1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "llvm/IR/Intrinsics.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 struct MemberCallInfo {
28   RequiredArgs ReqArgs;
29   // Number of prefix arguments for the call. Ignores the `this` pointer.
30   unsigned PrefixSize;
31 };
32 }
33 
34 static MemberCallInfo
35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
36                                   llvm::Value *This, llvm::Value *ImplicitParam,
37                                   QualType ImplicitParamTy, const CallExpr *CE,
38                                   CallArgList &Args, CallArgList *RtlArgs) {
39   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40          isa<CXXOperatorCallExpr>(CE));
41   assert(MD->isInstance() &&
42          "Trying to emit a member or operator call expr on a static method!");
43 
44   // Push the this ptr.
45   const CXXRecordDecl *RD =
46       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
47   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48 
49   // If there is an implicit parameter (e.g. VTT), emit it.
50   if (ImplicitParam) {
51     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52   }
53 
54   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
56   unsigned PrefixSize = Args.size() - 1;
57 
58   // And the rest of the call args.
59   if (RtlArgs) {
60     // Special case: if the caller emitted the arguments right-to-left already
61     // (prior to emitting the *this argument), we're done. This happens for
62     // assignment operators.
63     Args.addFrom(*RtlArgs);
64   } else if (CE) {
65     // Special case: skip first argument of CXXOperatorCall (it is "this").
66     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68                      CE->getDirectCallee());
69   } else {
70     assert(
71         FPT->getNumParams() == 0 &&
72         "No CallExpr specified for function with non-zero number of arguments");
73   }
74   return {required, PrefixSize};
75 }
76 
77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
78     const CXXMethodDecl *MD, const CGCallee &Callee,
79     ReturnValueSlot ReturnValue,
80     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
81     const CallExpr *CE, CallArgList *RtlArgs) {
82   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83   CallArgList Args;
84   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
86   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
88   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
89                   CE ? CE->getExprLoc() : SourceLocation());
90 }
91 
92 RValue CodeGenFunction::EmitCXXDestructorCall(
93     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This,
94     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
95   CallArgList Args;
96   commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()),
97                                     This, ImplicitParam, ImplicitParamTy, CE,
98                                     Args, nullptr);
99   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
100                   ReturnValueSlot(), Args);
101 }
102 
103 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
104                                             const CXXPseudoDestructorExpr *E) {
105   QualType DestroyedType = E->getDestroyedType();
106   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107     // Automatic Reference Counting:
108     //   If the pseudo-expression names a retainable object with weak or
109     //   strong lifetime, the object shall be released.
110     Expr *BaseExpr = E->getBase();
111     Address BaseValue = Address::invalid();
112     Qualifiers BaseQuals;
113 
114     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115     if (E->isArrow()) {
116       BaseValue = EmitPointerWithAlignment(BaseExpr);
117       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118       BaseQuals = PTy->getPointeeType().getQualifiers();
119     } else {
120       LValue BaseLV = EmitLValue(BaseExpr);
121       BaseValue = BaseLV.getAddress();
122       QualType BaseTy = BaseExpr->getType();
123       BaseQuals = BaseTy.getQualifiers();
124     }
125 
126     switch (DestroyedType.getObjCLifetime()) {
127     case Qualifiers::OCL_None:
128     case Qualifiers::OCL_ExplicitNone:
129     case Qualifiers::OCL_Autoreleasing:
130       break;
131 
132     case Qualifiers::OCL_Strong:
133       EmitARCRelease(Builder.CreateLoad(BaseValue,
134                         DestroyedType.isVolatileQualified()),
135                      ARCPreciseLifetime);
136       break;
137 
138     case Qualifiers::OCL_Weak:
139       EmitARCDestroyWeak(BaseValue);
140       break;
141     }
142   } else {
143     // C++ [expr.pseudo]p1:
144     //   The result shall only be used as the operand for the function call
145     //   operator (), and the result of such a call has type void. The only
146     //   effect is the evaluation of the postfix-expression before the dot or
147     //   arrow.
148     EmitIgnoredExpr(E->getBase());
149   }
150 
151   return RValue::get(nullptr);
152 }
153 
154 static CXXRecordDecl *getCXXRecord(const Expr *E) {
155   QualType T = E->getType();
156   if (const PointerType *PTy = T->getAs<PointerType>())
157     T = PTy->getPointeeType();
158   const RecordType *Ty = T->castAs<RecordType>();
159   return cast<CXXRecordDecl>(Ty->getDecl());
160 }
161 
162 // Note: This function also emit constructor calls to support a MSVC
163 // extensions allowing explicit constructor function call.
164 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
165                                               ReturnValueSlot ReturnValue) {
166   const Expr *callee = CE->getCallee()->IgnoreParens();
167 
168   if (isa<BinaryOperator>(callee))
169     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
170 
171   const MemberExpr *ME = cast<MemberExpr>(callee);
172   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173 
174   if (MD->isStatic()) {
175     // The method is static, emit it as we would a regular call.
176     CGCallee callee =
177         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
179                     ReturnValue);
180   }
181 
182   bool HasQualifier = ME->hasQualifier();
183   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184   bool IsArrow = ME->isArrow();
185   const Expr *Base = ME->getBase();
186 
187   return EmitCXXMemberOrOperatorMemberCallExpr(
188       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
189 }
190 
191 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
192     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
193     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
194     const Expr *Base) {
195   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
196 
197   // Compute the object pointer.
198   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199 
200   const CXXMethodDecl *DevirtualizedMethod = nullptr;
201   if (CanUseVirtualCall &&
202       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
203     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205     assert(DevirtualizedMethod);
206     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207     const Expr *Inner = Base->ignoreParenBaseCasts();
208     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
209         MD->getReturnType().getCanonicalType())
210       // If the return types are not the same, this might be a case where more
211       // code needs to run to compensate for it. For example, the derived
212       // method might return a type that inherits form from the return
213       // type of MD and has a prefix.
214       // For now we just avoid devirtualizing these covariant cases.
215       DevirtualizedMethod = nullptr;
216     else if (getCXXRecord(Inner) == DevirtualizedClass)
217       // If the class of the Inner expression is where the dynamic method
218       // is defined, build the this pointer from it.
219       Base = Inner;
220     else if (getCXXRecord(Base) != DevirtualizedClass) {
221       // If the method is defined in a class that is not the best dynamic
222       // one or the one of the full expression, we would have to build
223       // a derived-to-base cast to compute the correct this pointer, but
224       // we don't have support for that yet, so do a virtual call.
225       DevirtualizedMethod = nullptr;
226     }
227   }
228 
229   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230   // operator before the LHS.
231   CallArgList RtlArgStorage;
232   CallArgList *RtlArgs = nullptr;
233   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234     if (OCE->isAssignmentOp()) {
235       RtlArgs = &RtlArgStorage;
236       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239     }
240   }
241 
242   LValue This;
243   if (IsArrow) {
244     LValueBaseInfo BaseInfo;
245     TBAAAccessInfo TBAAInfo;
246     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
248   } else {
249     This = EmitLValue(Base);
250   }
251 
252   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
253     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254     // constructing a new complete object of type Ctor.
255     assert(!RtlArgs);
256     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
257     CallArgList Args;
258     commonEmitCXXMemberOrOperatorCall(
259         *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
260         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
261 
262     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
263                            /*Delegating=*/false, This.getAddress(), Args,
264                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
265                            /*NewPointerIsChecked=*/false);
266     return RValue::get(nullptr);
267   }
268 
269   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
270     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
271     if (!MD->getParent()->mayInsertExtraPadding()) {
272       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
273         // We don't like to generate the trivial copy/move assignment operator
274         // when it isn't necessary; just produce the proper effect here.
275         LValue RHS = isa<CXXOperatorCallExpr>(CE)
276                          ? MakeNaturalAlignAddrLValue(
277                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
278                                (*(CE->arg_begin() + 1))->getType())
279                          : EmitLValue(*CE->arg_begin());
280         EmitAggregateAssign(This, RHS, CE->getType());
281         return RValue::get(This.getPointer());
282       }
283       llvm_unreachable("unknown trivial member function");
284     }
285   }
286 
287   // Compute the function type we're calling.
288   const CXXMethodDecl *CalleeDecl =
289       DevirtualizedMethod ? DevirtualizedMethod : MD;
290   const CGFunctionInfo *FInfo = nullptr;
291   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293         GlobalDecl(Dtor, Dtor_Complete));
294   else
295     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296 
297   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298 
299   // C++11 [class.mfct.non-static]p2:
300   //   If a non-static member function of a class X is called for an object that
301   //   is not of type X, or of a type derived from X, the behavior is undefined.
