1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "ConstantEmitter.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 struct MemberCallInfo { 28 RequiredArgs ReqArgs; 29 // Number of prefix arguments for the call. Ignores the `this` pointer. 30 unsigned PrefixSize; 31 }; 32 } 33 34 static MemberCallInfo 35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 36 llvm::Value *This, llvm::Value *ImplicitParam, 37 QualType ImplicitParamTy, const CallExpr *CE, 38 CallArgList &Args, CallArgList *RtlArgs) { 39 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 40 isa<CXXOperatorCallExpr>(CE)); 41 assert(MD->isInstance() && 42 "Trying to emit a member or operator call expr on a static method!"); 43 44 // Push the this ptr. 45 const CXXRecordDecl *RD = 46 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 47 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 48 49 // If there is an implicit parameter (e.g. VTT), emit it. 50 if (ImplicitParam) { 51 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 52 } 53 54 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 55 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 56 unsigned PrefixSize = Args.size() - 1; 57 58 // And the rest of the call args. 59 if (RtlArgs) { 60 // Special case: if the caller emitted the arguments right-to-left already 61 // (prior to emitting the *this argument), we're done. This happens for 62 // assignment operators. 63 Args.addFrom(*RtlArgs); 64 } else if (CE) { 65 // Special case: skip first argument of CXXOperatorCall (it is "this"). 66 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 67 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 68 CE->getDirectCallee()); 69 } else { 70 assert( 71 FPT->getNumParams() == 0 && 72 "No CallExpr specified for function with non-zero number of arguments"); 73 } 74 return {required, PrefixSize}; 75 } 76 77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 78 const CXXMethodDecl *MD, const CGCallee &Callee, 79 ReturnValueSlot ReturnValue, 80 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 81 const CallExpr *CE, CallArgList *RtlArgs) { 82 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 83 CallArgList Args; 84 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 85 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 86 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 87 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 88 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 89 CE ? CE->getExprLoc() : SourceLocation()); 90 } 91 92 RValue CodeGenFunction::EmitCXXDestructorCall( 93 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, 94 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 95 CallArgList Args; 96 commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()), 97 This, ImplicitParam, ImplicitParamTy, CE, 98 Args, nullptr); 99 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 100 ReturnValueSlot(), Args); 101 } 102 103 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 104 const CXXPseudoDestructorExpr *E) { 105 QualType DestroyedType = E->getDestroyedType(); 106 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 107 // Automatic Reference Counting: 108 // If the pseudo-expression names a retainable object with weak or 109 // strong lifetime, the object shall be released. 110 Expr *BaseExpr = E->getBase(); 111 Address BaseValue = Address::invalid(); 112 Qualifiers BaseQuals; 113 114 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 115 if (E->isArrow()) { 116 BaseValue = EmitPointerWithAlignment(BaseExpr); 117 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 118 BaseQuals = PTy->getPointeeType().getQualifiers(); 119 } else { 120 LValue BaseLV = EmitLValue(BaseExpr); 121 BaseValue = BaseLV.getAddress(); 122 QualType BaseTy = BaseExpr->getType(); 123 BaseQuals = BaseTy.getQualifiers(); 124 } 125 126 switch (DestroyedType.getObjCLifetime()) { 127 case Qualifiers::OCL_None: 128 case Qualifiers::OCL_ExplicitNone: 129 case Qualifiers::OCL_Autoreleasing: 130 break; 131 132 case Qualifiers::OCL_Strong: 133 EmitARCRelease(Builder.CreateLoad(BaseValue, 134 DestroyedType.isVolatileQualified()), 135 ARCPreciseLifetime); 136 break; 137 138 case Qualifiers::OCL_Weak: 139 EmitARCDestroyWeak(BaseValue); 140 break; 141 } 142 } else { 143 // C++ [expr.pseudo]p1: 144 // The result shall only be used as the operand for the function call 145 // operator (), and the result of such a call has type void. The only 146 // effect is the evaluation of the postfix-expression before the dot or 147 // arrow. 148 EmitIgnoredExpr(E->getBase()); 149 } 150 151 return RValue::get(nullptr); 152 } 153 154 static CXXRecordDecl *getCXXRecord(const Expr *E) { 155 QualType T = E->getType(); 156 if (const PointerType *PTy = T->getAs<PointerType>()) 157 T = PTy->getPointeeType(); 158 const RecordType *Ty = T->castAs<RecordType>(); 159 return cast<CXXRecordDecl>(Ty->getDecl()); 160 } 161 162 // Note: This function also emit constructor calls to support a MSVC 163 // extensions allowing explicit constructor function call. 164 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 165 ReturnValueSlot ReturnValue) { 166 const Expr *callee = CE->getCallee()->IgnoreParens(); 167 168 if (isa<BinaryOperator>(callee)) 169 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 170 171 const MemberExpr *ME = cast<MemberExpr>(callee); 172 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 173 174 if (MD->isStatic()) { 175 // The method is static, emit it as we would a regular call. 176 CGCallee callee = 177 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 178 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 179 ReturnValue); 180 } 181 182 bool HasQualifier = ME->hasQualifier(); 183 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 184 bool IsArrow = ME->isArrow(); 185 const Expr *Base = ME->getBase(); 186 187 return EmitCXXMemberOrOperatorMemberCallExpr( 188 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 189 } 190 191 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 192 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 193 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 194 const Expr *Base) { 195 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 196 197 // Compute the object pointer. 198 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 199 200 const CXXMethodDecl *DevirtualizedMethod = nullptr; 201 if (CanUseVirtualCall && 202 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 205 assert(DevirtualizedMethod); 206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 207 const Expr *Inner = Base->ignoreParenBaseCasts(); 208 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 209 MD->getReturnType().getCanonicalType()) 210 // If the return types are not the same, this might be a case where more 211 // code needs to run to compensate for it. For example, the derived 212 // method might return a type that inherits form from the return 213 // type of MD and has a prefix. 214 // For now we just avoid devirtualizing these covariant cases. 215 DevirtualizedMethod = nullptr; 216 else if (getCXXRecord(Inner) == DevirtualizedClass) 217 // If the class of the Inner expression is where the dynamic method 218 // is defined, build the this pointer from it. 219 Base = Inner; 220 else if (getCXXRecord(Base) != DevirtualizedClass) { 221 // If the method is defined in a class that is not the best dynamic 222 // one or the one of the full expression, we would have to build 223 // a derived-to-base cast to compute the correct this pointer, but 224 // we don't have support for that yet, so do a virtual call. 225 DevirtualizedMethod = nullptr; 226 } 227 } 228 229 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 230 // operator before the LHS. 231 CallArgList RtlArgStorage; 232 CallArgList *RtlArgs = nullptr; 233 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 234 if (OCE->isAssignmentOp()) { 235 RtlArgs = &RtlArgStorage; 236 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 237 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 238 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 239 } 240 } 241 242 LValue This; 243 if (IsArrow) { 244 LValueBaseInfo BaseInfo; 245 TBAAAccessInfo TBAAInfo; 246 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 247 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 248 } else { 249 This = EmitLValue(Base); 250 } 251 252 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 253 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 254 // constructing a new complete object of type Ctor. 255 assert(!RtlArgs); 256 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 257 CallArgList Args; 258 commonEmitCXXMemberOrOperatorCall( 259 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr, 260 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 261 262 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 263 /*Delegating=*/false, This.getAddress(), Args, 264 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 265 /*NewPointerIsChecked=*/false); 266 return RValue::get(nullptr); 267 } 268 269 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 270 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 271 if (!MD->getParent()->mayInsertExtraPadding()) { 272 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 273 // We don't like to generate the trivial copy/move assignment operator 274 // when it isn't necessary; just produce the proper effect here. 275 LValue RHS = isa<CXXOperatorCallExpr>(CE) 276 ? MakeNaturalAlignAddrLValue( 277 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 278 (*(CE->arg_begin() + 1))->getType()) 279 : EmitLValue(*CE->arg_begin()); 280 EmitAggregateAssign(This, RHS, CE->getType()); 281 return RValue::get(This.getPointer()); 282 } 283 llvm_unreachable("unknown trivial member function"); 284 } 285 } 286 287 // Compute the function type we're calling. 