expr on a static method!"); 376 LValue LV = EmitLValue(E->getArg(0)); 377 llvm::Value *This = LV.getAddress(); 378 379 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 380 MD->isTrivial()) { 381 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 382 QualType Ty = E->getType(); 383 EmitAggregateAssign(This, Src, Ty); 384 return RValue::get(This); 385 } 386 387 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 388 return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 389 /*VTT=*/0, E->arg_begin() + 1, E->arg_end()); 390 } 391 392 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 393 ReturnValueSlot ReturnValue) { 394 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 395 } 396 397 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 398 llvm::Value *DestPtr, 399 const CXXRecordDecl *Base) { 400 if (Base->isEmpty()) 401 return; 402 403 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 404 405 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 406 CharUnits Size = Layout.getNonVirtualSize(); 407 CharUnits Align = Layout.getNonVirtualAlign(); 408 409 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 410 411 // If the type contains a pointer to data member we can't memset it to zero. 412 // Instead, create a null constant and copy it to the destination. 413 // TODO: there are other patterns besides zero that we can usefully memset, 414 // like -1, which happens to be the pattern used by member-pointers. 415 // TODO: isZeroInitializable can be over-conservative in the case where a 416 // virtual base contains a member pointer. 417 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 418 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 419 420 llvm::GlobalVariable *NullVariable = 421 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 422 /*isConstant=*/true, 423 llvm::GlobalVariable::PrivateLinkage, 424 NullConstant, Twine()); 425 NullVariable->setAlignment(Align.getQuantity()); 426 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 427 428 // Get and call the appropriate llvm.memcpy overload. 429 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 430 return; 431 } 432 433 // Otherwise, just memset the whole thing to zero. This is legal 434 // because in LLVM, all default initializers (other than the ones we just 435 // handled above) are guaranteed to have a bit pattern of all zeros. 436 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 437 Align.getQuantity()); 438 } 439 440 void 441 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 442 AggValueSlot Dest) { 443 assert(!Dest.isIgnored() && "Must have a destination!"); 444 const CXXConstructorDecl *CD = E->getConstructor(); 445 446 // If we require zero initialization before (or instead of) calling the 447 // constructor, as can be the case with a non-user-provided default 448 // constructor, emit the zero initialization now, unless destination is 449 // already zeroed. 450 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 451 switch (E->getConstructionKind()) { 452 case CXXConstructExpr::CK_Delegating: 453 case CXXConstructExpr::CK_Complete: 454 EmitNullInitialization(Dest.getAddr(), E->getType()); 455 break; 456 case CXXConstructExpr::CK_VirtualBase: 457 case CXXConstructExpr::CK_NonVirtualBase: 458 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 459 break; 460 } 461 } 462 463 // If this is a call to a trivial default constructor, do nothing. 464 if (CD->isTrivial() && CD->isDefaultConstructor()) 465 return; 466 467 // Elide the constructor if we're constructing from a temporary. 468 // The temporary check is required because Sema sets this on NRVO 469 // returns. 470 if (getContext().getLangOpts().ElideConstructors && E->isElidable()) { 471 assert(getContext().hasSameUnqualifiedType(E->getType(), 472 E->getArg(0)->getType())); 473 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 474 EmitAggExpr(E->getArg(0), Dest); 475 return; 476 } 477 } 478 479 if (const ConstantArrayType *arrayType 480 = getContext().getAsConstantArrayType(E->getType())) { 481 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 482 E->arg_begin(), E->arg_end()); 483 } else { 484 CXXCtorType Type = Ctor_Complete; 485 bool ForVirtualBase = false; 486 487 switch (E->getConstructionKind()) { 488 case CXXConstructExpr::CK_Delegating: 489 // We should be emitting a constructor; GlobalDecl will assert this 490 Type = CurGD.getCtorType(); 491 break; 492 493 case CXXConstructExpr::CK_Complete: 494 Type = Ctor_Complete; 495 break; 496 497 case CXXConstructExpr::CK_VirtualBase: 498 ForVirtualBase = true; 499 // fall-through 500 501 case CXXConstructExpr::CK_NonVirtualBase: 502 Type = Ctor_Base; 503 } 504 505 // Call the constructor. 506 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 507 E->arg_begin(), E->arg_end()); 508 } 509 } 510 511 void 512 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 513 llvm::Value *Src, 514 const Expr *Exp) { 515 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 516 Exp = E->getSubExpr(); 517 assert(isa<CXXConstructExpr>(Exp) && 518 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 519 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 520 const CXXConstructorDecl *CD = E->getConstructor(); 521 RunCleanupsScope Scope(*this); 522 523 // If we require zero initialization before (or instead of) calling the 524 // constructor, as can be the case with a non-user-provided default 525 // constructor, emit the zero initialization now. 526 // FIXME. Do I still need this for a copy ctor synthesis? 527 if (E->requiresZeroInitialization()) 528 EmitNullInitialization(Dest, E->getType()); 529 530 assert(!getContext().getAsConstantArrayType(E->getType()) 531 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 532 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 533 E->arg_begin(), E->arg_end()); 534 } 535 536 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 537 const CXXNewExpr *E) { 538 if (!E->isArray()) 539 return CharUnits::Zero(); 540 541 // No cookie is required if the operator new[] being used is the 542 // reserved placement operator new[]. 543 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 544 return CharUnits::Zero(); 545 546 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 547 } 548 549 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 550 const CXXNewExpr *e, 551 unsigned minElements, 552 llvm::Value *&numElements, 553 llvm::Value *&sizeWithoutCookie) { 554 QualType type = e->getAllocatedType(); 555 556 if (!e->isArray()) { 557 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 558 sizeWithoutCookie 559 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 560 return sizeWithoutCookie; 561 } 562 563 // The width of size_t. 564 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 565 566 // Figure out the cookie size. 567 llvm::APInt cookieSize(sizeWidth, 568 CalculateCookiePadding(CGF, e).getQuantity()); 569 570 // Emit the array size expression. 