302   SourceLocation CallLoc;
303   ASTContext &C = getContext();
304   if (CE)
305     CallLoc = CE->getExprLoc();
306 
307   SanitizerSet SkippedChecks;
308   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309     auto *IOA = CMCE->getImplicitObjectArgument();
310     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311     if (IsImplicitObjectCXXThis)
312       SkippedChecks.set(SanitizerKind::Alignment, true);
313     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314       SkippedChecks.set(SanitizerKind::Null, true);
315   }
316   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
317                 C.getRecordType(CalleeDecl->getParent()),
318                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320   // C++ [class.virtual]p12:
321   //   Explicit qualification with the scope operator (5.1) suppresses the
322   //   virtual call mechanism.
323   //
324   // We also don't emit a virtual call if the base expression has a record type
325   // because then we know what the type is.
326   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327 
328   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329     assert(CE->arg_begin() == CE->arg_end() &&
330            "Destructor shouldn't have explicit parameters");
331     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
332     if (UseVirtualCall) {
333       CGM.getCXXABI().EmitVirtualDestructorCall(
334           *this, Dtor, Dtor_Complete, This.getAddress(),
335           cast<CXXMemberCallExpr>(CE));
336     } else {
337       GlobalDecl GD(Dtor, Dtor_Complete);
338       CGCallee Callee;
339       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
340         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
341       else if (!DevirtualizedMethod)
342         Callee =
343             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
344       else {
345         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
346       }
347 
348       EmitCXXDestructorCall(GD, Callee, This.getPointer(),
349                             /*ImplicitParam=*/nullptr,
350                             /*ImplicitParamTy=*/QualType(), nullptr);
351     }
352     return RValue::get(nullptr);
353   }
354 
355   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
356   // 'CalleeDecl' instead.
357 
358   CGCallee Callee;
359   if (UseVirtualCall) {
360     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
361   } else {
362     if (SanOpts.has(SanitizerKind::CFINVCall) &&
363         MD->getParent()->isDynamicClass()) {
364       llvm::Value *VTable;
365       const CXXRecordDecl *RD;
366       std::tie(VTable, RD) =
367           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
368                                         MD->getParent());
369       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
370     }
371 
372     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
373       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
374     else if (!DevirtualizedMethod)
375       Callee =
376           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
377     else {
378       Callee =
379           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
380                               GlobalDecl(DevirtualizedMethod));
381     }
382   }
383 
384   if (MD->isVirtual()) {
385     Address NewThisAddr =
386         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
387             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
388     This.setAddress(NewThisAddr);
389   }
390 
391   return EmitCXXMemberOrOperatorCall(
392       CalleeDecl, Callee, ReturnValue, This.getPointer(),
393       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
394 }
395 
396 RValue
397 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
398                                               ReturnValueSlot ReturnValue) {
399   const BinaryOperator *BO =
400       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
401   const Expr *BaseExpr = BO->getLHS();
402   const Expr *MemFnExpr = BO->getRHS();
403 
404   const MemberPointerType *MPT =
405     MemFnExpr->getType()->castAs<MemberPointerType>();
406 
407   const FunctionProtoType *FPT =
408     MPT->getPointeeType()->castAs<FunctionProtoType>();
409   const CXXRecordDecl *RD =
410     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
411 
412   // Emit the 'this' pointer.
413   Address This = Address::invalid();
414   if (BO->getOpcode() == BO_PtrMemI)
415     This = EmitPointerWithAlignment(BaseExpr);
416   else
417     This = EmitLValue(BaseExpr).getAddress();
418 
419   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
420                 QualType(MPT->getClass(), 0));
421 
422   // Get the member function pointer.
423   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
424 
425   // Ask the ABI to load the callee.  Note that This is modified.
426   llvm::Value *ThisPtrForCall = nullptr;
427   CGCallee Callee =
428     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
429                                              ThisPtrForCall, MemFnPtr, MPT);
430 
431   CallArgList Args;
432 
433   QualType ThisType =
434     getContext().getPointerType(getContext().getTagDeclType(RD));
435 
436   // Push the this ptr.
437   Args.add(RValue::get(ThisPtrForCall), ThisType);
438 
439   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
440 
441   // And the rest of the call args
442   EmitCallArgs(Args, FPT, E->arguments());
443   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
444                                                       /*PrefixSize=*/0),
445                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
446 }
447 
448 RValue
449 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
450                                                const CXXMethodDecl *MD,
451                                                ReturnValueSlot ReturnValue) {
452   assert(MD->isInstance() &&
453          "Trying to emit a member call expr on a static method!");
454   return EmitCXXMemberOrOperatorMemberCallExpr(
455       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
456       /*IsArrow=*/false, E->getArg(0));
457 }
458 
459 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
460                                                ReturnValueSlot ReturnValue) {
461   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
462 }
463 
464 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
465                                             Address DestPtr,
466                                             const CXXRecordDecl *Base) {
467   if (Base->isEmpty())
468     return;
469 
470   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
471 
472   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
473   CharUnits NVSize = Layout.getNonVirtualSize();
474 
475   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
476   // present, they are initialized by the most derived class before calling the
477   // constructor.
478   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
479   Stores.emplace_back(CharUnits::Zero(), NVSize);
480 
481   // Each store is split by the existence of a vbptr.
482   CharUnits VBPtrWidth = CGF.getPointerSize();
483   std::vector<CharUnits> VBPtrOffsets =
484       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
485   for (CharUnits VBPtrOffset : VBPtrOffsets) {
486     // Stop before we hit any virtual base pointers located in virtual bases.
487     if (VBPtrOffset >= NVSize)
488       break;
489     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
490     CharUnits LastStoreOffset = LastStore.first;
491     CharUnits LastStoreSize = LastStore.second;
492 
493     CharUnits SplitBeforeOffset = LastStoreOffset;
494     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
495     assert(!SplitBeforeSize.isNegative() && "negative store size!");
496     if (!SplitBeforeSize.isZero())
497       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
498 
499     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
500     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
501     assert(!SplitAfterSize.isNegative() && "negative store size!");
502     if (!SplitAfterSize.isZero())
503       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
504   }
505 
506   // If the type contains a pointer to data member we can't memset it to zero.
507   // Instead, create a null constant and copy it to the destination.
508   // TODO: there are other patterns besides zero that we can usefully memset,
509   // like -1, which happens to be the pattern used by member-pointers.
510   // TODO: isZeroInitializable can be over-conservative in the case where a
511   // virtual base contains a member pointer.
512   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
513   if (!NullConstantForBase->isNullValue()) {
514     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
515         CGF.CGM.getModule(), NullConstantForBase->getType(),
516         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
517         NullConstantForBase, Twine());
518 
519     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
520                                DestPtr.getAlignment());
521     NullVariable->setAlignment(Align.getQuantity());
522 
523     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
524 
525     // Get and call the appropriate llvm.memcpy overload.
526     for (std::pair<CharUnits, CharUnits> Store : Stores) {
527       CharUnits StoreOffset = Store.first;
528       CharUnits StoreSize = Store.second;
529       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
530       CGF.Builder.CreateMemCpy(
531           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
532           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
533           StoreSizeVal);
534     }
535 
536   // Otherwise, just memset the whole thing to zero.  This is legal
537   // because in LLVM, all default initializers (other than the ones we just
538   // handled above) are guaranteed to have a bit pattern of all zeros.
539   } else {
540     for (std::pair<CharUnits, CharUnits> Store : Stores) {
541       CharUnits StoreOffset = Store.first;
542       CharUnits StoreSize = Store.second;
543       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544       CGF.Builder.CreateMemSet(
545           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546           CGF.Builder.getInt8(0), StoreSizeVal);
547     }
548   }
549 }
550 
551 void
552 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
553                                       AggValueSlot Dest) {
554   assert(!Dest.isIgnored() && "Must have a destination!");
555   const CXXConstructorDecl *CD = E->getConstructor();
556 
557   // If we require zero initialization before (or instead of) calling the
558   // constructor, as can be the case with a non-user-provided default
559   // constructor, emit the zero initialization now, unless destination is
560   // already zeroed.
561   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
562     switch (E->getConstructionKind()) {
563     case CXXConstructExpr::CK_Delegating:
564     case CXXConstructExpr::CK_Complete:
565       EmitNullInitialization(Dest.getAddress(), E->getType());
566       break;
567     case CXXConstructExpr::CK_VirtualBase:
568     case CXXConstructExpr::CK_NonVirtualBase:
569       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
570                                       CD->getParent());
571       break;
572     }
573   }
574 
575   // If this is a call to a trivial default constructor, do nothing.
576   if (CD->isTrivial() && CD->isDefaultConstructor())
577     return;
578 
579   // Elide the constructor if we're constructing from a temporary.
580   // The temporary check is required because Sema sets this on NRVO
581   // returns.