288 const CXXMethodDecl *CalleeDecl = 289 DevirtualizedMethod ? DevirtualizedMethod : MD; 290 const CGFunctionInfo *FInfo = nullptr; 291 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 292 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 293 GlobalDecl(Dtor, Dtor_Complete)); 294 else 295 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 296 297 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 298 299 // C++11 [class.mfct.non-static]p2: 300 // If a non-static member function of a class X is called for an object that 301 // is not of type X, or of a type derived from X, the behavior is undefined. 302 SourceLocation CallLoc; 303 ASTContext &C = getContext(); 304 if (CE) 305 CallLoc = CE->getExprLoc(); 306 307 SanitizerSet SkippedChecks; 308 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 309 auto *IOA = CMCE->getImplicitObjectArgument(); 310 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 311 if (IsImplicitObjectCXXThis) 312 SkippedChecks.set(SanitizerKind::Alignment, true); 313 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 314 SkippedChecks.set(SanitizerKind::Null, true); 315 } 316 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(), 317 C.getRecordType(CalleeDecl->getParent()), 318 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 319 320 // C++ [class.virtual]p12: 321 // Explicit qualification with the scope operator (5.1) suppresses the 322 // virtual call mechanism. 323 // 324 // We also don't emit a virtual call if the base expression has a record type 325 // because then we know what the type is. 326 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 327 328 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 329 assert(CE->arg_begin() == CE->arg_end() && 330 "Destructor shouldn't have explicit parameters"); 331 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 332 if (UseVirtualCall) { 333 CGM.getCXXABI().EmitVirtualDestructorCall( 334 *this, Dtor, Dtor_Complete, This.getAddress(), 335 cast<CXXMemberCallExpr>(CE)); 336 } else { 337 GlobalDecl GD(Dtor, Dtor_Complete); 338 CGCallee Callee; 339 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 340 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 341 else if (!DevirtualizedMethod) 342 Callee = 343 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 344 else { 345 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 346 } 347 348 EmitCXXDestructorCall(GD, Callee, This.getPointer(), 349 /*ImplicitParam=*/nullptr, 350 /*ImplicitParamTy=*/QualType(), nullptr); 351 } 352 return RValue::get(nullptr); 353 } 354 355 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 356 // 'CalleeDecl' instead. 357 358 CGCallee Callee; 359 if (UseVirtualCall) { 360 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 361 } else { 362 if (SanOpts.has(SanitizerKind::CFINVCall) && 363 MD->getParent()->isDynamicClass()) { 364 llvm::Value *VTable; 365 const CXXRecordDecl *RD; 366 std::tie(VTable, RD) = 367 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 368 MD->getParent()); 369 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 370 } 371 372 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 373 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 374 else if (!DevirtualizedMethod) 375 Callee = 376 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 377 else { 378 Callee = 379 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 380 GlobalDecl(DevirtualizedMethod)); 381 } 382 } 383 384 if (MD->isVirtual()) { 385 Address NewThisAddr = 386 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 387 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 388 This.setAddress(NewThisAddr); 389 } 390 391 return EmitCXXMemberOrOperatorCall( 392 CalleeDecl, Callee, ReturnValue, This.getPointer(), 393 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 394 } 395 396 RValue 397 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 398 ReturnValueSlot ReturnValue) { 399 const BinaryOperator *BO = 400 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 401 const Expr *BaseExpr = BO->getLHS(); 402 const Expr *MemFnExpr = BO->getRHS(); 403 404 const MemberPointerType *MPT = 405 MemFnExpr->getType()->castAs<MemberPointerType>(); 406 407 const FunctionProtoType *FPT = 408 MPT->getPointeeType()->castAs<FunctionProtoType>(); 409 const CXXRecordDecl *RD = 410 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 411 412 // Emit the 'this' pointer. 413 Address This = Address::invalid(); 414 if (BO->getOpcode() == BO_PtrMemI) 415 This = EmitPointerWithAlignment(BaseExpr); 416 else 417 This = EmitLValue(BaseExpr).getAddress(); 418 419 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 420 QualType(MPT->getClass(), 0)); 421 422 // Get the member function pointer. 423 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 424 425 // Ask the ABI to load the callee. Note that This is modified. 426 llvm::Value *ThisPtrForCall = nullptr; 427 CGCallee Callee = 428 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 429 ThisPtrForCall, MemFnPtr, MPT); 430 431 CallArgList Args; 432 433 QualType ThisType = 434 getContext().getPointerType(getContext().getTagDeclType(RD)); 435 436 // Push the this ptr. 437 Args.add(RValue::get(ThisPtrForCall), ThisType); 438 439 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 440 441 // And the rest of the call args 442 EmitCallArgs(Args, FPT, E->arguments()); 443 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 444 /*PrefixSize=*/0), 445 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 446 } 447 448 RValue 449 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 450 const CXXMethodDecl *MD, 451 ReturnValueSlot ReturnValue) { 452 assert(MD->isInstance() && 453 "Trying to emit a member call expr on a static method!"); 454 return EmitCXXMemberOrOperatorMemberCallExpr( 455 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 456 /*IsArrow=*/false, E->getArg(0)); 457 } 458 459 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 460 ReturnValueSlot ReturnValue) { 461 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 462 } 463 464 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 465 Address DestPtr, 466 const CXXRecordDecl *Base) { 467 if (Base->isEmpty()) 468 return; 469 470 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 471 472 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 473 CharUnits NVSize = Layout.getNonVirtualSize(); 474 475 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 476 // present, they are initialized by the most derived class before calling the 477 // constructor. 478 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 479 Stores.emplace_back(CharUnits::Zero(), NVSize); 480 481 // Each store is split by the existence of a vbptr. 482 CharUnits VBPtrWidth = CGF.getPointerSize(); 483 std::vector<CharUnits> VBPtrOffsets = 484 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 485 for (CharUnits VBPtrOffset : VBPtrOffsets) { 486 // Stop before we hit any virtual base pointers located in virtual bases. 487 if (VBPtrOffset >= NVSize) 488 break; 489 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 490 CharUnits LastStoreOffset = LastStore.first; 491 CharUnits LastStoreSize = LastStore.second; 492 493 CharUnits SplitBeforeOffset = LastStoreOffset; 494 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 495 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 496 if (!SplitBeforeSize.isZero()) 497 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 498 499 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 500 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 501 assert(!SplitAfterSize.isNegative() && "negative store size!"); 502 if (!SplitAfterSize.isZero()) 503 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 504 } 505 506 // If the type contains a pointer to data member we can't memset it to zero. 507 // Instead, create a null constant and copy it to the destination. 508 // TODO: there are other patterns besides zero that we can usefully memset, 509 // like -1, which happens to be the pattern used by member-pointers. 510 // TODO: isZeroInitializable can be over-conservative in the case where a 511 // virtual base contains a member pointer. 512 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 513 if (!NullConstantForBase->isNullValue()) { 514 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 515 CGF.CGM.getModule(), NullConstantForBase->getType(), 516 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 517 NullConstantForBase, Twine()); 518 519 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 520 DestPtr.getAlignment()); 521 NullVariable->setAlignment(Align.getQuantity()); 522 523 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 524 525 // Get and call the appropriate llvm.memcpy overload. 526 for (std::pair<CharUnits, CharUnits> Store : Stores) { 527 CharUnits StoreOffset = Store.first; 528 CharUnits StoreSize = Store.second; 529 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 530 CGF.Builder.CreateMemCpy( 531 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 532 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 533 StoreSizeVal); 534 } 535 536 // Otherwise, just memset the whole thing to zero. This is legal 537 // because in LLVM, all default initializers (other than the ones we just 538 // handled above) are guaranteed to have a bit pattern of all zeros. 539 } else { 540 for (std::pair<CharUnits, CharUnits> Store : Stores) { 541 CharUnits StoreOffset = Store.first; 542 CharUnits StoreSize = Store.second; 543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 544 CGF.Builder.CreateMemSet( 545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 546 CGF.Builder.getInt8(0), StoreSizeVal); 547 } 548 } 549 } 550 551 void 552 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 553 AggValueSlot Dest) { 554 assert(!Dest.isIgnored() && "Must have a destination!"); 555 const CXXConstructorDecl *CD = E->getConstructor(); 556 557 // If we require zero initialization before (or instead of) calling the 558 // constructor, as can be the case with a non-user-provided default 559 // constructor, emit the zero initialization now, unless destination is 560 // already zeroed. 