571 // We multiply the size of all dimensions for NumElements. 572 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 573 numElements = CGF.EmitScalarExpr(e->getArraySize()); 574 assert(isa<llvm::IntegerType>(numElements->getType())); 575 576 // The number of elements can be have an arbitrary integer type; 577 // essentially, we need to multiply it by a constant factor, add a 578 // cookie size, and verify that the result is representable as a 579 // size_t. That's just a gloss, though, and it's wrong in one 580 // important way: if the count is negative, it's an error even if 581 // the cookie size would bring the total size >= 0. 582 bool isSigned 583 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 584 llvm::IntegerType *numElementsType 585 = cast<llvm::IntegerType>(numElements->getType()); 586 unsigned numElementsWidth = numElementsType->getBitWidth(); 587 588 // Compute the constant factor. 589 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 590 while (const ConstantArrayType *CAT 591 = CGF.getContext().getAsConstantArrayType(type)) { 592 type = CAT->getElementType(); 593 arraySizeMultiplier *= CAT->getSize(); 594 } 595 596 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 597 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 598 typeSizeMultiplier *= arraySizeMultiplier; 599 600 // This will be a size_t. 601 llvm::Value *size; 602 603 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 604 // Don't bloat the -O0 code. 605 if (llvm::ConstantInt *numElementsC = 606 dyn_cast<llvm::ConstantInt>(numElements)) { 607 const llvm::APInt &count = numElementsC->getValue(); 608 609 bool hasAnyOverflow = false; 610 611 // If 'count' was a negative number, it's an overflow. 612 if (isSigned && count.isNegative()) 613 hasAnyOverflow = true; 614 615 // We want to do all this arithmetic in size_t. If numElements is 616 // wider than that, check whether it's already too big, and if so, 617 // overflow. 618 else if (numElementsWidth > sizeWidth && 619 numElementsWidth - sizeWidth > count.countLeadingZeros()) 620 hasAnyOverflow = true; 621 622 // Okay, compute a count at the right width. 623 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 624 625 // If there is a brace-initializer, we cannot allocate fewer elements than 626 // there are initializers. If we do, that's treated like an overflow. 627 if (adjustedCount.ult(minElements)) 628 hasAnyOverflow = true; 629 630 // Scale numElements by that. This might overflow, but we don't 631 // care because it only overflows if allocationSize does, too, and 632 // if that overflows then we shouldn't use this. 633 numElements = llvm::ConstantInt::get(CGF.SizeTy, 634 adjustedCount * arraySizeMultiplier); 635 636 // Compute the size before cookie, and track whether it overflowed. 637 bool overflow; 638 llvm::APInt allocationSize 639 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 640 hasAnyOverflow |= overflow; 641 642 // Add in the cookie, and check whether it's overflowed. 643 if (cookieSize != 0) { 644 // Save the current size without a cookie. This shouldn't be 645 // used if there was overflow. 646 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 647 648 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 649 hasAnyOverflow |= overflow; 650 } 651 652 // On overflow, produce a -1 so operator new will fail. 653 if (hasAnyOverflow) { 654 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 655 } else { 656 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 657 } 658 659 // Otherwise, we might need to use the overflow intrinsics. 660 } else { 661 // There are up to five conditions we need to test for: 662 // 1) if isSigned, we need to check whether numElements is negative; 663 // 2) if numElementsWidth > sizeWidth, we need to check whether 664 // numElements is larger than something representable in size_t; 665 // 3) if minElements > 0, we need to check whether numElements is smaller 666 // than that. 667 // 4) we need to compute 668 // sizeWithoutCookie := numElements * typeSizeMultiplier 669 // and check whether it overflows; and 670 // 5) if we need a cookie, we need to compute 671 // size := sizeWithoutCookie + cookieSize 672 // and check whether it overflows. 673 674 llvm::Value *hasOverflow = 0; 675 676 // If numElementsWidth > sizeWidth, then one way or another, we're 677 // going to have to do a comparison for (2), and this happens to 678 // take care of (1), too. 679 if (numElementsWidth > sizeWidth) { 680 llvm::APInt threshold(numElementsWidth, 1); 681 threshold <<= sizeWidth; 682 683 llvm::Value *thresholdV 684 = llvm::ConstantInt::get(numElementsType, threshold); 685 686 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 687 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 688 689 // Otherwise, if we're signed, we want to sext up to size_t. 690 } else if (isSigned) { 691 if (numElementsWidth < sizeWidth) 692 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 693 694 // If there's a non-1 type size multiplier, then we can do the 695 // signedness check at the same time as we do the multiply 696 // because a negative number times anything will cause an 697 // unsigned overflow. Otherwise, we have to do it here. But at least 698 // in this case, we can subsume the >= minElements check. 699 if (typeSizeMultiplier == 1) 700 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 701 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 702 703 // Otherwise, zext up to size_t if necessary. 704 } else if (numElementsWidth < sizeWidth) { 705 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 706 } 707 708 assert(numElements->getType() == CGF.SizeTy); 709 710 if (minElements) { 711 // Don't allow allocation of fewer elements than we have initializers. 712 if (!hasOverflow) { 713 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 714 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 715 } else if (numElementsWidth > sizeWidth) { 716 // The other existing overflow subsumes this check. 717 // We do an unsigned comparison, since any signed value < -1 is 718 // taken care of either above or below. 