1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "llvm/IR/Intrinsics.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 struct MemberCallInfo {
28   RequiredArgs ReqArgs;
29   // Number of prefix arguments for the call. Ignores the `this` pointer.
30   unsigned PrefixSize;
31 };
32 }
33 
34 static MemberCallInfo
35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
36                                   llvm::Value *This, llvm::Value *ImplicitParam,
37                                   QualType ImplicitParamTy, const CallExpr *CE,
38                                   CallArgList &Args, CallArgList *RtlArgs) {
39   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40          isa<CXXOperatorCallExpr>(CE));
41   assert(MD->isInstance() &&
42          "Trying to emit a member or operator call expr on a static method!");
43 
44   // Push the this ptr.
45   const CXXRecordDecl *RD =
46       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
47   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48 
49   // If there is an implicit parameter (e.g. VTT), emit it.
50   if (ImplicitParam) {
51     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52   }
53 
54   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
56   unsigned PrefixSize = Args.size() - 1;
57 
58   // And the rest of the call args.
59   if (RtlArgs) {
60     // Special case: if the caller emitted the arguments right-to-left already
61     // (prior to emitting the *this argument), we're done. This happens for
62     // assignment operators.
63     Args.addFrom(*RtlArgs);
64   } else if (CE) {
65     // Special case: skip first argument of CXXOperatorCall (it is "this").
66     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68                      CE->getDirectCallee());
69   } else {
70     assert(
71         FPT->getNumParams() == 0 &&
72         "No CallExpr specified for function with non-zero number of arguments");
73   }
74   return {required, PrefixSize};
75 }
76 
77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
78     const CXXMethodDecl *MD, const CGCallee &Callee,
79     ReturnValueSlot ReturnValue,
80     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
81     const CallExpr *CE, CallArgList *RtlArgs) {
82   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83   CallArgList Args;
84   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
86   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
88   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
89                   CE ? CE->getExprLoc() : SourceLocation());
90 }
91 
92 RValue CodeGenFunction::EmitCXXDestructorCall(
93     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This,
94     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
95   CallArgList Args;
96   commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()),
97                                     This, ImplicitParam, ImplicitParamTy, CE,
98                                     Args, nullptr);
99   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
100                   ReturnValueSlot(), Args);
101 }
102 
103 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
104                                             const CXXPseudoDestructorExpr *E) {
105   QualType DestroyedType = E->getDestroyedType();
106   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107     // Automatic Reference Counting:
108     //   If the pseudo-expression names a retainable object with weak or
109     //   strong lifetime, the object shall be released.
110     Expr *BaseExpr = E->getBase();
111     Address BaseValue = Address::invalid();
112     Qualifiers BaseQuals;
113 
114     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115     if (E->isArrow()) {
116       BaseValue = EmitPointerWithAlignment(BaseExpr);
117       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118       BaseQuals = PTy->getPointeeType().getQualifiers();
119     } else {
120       LValue BaseLV = EmitLValue(BaseExpr);
121       BaseValue = BaseLV.getAddress();
122       QualType BaseTy = BaseExpr->getType();
123       BaseQuals = BaseTy.getQualifiers();
124     }
125 
126     switch (DestroyedType.getObjCLifetime()) {
127     case Qualifiers::OCL_None:
128     case Qualifiers::OCL_ExplicitNone:
129     case Qualifiers::OCL_Autoreleasing:
130       break;
131 
132     case Qualifiers::OCL_Strong:
133       EmitARCRelease(Builder.CreateLoad(BaseValue,
134                         DestroyedType.isVolatileQualified()),
135                      ARCPreciseLifetime);
136       break;
137 
138     case Qualifiers::OCL_Weak:
139       EmitARCDestroyWeak(BaseValue);
140       break;
141     }
142   } else {
143     // C++ [expr.pseudo]p1:
144     //   The result shall only be used as the operand for the function call
145     //   operator (), and the result of such a call has type void. The only
146     //   effect is the evaluation of the postfix-expression before the dot or
147     //   arrow.