561 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 562 switch (E->getConstructionKind()) { 563 case CXXConstructExpr::CK_Delegating: 564 case CXXConstructExpr::CK_Complete: 565 EmitNullInitialization(Dest.getAddress(), E->getType()); 566 break; 567 case CXXConstructExpr::CK_VirtualBase: 568 case CXXConstructExpr::CK_NonVirtualBase: 569 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 570 CD->getParent()); 571 break; 572 } 573 } 574 575 // If this is a call to a trivial default constructor, do nothing. 576 if (CD->isTrivial() && CD->isDefaultConstructor()) 577 return; 578 579 // Elide the constructor if we're constructing from a temporary. 580 // The temporary check is required because Sema sets this on NRVO 581 // returns. 582 if (getLangOpts().ElideConstructors && E->isElidable()) { 583 assert(getContext().hasSameUnqualifiedType(E->getType(), 584 E->getArg(0)->getType())); 585 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 586 EmitAggExpr(E->getArg(0), Dest); 587 return; 588 } 589 } 590 591 if (const ArrayType *arrayType 592 = getContext().getAsArrayType(E->getType())) { 593 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 594 Dest.isSanitizerChecked()); 595 } else { 596 CXXCtorType Type = Ctor_Complete; 597 bool ForVirtualBase = false; 598 bool Delegating = false; 599 600 switch (E->getConstructionKind()) { 601 case CXXConstructExpr::CK_Delegating: 602 // We should be emitting a constructor; GlobalDecl will assert this 603 Type = CurGD.getCtorType(); 604 Delegating = true; 605 break; 606 607 case CXXConstructExpr::CK_Complete: 608 Type = Ctor_Complete; 609 break; 610 611 case CXXConstructExpr::CK_VirtualBase: 612 ForVirtualBase = true; 613 LLVM_FALLTHROUGH; 614 615 case CXXConstructExpr::CK_NonVirtualBase: 616 Type = Ctor_Base; 617 } 618 619 // Call the constructor. 620 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 621 } 622 } 623 624 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 625 const Expr *Exp) { 626 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 627 Exp = E->getSubExpr(); 628 assert(isa<CXXConstructExpr>(Exp) && 629 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 630 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 631 const CXXConstructorDecl *CD = E->getConstructor(); 632 RunCleanupsScope Scope(*this); 633 634 // If we require zero initialization before (or instead of) calling the 635 // constructor, as can be the case with a non-user-provided default 636 // constructor, emit the zero initialization now. 637 // FIXME. Do I still need this for a copy ctor synthesis? 638 if (E->requiresZeroInitialization()) 639 EmitNullInitialization(Dest, E->getType()); 640 641 assert(!getContext().getAsConstantArrayType(E->getType()) 642 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 643 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 644 } 645 646 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 647 const CXXNewExpr *E) { 648 if (!E->isArray()) 649 return CharUnits::Zero(); 650 651 // No cookie is required if the operator new[] being used is the 652 // reserved placement operator new[]. 653 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 654 return CharUnits::Zero(); 655 656 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 657 } 658 659 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 660 const CXXNewExpr *e, 661 unsigned minElements, 662 llvm::Value *&numElements, 663 llvm::Value *&sizeWithoutCookie) { 664 QualType type = e->getAllocatedType(); 665 666 if (!e->isArray()) { 667 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 668 sizeWithoutCookie 669 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 670 return sizeWithoutCookie; 671 } 672 673 // The width of size_t. 674 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 675 676 // Figure out the cookie size. 677 llvm::APInt cookieSize(sizeWidth, 678 CalculateCookiePadding(CGF, e).getQuantity()); 679 680 // Emit the array size expression. 681 // We multiply the size of all dimensions for NumElements. 682 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 683 numElements = 684 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 685 if (!numElements) 686 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 687 assert(isa<llvm::IntegerType>(numElements->getType())); 688 689 // The number of elements can be have an arbitrary integer type; 690 // essentially, we need to multiply it by a constant factor, add a 691 // cookie size, and verify that the result is representable as a 692 // size_t. That's just a gloss, though, and it's wrong in one 693 // important way: if the count is negative, it's an error even if 694 // the cookie size would bring the total size >= 0. 695 bool isSigned 696 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 697 llvm::IntegerType *numElementsType 698 = cast<llvm::IntegerType>(numElements->getType()); 699 unsigned numElementsWidth = numElementsType->getBitWidth(); 700 701 // Compute the constant factor. 702 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 703 while (const ConstantArrayType *CAT 704 = CGF.getContext().getAsConstantArrayType(type)) { 705 type = CAT->getElementType(); 706 arraySizeMultiplier *= CAT->getSize(); 707 } 708 709 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 710 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 711 typeSizeMultiplier *= arraySizeMultiplier; 712 713 // This will be a size_t. 714 llvm::Value *size; 715 716 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 717 // Don't bloat the -O0 code. 718 if (llvm::ConstantInt *numElementsC = 719 dyn_cast<llvm::ConstantInt>(numElements)) { 720 const llvm::APInt &count = numElementsC->getValue(); 721 722 bool hasAnyOverflow = false; 723 724 // If 'count' was a negative number, it's an overflow. 725 if (isSigned && count.isNegative()) 726 hasAnyOverflow = true; 727 728 // We want to do all this arithmetic in size_t. If numElements is 729 // wider than that, check whether it's already too big, and if so, 730 // overflow. 731 else if (numElementsWidth > sizeWidth && 732 numElementsWidth - sizeWidth > count.countLeadingZeros()) 733 hasAnyOverflow = true; 734 735 // Okay, compute a count at the right width. 736 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 737 738 // If there is a brace-initializer, we cannot allocate fewer elements than 739 // there are initializers. If we do, that's treated like an overflow. 740 if (adjustedCount.ult(minElements)) 741 hasAnyOverflow = true; 742 743 // Scale numElements by that. This might overflow, but we don't 744 // care because it only overflows if allocationSize does, too, and 745 // if that overflows then we shouldn't use this. 746 numElements = llvm::ConstantInt::get(CGF.SizeTy, 747 adjustedCount * arraySizeMultiplier); 748 749 // Compute the size before cookie, and track whether it overflowed. 750 bool overflow; 751 llvm::APInt allocationSize 752 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 753 hasAnyOverflow |= overflow; 754 755 // Add in the cookie, and check whether it's overflowed. 756 if (cookieSize != 0) { 757 // Save the current size without a cookie. This shouldn't be 758 // used if there was overflow. 759 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 760 761 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 762 hasAnyOverflow |= overflow; 763 } 764 765 // On overflow, produce a -1 so operator new will fail. 766 if (hasAnyOverflow) { 767 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 768 } else { 769 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 770 } 771 772 // Otherwise, we might need to use the overflow intrinsics. 773 } else { 774 // There are up to five conditions we need to test for: 775 // 1) if isSigned, we need to check whether numElements is negative; 776 // 2) if numElementsWidth > sizeWidth, we need to check whether 777 // numElements is larger than something representable in size_t; 778 // 3) if minElements > 0, we need to check whether numElements is smaller 779 // than that. 780 // 4) we need to compute 781 // sizeWithoutCookie := numElements * typeSizeMultiplier 782 // and check whether it overflows; and 783 // 5) if we need a cookie, we need to compute 784 // size := sizeWithoutCookie + cookieSize 785 // and check whether it overflows. 786 787 llvm::Value *hasOverflow = nullptr; 788 789 // If numElementsWidth > sizeWidth, then one way or another, we're 790 // going to have to do a comparison for (2), and this happens to 791 // take care of (1), too. 792 if (numElementsWidth > sizeWidth) { 793 llvm::APInt threshold(numElementsWidth, 1); 794 threshold <<= sizeWidth; 795 796 llvm::Value *thresholdV 797 = llvm::ConstantInt::get(numElementsType, threshold); 798 799 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 800 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 801 802 // Otherwise, if we're signed, we want to sext up to size_t. 803 } else if (isSigned) { 804 if (numElementsWidth < sizeWidth) 805 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 806 807 // If there's a non-1 type size multiplier, then we can do the 808 // signedness check at the same time as we do the multiply 809 // because a negative number times anything will cause an 810 // unsigned overflow. Otherwise, we have to do it here. But at least 811 // in this case, we can subsume the >= minElements check. 812 if (typeSizeMultiplier == 1) 813 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 814 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 815 816 // Otherwise, zext up to size_t if necessary. 817 } else if (numElementsWidth < sizeWidth) { 818 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 819 } 820 821 assert(numElements->getType() == CGF.SizeTy); 822 823 if (minElements) { 824 // Don't allow allocation of fewer elements than we have initializers. 825 if (!hasOverflow) { 826 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 827 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 828 } else if (numElementsWidth > sizeWidth) { 829 // The other existing overflow subsumes this check. 830 // We do an unsigned comparison, since any signed value < -1 is 831 // taken care of either above or below. 