582   if (getLangOpts().ElideConstructors && E->isElidable()) {
583     assert(getContext().hasSameUnqualifiedType(E->getType(),
584                                                E->getArg(0)->getType()));
585     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
586       EmitAggExpr(E->getArg(0), Dest);
587       return;
588     }
589   }
590 
591   if (const ArrayType *arrayType
592         = getContext().getAsArrayType(E->getType())) {
593     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
594                                Dest.isSanitizerChecked());
595   } else {
596     CXXCtorType Type = Ctor_Complete;
597     bool ForVirtualBase = false;
598     bool Delegating = false;
599 
600     switch (E->getConstructionKind()) {
601      case CXXConstructExpr::CK_Delegating:
602       // We should be emitting a constructor; GlobalDecl will assert this
603       Type = CurGD.getCtorType();
604       Delegating = true;
605       break;
606 
607      case CXXConstructExpr::CK_Complete:
608       Type = Ctor_Complete;
609       break;
610 
611      case CXXConstructExpr::CK_VirtualBase:
612       ForVirtualBase = true;
613       LLVM_FALLTHROUGH;
614 
615      case CXXConstructExpr::CK_NonVirtualBase:
616       Type = Ctor_Base;
617      }
618 
619      // Call the constructor.
620      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
621   }
622 }
623 
624 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
625                                                  const Expr *Exp) {
626   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
627     Exp = E->getSubExpr();
628   assert(isa<CXXConstructExpr>(Exp) &&
629          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
630   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
631   const CXXConstructorDecl *CD = E->getConstructor();
632   RunCleanupsScope Scope(*this);
633 
634   // If we require zero initialization before (or instead of) calling the
635   // constructor, as can be the case with a non-user-provided default
636   // constructor, emit the zero initialization now.
637   // FIXME. Do I still need this for a copy ctor synthesis?
638   if (E->requiresZeroInitialization())
639     EmitNullInitialization(Dest, E->getType());
640 
641   assert(!getContext().getAsConstantArrayType(E->getType())
642          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
643   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
644 }
645 
646 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
647                                         const CXXNewExpr *E) {
648   if (!E->isArray())
649     return CharUnits::Zero();
650 
651   // No cookie is required if the operator new[] being used is the
652   // reserved placement operator new[].
653   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
654     return CharUnits::Zero();
655 
656   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
657 }
658 
659 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
660                                         const CXXNewExpr *e,
661                                         unsigned minElements,
662                                         llvm::Value *&numElements,
663                                         llvm::Value *&sizeWithoutCookie) {
664   QualType type = e->getAllocatedType();
665 
666   if (!e->isArray()) {
667     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
668     sizeWithoutCookie
669       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
670     return sizeWithoutCookie;
671   }
672 
673   // The width of size_t.
674   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
675 
676   // Figure out the cookie size.
677   llvm::APInt cookieSize(sizeWidth,
678                          CalculateCookiePadding(CGF, e).getQuantity());
679 
680   // Emit the array size expression.
681   // We multiply the size of all dimensions for NumElements.
682   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
683   numElements =
684     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
685   if (!numElements)
686     numElements = CGF.EmitScalarExpr(e->getArraySize());
687   assert(isa<llvm::IntegerType>(numElements->getType()));
688 
689   // The number of elements can be have an arbitrary integer type;
690   // essentially, we need to multiply it by a constant factor, add a
691   // cookie size, and verify that the result is representable as a
692   // size_t.  That's just a gloss, though, and it's wrong in one
693   // important way: if the count is negative, it's an error even if
694   // the cookie size would bring the total size >= 0.
695   bool isSigned
696     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
697   llvm::IntegerType *numElementsType
698     = cast<llvm::IntegerType>(numElements->getType());
699   unsigned numElementsWidth = numElementsType->getBitWidth();
700 
701   // Compute the constant factor.
702   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
703   while (const ConstantArrayType *CAT
704              = CGF.getContext().getAsConstantArrayType(type)) {
705     type = CAT->getElementType();
706     arraySizeMultiplier *= CAT->getSize();
707   }
708 
709   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
710   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
711   typeSizeMultiplier *= arraySizeMultiplier;
712 
713   // This will be a size_t.
714   llvm::Value *size;
715 
716   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
717   // Don't bloat the -O0 code.
718   if (llvm::ConstantInt *numElementsC =
719         dyn_cast<llvm::ConstantInt>(numElements)) {
720     const llvm::APInt &count = numElementsC->getValue();
721 
722     bool hasAnyOverflow = false;
723 
724     // If 'count' was a negative number, it's an overflow.
725     if (isSigned && count.isNegative())
726       hasAnyOverflow = true;
727 
728     // We want to do all this arithmetic in size_t.  If numElements is
729     // wider than that, check whether it's already too big, and if so,
730     // overflow.
731     else if (numElementsWidth > sizeWidth &&
732              numElementsWidth - sizeWidth > count.countLeadingZeros())
733       hasAnyOverflow = true;
734 
735     // Okay, compute a count at the right width.
736     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
737 
738     // If there is a brace-initializer, we cannot allocate fewer elements than
739     // there are initializers. If we do, that's treated like an overflow.
740     if (adjustedCount.ult(minElements))
741       hasAnyOverflow = true;
742 
743     // Scale numElements by that.  This might overflow, but we don't
744     // care because it only overflows if allocationSize does, too, and
745     // if that overflows then we shouldn't use this.
746     numElements = llvm::ConstantInt::get(CGF.SizeTy,
747                                          adjustedCount * arraySizeMultiplier);
748 
749     // Compute the size before cookie, and track whether it overflowed.
750     bool overflow;
751     llvm::APInt allocationSize
752       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
753     hasAnyOverflow |= overflow;
754 
755     // Add in the cookie, and check whether it's overflowed.
756     if (cookieSize != 0) {
757       // Save the current size without a cookie.  This shouldn't be
758       // used if there was overflow.
759       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
760 
761       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
762       hasAnyOverflow |= overflow;
763     }
764 
765     // On overflow, produce a -1 so operator new will fail.
766     if (hasAnyOverflow) {
767       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
768     } else {
769       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
770     }
771 
772   // Otherwise, we might need to use the overflow intrinsics.
773   } else {
774     // There are up to five conditions we need to test for:
775     // 1) if isSigned, we need to check whether numElements is negative;
776     // 2) if numElementsWidth > sizeWidth, we need to check whether
777     //   numElements is larger than something representable in size_t;
778     // 3) if minElements > 0, we need to check whether numElements is smaller
779     //    than that.
780     // 4) we need to compute
781     //      sizeWithoutCookie := numElements * typeSizeMultiplier
782     //    and check whether it overflows; and
783     // 5) if we need a cookie, we need to compute
784     //      size := sizeWithoutCookie + cookieSize
785     //    and check whether it overflows.
786 
787     llvm::Value *hasOverflow = nullptr;
788 
789     // If numElementsWidth > sizeWidth, then one way or another, we're
790     // going to have to do a comparison for (2), and this happens to
791     // take care of (1), too.
792     if (numElementsWidth > sizeWidth) {
793       llvm::APInt threshold(numElementsWidth, 1);
794       threshold <<= sizeWidth;
795 
796       llvm::Value *thresholdV
797         = llvm::ConstantInt::get(numElementsType, threshold);
798 
799       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
800       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
801 
802     // Otherwise, if we're signed, we want to sext up to size_t.
803     } else if (isSigned) {
804       if (numElementsWidth < sizeWidth)
805         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
806 
807       // If there's a non-1 type size multiplier, then we can do the
808       // signedness check at the same time as we do the multiply
809       // because a negative number times anything will cause an
810       // unsigned overflow.  Otherwise, we have to do it here. But at least
811       // in this case, we can subsume the >= minElements check.
812       if (typeSizeMultiplier == 1)
813         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
814                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
815 
816     // Otherwise, zext up to size_t if necessary.
817     } else if (numElementsWidth < sizeWidth) {
818       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
819     }
820 
821     assert(numElements->getType() == CGF.SizeTy);
822 
823     if (minElements) {
824       // Don't allow allocation of fewer elements than we have initializers.
825       if (!hasOverflow) {
826         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
827                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
828       } else if (numElementsWidth > sizeWidth) {
829         // The other existing overflow subsumes this check.
830         // We do an unsigned comparison, since any signed value < -1 is
831         // taken care of either above or below.
832         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
833                           CGF.Builder.CreateICmpULT(numElements,
834                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
835       }
836     }
837 
838     size = numElements;
839 
840     // Multiply by the type size if necessary.  This multiplier
841     // includes all the factors for nested arrays.
842     //
843     // This step also causes numElements to be scaled up by the
844     // nested-array factor if necessary.  Overflow on this computation
845     // can be ignored because the result shouldn't be used if
846     // allocation fails.