148     EmitIgnoredExpr(E->getBase());
149   }
150 
151   return RValue::get(nullptr);
152 }
153 
154 static CXXRecordDecl *getCXXRecord(const Expr *E) {
155   QualType T = E->getType();
156   if (const PointerType *PTy = T->getAs<PointerType>())
157     T = PTy->getPointeeType();
158   const RecordType *Ty = T->castAs<RecordType>();
159   return cast<CXXRecordDecl>(Ty->getDecl());
160 }
161 
162 // Note: This function also emit constructor calls to support a MSVC
163 // extensions allowing explicit constructor function call.
164 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
165                                               ReturnValueSlot ReturnValue) {
166   const Expr *callee = CE->getCallee()->IgnoreParens();
167 
168   if (isa<BinaryOperator>(callee))
169     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
170 
171   const MemberExpr *ME = cast<MemberExpr>(callee);
172   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173 
174   if (MD->isStatic()) {
175     // The method is static, emit it as we would a regular call.
176     CGCallee callee =
177         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
179                     ReturnValue);
180   }
181 
182   bool HasQualifier = ME->hasQualifier();
183   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184   bool IsArrow = ME->isArrow();
185   const Expr *Base = ME->getBase();
186 
187   return EmitCXXMemberOrOperatorMemberCallExpr(
188       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
189 }
190 
191 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
192     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
193     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
194     const Expr *Base) {
195   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
196 
197   // Compute the object pointer.
198   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199 
200   const CXXMethodDecl *DevirtualizedMethod = nullptr;
201   if (CanUseVirtualCall &&
202       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
203     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205     assert(DevirtualizedMethod);
206     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207     const Expr *Inner = Base->ignoreParenBaseCasts();
208     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
209         MD->getReturnType().getCanonicalType())
210       // If the return types are not the same, this might be a case where more
211       // code needs to run to compensate for it. For example, the derived
212       // method might return a type that inherits form from the return
213       // type of MD and has a prefix.
214       // For now we just avoid devirtualizing these covariant cases.
215       DevirtualizedMethod = nullptr;
216     else if (getCXXRecord(Inner) == DevirtualizedClass)
217       // If the class of the Inner expression is where the dynamic method
218       // is defined, build the this pointer from it.
219       Base = Inner;
220     else if (getCXXRecord(Base) != DevirtualizedClass) {
221       // If the method is defined in a class that is not the best dynamic
222       // one or the one of the full expression, we would have to build
223       // a derived-to-base cast to compute the correct this pointer, but
224       // we don't have support for that yet, so do a virtual call.
225       DevirtualizedMethod = nullptr;
226     }
227   }
228 
229   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230   // operator before the LHS.
231   CallArgList RtlArgStorage;
232   CallArgList *RtlArgs = nullptr;
233   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234     if (OCE->isAssignmentOp()) {
235       RtlArgs = &RtlArgStorage;
236       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239     }
240   }
241 
242   LValue This;
243   if (IsArrow) {
244     LValueBaseInfo BaseInfo;
245     TBAAAccessInfo TBAAInfo;
246     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
248   } else {
249     This = EmitLValue(Base);
250   }
251 
252   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
253     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254     // constructing a new complete object of type Ctor.
255     assert(!RtlArgs);
256     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
257     CallArgList Args;
258     commonEmitCXXMemberOrOperatorCall(
259         *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
260         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
261 
262     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
263                            /*Delegating=*/false, This.getAddress(), Args,
264                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
265                            /*NewPointerIsChecked=*/false);
266     return RValue::get(nullptr);
267   }
268 
269   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
270     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
271     if (!MD->getParent()->mayInsertExtraPadding()) {
272       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
273         // We don't like to generate the trivial copy/move assignment operator
274         // when it isn't necessary; just produce the proper effect here.
275         LValue RHS = isa<CXXOperatorCallExpr>(CE)
276                          ? MakeNaturalAlignAddrLValue(
277                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
278                                (*(CE->arg_begin() + 1))->getType())
279                          : EmitLValue(*CE->arg_begin());
280         EmitAggregateAssign(This, RHS, CE->getType());
281         return RValue::get(This.getPointer());
282       }
283       llvm_unreachable("unknown trivial member function");
284     }
285   }
286 
287   // Compute the function type we're calling.