832 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 833 CGF.Builder.CreateICmpULT(numElements, 834 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 835 } 836 } 837 838 size = numElements; 839 840 // Multiply by the type size if necessary. This multiplier 841 // includes all the factors for nested arrays. 842 // 843 // This step also causes numElements to be scaled up by the 844 // nested-array factor if necessary. Overflow on this computation 845 // can be ignored because the result shouldn't be used if 846 // allocation fails. 847 if (typeSizeMultiplier != 1) { 848 llvm::Function *umul_with_overflow 849 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 850 851 llvm::Value *tsmV = 852 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 853 llvm::Value *result = 854 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 855 856 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 857 if (hasOverflow) 858 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 859 else 860 hasOverflow = overflowed; 861 862 size = CGF.Builder.CreateExtractValue(result, 0); 863 864 // Also scale up numElements by the array size multiplier. 865 if (arraySizeMultiplier != 1) { 866 // If the base element type size is 1, then we can re-use the 867 // multiply we just did. 868 if (typeSize.isOne()) { 869 assert(arraySizeMultiplier == typeSizeMultiplier); 870 numElements = size; 871 872 // Otherwise we need a separate multiply. 873 } else { 874 llvm::Value *asmV = 875 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 876 numElements = CGF.Builder.CreateMul(numElements, asmV); 877 } 878 } 879 } else { 880 // numElements doesn't need to be scaled. 881 assert(arraySizeMultiplier == 1); 882 } 883 884 // Add in the cookie size if necessary. 885 if (cookieSize != 0) { 886 sizeWithoutCookie = size; 887 888 llvm::Function *uadd_with_overflow 889 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 890 891 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 892 llvm::Value *result = 893 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 894 895 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 896 if (hasOverflow) 897 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 898 else 899 hasOverflow = overflowed; 900 901 size = CGF.Builder.CreateExtractValue(result, 0); 902 } 903 904 // If we had any possibility of dynamic overflow, make a select to 905 // overwrite 'size' with an all-ones value, which should cause 906 // operator new to throw. 907 if (hasOverflow) 908 size = CGF.Builder.CreateSelect(hasOverflow, 909 llvm::Constant::getAllOnesValue(CGF.SizeTy), 910 size); 911 } 912 913 if (cookieSize == 0) 914 sizeWithoutCookie = size; 915 else 916 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 917 918 return size; 919 } 920 921 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 922 QualType AllocType, Address NewPtr, 923 AggValueSlot::Overlap_t MayOverlap) { 924 // FIXME: Refactor with EmitExprAsInit. 925 switch (CGF.getEvaluationKind(AllocType)) { 926 case TEK_Scalar: 927 CGF.EmitScalarInit(Init, nullptr, 928 CGF.MakeAddrLValue(NewPtr, AllocType), false); 929 return; 930 case TEK_Complex: 931 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 932 /*isInit*/ true); 933 return; 934 case TEK_Aggregate: { 935 AggValueSlot Slot 936 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 937 AggValueSlot::IsDestructed, 938 AggValueSlot::DoesNotNeedGCBarriers, 939 AggValueSlot::IsNotAliased, 940 MayOverlap, AggValueSlot::IsNotZeroed, 941 AggValueSlot::IsSanitizerChecked); 942 CGF.EmitAggExpr(Init, Slot); 943 return; 944 } 945 } 946 llvm_unreachable("bad evaluation kind"); 947 } 948 949 void CodeGenFunction::EmitNewArrayInitializer( 950 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 951 Address BeginPtr, llvm::Value *NumElements, 952 llvm::Value *AllocSizeWithoutCookie) { 953 // If we have a type with trivial initialization and no initializer, 954 // there's nothing to do. 955 if (!E->hasInitializer()) 956 return; 957 958 Address CurPtr = BeginPtr; 959 960 unsigned InitListElements = 0; 961 962 const Expr *Init = E->getInitializer(); 963 Address EndOfInit = Address::invalid(); 964 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 965 EHScopeStack::stable_iterator Cleanup; 966 llvm::Instruction *CleanupDominator = nullptr; 967 968 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 969 CharUnits ElementAlign = 970 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 971 972 // Attempt to perform zero-initialization using memset. 973 auto TryMemsetInitialization = [&]() -> bool { 974 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 975 // we can initialize with a memset to -1. 976 if (!CGM.getTypes().isZeroInitializable(ElementType)) 977 return false; 978 979 // Optimization: since zero initialization will just set the memory 980 // to all zeroes, generate a single memset to do it in one shot. 981 982 // Subtract out the size of any elements we've already initialized. 983 auto *RemainingSize = AllocSizeWithoutCookie; 984 if (InitListElements) { 985 // We know this can't overflow; we check this when doing the allocation. 986 auto *InitializedSize = llvm::ConstantInt::get( 987 RemainingSize->getType(), 988 getContext().getTypeSizeInChars(ElementType).getQuantity() * 989 InitListElements); 990 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 991 } 992 993 // Create the memset. 994 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 995 return true; 996 }; 997 998 // If the initializer is an initializer list, first do the explicit elements. 999 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1000 // Initializing from a (braced) string literal is a special case; the init 1001 // list element does not initialize a (single) array element. 1002 if (ILE->isStringLiteralInit()) { 1003 // Initialize the initial portion of length equal to that of the string 1004 // literal. The allocation must be for at least this much; we emitted a 1005 // check for that earlier. 1006 AggValueSlot Slot = 1007 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1008 AggValueSlot::IsDestructed, 1009 AggValueSlot::DoesNotNeedGCBarriers, 1010 AggValueSlot::IsNotAliased, 1011 AggValueSlot::DoesNotOverlap, 1012 AggValueSlot::IsNotZeroed, 1013 AggValueSlot::IsSanitizerChecked); 1014 EmitAggExpr(ILE->getInit(0), Slot); 1015 1016 // Move past these elements. 1017 InitListElements = 1018 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1019 ->getSize().getZExtValue(); 1020 CurPtr = 1021 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1022 Builder.getSize(InitListElements), 1023 "string.init.end"), 1024 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1025 ElementSize)); 1026 1027 // Zero out the rest, if any remain. 1028 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1029 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1030 bool OK = TryMemsetInitialization(); 1031 (void)OK; 1032 assert(OK && "couldn't memset character type?"); 1033 } 1034 return; 1035 } 1036 1037 InitListElements = ILE->getNumInits(); 1038 1039 // If this is a multi-dimensional array new, we will initialize multiple 1040 // elements with each init list element. 1041 QualType AllocType = E->getAllocatedType(); 1042 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1043 AllocType->getAsArrayTypeUnsafe())) { 1044 ElementTy = ConvertTypeForMem(AllocType); 1045 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1046 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1047 } 1048 1049 // Enter a partial-destruction Cleanup if necessary. 1050 if (needsEHCleanup(DtorKind)) { 1051 // In principle we could tell the Cleanup where we are more 1052 // directly, but the control flow can get so varied here that it 1053 // would actually be quite complex. Therefore we go through an 1054 // alloca. 1055 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1056 "array.init.end"); 1057 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1058 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1059 ElementType, ElementAlign, 1060 getDestroyer(DtorKind)); 1061 Cleanup = EHStack.stable_begin(); 1062 } 1063 1064 CharUnits StartAlign = CurPtr.getAlignment(); 1065 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1066 // Tell the cleanup that it needs to destroy up to this 1067 // element. TODO: some of these stores can be trivially 1068 // observed to be unnecessary. 1069 if (EndOfInit.isValid()) { 1070 auto FinishedPtr = 1071 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1072 Builder.CreateStore(FinishedPtr, EndOfInit); 1073 } 1074 // FIXME: If the last initializer is an incomplete initializer list for 1075 // an array, and we have an array filler, we can fold together the two 1076 // initialization loops. 1077 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1078 ILE->getInit(i)->getType(), CurPtr, 1079 AggValueSlot::DoesNotOverlap); 1080 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1081 Builder.getSize(1), 1082 "array.exp.next"), 1083 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1084 } 1085 1086 // The remaining elements are filled with the array filler expression. 1087 Init = ILE->getArrayFiller(); 1088 1089 // Extract the initializer for the individual array elements by pulling 1090 // out the array filler from all the nested initializer lists. This avoids 1091 // generating a nested loop for the initialization. 1092 while (Init && Init->getType()->isConstantArrayType()) { 1093 auto *SubILE = dyn_cast<InitListExpr>(Init); 1094 if (!SubILE) 1095 break; 1096 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1097 Init = SubILE->getArrayFiller(); 1098 } 1099 1100 // Switch back to initializing one base element at a time. 1101 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1102 } 1103 1104 // If all elements have already been initialized, skip any further 1105 // initialization. 1106 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1107 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1108 // If there was a Cleanup, deactivate it. 1109 if (CleanupDominator) 1110 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1111 return; 1112 } 1113 1114 assert(Init && "have trailing elements to initialize but no initializer"); 1115 1116 // If this is a constructor call, try to optimize it out, and failing that 1117 // emit a single loop to initialize all remaining elements. 