847     if (typeSizeMultiplier != 1) {
848       llvm::Function *umul_with_overflow
849         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
850 
851       llvm::Value *tsmV =
852         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
853       llvm::Value *result =
854           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
855 
856       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
857       if (hasOverflow)
858         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
859       else
860         hasOverflow = overflowed;
861 
862       size = CGF.Builder.CreateExtractValue(result, 0);
863 
864       // Also scale up numElements by the array size multiplier.
865       if (arraySizeMultiplier != 1) {
866         // If the base element type size is 1, then we can re-use the
867         // multiply we just did.
868         if (typeSize.isOne()) {
869           assert(arraySizeMultiplier == typeSizeMultiplier);
870           numElements = size;
871 
872         // Otherwise we need a separate multiply.
873         } else {
874           llvm::Value *asmV =
875             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
876           numElements = CGF.Builder.CreateMul(numElements, asmV);
877         }
878       }
879     } else {
880       // numElements doesn't need to be scaled.
881       assert(arraySizeMultiplier == 1);
882     }
883 
884     // Add in the cookie size if necessary.
885     if (cookieSize != 0) {
886       sizeWithoutCookie = size;
887 
888       llvm::Function *uadd_with_overflow
889         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
890 
891       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
892       llvm::Value *result =
893           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
894 
895       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
896       if (hasOverflow)
897         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
898       else
899         hasOverflow = overflowed;
900 
901       size = CGF.Builder.CreateExtractValue(result, 0);
902     }
903 
904     // If we had any possibility of dynamic overflow, make a select to
905     // overwrite 'size' with an all-ones value, which should cause
906     // operator new to throw.
907     if (hasOverflow)
908       size = CGF.Builder.CreateSelect(hasOverflow,
909                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
910                                       size);
911   }
912 
913   if (cookieSize == 0)
914     sizeWithoutCookie = size;
915   else
916     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
917 
918   return size;
919 }
920 
921 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
922                                     QualType AllocType, Address NewPtr,
923                                     AggValueSlot::Overlap_t MayOverlap) {
924   // FIXME: Refactor with EmitExprAsInit.
925   switch (CGF.getEvaluationKind(AllocType)) {
926   case TEK_Scalar:
927     CGF.EmitScalarInit(Init, nullptr,
928                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
929     return;
930   case TEK_Complex:
931     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
932                                   /*isInit*/ true);
933     return;
934   case TEK_Aggregate: {
935     AggValueSlot Slot
936       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
937                               AggValueSlot::IsDestructed,
938                               AggValueSlot::DoesNotNeedGCBarriers,
939                               AggValueSlot::IsNotAliased,
940                               MayOverlap, AggValueSlot::IsNotZeroed,
941                               AggValueSlot::IsSanitizerChecked);
942     CGF.EmitAggExpr(Init, Slot);
943     return;
944   }
945   }
946   llvm_unreachable("bad evaluation kind");
947 }
948 
949 void CodeGenFunction::EmitNewArrayInitializer(
950     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
951     Address BeginPtr, llvm::Value *NumElements,
952     llvm::Value *AllocSizeWithoutCookie) {
953   // If we have a type with trivial initialization and no initializer,
954   // there's nothing to do.
955   if (!E->hasInitializer())
956     return;
957 
958   Address CurPtr = BeginPtr;
959 
960   unsigned InitListElements = 0;
961 
962   const Expr *Init = E->getInitializer();
963   Address EndOfInit = Address::invalid();
964   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
965   EHScopeStack::stable_iterator Cleanup;
966   llvm::Instruction *CleanupDominator = nullptr;
967 
968   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
969   CharUnits ElementAlign =
970     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
971 
972   // Attempt to perform zero-initialization using memset.
973   auto TryMemsetInitialization = [&]() -> bool {
974     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
975     // we can initialize with a memset to -1.
976     if (!CGM.getTypes().isZeroInitializable(ElementType))
977       return false;
978 
979     // Optimization: since zero initialization will just set the memory
980     // to all zeroes, generate a single memset to do it in one shot.
981 
982     // Subtract out the size of any elements we've already initialized.
983     auto *RemainingSize = AllocSizeWithoutCookie;
984     if (InitListElements) {
985       // We know this can't overflow; we check this when doing the allocation.
986       auto *InitializedSize = llvm::ConstantInt::get(
987           RemainingSize->getType(),
988           getContext().getTypeSizeInChars(ElementType).getQuantity() *
989               InitListElements);
990       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
991     }
992 
993     // Create the memset.
994     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
995     return true;
996   };
997 
998   // If the initializer is an initializer list, first do the explicit elements.
999   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1000     // Initializing from a (braced) string literal is a special case; the init
1001     // list element does not initialize a (single) array element.
1002     if (ILE->isStringLiteralInit()) {
1003       // Initialize the initial portion of length equal to that of the string
1004       // literal. The allocation must be for at least this much; we emitted a
1005       // check for that earlier.
1006       AggValueSlot Slot =
1007           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1008                                 AggValueSlot::IsDestructed,
1009                                 AggValueSlot::DoesNotNeedGCBarriers,
1010                                 AggValueSlot::IsNotAliased,
1011                                 AggValueSlot::DoesNotOverlap,
1012                                 AggValueSlot::IsNotZeroed,
1013                                 AggValueSlot::IsSanitizerChecked);
1014       EmitAggExpr(ILE->getInit(0), Slot);
1015 
1016       // Move past these elements.
1017       InitListElements =
1018           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1019               ->getSize().getZExtValue();
1020       CurPtr =
1021           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1022                                             Builder.getSize(InitListElements),
1023                                             "string.init.end"),
1024                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1025                                                           ElementSize));
1026 
1027       // Zero out the rest, if any remain.
1028       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1029       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1030         bool OK = TryMemsetInitialization();
1031         (void)OK;
1032         assert(OK && "couldn't memset character type?");
1033       }
1034       return;
1035     }
1036 
1037     InitListElements = ILE->getNumInits();
1038 
1039     // If this is a multi-dimensional array new, we will initialize multiple
1040     // elements with each init list element.
1041     QualType AllocType = E->getAllocatedType();
1042     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1043             AllocType->getAsArrayTypeUnsafe())) {
1044       ElementTy = ConvertTypeForMem(AllocType);
1045       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1046       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1047     }
1048 
1049     // Enter a partial-destruction Cleanup if necessary.
1050     if (needsEHCleanup(DtorKind)) {
1051       // In principle we could tell the Cleanup where we are more
1052       // directly, but the control flow can get so varied here that it
1053       // would actually be quite complex.  Therefore we go through an
1054       // alloca.
1055       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1056                                    "array.init.end");
1057       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1058       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1059                                        ElementType, ElementAlign,
1060                                        getDestroyer(DtorKind));
1061       Cleanup = EHStack.stable_begin();
1062     }
1063 
1064     CharUnits StartAlign = CurPtr.getAlignment();
1065     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1066       // Tell the cleanup that it needs to destroy up to this
1067       // element.  TODO: some of these stores can be trivially
1068       // observed to be unnecessary.
1069       if (EndOfInit.isValid()) {
1070         auto FinishedPtr =
1071           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1072         Builder.CreateStore(FinishedPtr, EndOfInit);
1073       }
1074       // FIXME: If the last initializer is an incomplete initializer list for
1075       // an array, and we have an array filler, we can fold together the two
1076       // initialization loops.
1077       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1078                               ILE->getInit(i)->getType(), CurPtr,
1079                               AggValueSlot::DoesNotOverlap);
1080       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1081                                                  Builder.getSize(1),
1082                                                  "array.exp.next"),
1083                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1084     }
1085 
1086     // The remaining elements are filled with the array filler expression.
1087     Init = ILE->getArrayFiller();
1088 
1089     // Extract the initializer for the individual array elements by pulling
1090     // out the array filler from all the nested initializer lists. This avoids
1091     // generating a nested loop for the initialization.
1092     while (Init && Init->getType()->isConstantArrayType()) {
1093       auto *SubILE = dyn_cast<InitListExpr>(Init);
1094       if (!SubILE)
1095         break;
1096       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1097       Init = SubILE->getArrayFiller();
1098     }
1099 
1100     // Switch back to initializing one base element at a time.
1101     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1102   }
1103 
1104   // If all elements have already been initialized, skip any further
1105   // initialization.
1106   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1107   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1108     // If there was a Cleanup, deactivate it.
1109     if (CleanupDominator)
1110       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1111     return;
1112   }
1113 
1114   assert(Init && "have trailing elements to initialize but no initializer");
1115 
1116   // If this is a constructor call, try to optimize it out, and failing that
1117   // emit a single loop to initialize all remaining elements.
1118   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1119     CXXConstructorDecl *Ctor = CCE->getConstructor();
1120     if (Ctor->isTrivial()) {
1121       // If new expression did not specify value-initialization, then there
1122       // is no initialization.
1123       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1124         return;
1125 
1126       if (TryMemsetInitialization())
1127         return;
1128     }
1129 
1130     // Store the new Cleanup position for irregular Cleanups.