288   const CXXMethodDecl *CalleeDecl =
289       DevirtualizedMethod ? DevirtualizedMethod : MD;
290   const CGFunctionInfo *FInfo = nullptr;
291   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293         GlobalDecl(Dtor, Dtor_Complete));
294   else
295     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296 
297   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298 
299   // C++11 [class.mfct.non-static]p2:
300   //   If a non-static member function of a class X is called for an object that
301   //   is not of type X, or of a type derived from X, the behavior is undefined.
302   SourceLocation CallLoc;
303   ASTContext &C = getContext();
304   if (CE)
305     CallLoc = CE->getExprLoc();
306 
307   SanitizerSet SkippedChecks;
308   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309     auto *IOA = CMCE->getImplicitObjectArgument();
310     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311     if (IsImplicitObjectCXXThis)
312       SkippedChecks.set(SanitizerKind::Alignment, true);
313     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314       SkippedChecks.set(SanitizerKind::Null, true);
315   }
316   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
317                 C.getRecordType(CalleeDecl->getParent()),
318                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320   // C++ [class.virtual]p12:
321   //   Explicit qualification with the scope operator (5.1) suppresses the
322   //   virtual call mechanism.
323   //
324   // We also don't emit a virtual call if the base expression has a record type
325   // because then we know what the type is.
326   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327 
328   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329     assert(CE->arg_begin() == CE->arg_end() &&
330            "Destructor shouldn't have explicit parameters");
331     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
332     if (UseVirtualCall) {
333       CGM.getCXXABI().EmitVirtualDestructorCall(
334           *this, Dtor, Dtor_Complete, This.getAddress(),
335           cast<CXXMemberCallExpr>(CE));
336     } else {
337       GlobalDecl GD(Dtor, Dtor_Complete);
338       CGCallee Callee;
339       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
340         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
341       else if (!DevirtualizedMethod)
342         Callee =
343             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
344       else {
345         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
346       }
347 
348       EmitCXXDestructorCall(GD, Callee, This.getPointer(),
349                             /*ImplicitParam=*/nullptr,
350                             /*ImplicitParamTy=*/QualType(), nullptr);
351     }
352     return RValue::get(nullptr);
353   }
354 
355   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
356   // 'CalleeDecl' instead.
357 
358   CGCallee Callee;
359   if (UseVirtualCall) {
360     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
361   } else {
362     if (SanOpts.has(SanitizerKind::CFINVCall) &&
363         MD->getParent()->isDynamicClass()) {
364       llvm::Value *VTable;
365       const CXXRecordDecl *RD;
366       std::tie(VTable, RD) =
367           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
368                                         MD->getParent());
369       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
370     }
371 
372     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
373       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
374     else if (!DevirtualizedMethod)
375       Callee =
376           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
377     else {
378       Callee =
379           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
380                               GlobalDecl(DevirtualizedMethod));
381     }
382   }
383 
384   if (MD->isVirtual()) {
385     Address NewThisAddr =
386         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
387             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
388     This.setAddress(NewThisAddr);
389   }
390 
391   return EmitCXXMemberOrOperatorCall(
392       CalleeDecl, Callee, ReturnValue, This.getPointer(),
393       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
394 }
395 
396 RValue
397 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
398                                               ReturnValueSlot ReturnValue) {
399   const BinaryOperator *BO =
400       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
401   const Expr *BaseExpr = BO->getLHS();
402   const Expr *MemFnExpr = BO->getRHS();
403 
404   const MemberPointerType *MPT =
405     MemFnExpr->getType()->castAs<MemberPointerType>();
406 
407   const FunctionProtoType *FPT =
408     MPT->getPointeeType()->castAs<FunctionProtoType>();
409   const CXXRecordDecl *RD =
410     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
411 
412   // Emit the 'this' pointer.
413   Address This = Address::invalid();
414   if (BO->getOpcode() == BO_PtrMemI)
415     This = EmitPointerWithAlignment(BaseExpr);
416   else
417     This = EmitLValue(BaseExpr).getAddress();
418 
419   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
420                 QualType(MPT->getClass(), 0));
421 
422   // Get the member function pointer.