719 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 720 CGF.Builder.CreateICmpULT(numElements, 721 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 722 } 723 } 724 725 size = numElements; 726 727 // Multiply by the type size if necessary. This multiplier 728 // includes all the factors for nested arrays. 729 // 730 // This step also causes numElements to be scaled up by the 731 // nested-array factor if necessary. Overflow on this computation 732 // can be ignored because the result shouldn't be used if 733 // allocation fails. 734 if (typeSizeMultiplier != 1) { 735 llvm::Value *umul_with_overflow 736 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 737 738 llvm::Value *tsmV = 739 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 740 llvm::Value *result = 741 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 742 743 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 744 if (hasOverflow) 745 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 746 else 747 hasOverflow = overflowed; 748 749 size = CGF.Builder.CreateExtractValue(result, 0); 750 751 // Also scale up numElements by the array size multiplier. 752 if (arraySizeMultiplier != 1) { 753 // If the base element type size is 1, then we can re-use the 754 // multiply we just did. 755 if (typeSize.isOne()) { 756 assert(arraySizeMultiplier == typeSizeMultiplier); 757 numElements = size; 758 759 // Otherwise we need a separate multiply. 760 } else { 761 llvm::Value *asmV = 762 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 763 numElements = CGF.Builder.CreateMul(numElements, asmV); 764 } 765 } 766 } else { 767 // numElements doesn't need to be scaled. 768 assert(arraySizeMultiplier == 1); 769 } 770 771 // Add in the cookie size if necessary. 772 if (cookieSize != 0) { 773 sizeWithoutCookie = size; 774 775 llvm::Value *uadd_with_overflow 776 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 777 778 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 779 llvm::Value *result = 780 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 781 782 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 783 if (hasOverflow) 784 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 785 else 786 hasOverflow = overflowed; 787 788 size = CGF.Builder.CreateExtractValue(result, 0); 789 } 790 791 // If we had any possibility of dynamic overflow, make a select to 792 // overwrite 'size' with an all-ones value, which should cause 793 // operator new to throw. 794 if (hasOverflow) 795 size = CGF.Builder.CreateSelect(hasOverflow, 796 llvm::Constant::getAllOnesValue(CGF.SizeTy), 797 size); 798 } 799 800 if (cookieSize == 0) 801 sizeWithoutCookie = size; 802 else 803 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 804 805 return size; 806 } 807 808 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 809 QualType AllocType, llvm::Value *NewPtr) { 810 811 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 812 if (!CGF.hasAggregateLLVMType(AllocType)) 813 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 814 Alignment), 815 false); 816 else if (AllocType->isAnyComplexType()) 817 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 818 AllocType.isVolatileQualified()); 819 else { 820 AggValueSlot Slot 821 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 822 AggValueSlot::IsDestructed, 823 AggValueSlot::DoesNotNeedGCBarriers, 824 AggValueSlot::IsNotAliased); 825 CGF.EmitAggExpr(Init, Slot); 826 827 CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 828 } 829 } 830 831 void 832 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 833 QualType elementType, 834 llvm::Value *beginPtr, 835 llvm::Value *numElements) { 836 if (!E->hasInitializer()) 837 return; // We have a POD type. 838 839 llvm::Value *explicitPtr = beginPtr; 840 // Find the end of the array, hoisted out of the loop. 841 llvm::Value *endPtr = 842 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 843 844 unsigned initializerElements = 0; 845 846 const Expr *Init = E->getInitializer(); 847 llvm::AllocaInst *endOfInit = 0; 848 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 849 EHScopeStack::stable_iterator cleanup; 850 llvm::Instruction *cleanupDominator = 0; 851 // If the initializer is an initializer list, first do the explicit elements. 852 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 853 initializerElements = ILE->getNumInits(); 854 855 // Enter a partial-destruction cleanup if necessary. 856 if (needsEHCleanup(dtorKind)) { 857 // In principle we could tell the cleanup where we are more 858 // directly, but the control flow can get so varied here that it 859 // would actually be quite complex. Therefore we go through an 860 // alloca. 861 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 862 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 863 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 864 getDestroyer(dtorKind)); 865 cleanup = EHStack.stable_begin(); 866 } 867 868 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 869 // Tell the cleanup that it needs to destroy up to this 870 // element. TODO: some of these stores can be trivially 871 // observed to be unnecessary. 872 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 873 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 874 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 875 } 876 877 // The remaining elements are filled with the array filler expression. 878 Init = ILE->getArrayFiller(); 879 } 880 881 // Create the continuation block. 882 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 883 884 // If the number of elements isn't constant, we have to now check if there is 885 // anything left to initialize. 886 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 887 // If all elements have already been initialized, skip the whole loop. 888 if (constNum->getZExtValue() <= initializerElements) { 889 // If there was a cleanup, deactivate it. 890 if (cleanupDominator) 891 DeactivateCleanupBlock(cleanup, cleanupDominator); 892 return; 893 } 894 } else { 895 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 896 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 897 "array.isempty"); 898 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 899 EmitBlock(nonEmptyBB); 900 } 901 902 // Enter the loop. 903 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 904 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 905 906 EmitBlock(loopBB); 907 908 // Set up the current-element phi. 909 llvm::PHINode *curPtr = 910 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 911 curPtr->addIncoming(explicitPtr, entryBB); 912 913 // Store the new cleanup position for irregular cleanups. 