1118 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1119 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1120 if (Ctor->isTrivial()) { 1121 // If new expression did not specify value-initialization, then there 1122 // is no initialization. 1123 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1124 return; 1125 1126 if (TryMemsetInitialization()) 1127 return; 1128 } 1129 1130 // Store the new Cleanup position for irregular Cleanups. 1131 // 1132 // FIXME: Share this cleanup with the constructor call emission rather than 1133 // having it create a cleanup of its own. 1134 if (EndOfInit.isValid()) 1135 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1136 1137 // Emit a constructor call loop to initialize the remaining elements. 1138 if (InitListElements) 1139 NumElements = Builder.CreateSub( 1140 NumElements, 1141 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1142 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1143 /*NewPointerIsChecked*/true, 1144 CCE->requiresZeroInitialization()); 1145 return; 1146 } 1147 1148 // If this is value-initialization, we can usually use memset. 1149 ImplicitValueInitExpr IVIE(ElementType); 1150 if (isa<ImplicitValueInitExpr>(Init)) { 1151 if (TryMemsetInitialization()) 1152 return; 1153 1154 // Switch to an ImplicitValueInitExpr for the element type. This handles 1155 // only one case: multidimensional array new of pointers to members. In 1156 // all other cases, we already have an initializer for the array element. 1157 Init = &IVIE; 1158 } 1159 1160 // At this point we should have found an initializer for the individual 1161 // elements of the array. 1162 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1163 "got wrong type of element to initialize"); 1164 1165 // If we have an empty initializer list, we can usually use memset. 1166 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1167 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1168 return; 1169 1170 // If we have a struct whose every field is value-initialized, we can 1171 // usually use memset. 1172 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1173 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1174 if (RType->getDecl()->isStruct()) { 1175 unsigned NumElements = 0; 1176 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1177 NumElements = CXXRD->getNumBases(); 1178 for (auto *Field : RType->getDecl()->fields()) 1179 if (!Field->isUnnamedBitfield()) 1180 ++NumElements; 1181 // FIXME: Recurse into nested InitListExprs. 1182 if (ILE->getNumInits() == NumElements) 1183 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1184 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1185 --NumElements; 1186 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1187 return; 1188 } 1189 } 1190 } 1191 1192 // Create the loop blocks. 1193 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1194 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1195 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1196 1197 // Find the end of the array, hoisted out of the loop. 1198 llvm::Value *EndPtr = 1199 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1200 1201 // If the number of elements isn't constant, we have to now check if there is 1202 // anything left to initialize. 1203 if (!ConstNum) { 1204 llvm::Value *IsEmpty = 1205 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1206 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1207 } 1208 1209 // Enter the loop. 1210 EmitBlock(LoopBB); 1211 1212 // Set up the current-element phi. 1213 llvm::PHINode *CurPtrPhi = 1214 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1215 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1216 1217 CurPtr = Address(CurPtrPhi, ElementAlign); 1218 1219 // Store the new Cleanup position for irregular Cleanups. 1220 if (EndOfInit.isValid()) 1221 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1222 1223 // Enter a partial-destruction Cleanup if necessary. 1224 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1225 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1226 ElementType, ElementAlign, 1227 getDestroyer(DtorKind)); 1228 Cleanup = EHStack.stable_begin(); 1229 CleanupDominator = Builder.CreateUnreachable(); 1230 } 1231 1232 // Emit the initializer into this element. 1233 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1234 AggValueSlot::DoesNotOverlap); 1235 1236 // Leave the Cleanup if we entered one. 1237 if (CleanupDominator) { 1238 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1239 CleanupDominator->eraseFromParent(); 1240 } 1241 1242 // Advance to the next element by adjusting the pointer type as necessary. 1243 llvm::Value *NextPtr = 1244 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1245 "array.next"); 1246 1247 // Check whether we've gotten to the end of the array and, if so, 1248 // exit the loop. 1249 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1250 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1251 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1252 1253 EmitBlock(ContBB); 1254 } 1255 1256 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1257 QualType ElementType, llvm::Type *ElementTy, 1258 Address NewPtr, llvm::Value *NumElements, 1259 llvm::Value *AllocSizeWithoutCookie) { 1260 ApplyDebugLocation DL(CGF, E); 1261 if (E->isArray()) 1262 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1263 AllocSizeWithoutCookie); 1264 else if (const Expr *Init = E->getInitializer()) 1265 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1266 AggValueSlot::DoesNotOverlap); 1267 } 1268 1269 /// Emit a call to an operator new or operator delete function, as implicitly 1270 /// created by new-expressions and delete-expressions. 1271 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1272 const FunctionDecl *CalleeDecl, 1273 const FunctionProtoType *CalleeType, 1274 const CallArgList &Args) { 1275 llvm::CallBase *CallOrInvoke; 1276 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1277 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1278 RValue RV = 1279 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1280 Args, CalleeType, /*chainCall=*/false), 1281 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1282 1283 /// C++1y [expr.new]p10: 1284 /// [In a new-expression,] an implementation is allowed to omit a call 1285 /// to a replaceable global allocation function. 1286 /// 1287 /// We model such elidable calls with the 'builtin' attribute. 1288 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1289 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1290 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1291 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1292 llvm::Attribute::Builtin); 1293 } 1294 1295 return RV; 1296 } 1297 1298 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1299 const CallExpr *TheCall, 1300 bool IsDelete) { 1301 CallArgList Args; 1302 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1303 // Find the allocation or deallocation function that we're calling. 1304 ASTContext &Ctx = getContext(); 1305 DeclarationName Name = Ctx.DeclarationNames 1306 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1307 1308 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1309 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1310 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1311 return EmitNewDeleteCall(*this, FD, Type, Args); 1312 llvm_unreachable("predeclared global operator new/delete is missing"); 1313 } 1314 1315 namespace { 1316 /// The parameters to pass to a usual operator delete. 1317 struct UsualDeleteParams { 1318 bool DestroyingDelete = false; 1319 bool Size = false; 1320 bool Alignment = false; 1321 }; 1322 } 1323 1324 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1325 UsualDeleteParams Params; 1326 1327 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1328 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1329 1330 // The first argument is always a void*. 1331 ++AI; 1332 1333 // The next parameter may be a std::destroying_delete_t. 1334 if (FD->isDestroyingOperatorDelete()) { 1335 Params.DestroyingDelete = true; 1336 assert(AI != AE); 1337 ++AI; 1338 } 1339 1340 // Figure out what other parameters we should be implicitly passing. 1341 if (AI != AE && (*AI)->isIntegerType()) { 1342 Params.Size = true; 1343 ++AI; 1344 } 1345 1346 if (AI != AE && (*AI)->isAlignValT()) { 1347 Params.Alignment = true; 1348 ++AI; 1349 } 1350 1351 assert(AI == AE && "unexpected usual deallocation function parameter"); 1352 return Params; 1353 } 1354 1355 namespace { 1356 /// A cleanup to call the given 'operator delete' function upon abnormal 1357 /// exit from a new expression. Templated on a traits type that deals with 1358 /// ensuring that the arguments dominate the cleanup if necessary. 1359 template<typename Traits> 1360 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1361 /// Type used to hold llvm::Value*s. 1362 typedef typename Traits::ValueTy ValueTy; 1363 /// Type used to hold RValues. 1364 typedef typename Traits::RValueTy RValueTy; 1365 struct PlacementArg { 1366 RValueTy ArgValue; 1367 QualType ArgType; 1368 }; 1369 1370 unsigned NumPlacementArgs : 31; 1371 unsigned PassAlignmentToPlacementDelete : 1; 1372 const FunctionDecl *OperatorDelete; 1373 ValueTy Ptr; 1374 ValueTy AllocSize; 1375 CharUnits AllocAlign; 1376 1377 PlacementArg *getPlacementArgs() { 1378 return reinterpret_cast<PlacementArg *>(this + 1); 1379 } 1380 1381 public: 1382 static size_t getExtraSize(size_t NumPlacementArgs) { 1383 return NumPlacementArgs * sizeof(PlacementArg); 1384 } 1385 1386 CallDeleteDuringNew(size_t NumPlacementArgs, 1387 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1388 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1389 CharUnits AllocAlign) 1390 : NumPlacementArgs(NumPlacementArgs), 1391 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1392 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1393 AllocAlign(AllocAlign) {} 1394 1395 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1396 assert(I < NumPlacementArgs && "index out of range"); 1397 getPlacementArgs()[I] = {Arg, Type}; 1398 } 1399 1400 void Emit(CodeGenFunction &CGF, Flags flags) override { 1401 const FunctionProtoType *FPT = 1402 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1403 CallArgList DeleteArgs; 1404 1405 // The first argument is always a void* (or C* for a destroying operator 1406 // delete for class type C). 