423   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
424 
425   // Ask the ABI to load the callee.  Note that This is modified.
426   llvm::Value *ThisPtrForCall = nullptr;
427   CGCallee Callee =
428     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
429                                              ThisPtrForCall, MemFnPtr, MPT);
430 
431   CallArgList Args;
432 
433   QualType ThisType =
434     getContext().getPointerType(getContext().getTagDeclType(RD));
435 
436   // Push the this ptr.
437   Args.add(RValue::get(ThisPtrForCall), ThisType);
438 
439   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
440 
441   // And the rest of the call args
442   EmitCallArgs(Args, FPT, E->arguments());
443   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
444                                                       /*PrefixSize=*/0),
445                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
446 }
447 
448 RValue
449 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
450                                                const CXXMethodDecl *MD,
451                                                ReturnValueSlot ReturnValue) {
452   assert(MD->isInstance() &&
453          "Trying to emit a member call expr on a static method!");
454   return EmitCXXMemberOrOperatorMemberCallExpr(
455       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
456       /*IsArrow=*/false, E->getArg(0));
457 }
458 
459 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
460                                                ReturnValueSlot ReturnValue) {
461   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
462 }
463 
464 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
465                                             Address DestPtr,
466                                             const CXXRecordDecl *Base) {
467   if (Base->isEmpty())
468     return;
469 
470   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
471 
472   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
473   CharUnits NVSize = Layout.getNonVirtualSize();
474 
475   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
476   // present, they are initialized by the most derived class before calling the
477   // constructor.
478   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
479   Stores.emplace_back(CharUnits::Zero(), NVSize);
480 
481   // Each store is split by the existence of a vbptr.
482   CharUnits VBPtrWidth = CGF.getPointerSize();
483   std::vector<CharUnits> VBPtrOffsets =
484       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
485   for (CharUnits VBPtrOffset : VBPtrOffsets) {
486     // Stop before we hit any virtual base pointers located in virtual bases.
487     if (VBPtrOffset >= NVSize)
488       break;
489     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
490     CharUnits LastStoreOffset = LastStore.first;
491     CharUnits LastStoreSize = LastStore.second;
492 
493     CharUnits SplitBeforeOffset = LastStoreOffset;
494     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
495     assert(!SplitBeforeSize.isNegative() && "negative store size!");
496     if (!SplitBeforeSize.isZero())
497       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
498 
499     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
500     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
501     assert(!SplitAfterSize.isNegative() && "negative store size!");
502     if (!SplitAfterSize.isZero())
503       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
504   }
505 
506   // If the type contains a pointer to data member we can't memset it to zero.
507   // Instead, create a null constant and copy it to the destination.
508   // TODO: there are other patterns besides zero that we can usefully memset,
509   // like -1, which happens to be the pattern used by member-pointers.
510   // TODO: isZeroInitializable can be over-conservative in the case where a
511   // virtual base contains a member pointer.
512   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
513   if (!NullConstantForBase->isNullValue()) {
514     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
515         CGF.CGM.getModule(), NullConstantForBase->getType(),
516         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
517         NullConstantForBase, Twine());
518 
519     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
520                                DestPtr.getAlignment());
521     NullVariable->setAlignment(Align.getQuantity());
522 
523     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
524 
525     // Get and call the appropriate llvm.memcpy overload.
526     for (std::pair<CharUnits, CharUnits> Store : Stores) {
527       CharUnits StoreOffset = Store.first;
528       CharUnits StoreSize = Store.second;
529       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
530       CGF.Builder.CreateMemCpy(
531           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
532           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
533           StoreSizeVal);
534     }
535 
536   // Otherwise, just memset the whole thing to zero.  This is legal
537   // because in LLVM, all default initializers (other than the ones we just
538   // handled above) are guaranteed to have a bit pattern of all zeros.