914 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 915 916 // Enter a partial-destruction cleanup if necessary. 917 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 918 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 919 getDestroyer(dtorKind)); 920 cleanup = EHStack.stable_begin(); 921 cleanupDominator = Builder.CreateUnreachable(); 922 } 923 924 // Emit the initializer into this element. 925 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 926 927 // Leave the cleanup if we entered one. 928 if (cleanupDominator) { 929 DeactivateCleanupBlock(cleanup, cleanupDominator); 930 cleanupDominator->eraseFromParent(); 931 } 932 933 // Advance to the next element. 934 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 935 936 // Check whether we've gotten to the end of the array and, if so, 937 // exit the loop. 938 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 939 Builder.CreateCondBr(isEnd, contBB, loopBB); 940 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 941 942 EmitBlock(contBB); 943 } 944 945 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 946 llvm::Value *NewPtr, llvm::Value *Size) { 947 CGF.EmitCastToVoidPtr(NewPtr); 948 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 949 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 950 Alignment.getQuantity(), false); 951 } 952 953 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 954 QualType ElementType, 955 llvm::Value *NewPtr, 956 llvm::Value *NumElements, 957 llvm::Value *AllocSizeWithoutCookie) { 958 const Expr *Init = E->getInitializer(); 959 if (E->isArray()) { 960 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 961 CXXConstructorDecl *Ctor = CCE->getConstructor(); 962 if (Ctor->isTrivial()) { 963 // If new expression did not specify value-initialization, then there 964 // is no initialization. 965 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 966 return; 967 968 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 969 // Optimization: since zero initialization will just set the memory 970 // to all zeroes, generate a single memset to do it in one shot. 971 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 972 return; 973 } 974 } 975 976 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 977 CCE->arg_begin(), CCE->arg_end(), 978 CCE->requiresZeroInitialization()); 979 return; 980 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 981 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 982 // Optimization: since zero initialization will just set the memory 983 // to all zeroes, generate a single memset to do it in one shot. 984 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 985 return; 986 } 987 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 988 return; 989 } 990 991 if (!Init) 992 return; 993 994 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 995 } 996 997 namespace { 998 /// A cleanup to call the given 'operator delete' function upon 999 /// abnormal exit from a new expression. 1000 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1001 size_t NumPlacementArgs; 1002 const FunctionDecl *OperatorDelete; 1003 llvm::Value *Ptr; 1004 llvm::Value *AllocSize; 1005 1006 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1007 1008 public: 1009 static size_t getExtraSize(size_t NumPlacementArgs) { 1010 return NumPlacementArgs * sizeof(RValue); 1011 } 1012 1013 CallDeleteDuringNew(size_t NumPlacementArgs, 1014 const FunctionDecl *OperatorDelete, 1015 llvm::Value *Ptr, 1016 llvm::Value *AllocSize) 1017 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1018 Ptr(Ptr), AllocSize(AllocSize) {} 1019 1020 void setPlacementArg(unsigned I, RValue Arg) { 1021 assert(I < NumPlacementArgs && "index out of range"); 1022 getPlacementArgs()[I] = Arg; 1023 } 1024 1025 void Emit(CodeGenFunction &CGF, Flags flags) { 1026 const FunctionProtoType *FPT 1027 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1028 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1029 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1030 1031 CallArgList DeleteArgs; 1032 1033 // The first argument is always a void*. 1034 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1035 DeleteArgs.add(RValue::get(Ptr), *AI++); 1036 1037 // A member 'operator delete' can take an extra 'size_t' argument. 1038 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1039 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1040 1041 // Pass the rest of the arguments, which must match exactly. 1042 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1043 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1044 1045 // Call 'operator delete'. 1046 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1047 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1048 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1049 } 1050 }; 1051 1052 /// A cleanup to call the given 'operator delete' function upon 1053 /// abnormal exit from a new expression when the new expression is 1054 /// conditional. 1055 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1056 size_t NumPlacementArgs; 1057 const FunctionDecl *OperatorDelete; 1058 DominatingValue<RValue>::saved_type Ptr; 1059 DominatingValue<RValue>::saved_type AllocSize; 1060 1061 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1062 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1063 } 1064 1065 public: 1066 static size_t getExtraSize(size_t NumPlacementArgs) { 1067 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1068 } 1069 1070 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1071 const FunctionDecl *OperatorDelete, 1072 DominatingValue<RValue>::saved_type Ptr, 1073 DominatingValue<RValue>::saved_type AllocSize) 1074 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1075 Ptr(Ptr), AllocSize(AllocSize) {} 1076 1077 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1078 assert(I < NumPlacementArgs && "index out of range"); 1079 getPlacementArgs()[I] = Arg; 1080 } 1081 1082 void Emit(CodeGenFunction &CGF, Flags flags) { 1083 const FunctionProtoType *FPT 1084 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1085 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1086 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1087 1088 CallArgList DeleteArgs; 1089 1090 // The first argument is always a void*. 1091 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1092 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1093 1094 // A member 'operator delete' can take an extra 'size_t' argument. 