1407 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1408 1409 // Figure out what other parameters we should be implicitly passing. 1410 UsualDeleteParams Params; 1411 if (NumPlacementArgs) { 1412 // A placement deallocation function is implicitly passed an alignment 1413 // if the placement allocation function was, but is never passed a size. 1414 Params.Alignment = PassAlignmentToPlacementDelete; 1415 } else { 1416 // For a non-placement new-expression, 'operator delete' can take a 1417 // size and/or an alignment if it has the right parameters. 1418 Params = getUsualDeleteParams(OperatorDelete); 1419 } 1420 1421 assert(!Params.DestroyingDelete && 1422 "should not call destroying delete in a new-expression"); 1423 1424 // The second argument can be a std::size_t (for non-placement delete). 1425 if (Params.Size) 1426 DeleteArgs.add(Traits::get(CGF, AllocSize), 1427 CGF.getContext().getSizeType()); 1428 1429 // The next (second or third) argument can be a std::align_val_t, which 1430 // is an enum whose underlying type is std::size_t. 1431 // FIXME: Use the right type as the parameter type. Note that in a call 1432 // to operator delete(size_t, ...), we may not have it available. 1433 if (Params.Alignment) 1434 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1435 CGF.SizeTy, AllocAlign.getQuantity())), 1436 CGF.getContext().getSizeType()); 1437 1438 // Pass the rest of the arguments, which must match exactly. 1439 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1440 auto Arg = getPlacementArgs()[I]; 1441 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1442 } 1443 1444 // Call 'operator delete'. 1445 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1446 } 1447 }; 1448 } 1449 1450 /// Enter a cleanup to call 'operator delete' if the initializer in a 1451 /// new-expression throws. 1452 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1453 const CXXNewExpr *E, 1454 Address NewPtr, 1455 llvm::Value *AllocSize, 1456 CharUnits AllocAlign, 1457 const CallArgList &NewArgs) { 1458 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1459 1460 // If we're not inside a conditional branch, then the cleanup will 1461 // dominate and we can do the easier (and more efficient) thing. 1462 if (!CGF.isInConditionalBranch()) { 1463 struct DirectCleanupTraits { 1464 typedef llvm::Value *ValueTy; 1465 typedef RValue RValueTy; 1466 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1467 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1468 }; 1469 1470 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1471 1472 DirectCleanup *Cleanup = CGF.EHStack 1473 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1474 E->getNumPlacementArgs(), 1475 E->getOperatorDelete(), 1476 NewPtr.getPointer(), 1477 AllocSize, 1478 E->passAlignment(), 1479 AllocAlign); 1480 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1481 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1482 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1483 } 1484 1485 return; 1486 } 1487 1488 // Otherwise, we need to save all this stuff. 1489 DominatingValue<RValue>::saved_type SavedNewPtr = 1490 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1491 DominatingValue<RValue>::saved_type SavedAllocSize = 1492 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1493 1494 struct ConditionalCleanupTraits { 1495 typedef DominatingValue<RValue>::saved_type ValueTy; 1496 typedef DominatingValue<RValue>::saved_type RValueTy; 1497 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1498 return V.restore(CGF); 1499 } 1500 }; 1501 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1502 1503 ConditionalCleanup *Cleanup = CGF.EHStack 1504 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1505 E->getNumPlacementArgs(), 1506 E->getOperatorDelete(), 1507 SavedNewPtr, 1508 SavedAllocSize, 1509 E->passAlignment(), 1510 AllocAlign); 1511 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1512 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1513 Cleanup->setPlacementArg( 1514 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1515 } 1516 1517 CGF.initFullExprCleanup(); 1518 } 1519 1520 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1521 // The element type being allocated. 1522 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1523 1524 // 1. Build a call to the allocation function. 1525 FunctionDecl *allocator = E->getOperatorNew(); 1526 1527 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1528 unsigned minElements = 0; 1529 if (E->isArray() && E->hasInitializer()) { 1530 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1531 if (ILE && ILE->isStringLiteralInit()) 1532 minElements = 1533 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1534 ->getSize().getZExtValue(); 1535 else if (ILE) 1536 minElements = ILE->getNumInits(); 1537 } 1538 1539 llvm::Value *numElements = nullptr; 1540 llvm::Value *allocSizeWithoutCookie = nullptr; 1541 llvm::Value *allocSize = 1542 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1543 allocSizeWithoutCookie); 1544 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1545 1546 // Emit the allocation call. If the allocator is a global placement 1547 // operator, just "inline" it directly. 1548 Address allocation = Address::invalid(); 1549 CallArgList allocatorArgs; 1550 if (allocator->isReservedGlobalPlacementOperator()) { 1551 assert(E->getNumPlacementArgs() == 1); 1552 const Expr *arg = *E->placement_arguments().begin(); 1553 1554 LValueBaseInfo BaseInfo; 1555 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1556 1557 // The pointer expression will, in many cases, be an opaque void*. 1558 // In these cases, discard the computed alignment and use the 1559 // formal alignment of the allocated type. 1560 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1561 allocation = Address(allocation.getPointer(), allocAlign); 1562 1563 // Set up allocatorArgs for the call to operator delete if it's not 1564 // the reserved global operator. 1565 if (E->getOperatorDelete() && 1566 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1567 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1568 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1569 } 1570 1571 } else { 1572 const FunctionProtoType *allocatorType = 1573 allocator->getType()->castAs<FunctionProtoType>(); 1574 unsigned ParamsToSkip = 0; 1575 1576 // The allocation size is the first argument. 1577 QualType sizeType = getContext().getSizeType(); 1578 allocatorArgs.add(RValue::get(allocSize), sizeType); 1579 ++ParamsToSkip; 1580 1581 if (allocSize != allocSizeWithoutCookie) { 1582 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1583 allocAlign = std::max(allocAlign, cookieAlign); 1584 } 1585 1586 // The allocation alignment may be passed as the second argument. 1587 if (E->passAlignment()) { 1588 QualType AlignValT = sizeType; 1589 if (allocatorType->getNumParams() > 1) { 1590 AlignValT = allocatorType->getParamType(1); 1591 assert(getContext().hasSameUnqualifiedType( 1592 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1593 sizeType) && 1594 "wrong type for alignment parameter"); 1595 ++ParamsToSkip; 1596 } else { 1597 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1598 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1599 } 1600 allocatorArgs.add( 1601 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1602 AlignValT); 1603 } 1604 1605 // FIXME: Why do we not pass a CalleeDecl here? 1606 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1607 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1608 1609 RValue RV = 1610 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1611 1612 // If this was a call to a global replaceable allocation function that does 1613 // not take an alignment argument, the allocator is known to produce 1614 // storage that's suitably aligned for any object that fits, up to a known 1615 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1616 CharUnits allocationAlign = allocAlign; 1617 if (!E->passAlignment() && 1618 allocator->isReplaceableGlobalAllocationFunction()) { 1619 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1620 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1621 allocationAlign = std::max( 1622 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1623 } 1624 1625 allocation = Address(RV.getScalarVal(), allocationAlign); 1626 } 1627 1628 // Emit a null check on the allocation result if the allocation 1629 // function is allowed to return null (because it has a non-throwing 1630 // exception spec or is the reserved placement new) and we have an 1631 // interesting initializer will be running sanitizers on the initialization. 1632 bool nullCheck = E->shouldNullCheckAllocation() && 1633 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1634 sanitizePerformTypeCheck()); 1635 1636 llvm::BasicBlock *nullCheckBB = nullptr; 1637 llvm::BasicBlock *contBB = nullptr; 1638 1639 // The null-check means that the initializer is conditionally 1640 // evaluated. 1641 ConditionalEvaluation conditional(*this); 1642 1643 if (nullCheck) { 1644 conditional.begin(*this); 1645 1646 nullCheckBB = Builder.GetInsertBlock(); 1647 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1648 contBB = createBasicBlock("new.cont"); 1649 1650 llvm::Value *isNull = 1651 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1652 Builder.CreateCondBr(isNull, contBB, notNullBB); 1653 EmitBlock(notNullBB); 1654 } 1655 1656 // If there's an operator delete, enter a cleanup to call it if an 1657 // exception is thrown. 