539   } else {
540     for (std::pair<CharUnits, CharUnits> Store : Stores) {
541       CharUnits StoreOffset = Store.first;
542       CharUnits StoreSize = Store.second;
543       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544       CGF.Builder.CreateMemSet(
545           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546           CGF.Builder.getInt8(0), StoreSizeVal);
547     }
548   }
549 }
550 
551 void
552 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
553                                       AggValueSlot Dest) {
554   assert(!Dest.isIgnored() && "Must have a destination!");
555   const CXXConstructorDecl *CD = E->getConstructor();
556 
557   // If we require zero initialization before (or instead of) calling the
558   // constructor, as can be the case with a non-user-provided default
559   // constructor, emit the zero initialization now, unless destination is
560   // already zeroed.
561   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
562     switch (E->getConstructionKind()) {
563     case CXXConstructExpr::CK_Delegating:
564     case CXXConstructExpr::CK_Complete:
565       EmitNullInitialization(Dest.getAddress(), E->getType());
566       break;
567     case CXXConstructExpr::CK_VirtualBase:
568     case CXXConstructExpr::CK_NonVirtualBase:
569       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
570                                       CD->getParent());
571       break;
572     }
573   }
574 
575   // If this is a call to a trivial default constructor, do nothing.
576   if (CD->isTrivial() && CD->isDefaultConstructor())
577     return;
578 
579   // Elide the constructor if we're constructing from a temporary.
580   // The temporary check is required because Sema sets this on NRVO
581   // returns.
582   if (getLangOpts().ElideConstructors && E->isElidable()) {
583     assert(getContext().hasSameUnqualifiedType(E->getType(),
584                                                E->getArg(0)->getType()));
585     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
586       EmitAggExpr(E->getArg(0), Dest);
587       return;
588     }
589   }
590 
591   if (const ArrayType *arrayType
592         = getContext().getAsArrayType(E->getType())) {
593     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
594                                Dest.isSanitizerChecked());
595   } else {
596     CXXCtorType Type = Ctor_Complete;
597     bool ForVirtualBase = false;
598     bool Delegating = false;
599 
600     switch (E->getConstructionKind()) {
601      case CXXConstructExpr::CK_Delegating:
602       // We should be emitting a constructor; GlobalDecl will assert this
603       Type = CurGD.getCtorType();
604       Delegating = true;
605       break;
606 
607      case CXXConstructExpr::CK_Complete:
608       Type = Ctor_Complete;
609       break;
610 
611      case CXXConstructExpr::CK_VirtualBase:
612       ForVirtualBase = true;
613       LLVM_FALLTHROUGH;
614 
615      case CXXConstructExpr::CK_NonVirtualBase:
616       Type = Ctor_Base;
617     }
618 
619     // Call the constructor.
620     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
621                            Dest.getAddress(), E, Dest.mayOverlap(),
622                            Dest.isSanitizerChecked());
623   }
624 }
625 
626 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
627                                                  const Expr *Exp) {
628   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
629     Exp = E->getSubExpr();
630   assert(isa<CXXConstructExpr>(Exp) &&
631          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
632   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
633   const CXXConstructorDecl *CD = E->getConstructor();
634   RunCleanupsScope Scope(*this);
635 
636   // If we require zero initialization before (or instead of) calling the
637   // constructor, as can be the case with a non-user-provided default
638   // constructor, emit the zero initialization now.
639   // FIXME. Do I still need this for a copy ctor synthesis?
640   if (E->requiresZeroInitialization())
641     EmitNullInitialization(Dest, E->getType());
642 
643   assert(!getContext().getAsConstantArrayType(E->getType())
644          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
645   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
646 }
647 
648 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
649                                         const CXXNewExpr *E) {
650   if (!E->isArray())
651     return CharUnits::Zero();
652 
653   // No cookie is required if the operator new[] being used is the
654   // reserved placement operator new[].
655   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
656     return CharUnits::Zero();
657 
658   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
659 }
660 
661 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
662                                         const CXXNewExpr *e,
663                                         unsigned minElements,
664                                         llvm::Value *&numElements,
665                                         llvm::Value *&sizeWithoutCookie) {
666   QualType type = e->getAllocatedType();
667 
668   if (!e->isArray()) {
669     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
670     sizeWithoutCookie
671       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
672     return sizeWithoutCookie;
673   }
674 
675   // The width of size_t.
676   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
677 
678   // Figure out the cookie size.
679   llvm::APInt cookieSize(sizeWidth,
680                          CalculateCookiePadding(CGF, e).getQuantity());
681 
682   // Emit the array size expression.