1095 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1096 RValue RV = AllocSize.restore(CGF); 1097 DeleteArgs.add(RV, *AI++); 1098 } 1099 1100 // Pass the rest of the arguments, which must match exactly. 1101 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1102 RValue RV = getPlacementArgs()[I].restore(CGF); 1103 DeleteArgs.add(RV, *AI++); 1104 } 1105 1106 // Call 'operator delete'. 1107 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1108 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1109 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1110 } 1111 }; 1112 } 1113 1114 /// Enter a cleanup to call 'operator delete' if the initializer in a 1115 /// new-expression throws. 1116 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1117 const CXXNewExpr *E, 1118 llvm::Value *NewPtr, 1119 llvm::Value *AllocSize, 1120 const CallArgList &NewArgs) { 1121 // If we're not inside a conditional branch, then the cleanup will 1122 // dominate and we can do the easier (and more efficient) thing. 1123 if (!CGF.isInConditionalBranch()) { 1124 CallDeleteDuringNew *Cleanup = CGF.EHStack 1125 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1126 E->getNumPlacementArgs(), 1127 E->getOperatorDelete(), 1128 NewPtr, AllocSize); 1129 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1130 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1131 1132 return; 1133 } 1134 1135 // Otherwise, we need to save all this stuff. 1136 DominatingValue<RValue>::saved_type SavedNewPtr = 1137 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1138 DominatingValue<RValue>::saved_type SavedAllocSize = 1139 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1140 1141 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1142 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1143 E->getNumPlacementArgs(), 1144 E->getOperatorDelete(), 1145 SavedNewPtr, 1146 SavedAllocSize); 1147 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1148 Cleanup->setPlacementArg(I, 1149 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1150 1151 CGF.initFullExprCleanup(); 1152 } 1153 1154 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1155 // The element type being allocated. 1156 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1157 1158 // 1. Build a call to the allocation function. 1159 FunctionDecl *allocator = E->getOperatorNew(); 1160 const FunctionProtoType *allocatorType = 1161 allocator->getType()->castAs<FunctionProtoType>(); 1162 1163 CallArgList allocatorArgs; 1164 1165 // The allocation size is the first argument. 1166 QualType sizeType = getContext().getSizeType(); 1167 1168 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1169 unsigned minElements = 0; 1170 if (E->isArray() && E->hasInitializer()) { 1171 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1172 minElements = ILE->getNumInits(); 1173 } 1174 1175 llvm::Value *numElements = 0; 1176 llvm::Value *allocSizeWithoutCookie = 0; 1177 llvm::Value *allocSize = 1178 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1179 allocSizeWithoutCookie); 1180 1181 allocatorArgs.add(RValue::get(allocSize), sizeType); 1182 1183 // Emit the rest of the arguments. 1184 // FIXME: Ideally, this should just use EmitCallArgs. 1185 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1186 1187 // First, use the types from the function type. 1188 // We start at 1 here because the first argument (the allocation size) 1189 // has already been emitted. 1190 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1191 ++i, ++placementArg) { 1192 QualType argType = allocatorType->getArgType(i); 1193 1194 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1195 placementArg->getType()) && 1196 "type mismatch in call argument!"); 1197 1198 EmitCallArg(allocatorArgs, *placementArg, argType); 1199 } 1200 1201 // Either we've emitted all the call args, or we have a call to a 1202 // variadic function. 1203 assert((placementArg == E->placement_arg_end() || 1204 allocatorType->isVariadic()) && 1205 "Extra arguments to non-variadic function!"); 1206 1207 // If we still have any arguments, emit them using the type of the argument. 1208 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1209 placementArg != placementArgsEnd; ++placementArg) { 1210 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1211 } 1212 1213 // Emit the allocation call. If the allocator is a global placement 1214 // operator, just "inline" it directly. 1215 RValue RV; 1216 if (allocator->isReservedGlobalPlacementOperator()) { 1217 assert(allocatorArgs.size() == 2); 1218 RV = allocatorArgs[1].RV; 1219 // TODO: kill any unnecessary computations done for the size 1220 // argument. 1221 } else { 1222 RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1223 allocatorType), 1224 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1225 allocatorArgs, allocator); 1226 } 1227 1228 // Emit a null check on the allocation result if the allocation 1229 // function is allowed to return null (because it has a non-throwing 1230 // exception spec; for this part, we inline 1231 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1232 // interesting initializer. 1233 bool nullCheck = allocatorType->isNothrow(getContext()) && 1234 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1235 1236 llvm::BasicBlock *nullCheckBB = 0; 1237 llvm::BasicBlock *contBB = 0; 1238 1239 llvm::Value *allocation = RV.getScalarVal(); 1240 unsigned AS = 1241 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1242 1243 // The null-check means that the initializer is conditionally 1244 // evaluated. 1245 ConditionalEvaluation conditional(*this); 1246 1247 if (nullCheck) { 1248 conditional.begin(*this); 1249 1250 nullCheckBB = Builder.GetInsertBlock(); 1251 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1252 contBB = createBasicBlock("new.cont"); 1253 1254 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1255 Builder.CreateCondBr(isNull, contBB, notNullBB); 1256 EmitBlock(notNullBB); 1257 } 1258 1259 // If there's an operator delete, enter a cleanup to call it if an 1260 // exception is thrown. 