1131     //
1132     // FIXME: Share this cleanup with the constructor call emission rather than
1133     // having it create a cleanup of its own.
1134     if (EndOfInit.isValid())
1135       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1136 
1137     // Emit a constructor call loop to initialize the remaining elements.
1138     if (InitListElements)
1139       NumElements = Builder.CreateSub(
1140           NumElements,
1141           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1142     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1143                                /*NewPointerIsChecked*/true,
1144                                CCE->requiresZeroInitialization());
1145     return;
1146   }
1147 
1148   // If this is value-initialization, we can usually use memset.
1149   ImplicitValueInitExpr IVIE(ElementType);
1150   if (isa<ImplicitValueInitExpr>(Init)) {
1151     if (TryMemsetInitialization())
1152       return;
1153 
1154     // Switch to an ImplicitValueInitExpr for the element type. This handles
1155     // only one case: multidimensional array new of pointers to members. In
1156     // all other cases, we already have an initializer for the array element.
1157     Init = &IVIE;
1158   }
1159 
1160   // At this point we should have found an initializer for the individual
1161   // elements of the array.
1162   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1163          "got wrong type of element to initialize");
1164 
1165   // If we have an empty initializer list, we can usually use memset.
1166   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1167     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1168       return;
1169 
1170   // If we have a struct whose every field is value-initialized, we can
1171   // usually use memset.
1172   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1173     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1174       if (RType->getDecl()->isStruct()) {
1175         unsigned NumElements = 0;
1176         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1177           NumElements = CXXRD->getNumBases();
1178         for (auto *Field : RType->getDecl()->fields())
1179           if (!Field->isUnnamedBitfield())
1180             ++NumElements;
1181         // FIXME: Recurse into nested InitListExprs.
1182         if (ILE->getNumInits() == NumElements)
1183           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1184             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1185               --NumElements;
1186         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1187           return;
1188       }
1189     }
1190   }
1191 
1192   // Create the loop blocks.
1193   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1194   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1195   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1196 
1197   // Find the end of the array, hoisted out of the loop.
1198   llvm::Value *EndPtr =
1199     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1200 
1201   // If the number of elements isn't constant, we have to now check if there is
1202   // anything left to initialize.
1203   if (!ConstNum) {
1204     llvm::Value *IsEmpty =
1205       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1206     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1207   }
1208 
1209   // Enter the loop.
1210   EmitBlock(LoopBB);
1211 
1212   // Set up the current-element phi.
1213   llvm::PHINode *CurPtrPhi =
1214     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1215   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1216 
1217   CurPtr = Address(CurPtrPhi, ElementAlign);
1218 
1219   // Store the new Cleanup position for irregular Cleanups.
1220   if (EndOfInit.isValid())
1221     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1222 
1223   // Enter a partial-destruction Cleanup if necessary.
1224   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1225     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1226                                    ElementType, ElementAlign,
1227                                    getDestroyer(DtorKind));
1228     Cleanup = EHStack.stable_begin();
1229     CleanupDominator = Builder.CreateUnreachable();
1230   }
1231 
1232   // Emit the initializer into this element.
1233   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1234                           AggValueSlot::DoesNotOverlap);
1235 
1236   // Leave the Cleanup if we entered one.
1237   if (CleanupDominator) {
1238     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1239     CleanupDominator->eraseFromParent();
1240   }
1241 
1242   // Advance to the next element by adjusting the pointer type as necessary.
1243   llvm::Value *NextPtr =
1244     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1245                                        "array.next");
1246 
1247   // Check whether we've gotten to the end of the array and, if so,
1248   // exit the loop.
1249   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1250   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1251   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1252 
1253   EmitBlock(ContBB);
1254 }
1255 
1256 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1257                                QualType ElementType, llvm::Type *ElementTy,
1258                                Address NewPtr, llvm::Value *NumElements,
1259                                llvm::Value *AllocSizeWithoutCookie) {
1260   ApplyDebugLocation DL(CGF, E);
1261   if (E->isArray())
1262     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1263                                 AllocSizeWithoutCookie);
1264   else if (const Expr *Init = E->getInitializer())
1265     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1266                             AggValueSlot::DoesNotOverlap);
1267 }
1268 
1269 /// Emit a call to an operator new or operator delete function, as implicitly
1270 /// created by new-expressions and delete-expressions.
1271 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1272                                 const FunctionDecl *CalleeDecl,
1273                                 const FunctionProtoType *CalleeType,
1274                                 const CallArgList &Args) {
1275   llvm::CallBase *CallOrInvoke;
1276   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1277   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1278   RValue RV =
1279       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1280                        Args, CalleeType, /*chainCall=*/false),
1281                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1282 
1283   /// C++1y [expr.new]p10:
1284   ///   [In a new-expression,] an implementation is allowed to omit a call
1285   ///   to a replaceable global allocation function.
1286   ///
1287   /// We model such elidable calls with the 'builtin' attribute.
1288   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1289   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1290       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1291     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1292                                llvm::Attribute::Builtin);
1293   }
1294 
1295   return RV;
1296 }
1297 
1298 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1299                                                  const CallExpr *TheCall,
1300                                                  bool IsDelete) {
1301   CallArgList Args;
1302   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1303   // Find the allocation or deallocation function that we're calling.
1304   ASTContext &Ctx = getContext();
1305   DeclarationName Name = Ctx.DeclarationNames
1306       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1307 
1308   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1309     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1310       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1311         return EmitNewDeleteCall(*this, FD, Type, Args);
1312   llvm_unreachable("predeclared global operator new/delete is missing");
1313 }
1314 
1315 namespace {
1316 /// The parameters to pass to a usual operator delete.
1317 struct UsualDeleteParams {
1318   bool DestroyingDelete = false;
1319   bool Size = false;
1320   bool Alignment = false;
1321 };
1322 }
1323 
1324 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1325   UsualDeleteParams Params;
1326 
1327   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1328   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1329 
1330   // The first argument is always a void*.
1331   ++AI;
1332 
1333   // The next parameter may be a std::destroying_delete_t.
1334   if (FD->isDestroyingOperatorDelete()) {
1335     Params.DestroyingDelete = true;
1336     assert(AI != AE);
1337     ++AI;
1338   }
1339 
1340   // Figure out what other parameters we should be implicitly passing.
1341   if (AI != AE && (*AI)->isIntegerType()) {
1342     Params.Size = true;
1343     ++AI;
1344   }
1345 
1346   if (AI != AE && (*AI)->isAlignValT()) {
1347     Params.Alignment = true;
1348     ++AI;
1349   }
1350 
1351   assert(AI == AE && "unexpected usual deallocation function parameter");
1352   return Params;
1353 }
1354 
1355 namespace {
1356   /// A cleanup to call the given 'operator delete' function upon abnormal
1357   /// exit from a new expression. Templated on a traits type that deals with
1358   /// ensuring that the arguments dominate the cleanup if necessary.
1359   template<typename Traits>
1360   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1361     /// Type used to hold llvm::Value*s.
1362     typedef typename Traits::ValueTy ValueTy;
1363     /// Type used to hold RValues.
1364     typedef typename Traits::RValueTy RValueTy;
1365     struct PlacementArg {
1366       RValueTy ArgValue;
1367       QualType ArgType;
1368     };
1369 
1370     unsigned NumPlacementArgs : 31;
1371     unsigned PassAlignmentToPlacementDelete : 1;
1372     const FunctionDecl *OperatorDelete;
1373     ValueTy Ptr;
1374     ValueTy AllocSize;
1375     CharUnits AllocAlign;
1376 
1377     PlacementArg *getPlacementArgs() {
1378       return reinterpret_cast<PlacementArg *>(this + 1);
1379     }
1380 
1381   public:
1382     static size_t getExtraSize(size_t NumPlacementArgs) {
1383       return NumPlacementArgs * sizeof(PlacementArg);
1384     }
1385 
1386     CallDeleteDuringNew(size_t NumPlacementArgs,
1387                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1388                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1389                         CharUnits AllocAlign)
1390       : NumPlacementArgs(NumPlacementArgs),
1391         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1392         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1393         AllocAlign(AllocAlign) {}
1394 
1395     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1396       assert(I < NumPlacementArgs && "index out of range");
1397       getPlacementArgs()[I] = {Arg, Type};
1398     }
1399 
1400     void Emit(CodeGenFunction &CGF, Flags flags) override {
1401       const FunctionProtoType *FPT =
1402           OperatorDelete->getType()->getAs<FunctionProtoType>();
1403       CallArgList DeleteArgs;
1404 
1405       // The first argument is always a void* (or C* for a destroying operator
1406       // delete for class type C).
1407       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1408 
1409       // Figure out what other parameters we should be implicitly passing.