683   // We multiply the size of all dimensions for NumElements.
684   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
685   numElements =
686     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
687   if (!numElements)
688     numElements = CGF.EmitScalarExpr(e->getArraySize());
689   assert(isa<llvm::IntegerType>(numElements->getType()));
690 
691   // The number of elements can be have an arbitrary integer type;
692   // essentially, we need to multiply it by a constant factor, add a
693   // cookie size, and verify that the result is representable as a
694   // size_t.  That's just a gloss, though, and it's wrong in one
695   // important way: if the count is negative, it's an error even if
696   // the cookie size would bring the total size >= 0.
697   bool isSigned
698     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
699   llvm::IntegerType *numElementsType
700     = cast<llvm::IntegerType>(numElements->getType());
701   unsigned numElementsWidth = numElementsType->getBitWidth();
702 
703   // Compute the constant factor.
704   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
705   while (const ConstantArrayType *CAT
706              = CGF.getContext().getAsConstantArrayType(type)) {
707     type = CAT->getElementType();
708     arraySizeMultiplier *= CAT->getSize();
709   }
710 
711   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
712   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
713   typeSizeMultiplier *= arraySizeMultiplier;
714 
715   // This will be a size_t.
716   llvm::Value *size;
717 
718   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
719   // Don't bloat the -O0 code.
720   if (llvm::ConstantInt *numElementsC =
721         dyn_cast<llvm::ConstantInt>(numElements)) {
722     const llvm::APInt &count = numElementsC->getValue();
723 
724     bool hasAnyOverflow = false;
725 
726     // If 'count' was a negative number, it's an overflow.
727     if (isSigned && count.isNegative())
728       hasAnyOverflow = true;
729 
730     // We want to do all this arithmetic in size_t.  If numElements is
731     // wider than that, check whether it's already too big, and if so,
732     // overflow.
733     else if (numElementsWidth > sizeWidth &&
734              numElementsWidth - sizeWidth > count.countLeadingZeros())
735       hasAnyOverflow = true;
736 
737     // Okay, compute a count at the right width.
738     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
739 
740     // If there is a brace-initializer, we cannot allocate fewer elements than
741     // there are initializers. If we do, that's treated like an overflow.
742     if (adjustedCount.ult(minElements))
743       hasAnyOverflow = true;
744 
745     // Scale numElements by that.  This might overflow, but we don't
746     // care because it only overflows if allocationSize does, too, and
747     // if that overflows then we shouldn't use this.
748     numElements = llvm::ConstantInt::get(CGF.SizeTy,
749                                          adjustedCount * arraySizeMultiplier);
750 
751     // Compute the size before cookie, and track whether it overflowed.
752     bool overflow;
753     llvm::APInt allocationSize
754       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
755     hasAnyOverflow |= overflow;
756 
757     // Add in the cookie, and check whether it's overflowed.
758     if (cookieSize != 0) {
759       // Save the current size without a cookie.  This shouldn't be
760       // used if there was overflow.
761       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
762 
763       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
764       hasAnyOverflow |= overflow;
765     }
766 
767     // On overflow, produce a -1 so operator new will fail.
768     if (hasAnyOverflow) {
769       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
770     } else {
771       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
772     }
773 
774   // Otherwise, we might need to use the overflow intrinsics.
775   } else {
776     // There are up to five conditions we need to test for:
777     // 1) if isSigned, we need to check whether numElements is negative;
778     // 2) if numElementsWidth > sizeWidth, we need to check whether
779     //   numElements is larger than something representable in size_t;
780     // 3) if minElements > 0, we need to check whether numElements is smaller
781     //    than that.
782     // 4) we need to compute
783     //      sizeWithoutCookie := numElements * typeSizeMultiplier
784     //    and check whether it overflows; and
785     // 5) if we need a cookie, we need to compute
786     //      size := sizeWithoutCookie + cookieSize
787     //    and check whether it overflows.
788 
789     llvm::Value *hasOverflow = nullptr;
790 
791     // If numElementsWidth > sizeWidth, then one way or another, we're
792     // going to have to do a comparison for (2), and this happens to
793     // take care of (1), too.