1261 EHScopeStack::stable_iterator operatorDeleteCleanup; 1262 llvm::Instruction *cleanupDominator = 0; 1263 if (E->getOperatorDelete() && 1264 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1265 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1266 operatorDeleteCleanup = EHStack.stable_begin(); 1267 cleanupDominator = Builder.CreateUnreachable(); 1268 } 1269 1270 assert((allocSize == allocSizeWithoutCookie) == 1271 CalculateCookiePadding(*this, E).isZero()); 1272 if (allocSize != allocSizeWithoutCookie) { 1273 assert(E->isArray()); 1274 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1275 numElements, 1276 E, allocType); 1277 } 1278 1279 llvm::Type *elementPtrTy 1280 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1281 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1282 1283 EmitNewInitializer(*this, E, allocType, result, numElements, 1284 allocSizeWithoutCookie); 1285 if (E->isArray()) { 1286 // NewPtr is a pointer to the base element type. If we're 1287 // allocating an array of arrays, we'll need to cast back to the 1288 // array pointer type. 1289 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1290 if (result->getType() != resultType) 1291 result = Builder.CreateBitCast(result, resultType); 1292 } 1293 1294 // Deactivate the 'operator delete' cleanup if we finished 1295 // initialization. 1296 if (operatorDeleteCleanup.isValid()) { 1297 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1298 cleanupDominator->eraseFromParent(); 1299 } 1300 1301 if (nullCheck) { 1302 conditional.end(*this); 1303 1304 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1305 EmitBlock(contBB); 1306 1307 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1308 PHI->addIncoming(result, notNullBB); 1309 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1310 nullCheckBB); 1311 1312 result = PHI; 1313 } 1314 1315 return result; 1316 } 1317 1318 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1319 llvm::Value *Ptr, 1320 QualType DeleteTy) { 1321 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1322 1323 const FunctionProtoType *DeleteFTy = 1324 DeleteFD->getType()->getAs<FunctionProtoType>(); 1325 1326 CallArgList DeleteArgs; 1327 1328 // Check if we need to pass the size to the delete operator. 1329 llvm::Value *Size = 0; 1330 QualType SizeTy; 1331 if (DeleteFTy->getNumArgs() == 2) { 1332 SizeTy = DeleteFTy->getArgType(1); 1333 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1334 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1335 DeleteTypeSize.getQuantity()); 1336 } 1337 1338 QualType ArgTy = DeleteFTy->getArgType(0); 1339 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1340 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1341 1342 if (Size) 1343 DeleteArgs.add(RValue::get(Size), SizeTy); 1344 1345 // Emit the call to delete. 1346 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 1347 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1348 DeleteArgs, DeleteFD); 1349 } 1350 1351 namespace { 1352 /// Calls the given 'operator delete' on a single object. 1353 struct CallObjectDelete : EHScopeStack::Cleanup { 1354 llvm::Value *Ptr; 1355 const FunctionDecl *OperatorDelete; 1356 QualType ElementType; 1357 1358 CallObjectDelete(llvm::Value *Ptr, 1359 const FunctionDecl *OperatorDelete, 1360 QualType ElementType) 1361 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1362 1363 void Emit(CodeGenFunction &CGF, Flags flags) { 1364 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1365 } 1366 }; 1367 } 1368 1369 /// Emit the code for deleting a single object. 1370 static void EmitObjectDelete(CodeGenFunction &CGF, 1371 const FunctionDecl *OperatorDelete, 1372 llvm::Value *Ptr, 1373 QualType ElementType, 1374 bool UseGlobalDelete) { 1375 // Find the destructor for the type, if applicable. If the 1376 // destructor is virtual, we'll just emit the vcall and return. 1377 const CXXDestructorDecl *Dtor = 0; 1378 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1379 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1380 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1381 Dtor = RD->getDestructor(); 1382 1383 if (Dtor->isVirtual()) { 1384 if (UseGlobalDelete) { 1385 // If we're supposed to call the global delete, make sure we do so 1386 // even if the destructor throws. 1387 1388 // Derive the complete-object pointer, which is what we need 1389 // to pass to the deallocation function. 1390 llvm::Value *completePtr = 1391 CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 1392 1393 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1394 completePtr, OperatorDelete, 1395 ElementType); 1396 } 1397 1398 llvm::Type *Ty = 1399 CGF.getTypes().GetFunctionType( 1400 CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 1401 1402 llvm::Value *Callee 1403 = CGF.BuildVirtualCall(Dtor, 1404 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1405 Ptr, Ty); 1406 // FIXME: Provide a source location here. 1407 CGF.EmitCXXMemberCall(Dtor, SourceLocation(), Callee, ReturnValueSlot(), 1408 Ptr, /*VTT=*/0, 0, 0); 1409 1410 if (UseGlobalDelete) { 1411 CGF.PopCleanupBlock(); 1412 } 1413 1414 return; 1415 } 1416 } 1417 } 1418 1419 // Make sure that we call delete even if the dtor throws. 1420 // This doesn't have to a conditional cleanup because we're going 1421 // to pop it off in a second. 1422 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1423 Ptr, OperatorDelete, ElementType); 1424 1425 if (Dtor) 1426 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1427 /*ForVirtualBase=*/false, Ptr); 1428 else if (CGF.getLangOpts().ObjCAutoRefCount && 1429 ElementType->isObjCLifetimeType()) { 1430 switch (ElementType.getObjCLifetime()) { 1431 case Qualifiers::OCL_None: 1432 case Qualifiers::OCL_ExplicitNone: 1433 case Qualifiers::OCL_Autoreleasing: 1434 break; 1435 1436 case Qualifiers::OCL_Strong: { 1437 // Load the pointer value. 1438 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1439 ElementType.isVolatileQualified()); 1440 1441 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1442 break; 1443 } 1444 1445 case Qualifiers::OCL_Weak: 1446 CGF.EmitARCDestroyWeak(Ptr); 1447 break; 1448 } 1449 } 1450 1451 CGF.PopCleanupBlock(); 1452 } 1453 1454 namespace { 1455 /// Calls the given 'operator delete' on an array of objects. 1456 struct CallArrayDelete : EHScopeStack::Cleanup { 1457 llvm::Value *Ptr; 1458 const FunctionDecl *OperatorDelete; 1459 llvm::Value *NumElements; 1460 QualType ElementType; 1461 CharUnits CookieSize; 1462 1463 CallArrayDelete(llvm::Value *Ptr, 1464 const FunctionDecl *OperatorDelete, 1465 llvm::Value *NumElements, 1466 QualType ElementType, 1467 CharUnits CookieSize) 1468 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1469 ElementType(ElementType), CookieSize(CookieSize) {} 1470 1471 void Emit(CodeGenFunction &CGF, Flags flags) { 1472 const FunctionProtoType *DeleteFTy = 1473 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1474 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1475 1476 CallArgList Args; 1477 1478 // Pass the pointer as the first argument. 