1410       UsualDeleteParams Params;
1411       if (NumPlacementArgs) {
1412         // A placement deallocation function is implicitly passed an alignment
1413         // if the placement allocation function was, but is never passed a size.
1414         Params.Alignment = PassAlignmentToPlacementDelete;
1415       } else {
1416         // For a non-placement new-expression, 'operator delete' can take a
1417         // size and/or an alignment if it has the right parameters.
1418         Params = getUsualDeleteParams(OperatorDelete);
1419       }
1420 
1421       assert(!Params.DestroyingDelete &&
1422              "should not call destroying delete in a new-expression");
1423 
1424       // The second argument can be a std::size_t (for non-placement delete).
1425       if (Params.Size)
1426         DeleteArgs.add(Traits::get(CGF, AllocSize),
1427                        CGF.getContext().getSizeType());
1428 
1429       // The next (second or third) argument can be a std::align_val_t, which
1430       // is an enum whose underlying type is std::size_t.
1431       // FIXME: Use the right type as the parameter type. Note that in a call
1432       // to operator delete(size_t, ...), we may not have it available.
1433       if (Params.Alignment)
1434         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1435                            CGF.SizeTy, AllocAlign.getQuantity())),
1436                        CGF.getContext().getSizeType());
1437 
1438       // Pass the rest of the arguments, which must match exactly.
1439       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1440         auto Arg = getPlacementArgs()[I];
1441         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1442       }
1443 
1444       // Call 'operator delete'.
1445       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1446     }
1447   };
1448 }
1449 
1450 /// Enter a cleanup to call 'operator delete' if the initializer in a
1451 /// new-expression throws.
1452 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1453                                   const CXXNewExpr *E,
1454                                   Address NewPtr,
1455                                   llvm::Value *AllocSize,
1456                                   CharUnits AllocAlign,
1457                                   const CallArgList &NewArgs) {
1458   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1459 
1460   // If we're not inside a conditional branch, then the cleanup will
1461   // dominate and we can do the easier (and more efficient) thing.
1462   if (!CGF.isInConditionalBranch()) {
1463     struct DirectCleanupTraits {
1464       typedef llvm::Value *ValueTy;
1465       typedef RValue RValueTy;
1466       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1467       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1468     };
1469 
1470     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1471 
1472     DirectCleanup *Cleanup = CGF.EHStack
1473       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1474                                            E->getNumPlacementArgs(),
1475                                            E->getOperatorDelete(),
1476                                            NewPtr.getPointer(),
1477                                            AllocSize,
1478                                            E->passAlignment(),
1479                                            AllocAlign);
1480     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1481       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1482       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1483     }
1484 
1485     return;
1486   }
1487 
1488   // Otherwise, we need to save all this stuff.
1489   DominatingValue<RValue>::saved_type SavedNewPtr =
1490     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1491   DominatingValue<RValue>::saved_type SavedAllocSize =
1492     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1493 
1494   struct ConditionalCleanupTraits {
1495     typedef DominatingValue<RValue>::saved_type ValueTy;
1496     typedef DominatingValue<RValue>::saved_type RValueTy;
1497     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1498       return V.restore(CGF);
1499     }
1500   };
1501   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1502 
1503   ConditionalCleanup *Cleanup = CGF.EHStack
1504     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1505                                               E->getNumPlacementArgs(),
1506                                               E->getOperatorDelete(),
1507                                               SavedNewPtr,
1508                                               SavedAllocSize,
1509                                               E->passAlignment(),
1510                                               AllocAlign);
1511   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1512     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1513     Cleanup->setPlacementArg(
1514         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1515   }
1516 
1517   CGF.initFullExprCleanup();
1518 }
1519 
1520 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1521   // The element type being allocated.
1522   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1523 
1524   // 1. Build a call to the allocation function.
1525   FunctionDecl *allocator = E->getOperatorNew();
1526 
1527   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1528   unsigned minElements = 0;
1529   if (E->isArray() && E->hasInitializer()) {
1530     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1531     if (ILE && ILE->isStringLiteralInit())
1532       minElements =
1533           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1534               ->getSize().getZExtValue();
1535     else if (ILE)
1536       minElements = ILE->getNumInits();
1537   }
1538 
1539   llvm::Value *numElements = nullptr;
1540   llvm::Value *allocSizeWithoutCookie = nullptr;
1541   llvm::Value *allocSize =
1542     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1543                         allocSizeWithoutCookie);
1544   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1545 
1546   // Emit the allocation call.  If the allocator is a global placement
1547   // operator, just "inline" it directly.
1548   Address allocation = Address::invalid();
1549   CallArgList allocatorArgs;
1550   if (allocator->isReservedGlobalPlacementOperator()) {
1551     assert(E->getNumPlacementArgs() == 1);
1552     const Expr *arg = *E->placement_arguments().begin();
1553 
1554     LValueBaseInfo BaseInfo;
1555     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1556 
1557     // The pointer expression will, in many cases, be an opaque void*.
1558     // In these cases, discard the computed alignment and use the
1559     // formal alignment of the allocated type.
1560     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1561       allocation = Address(allocation.getPointer(), allocAlign);
1562 
1563     // Set up allocatorArgs for the call to operator delete if it's not
1564     // the reserved global operator.
1565     if (E->getOperatorDelete() &&
1566         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1567       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1568       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1569     }
1570 
1571   } else {
1572     const FunctionProtoType *allocatorType =
1573       allocator->getType()->castAs<FunctionProtoType>();
1574     unsigned ParamsToSkip = 0;
1575 
1576     // The allocation size is the first argument.
1577     QualType sizeType = getContext().getSizeType();
1578     allocatorArgs.add(RValue::get(allocSize), sizeType);
1579     ++ParamsToSkip;
1580 
1581     if (allocSize != allocSizeWithoutCookie) {
1582       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1583       allocAlign = std::max(allocAlign, cookieAlign);
1584     }
1585 
1586     // The allocation alignment may be passed as the second argument.
1587     if (E->passAlignment()) {
1588       QualType AlignValT = sizeType;
1589       if (allocatorType->getNumParams() > 1) {
1590         AlignValT = allocatorType->getParamType(1);
1591         assert(getContext().hasSameUnqualifiedType(
1592                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1593                    sizeType) &&
1594                "wrong type for alignment parameter");
1595         ++ParamsToSkip;
1596       } else {
1597         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1598         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1599       }
1600       allocatorArgs.add(
1601           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1602           AlignValT);
1603     }
1604 
1605     // FIXME: Why do we not pass a CalleeDecl here?
1606     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1607                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1608 
1609     RValue RV =
1610       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1611 
1612     // If this was a call to a global replaceable allocation function that does
1613     // not take an alignment argument, the allocator is known to produce
1614     // storage that's suitably aligned for any object that fits, up to a known
1615     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1616     CharUnits allocationAlign = allocAlign;
1617     if (!E->passAlignment() &&
1618         allocator->isReplaceableGlobalAllocationFunction()) {
1619       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1620           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1621       allocationAlign = std::max(
1622           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1623     }
1624 
1625     allocation = Address(RV.getScalarVal(), allocationAlign);
1626   }
1627 
1628   // Emit a null check on the allocation result if the allocation
1629   // function is allowed to return null (because it has a non-throwing
1630   // exception spec or is the reserved placement new) and we have an
1631   // interesting initializer will be running sanitizers on the initialization.
1632   bool nullCheck = E->shouldNullCheckAllocation() &&
1633                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1634                     sanitizePerformTypeCheck());
1635 
1636   llvm::BasicBlock *nullCheckBB = nullptr;
1637   llvm::BasicBlock *contBB = nullptr;
1638 
1639   // The null-check means that the initializer is conditionally
1640   // evaluated.
1641   ConditionalEvaluation conditional(*this);
1642 
1643   if (nullCheck) {
1644     conditional.begin(*this);
1645 
1646     nullCheckBB = Builder.GetInsertBlock();
1647     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1648     contBB = createBasicBlock("new.cont");
1649 
1650     llvm::Value *isNull =
1651       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1652     Builder.CreateCondBr(isNull, contBB, notNullBB);
1653     EmitBlock(notNullBB);
1654   }
1655 
1656   // If there's an operator delete, enter a cleanup to call it if an
1657   // exception is thrown.
1658   EHScopeStack::stable_iterator operatorDeleteCleanup;
1659   llvm::Instruction *cleanupDominator = nullptr;
1660   if (E->getOperatorDelete() &&
1661       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1662     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1663                           allocatorArgs);
1664     operatorDeleteCleanup = EHStack.stable_begin();
1665     cleanupDominator = Builder.CreateUnreachable();
1666   }
1667 
1668   assert((allocSize == allocSizeWithoutCookie) ==
1669          CalculateCookiePadding(*this, E).isZero());
1670   if (allocSize != allocSizeWithoutCookie) {
1671     assert(E->isArray());
1672     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1673                                                        numElements,
1674                                                        E, allocType);
1675   }
1676 
1677   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1678   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1679 
1680   // Passing pointer through launder.invariant.group to avoid propagation of
1681   // vptrs information which may be included in previous type.