794     if (numElementsWidth > sizeWidth) {
795       llvm::APInt threshold(numElementsWidth, 1);
796       threshold <<= sizeWidth;
797 
798       llvm::Value *thresholdV
799         = llvm::ConstantInt::get(numElementsType, threshold);
800 
801       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
802       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
803 
804     // Otherwise, if we're signed, we want to sext up to size_t.
805     } else if (isSigned) {
806       if (numElementsWidth < sizeWidth)
807         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
808 
809       // If there's a non-1 type size multiplier, then we can do the
810       // signedness check at the same time as we do the multiply
811       // because a negative number times anything will cause an
812       // unsigned overflow.  Otherwise, we have to do it here. But at least
813       // in this case, we can subsume the >= minElements check.
814       if (typeSizeMultiplier == 1)
815         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
816                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
817 
818     // Otherwise, zext up to size_t if necessary.
819     } else if (numElementsWidth < sizeWidth) {
820       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
821     }
822 
823     assert(numElements->getType() == CGF.SizeTy);
824 
825     if (minElements) {
826       // Don't allow allocation of fewer elements than we have initializers.
827       if (!hasOverflow) {
828         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
829                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
830       } else if (numElementsWidth > sizeWidth) {
831         // The other existing overflow subsumes this check.
832         // We do an unsigned comparison, since any signed value < -1 is
833         // taken care of either above or below.
834         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
835                           CGF.Builder.CreateICmpULT(numElements,
836                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
837       }
838     }
839 
840     size = numElements;
841 
842     // Multiply by the type size if necessary.  This multiplier
843     // includes all the factors for nested arrays.
844     //
845     // This step also causes numElements to be scaled up by the
846     // nested-array factor if necessary.  Overflow on this computation
847     // can be ignored because the result shouldn't be used if
848     // allocation fails.
849     if (typeSizeMultiplier != 1) {
850       llvm::Function *umul_with_overflow
851         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
852 
853       llvm::Value *tsmV =
854         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
855       llvm::Value *result =
856           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
857 
858       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
859       if (hasOverflow)
860         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
861       else
862         hasOverflow = overflowed;
863 
864       size = CGF.Builder.CreateExtractValue(result, 0);
865 
866       // Also scale up numElements by the array size multiplier.
867       if (arraySizeMultiplier != 1) {
868         // If the base element type size is 1, then we can re-use the
869         // multiply we just did.
870         if (typeSize.isOne()) {
871           assert(arraySizeMultiplier == typeSizeMultiplier);
872           numElements = size;
873 
874         // Otherwise we need a separate multiply.
875         } else {
876           llvm::Value *asmV =
877             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
878           numElements = CGF.Builder.CreateMul(numElements, asmV);
879         }
880       }
881     } else {
882       // numElements doesn't need to be scaled.
883       assert(arraySizeMultiplier == 1);
884     }
885 
886     // Add in the cookie size if necessary.
887     if (cookieSize != 0) {
888       sizeWithoutCookie = size;
889 
890       llvm::Function *uadd_with_overflow
891         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
892 
893       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
894       llvm::Value *result =
895           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
896 
897       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
898       if (hasOverflow)
899         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
900       else
901         hasOverflow = overflowed;
902 
903       size = CGF.Builder.CreateExtractValue(result, 0);
904     }
905 
906     // If we had any possibility of dynamic overflow, make a select to
907     // overwrite 'size' with an all-ones value, which should cause
908     // operator new to throw.
909     if (hasOverflow)
910       size = CGF.Builder.CreateSelect(hasOverflow,
911                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
912                                       size);
913   }
914 
915   if (cookieSize == 0)
916     sizeWithoutCookie = size;
917   else
918     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
919 
920   return size;
921 }
922 
923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
924                                     QualType AllocType, Address NewPtr,
925                                     AggValueSlot::Overlap_t MayOverlap) {
926   // FIXME: Refactor with EmitExprAsInit.