1658 EHScopeStack::stable_iterator operatorDeleteCleanup; 1659 llvm::Instruction *cleanupDominator = nullptr; 1660 if (E->getOperatorDelete() && 1661 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1662 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1663 allocatorArgs); 1664 operatorDeleteCleanup = EHStack.stable_begin(); 1665 cleanupDominator = Builder.CreateUnreachable(); 1666 } 1667 1668 assert((allocSize == allocSizeWithoutCookie) == 1669 CalculateCookiePadding(*this, E).isZero()); 1670 if (allocSize != allocSizeWithoutCookie) { 1671 assert(E->isArray()); 1672 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1673 numElements, 1674 E, allocType); 1675 } 1676 1677 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1678 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1679 1680 // Passing pointer through launder.invariant.group to avoid propagation of 1681 // vptrs information which may be included in previous type. 1682 // To not break LTO with different optimizations levels, we do it regardless 1683 // of optimization level. 1684 if (CGM.getCodeGenOpts().StrictVTablePointers && 1685 allocator->isReservedGlobalPlacementOperator()) 1686 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1687 result.getAlignment()); 1688 1689 // Emit sanitizer checks for pointer value now, so that in the case of an 1690 // array it was checked only once and not at each constructor call. We may 1691 // have already checked that the pointer is non-null. 1692 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1693 // we'll null check the wrong pointer here. 1694 SanitizerSet SkippedChecks; 1695 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1696 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1697 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1698 result.getPointer(), allocType, result.getAlignment(), 1699 SkippedChecks, numElements); 1700 1701 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1702 allocSizeWithoutCookie); 1703 if (E->isArray()) { 1704 // NewPtr is a pointer to the base element type. If we're 1705 // allocating an array of arrays, we'll need to cast back to the 1706 // array pointer type. 1707 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1708 if (result.getType() != resultType) 1709 result = Builder.CreateBitCast(result, resultType); 1710 } 1711 1712 // Deactivate the 'operator delete' cleanup if we finished 1713 // initialization. 1714 if (operatorDeleteCleanup.isValid()) { 1715 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1716 cleanupDominator->eraseFromParent(); 1717 } 1718 1719 llvm::Value *resultPtr = result.getPointer(); 1720 if (nullCheck) { 1721 conditional.end(*this); 1722 1723 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1724 EmitBlock(contBB); 1725 1726 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1727 PHI->addIncoming(resultPtr, notNullBB); 1728 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1729 nullCheckBB); 1730 1731 resultPtr = PHI; 1732 } 1733 1734 return resultPtr; 1735 } 1736 1737 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1738 llvm::Value *Ptr, QualType DeleteTy, 1739 llvm::Value *NumElements, 1740 CharUnits CookieSize) { 1741 assert((!NumElements && CookieSize.isZero()) || 1742 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1743 1744 const FunctionProtoType *DeleteFTy = 1745 DeleteFD->getType()->getAs<FunctionProtoType>(); 1746 1747 CallArgList DeleteArgs; 1748 1749 auto Params = getUsualDeleteParams(DeleteFD); 1750 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1751 1752 // Pass the pointer itself. 1753 QualType ArgTy = *ParamTypeIt++; 1754 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1755 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1756 1757 // Pass the std::destroying_delete tag if present. 1758 if (Params.DestroyingDelete) { 1759 QualType DDTag = *ParamTypeIt++; 1760 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1761 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1762 DeleteArgs.add(RValue::get(V), DDTag); 1763 } 1764 1765 // Pass the size if the delete function has a size_t parameter. 1766 if (Params.Size) { 1767 QualType SizeType = *ParamTypeIt++; 1768 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1769 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1770 DeleteTypeSize.getQuantity()); 1771 1772 // For array new, multiply by the number of elements. 1773 if (NumElements) 1774 Size = Builder.CreateMul(Size, NumElements); 1775 1776 // If there is a cookie, add the cookie size. 1777 if (!CookieSize.isZero()) 1778 Size = Builder.CreateAdd( 1779 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1780 1781 DeleteArgs.add(RValue::get(Size), SizeType); 1782 } 1783 1784 // Pass the alignment if the delete function has an align_val_t parameter. 1785 if (Params.Alignment) { 1786 QualType AlignValType = *ParamTypeIt++; 1787 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1788 getContext().getTypeAlignIfKnown(DeleteTy)); 1789 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1790 DeleteTypeAlign.getQuantity()); 1791 DeleteArgs.add(RValue::get(Align), AlignValType); 1792 } 1793 1794 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1795 "unknown parameter to usual delete function"); 1796 1797 // Emit the call to delete. 1798 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1799 } 1800 1801 namespace { 1802 /// Calls the given 'operator delete' on a single object. 1803 struct CallObjectDelete final : EHScopeStack::Cleanup { 1804 llvm::Value *Ptr; 1805 const FunctionDecl *OperatorDelete; 1806 QualType ElementType; 1807 1808 CallObjectDelete(llvm::Value *Ptr, 1809 const FunctionDecl *OperatorDelete, 1810 QualType ElementType) 1811 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1812 1813 void Emit(CodeGenFunction &CGF, Flags flags) override { 1814 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1815 } 1816 }; 1817 } 1818 1819 void 1820 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1821 llvm::Value *CompletePtr, 1822 QualType ElementType) { 1823 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1824 OperatorDelete, ElementType); 1825 } 1826 1827 /// Emit the code for deleting a single object with a destroying operator 1828 /// delete. If the element type has a non-virtual destructor, Ptr has already 1829 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1830 /// Ptr points to an object of the static type. 1831 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1832 const CXXDeleteExpr *DE, Address Ptr, 1833 QualType ElementType) { 1834 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1835 if (Dtor && Dtor->isVirtual()) 1836 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1837 Dtor); 1838 else 1839 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1840 } 1841 1842 /// Emit the code for deleting a single object. 1843 static void EmitObjectDelete(CodeGenFunction &CGF, 1844 const CXXDeleteExpr *DE, 1845 Address Ptr, 1846 QualType ElementType) { 1847 // C++11 [expr.delete]p3: 1848 // If the static type of the object to be deleted is different from its 1849 // dynamic type, the static type shall be a base class of the dynamic type 1850 // of the object to be deleted and the static type shall have a virtual 1851 // destructor or the behavior is undefined. 1852 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1853 DE->getExprLoc(), Ptr.getPointer(), 1854 ElementType); 1855 1856 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1857 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1858 1859 // Find the destructor for the type, if applicable. If the 1860 // destructor is virtual, we'll just emit the vcall and return. 1861 const CXXDestructorDecl *Dtor = nullptr; 1862 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1863 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1864 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1865 Dtor = RD->getDestructor(); 1866 1867 if (Dtor->isVirtual()) { 1868 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1869 Dtor); 1870 return; 1871 } 1872 } 1873 } 1874 1875 // Make sure that we call delete even if the dtor throws. 1876 // This doesn't have to a conditional cleanup because we're going 1877 // to pop it off in a second. 1878 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1879 Ptr.getPointer(), 1880 OperatorDelete, ElementType); 1881 1882 if (Dtor) 1883 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1884 /*ForVirtualBase=*/false, 1885 /*Delegating=*/false, 1886 Ptr); 1887 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1888 switch (Lifetime) { 1889 case Qualifiers::OCL_None: 1890 case Qualifiers::OCL_ExplicitNone: 1891 case Qualifiers::OCL_Autoreleasing: 1892 break; 1893 1894 case Qualifiers::OCL_Strong: 1895 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1896 break; 1897 1898 case Qualifiers::OCL_Weak: 1899 CGF.EmitARCDestroyWeak(Ptr); 1900 break; 1901 } 1902 } 1903 1904 CGF.PopCleanupBlock(); 1905 } 1906 1907 namespace { 1908 /// Calls the given 'operator delete' on an array of objects. 1909 struct CallArrayDelete final : EHScopeStack::Cleanup { 1910 llvm::Value *Ptr; 1911 const FunctionDecl *OperatorDelete; 1912 llvm::Value *NumElements; 1913 QualType ElementType; 1914 CharUnits CookieSize; 1915 1916 CallArrayDelete(llvm::Value *Ptr, 1917 const FunctionDecl *OperatorDelete, 1918 llvm::Value *NumElements, 1919 QualType ElementType, 1920 CharUnits CookieSize) 1921 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1922 ElementType(ElementType), CookieSize(CookieSize) {} 1923 1924 void Emit(CodeGenFunction &CGF, Flags flags) override { 1925 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1926 CookieSize); 1927 } 1928 }; 1929 } 1930 1931 /// Emit the code for deleting an array of objects. 1932 static void EmitArrayDelete(CodeGenFunction &CGF, 1933 const CXXDeleteExpr *E, 1934 Address deletedPtr, 1935 QualType elementType) { 1936 llvm::Value *numElements = nullptr; 1937 llvm::Value *allocatedPtr = nullptr; 1938 CharUnits cookieSize; 1939 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1940 numElements, allocatedPtr, cookieSize); 1941 1942 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1943 1944 // Make sure that we call delete even if one of the dtors throws. 