1682   // To not break LTO with different optimizations levels, we do it regardless
1683   // of optimization level.
1684   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1685       allocator->isReservedGlobalPlacementOperator())
1686     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1687                      result.getAlignment());
1688 
1689   // Emit sanitizer checks for pointer value now, so that in the case of an
1690   // array it was checked only once and not at each constructor call. We may
1691   // have already checked that the pointer is non-null.
1692   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1693   // we'll null check the wrong pointer here.
1694   SanitizerSet SkippedChecks;
1695   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1696   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1697                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1698                 result.getPointer(), allocType, result.getAlignment(),
1699                 SkippedChecks, numElements);
1700 
1701   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1702                      allocSizeWithoutCookie);
1703   if (E->isArray()) {
1704     // NewPtr is a pointer to the base element type.  If we're
1705     // allocating an array of arrays, we'll need to cast back to the
1706     // array pointer type.
1707     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1708     if (result.getType() != resultType)
1709       result = Builder.CreateBitCast(result, resultType);
1710   }
1711 
1712   // Deactivate the 'operator delete' cleanup if we finished
1713   // initialization.
1714   if (operatorDeleteCleanup.isValid()) {
1715     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1716     cleanupDominator->eraseFromParent();
1717   }
1718 
1719   llvm::Value *resultPtr = result.getPointer();
1720   if (nullCheck) {
1721     conditional.end(*this);
1722 
1723     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1724     EmitBlock(contBB);
1725 
1726     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1727     PHI->addIncoming(resultPtr, notNullBB);
1728     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1729                      nullCheckBB);
1730 
1731     resultPtr = PHI;
1732   }
1733 
1734   return resultPtr;
1735 }
1736 
1737 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1738                                      llvm::Value *Ptr, QualType DeleteTy,
1739                                      llvm::Value *NumElements,
1740                                      CharUnits CookieSize) {
1741   assert((!NumElements && CookieSize.isZero()) ||
1742          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1743 
1744   const FunctionProtoType *DeleteFTy =
1745     DeleteFD->getType()->getAs<FunctionProtoType>();
1746 
1747   CallArgList DeleteArgs;
1748 
1749   auto Params = getUsualDeleteParams(DeleteFD);
1750   auto ParamTypeIt = DeleteFTy->param_type_begin();
1751 
1752   // Pass the pointer itself.
1753   QualType ArgTy = *ParamTypeIt++;
1754   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1755   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1756 
1757   // Pass the std::destroying_delete tag if present.
1758   if (Params.DestroyingDelete) {
1759     QualType DDTag = *ParamTypeIt++;
1760     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1761     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1762     DeleteArgs.add(RValue::get(V), DDTag);
1763   }
1764 
1765   // Pass the size if the delete function has a size_t parameter.
1766   if (Params.Size) {
1767     QualType SizeType = *ParamTypeIt++;
1768     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1769     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1770                                                DeleteTypeSize.getQuantity());
1771 
1772     // For array new, multiply by the number of elements.
1773     if (NumElements)
1774       Size = Builder.CreateMul(Size, NumElements);
1775 
1776     // If there is a cookie, add the cookie size.
1777     if (!CookieSize.isZero())
1778       Size = Builder.CreateAdd(
1779           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1780 
1781     DeleteArgs.add(RValue::get(Size), SizeType);
1782   }
1783 
1784   // Pass the alignment if the delete function has an align_val_t parameter.
1785   if (Params.Alignment) {
1786     QualType AlignValType = *ParamTypeIt++;
1787     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1788         getContext().getTypeAlignIfKnown(DeleteTy));
1789     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1790                                                 DeleteTypeAlign.getQuantity());
1791     DeleteArgs.add(RValue::get(Align), AlignValType);
1792   }
1793 
1794   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1795          "unknown parameter to usual delete function");
1796 
1797   // Emit the call to delete.
1798   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1799 }
1800 
1801 namespace {
1802   /// Calls the given 'operator delete' on a single object.
1803   struct CallObjectDelete final : EHScopeStack::Cleanup {
1804     llvm::Value *Ptr;
1805     const FunctionDecl *OperatorDelete;
1806     QualType ElementType;
1807 
1808     CallObjectDelete(llvm::Value *Ptr,
1809                      const FunctionDecl *OperatorDelete,
1810                      QualType ElementType)
1811       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1812 
1813     void Emit(CodeGenFunction &CGF, Flags flags) override {
1814       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1815     }
1816   };
1817 }
1818 
1819 void
1820 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1821                                              llvm::Value *CompletePtr,
1822                                              QualType ElementType) {
1823   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1824                                         OperatorDelete, ElementType);
1825 }
1826 
1827 /// Emit the code for deleting a single object with a destroying operator
1828 /// delete. If the element type has a non-virtual destructor, Ptr has already
1829 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1830 /// Ptr points to an object of the static type.
1831 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1832                                        const CXXDeleteExpr *DE, Address Ptr,
1833                                        QualType ElementType) {
1834   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1835   if (Dtor && Dtor->isVirtual())
1836     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1837                                                 Dtor);
1838   else
1839     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1840 }
1841 
1842 /// Emit the code for deleting a single object.
1843 static void EmitObjectDelete(CodeGenFunction &CGF,
1844                              const CXXDeleteExpr *DE,
1845                              Address Ptr,
1846                              QualType ElementType) {
1847   // C++11 [expr.delete]p3:
1848   //   If the static type of the object to be deleted is different from its
1849   //   dynamic type, the static type shall be a base class of the dynamic type
1850   //   of the object to be deleted and the static type shall have a virtual
1851   //   destructor or the behavior is undefined.
1852   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1853                     DE->getExprLoc(), Ptr.getPointer(),
1854                     ElementType);
1855 
1856   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1857   assert(!OperatorDelete->isDestroyingOperatorDelete());
1858 
1859   // Find the destructor for the type, if applicable.  If the
1860   // destructor is virtual, we'll just emit the vcall and return.
1861   const CXXDestructorDecl *Dtor = nullptr;
1862   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1863     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1864     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1865       Dtor = RD->getDestructor();
1866 
1867       if (Dtor->isVirtual()) {
1868         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1869                                                     Dtor);
1870         return;
1871       }
1872     }
1873   }
1874 
1875   // Make sure that we call delete even if the dtor throws.
1876   // This doesn't have to a conditional cleanup because we're going
1877   // to pop it off in a second.
1878   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1879                                             Ptr.getPointer(),
1880                                             OperatorDelete, ElementType);
1881 
1882   if (Dtor)
1883     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1884                               /*ForVirtualBase=*/false,
1885                               /*Delegating=*/false,
1886                               Ptr);
1887   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1888     switch (Lifetime) {
1889     case Qualifiers::OCL_None:
1890     case Qualifiers::OCL_ExplicitNone:
1891     case Qualifiers::OCL_Autoreleasing:
1892       break;
1893 
1894     case Qualifiers::OCL_Strong:
1895       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1896       break;
1897 
1898     case Qualifiers::OCL_Weak:
1899       CGF.EmitARCDestroyWeak(Ptr);
1900       break;
1901     }
1902   }
1903 
1904   CGF.PopCleanupBlock();
1905 }
1906 
1907 namespace {
1908   /// Calls the given 'operator delete' on an array of objects.
1909   struct CallArrayDelete final : EHScopeStack::Cleanup {
1910     llvm::Value *Ptr;
1911     const FunctionDecl *OperatorDelete;
1912     llvm::Value *NumElements;
1913     QualType ElementType;
1914     CharUnits CookieSize;
1915 
1916     CallArrayDelete(llvm::Value *Ptr,
1917                     const FunctionDecl *OperatorDelete,
1918                     llvm::Value *NumElements,
1919                     QualType ElementType,
1920                     CharUnits CookieSize)
1921       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1922         ElementType(ElementType), CookieSize(CookieSize) {}
1923 
1924     void Emit(CodeGenFunction &CGF, Flags flags) override {
1925       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1926                          CookieSize);
1927     }
1928   };
1929 }
1930 
1931 /// Emit the code for deleting an array of objects.
1932 static void EmitArrayDelete(CodeGenFunction &CGF,
1933                             const CXXDeleteExpr *E,
1934                             Address deletedPtr,
1935                             QualType elementType) {
1936   llvm::Value *numElements = nullptr;
1937   llvm::Value *allocatedPtr = nullptr;
1938   CharUnits cookieSize;
1939   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1940                                       numElements, allocatedPtr, cookieSize);
1941 
1942   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1943 
1944   // Make sure that we call delete even if one of the dtors throws.