1479 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1480 llvm::Value *DeletePtr 1481 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1482 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1483 1484 // Pass the original requested size as the second argument. 1485 if (DeleteFTy->getNumArgs() == 2) { 1486 QualType size_t = DeleteFTy->getArgType(1); 1487 llvm::IntegerType *SizeTy 1488 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1489 1490 CharUnits ElementTypeSize = 1491 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1492 1493 // The size of an element, multiplied by the number of elements. 1494 llvm::Value *Size 1495 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1496 Size = CGF.Builder.CreateMul(Size, NumElements); 1497 1498 // Plus the size of the cookie if applicable. 1499 if (!CookieSize.isZero()) { 1500 llvm::Value *CookieSizeV 1501 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1502 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1503 } 1504 1505 Args.add(RValue::get(Size), size_t); 1506 } 1507 1508 // Emit the call to delete. 1509 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 1510 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1511 ReturnValueSlot(), Args, OperatorDelete); 1512 } 1513 }; 1514 } 1515 1516 /// Emit the code for deleting an array of objects. 1517 static void EmitArrayDelete(CodeGenFunction &CGF, 1518 const CXXDeleteExpr *E, 1519 llvm::Value *deletedPtr, 1520 QualType elementType) { 1521 llvm::Value *numElements = 0; 1522 llvm::Value *allocatedPtr = 0; 1523 CharUnits cookieSize; 1524 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1525 numElements, allocatedPtr, cookieSize); 1526 1527 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1528 1529 // Make sure that we call delete even if one of the dtors throws. 1530 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1531 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1532 allocatedPtr, operatorDelete, 1533 numElements, elementType, 1534 cookieSize); 1535 1536 // Destroy the elements. 1537 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1538 assert(numElements && "no element count for a type with a destructor!"); 1539 1540 llvm::Value *arrayEnd = 1541 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1542 1543 // Note that it is legal to allocate a zero-length array, and we 1544 // can never fold the check away because the length should always 1545 // come from a cookie. 1546 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1547 CGF.getDestroyer(dtorKind), 1548 /*checkZeroLength*/ true, 1549 CGF.needsEHCleanup(dtorKind)); 1550 } 1551 1552 // Pop the cleanup block. 1553 CGF.PopCleanupBlock(); 1554 } 1555 1556 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1557 const Expr *Arg = E->getArgument(); 1558 llvm::Value *Ptr = EmitScalarExpr(Arg); 1559 1560 // Null check the pointer. 1561 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1562 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1563 1564 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1565 1566 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1567 EmitBlock(DeleteNotNull); 1568 1569 // We might be deleting a pointer to array. If so, GEP down to the 1570 // first non-array element. 1571 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1572 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1573 if (DeleteTy->isConstantArrayType()) { 1574 llvm::Value *Zero = Builder.getInt32(0); 1575 SmallVector<llvm::Value*,8> GEP; 1576 1577 GEP.push_back(Zero); // point at the outermost array 1578 1579 // For each layer of array type we're pointing at: 1580 while (const ConstantArrayType *Arr 1581 = getContext().getAsConstantArrayType(DeleteTy)) { 1582 // 1. Unpeel the array type. 1583 DeleteTy = Arr->getElementType(); 1584 1585 // 2. GEP to the first element of the array. 1586 GEP.push_back(Zero); 1587 } 1588 1589 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1590 } 1591 1592 assert(ConvertTypeForMem(DeleteTy) == 1593 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1594 1595 if (E->isArrayForm()) { 1596 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1597 } else { 1598 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1599 E->isGlobalDelete()); 1600 } 1601 1602 EmitBlock(DeleteEnd); 1603 } 1604 1605 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1606 // void __cxa_bad_typeid(); 1607 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1608 1609 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1610 } 1611 1612 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1613 llvm::Value *Fn = getBadTypeidFn(CGF); 1614 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1615 CGF.Builder.CreateUnreachable(); 1616 } 1617 1618 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1619 const Expr *E, 1620 llvm::Type *StdTypeInfoPtrTy) { 1621 // Get the vtable pointer. 1622 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1623 1624 // C++ [expr.typeid]p2: 1625 // If the glvalue expression is obtained by applying the unary * operator to 1626 // a pointer and the pointer is a null pointer value, the typeid expression 1627 // throws the std::bad_typeid exception. 1628 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1629 if (UO->getOpcode() == UO_Deref) { 1630 llvm::BasicBlock *BadTypeidBlock = 1631 CGF.createBasicBlock("typeid.bad_typeid"); 1632 llvm::BasicBlock *EndBlock = 1633 CGF.createBasicBlock("typeid.end"); 1634 1635 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1636 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1637 1638 CGF.EmitBlock(BadTypeidBlock); 1639 EmitBadTypeidCall(CGF); 1640 CGF.EmitBlock(EndBlock); 1641 } 1642 } 1643 1644 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1645 StdTypeInfoPtrTy->getPointerTo()); 1646 1647 // Load the type info. 1648 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1649 return CGF.Builder.CreateLoad(Value); 1650 } 1651 1652 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1653 llvm::Type *StdTypeInfoPtrTy = 1654 ConvertType(E->getType())->getPointerTo(); 1655 1656 if (E->isTypeOperand()) { 1657 llvm::Constant *TypeInfo = 1658 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1659 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1660 } 1661 1662 // C++ [expr.typeid]p2: 1663 // When typeid is applied to a glvalue expression whose type is a 1664 // polymorphic class type, the result refers to a std::type_info object 1665 // representing the type of the most derived object (that is, the dynamic 1666 // type) to which the glvalue refers. 