1945 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1946 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1947 allocatedPtr, operatorDelete, 1948 numElements, elementType, 1949 cookieSize); 1950 1951 // Destroy the elements. 1952 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1953 assert(numElements && "no element count for a type with a destructor!"); 1954 1955 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1956 CharUnits elementAlign = 1957 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1958 1959 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1960 llvm::Value *arrayEnd = 1961 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1962 1963 // Note that it is legal to allocate a zero-length array, and we 1964 // can never fold the check away because the length should always 1965 // come from a cookie. 1966 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1967 CGF.getDestroyer(dtorKind), 1968 /*checkZeroLength*/ true, 1969 CGF.needsEHCleanup(dtorKind)); 1970 } 1971 1972 // Pop the cleanup block. 1973 CGF.PopCleanupBlock(); 1974 } 1975 1976 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1977 const Expr *Arg = E->getArgument(); 1978 Address Ptr = EmitPointerWithAlignment(Arg); 1979 1980 // Null check the pointer. 1981 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1982 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1983 1984 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1985 1986 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1987 EmitBlock(DeleteNotNull); 1988 1989 QualType DeleteTy = E->getDestroyedType(); 1990 1991 // A destroying operator delete overrides the entire operation of the 1992 // delete expression. 1993 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1994 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 1995 EmitBlock(DeleteEnd); 1996 return; 1997 } 1998 1999 // We might be deleting a pointer to array. If so, GEP down to the 2000 // first non-array element. 2001 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2002 if (DeleteTy->isConstantArrayType()) { 2003 llvm::Value *Zero = Builder.getInt32(0); 2004 SmallVector<llvm::Value*,8> GEP; 2005 2006 GEP.push_back(Zero); // point at the outermost array 2007 2008 // For each layer of array type we're pointing at: 2009 while (const ConstantArrayType *Arr 2010 = getContext().getAsConstantArrayType(DeleteTy)) { 2011 // 1. Unpeel the array type. 2012 DeleteTy = Arr->getElementType(); 2013 2014 // 2. GEP to the first element of the array. 2015 GEP.push_back(Zero); 2016 } 2017 2018 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2019 Ptr.getAlignment()); 2020 } 2021 2022 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2023 2024 if (E->isArrayForm()) { 2025 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2026 } else { 2027 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2028 } 2029 2030 EmitBlock(DeleteEnd); 2031 } 2032 2033 static bool isGLValueFromPointerDeref(const Expr *E) { 2034 E = E->IgnoreParens(); 2035 2036 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2037 if (!CE->getSubExpr()->isGLValue()) 2038 return false; 2039 return isGLValueFromPointerDeref(CE->getSubExpr()); 2040 } 2041 2042 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2043 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2044 2045 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2046 if (BO->getOpcode() == BO_Comma) 2047 return isGLValueFromPointerDeref(BO->getRHS()); 2048 2049 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2050 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2051 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2052 2053 // C++11 [expr.sub]p1: 2054 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2055 if (isa<ArraySubscriptExpr>(E)) 2056 return true; 2057 2058 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2059 if (UO->getOpcode() == UO_Deref) 2060 return true; 2061 2062 return false; 2063 } 2064 2065 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2066 llvm::Type *StdTypeInfoPtrTy) { 2067 // Get the vtable pointer. 2068 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2069 2070 QualType SrcRecordTy = E->getType(); 2071 2072 // C++ [class.cdtor]p4: 2073 // If the operand of typeid refers to the object under construction or 2074 // destruction and the static type of the operand is neither the constructor 2075 // or destructor’s class nor one of its bases, the behavior is undefined. 2076 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2077 ThisPtr.getPointer(), SrcRecordTy); 2078 2079 // C++ [expr.typeid]p2: 2080 // If the glvalue expression is obtained by applying the unary * operator to 2081 // a pointer and the pointer is a null pointer value, the typeid expression 2082 // throws the std::bad_typeid exception. 2083 // 2084 // However, this paragraph's intent is not clear. We choose a very generous 2085 // interpretation which implores us to consider comma operators, conditional 2086 // operators, parentheses and other such constructs. 2087 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2088 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2089 llvm::BasicBlock *BadTypeidBlock = 2090 CGF.createBasicBlock("typeid.bad_typeid"); 2091 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2092 2093 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2094 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2095 2096 CGF.EmitBlock(BadTypeidBlock); 2097 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2098 CGF.EmitBlock(EndBlock); 2099 } 2100 2101 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2102 StdTypeInfoPtrTy); 2103 } 2104 2105 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2106 llvm::Type *StdTypeInfoPtrTy = 2107 ConvertType(E->getType())->getPointerTo(); 2108 2109 if (E->isTypeOperand()) { 2110 llvm::Constant *TypeInfo = 2111 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2112 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2113 } 2114 2115 // C++ [expr.typeid]p2: 2116 // When typeid is applied to a glvalue expression whose type is a 2117 // polymorphic class type, the result refers to a std::type_info object 2118 // representing the type of the most derived object (that is, the dynamic 2119 // type) to which the glvalue refers. 2120 if (E->isPotentiallyEvaluated()) 2121 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2122 StdTypeInfoPtrTy); 2123 2124 QualType OperandTy = E->getExprOperand()->getType(); 2125 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2126 StdTypeInfoPtrTy); 2127 } 2128 2129 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2130 QualType DestTy) { 2131 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2132 if (DestTy->isPointerType()) 2133 return llvm::Constant::getNullValue(DestLTy); 2134 2135 /// C++ [expr.dynamic.cast]p9: 2136 /// A failed cast to reference type throws std::bad_cast 2137 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2138 return nullptr; 2139 2140 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2141 return llvm::UndefValue::get(DestLTy); 2142 } 2143 2144 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2145 const CXXDynamicCastExpr *DCE) { 2146 CGM.EmitExplicitCastExprType(DCE, this); 2147 QualType DestTy = DCE->getTypeAsWritten(); 2148 2149 QualType SrcTy = DCE->getSubExpr()->getType(); 2150 2151 // C++ [expr.dynamic.cast]p7: 2152 // If T is "pointer to cv void," then the result is a pointer to the most 2153 // derived object pointed to by v. 2154 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2155 2156 bool isDynamicCastToVoid; 2157 QualType SrcRecordTy; 2158 QualType DestRecordTy; 2159 if (DestPTy) { 2160 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2161 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2162 DestRecordTy = DestPTy->getPointeeType(); 2163 } else { 2164 isDynamicCastToVoid = false; 2165 SrcRecordTy = SrcTy; 2166 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2167 } 2168 2169 // C++ [class.cdtor]p5: 2170 // If the operand of the dynamic_cast refers to the object under 2171 // construction or destruction and the static type of the operand is not a 2172 // pointer to or object of the constructor or destructor’s own class or one 2173 // of its bases, the dynamic_cast results in undefined behavior. 2174 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2175 SrcRecordTy); 2176 2177 if (DCE->isAlwaysNull()) 2178 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2179 return T; 2180 2181 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2182 2183 // C++ [expr.dynamic.cast]p4: 2184 // If the value of v is a null pointer value in the pointer case, the result 2185 // is the null pointer value of type T. 2186 bool ShouldNullCheckSrcValue = 2187 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2188 SrcRecordTy); 2189 2190 llvm::BasicBlock *CastNull = nullptr; 2191 llvm::BasicBlock *CastNotNull = nullptr; 2192 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2193 2194 if (ShouldNullCheckSrcValue) { 2195 CastNull = createBasicBlock("dynamic_cast.null"); 2196 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2197 2198 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2199 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2200 EmitBlock(CastNotNull); 2201 } 2202 2203 llvm::Value *Value; 2204 if (isDynamicCastToVoid) { 2205 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2206 DestTy); 2207 } else { 2208 assert(DestRecordTy->isRecordType() && 2209 "destination type must be a record type!"); 2210 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2211 DestTy, DestRecordTy, CastEnd); 2212 CastNotNull = Builder.GetInsertBlock(); 2213 } 2214 2215 if (ShouldNullCheckSrcValue) { 2216 EmitBranch(CastEnd); 2217 2218 EmitBlock(CastNull); 2219 EmitBranch(CastEnd); 2220 } 2221 2222 EmitBlock(CastEnd); 2223 2224 if (ShouldNullCheckSrcValue) { 2225 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2226 PHI->addIncoming(Value, CastNotNull); 2227 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2228 2229 Value = PHI; 2230 } 2231 2232 return Value; 2233 } 2234