1945   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1946   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1947                                            allocatedPtr, operatorDelete,
1948                                            numElements, elementType,
1949                                            cookieSize);
1950 
1951   // Destroy the elements.
1952   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1953     assert(numElements && "no element count for a type with a destructor!");
1954 
1955     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1956     CharUnits elementAlign =
1957       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1958 
1959     llvm::Value *arrayBegin = deletedPtr.getPointer();
1960     llvm::Value *arrayEnd =
1961       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1962 
1963     // Note that it is legal to allocate a zero-length array, and we
1964     // can never fold the check away because the length should always
1965     // come from a cookie.
1966     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1967                          CGF.getDestroyer(dtorKind),
1968                          /*checkZeroLength*/ true,
1969                          CGF.needsEHCleanup(dtorKind));
1970   }
1971 
1972   // Pop the cleanup block.
1973   CGF.PopCleanupBlock();
1974 }
1975 
1976 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1977   const Expr *Arg = E->getArgument();
1978   Address Ptr = EmitPointerWithAlignment(Arg);
1979 
1980   // Null check the pointer.
1981   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1982   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1983 
1984   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1985 
1986   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1987   EmitBlock(DeleteNotNull);
1988 
1989   QualType DeleteTy = E->getDestroyedType();
1990 
1991   // A destroying operator delete overrides the entire operation of the
1992   // delete expression.
1993   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1994     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1995     EmitBlock(DeleteEnd);
1996     return;
1997   }
1998 
1999   // We might be deleting a pointer to array.  If so, GEP down to the
2000   // first non-array element.
2001   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2002   if (DeleteTy->isConstantArrayType()) {
2003     llvm::Value *Zero = Builder.getInt32(0);
2004     SmallVector<llvm::Value*,8> GEP;
2005 
2006     GEP.push_back(Zero); // point at the outermost array
2007 
2008     // For each layer of array type we're pointing at:
2009     while (const ConstantArrayType *Arr
2010              = getContext().getAsConstantArrayType(DeleteTy)) {
2011       // 1. Unpeel the array type.
2012       DeleteTy = Arr->getElementType();
2013 
2014       // 2. GEP to the first element of the array.
2015       GEP.push_back(Zero);
2016     }
2017 
2018     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2019                   Ptr.getAlignment());
2020   }
2021 
2022   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2023 
2024   if (E->isArrayForm()) {
2025     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2026   } else {
2027     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2028   }
2029 
2030   EmitBlock(DeleteEnd);
2031 }
2032 
2033 static bool isGLValueFromPointerDeref(const Expr *E) {
2034   E = E->IgnoreParens();
2035 
2036   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2037     if (!CE->getSubExpr()->isGLValue())
2038       return false;
2039     return isGLValueFromPointerDeref(CE->getSubExpr());
2040   }
2041 
2042   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2043     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2044 
2045   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2046     if (BO->getOpcode() == BO_Comma)
2047       return isGLValueFromPointerDeref(BO->getRHS());
2048 
2049   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2050     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2051            isGLValueFromPointerDeref(ACO->getFalseExpr());
2052 
2053   // C++11 [expr.sub]p1:
2054   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2055   if (isa<ArraySubscriptExpr>(E))
2056     return true;
2057 
2058   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2059     if (UO->getOpcode() == UO_Deref)
2060       return true;
2061 
2062   return false;
2063 }
2064 
2065 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2066                                          llvm::Type *StdTypeInfoPtrTy) {
2067   // Get the vtable pointer.
2068   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2069 
2070   QualType SrcRecordTy = E->getType();
2071 
2072   // C++ [class.cdtor]p4:
2073   //   If the operand of typeid refers to the object under construction or
2074   //   destruction and the static type of the operand is neither the constructor
2075   //   or destructor’s class nor one of its bases, the behavior is undefined.
2076   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2077                     ThisPtr.getPointer(), SrcRecordTy);
2078 
2079   // C++ [expr.typeid]p2:
2080   //   If the glvalue expression is obtained by applying the unary * operator to
2081   //   a pointer and the pointer is a null pointer value, the typeid expression
2082   //   throws the std::bad_typeid exception.
2083   //
2084   // However, this paragraph's intent is not clear.  We choose a very generous
2085   // interpretation which implores us to consider comma operators, conditional
2086   // operators, parentheses and other such constructs.
2087   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2088           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2089     llvm::BasicBlock *BadTypeidBlock =
2090         CGF.createBasicBlock("typeid.bad_typeid");
2091     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2092 
2093     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2094     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2095 
2096     CGF.EmitBlock(BadTypeidBlock);
2097     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2098     CGF.EmitBlock(EndBlock);
2099   }
2100 
2101   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2102                                         StdTypeInfoPtrTy);
2103 }
2104 
2105 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2106   llvm::Type *StdTypeInfoPtrTy =
2107     ConvertType(E->getType())->getPointerTo();
2108 
2109   if (E->isTypeOperand()) {
2110     llvm::Constant *TypeInfo =
2111         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2112     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2113   }
2114 
2115   // C++ [expr.typeid]p2:
2116   //   When typeid is applied to a glvalue expression whose type is a
2117   //   polymorphic class type, the result refers to a std::type_info object
2118   //   representing the type of the most derived object (that is, the dynamic
2119   //   type) to which the glvalue refers.
2120   if (E->isPotentiallyEvaluated())
2121     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2122                                 StdTypeInfoPtrTy);
2123 
2124   QualType OperandTy = E->getExprOperand()->getType();
2125   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2126                                StdTypeInfoPtrTy);
2127 }
2128 
2129 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2130                                           QualType DestTy) {
2131   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2132   if (DestTy->isPointerType())
2133     return llvm::Constant::getNullValue(DestLTy);
2134 
2135   /// C++ [expr.dynamic.cast]p9:
2136   ///   A failed cast to reference type throws std::bad_cast
2137   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2138     return nullptr;
2139 
2140   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2141   return llvm::UndefValue::get(DestLTy);
2142 }
2143 
2144 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2145                                               const CXXDynamicCastExpr *DCE) {
2146   CGM.EmitExplicitCastExprType(DCE, this);
2147   QualType DestTy = DCE->getTypeAsWritten();
2148 
2149   QualType SrcTy = DCE->getSubExpr()->getType();
2150 
2151   // C++ [expr.dynamic.cast]p7:
2152   //   If T is "pointer to cv void," then the result is a pointer to the most
2153   //   derived object pointed to by v.
2154   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2155 
2156   bool isDynamicCastToVoid;
2157   QualType SrcRecordTy;
2158   QualType DestRecordTy;
2159   if (DestPTy) {
2160     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2161     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2162     DestRecordTy = DestPTy->getPointeeType();
2163   } else {
2164     isDynamicCastToVoid = false;
2165     SrcRecordTy = SrcTy;
2166     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2167   }
2168 
2169   // C++ [class.cdtor]p5:
2170   //   If the operand of the dynamic_cast refers to the object under
2171   //   construction or destruction and the static type of the operand is not a
2172   //   pointer to or object of the constructor or destructor’s own class or one
2173   //   of its bases, the dynamic_cast results in undefined behavior.
2174   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2175                 SrcRecordTy);
2176 
2177   if (DCE->isAlwaysNull())
2178     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2179       return T;
2180 
2181   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2182 
2183   // C++ [expr.dynamic.cast]p4:
2184   //   If the value of v is a null pointer value in the pointer case, the result
2185   //   is the null pointer value of type T.
2186   bool ShouldNullCheckSrcValue =
2187       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2188                                                          SrcRecordTy);
2189 
2190   llvm::BasicBlock *CastNull = nullptr;
2191   llvm::BasicBlock *CastNotNull = nullptr;
2192   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2193 
2194   if (ShouldNullCheckSrcValue) {
2195     CastNull = createBasicBlock("dynamic_cast.null");
2196     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2197 
2198     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2199     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2200     EmitBlock(CastNotNull);
2201   }
2202 
2203   llvm::Value *Value;
2204   if (isDynamicCastToVoid) {
2205     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2206                                                   DestTy);
2207   } else {
2208     assert(DestRecordTy->isRecordType() &&
2209            "destination type must be a record type!");
2210     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2211                                                 DestTy, DestRecordTy, CastEnd);
2212     CastNotNull = Builder.GetInsertBlock();
2213   }
2214 
2215   if (ShouldNullCheckSrcValue) {
2216     EmitBranch(CastEnd);
2217 
2218     EmitBlock(CastNull);
2219     EmitBranch(CastEnd);
2220   }
2221 
2222   EmitBlock(CastEnd);
2223 
2224   if (ShouldNullCheckSrcValue) {
2225     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2226     PHI->addIncoming(Value, CastNotNull);
2227     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2228 
2229     Value = PHI;
2230   }
2231 
2232   return Value;
2233 }
2234