1667 if (E->isPotentiallyEvaluated()) 1668 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1669 StdTypeInfoPtrTy); 1670 1671 QualType OperandTy = E->getExprOperand()->getType(); 1672 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1673 StdTypeInfoPtrTy); 1674 } 1675 1676 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1677 // void *__dynamic_cast(const void *sub, 1678 // const abi::__class_type_info *src, 1679 // const abi::__class_type_info *dst, 1680 // std::ptrdiff_t src2dst_offset); 1681 1682 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1683 llvm::Type *PtrDiffTy = 1684 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1685 1686 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1687 1688 llvm::FunctionType *FTy = 1689 llvm::FunctionType::get(Int8PtrTy, Args, false); 1690 1691 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1692 } 1693 1694 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1695 // void __cxa_bad_cast(); 1696 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1697 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1698 } 1699 1700 static void EmitBadCastCall(CodeGenFunction &CGF) { 1701 llvm::Value *Fn = getBadCastFn(CGF); 1702 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1703 CGF.Builder.CreateUnreachable(); 1704 } 1705 1706 static llvm::Value * 1707 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1708 QualType SrcTy, QualType DestTy, 1709 llvm::BasicBlock *CastEnd) { 1710 llvm::Type *PtrDiffLTy = 1711 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1712 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1713 1714 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1715 if (PTy->getPointeeType()->isVoidType()) { 1716 // C++ [expr.dynamic.cast]p7: 1717 // If T is "pointer to cv void," then the result is a pointer to the 1718 // most derived object pointed to by v. 1719 1720 // Get the vtable pointer. 1721 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1722 1723 // Get the offset-to-top from the vtable. 1724 llvm::Value *OffsetToTop = 1725 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1726 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1727 1728 // Finally, add the offset to the pointer. 1729 Value = CGF.EmitCastToVoidPtr(Value); 1730 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1731 1732 return CGF.Builder.CreateBitCast(Value, DestLTy); 1733 } 1734 } 1735 1736 QualType SrcRecordTy; 1737 QualType DestRecordTy; 1738 1739 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1740 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1741 DestRecordTy = DestPTy->getPointeeType(); 1742 } else { 1743 SrcRecordTy = SrcTy; 1744 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1745 } 1746 1747 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1748 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1749 1750 llvm::Value *SrcRTTI = 1751 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1752 llvm::Value *DestRTTI = 1753 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1754 1755 // FIXME: Actually compute a hint here. 1756 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1757 1758 // Emit the call to __dynamic_cast. 1759 Value = CGF.EmitCastToVoidPtr(Value); 1760 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1761 SrcRTTI, DestRTTI, OffsetHint); 1762 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1763 1764 /// C++ [expr.dynamic.cast]p9: 1765 /// A failed cast to reference type throws std::bad_cast 1766 if (DestTy->isReferenceType()) { 1767 llvm::BasicBlock *BadCastBlock = 1768 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1769 1770 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1771 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1772 1773 CGF.EmitBlock(BadCastBlock); 1774 EmitBadCastCall(CGF); 1775 } 1776 1777 return Value; 1778 } 1779 1780 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1781 QualType DestTy) { 1782 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1783 if (DestTy->isPointerType()) 1784 return llvm::Constant::getNullValue(DestLTy); 1785 1786 /// C++ [expr.dynamic.cast]p9: 1787 /// A failed cast to reference type throws std::bad_cast 1788 EmitBadCastCall(CGF); 1789 1790 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1791 return llvm::UndefValue::get(DestLTy); 1792 } 1793 1794 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1795 const CXXDynamicCastExpr *DCE) { 1796 QualType DestTy = DCE->getTypeAsWritten(); 1797 1798 if (DCE->isAlwaysNull()) 1799 return EmitDynamicCastToNull(*this, DestTy); 1800 1801 QualType SrcTy = DCE->getSubExpr()->getType(); 1802 1803 // C++ [expr.dynamic.cast]p4: 1804 // If the value of v is a null pointer value in the pointer case, the result 1805 // is the null pointer value of type T. 1806 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1807 1808 llvm::BasicBlock *CastNull = 0; 1809 llvm::BasicBlock *CastNotNull = 0; 1810 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1811 1812 if (ShouldNullCheckSrcValue) { 1813 CastNull = createBasicBlock("dynamic_cast.null"); 1814 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1815 1816 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1817 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1818 EmitBlock(CastNotNull); 1819 } 1820 1821 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1822 1823 if (ShouldNullCheckSrcValue) { 1824 EmitBranch(CastEnd); 1825 1826 EmitBlock(CastNull); 1827 EmitBranch(CastEnd); 1828 } 1829 1830 EmitBlock(CastEnd); 1831 1832 if (ShouldNullCheckSrcValue) { 1833 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1834 PHI->addIncoming(Value, CastNotNull); 1835 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1836 1837 Value = PHI; 1838 } 1839 1840 return Value; 1841 } 1842 1843 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1844 RunCleanupsScope Scope(*this); 1845 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1846 Slot.getAlignment()); 1847 1848 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1849 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1850 e = E->capture_init_end(); 1851 i != e; ++i, ++CurField) { 1852 // Emit initialization 1853 1854 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1855 ArrayRef<VarDecl *> ArrayIndexes; 1856 if (CurField->getType()->isArrayType()) 1857 ArrayIndexes = E->getCaptureInitIndexVars(i); 1858 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1859 } 1860 } 1861