927   switch (CGF.getEvaluationKind(AllocType)) {
928   case TEK_Scalar:
929     CGF.EmitScalarInit(Init, nullptr,
930                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
931     return;
932   case TEK_Complex:
933     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
934                                   /*isInit*/ true);
935     return;
936   case TEK_Aggregate: {
937     AggValueSlot Slot
938       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
939                               AggValueSlot::IsDestructed,
940                               AggValueSlot::DoesNotNeedGCBarriers,
941                               AggValueSlot::IsNotAliased,
942                               MayOverlap, AggValueSlot::IsNotZeroed,
943                               AggValueSlot::IsSanitizerChecked);
944     CGF.EmitAggExpr(Init, Slot);
945     return;
946   }
947   }
948   llvm_unreachable("bad evaluation kind");
949 }
950 
951 void CodeGenFunction::EmitNewArrayInitializer(
952     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
953     Address BeginPtr, llvm::Value *NumElements,
954     llvm::Value *AllocSizeWithoutCookie) {
955   // If we have a type with trivial initialization and no initializer,
956   // there's nothing to do.
957   if (!E->hasInitializer())
958     return;
959 
960   Address CurPtr = BeginPtr;
961 
962   unsigned InitListElements = 0;
963 
964   const Expr *Init = E->getInitializer();
965   Address EndOfInit = Address::invalid();
966   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
967   EHScopeStack::stable_iterator Cleanup;
968   llvm::Instruction *CleanupDominator = nullptr;
969 
970   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
971   CharUnits ElementAlign =
972     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
973 
974   // Attempt to perform zero-initialization using memset.
975   auto TryMemsetInitialization = [&]() -> bool {
976     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
977     // we can initialize with a memset to -1.
978     if (!CGM.getTypes().isZeroInitializable(ElementType))
979       return false;
980 
981     // Optimization: since zero initialization will just set the memory
982     // to all zeroes, generate a single memset to do it in one shot.
983 
984     // Subtract out the size of any elements we've already initialized.
985     auto *RemainingSize = AllocSizeWithoutCookie;
986     if (InitListElements) {
987       // We know this can't overflow; we check this when doing the allocation.
988       auto *InitializedSize = llvm::ConstantInt::get(
989           RemainingSize->getType(),
990           getContext().getTypeSizeInChars(ElementType).getQuantity() *
991               InitListElements);
992       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
993     }
994 
995     // Create the memset.
996     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
997     return true;
998   };
999 
1000   // If the initializer is an initializer list, first do the explicit elements.
1001   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1002     // Initializing from a (braced) string literal is a special case; the init
1003     // list element does not initialize a (single) array element.
1004     if (ILE->isStringLiteralInit()) {
1005       // Initialize the initial portion of length equal to that of the string
1006       // literal. The allocation must be for at least this much; we emitted a
1007       // check for that earlier.
1008       AggValueSlot Slot =
1009           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1010                                 AggValueSlot::IsDestructed,
1011                                 AggValueSlot::DoesNotNeedGCBarriers,
1012                                 AggValueSlot::IsNotAliased,
1013                                 AggValueSlot::DoesNotOverlap,
1014                                 AggValueSlot::IsNotZeroed,
1015                                 AggValueSlot::IsSanitizerChecked);
1016       EmitAggExpr(ILE->getInit(0), Slot);
1017 
1018       // Move past these elements.
1019       InitListElements =
1020           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1021               ->getSize().getZExtValue();
1022       CurPtr =
1023           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1024                                             Builder.getSize(InitListElements),
1025                                             "string.init.end"),
1026                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1027                                                           ElementSize));
1028 
1029       // Zero out the rest, if any remain.
1030       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1031       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1032         bool OK = TryMemsetInitialization();
1033         (void)OK;
1034         assert(OK && "couldn't memset character type?");
1035       }
1036       return;
1037     }
1038 
1039     InitListElements = ILE->getNumInits();
1040 
1041     // If this is a multi-dimensional array new, we will initialize multiple
1042     // elements with each init list element.
1043     QualType AllocType = E->getAllocatedType();
1044     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1045             AllocType->getAsArrayTypeUnsafe())) {
1046       ElementTy = ConvertTypeForMem(AllocType);
1047       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1048       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1049     }
1050 
1051     // Enter a partial-destruction Cleanup if necessary.
1052     if (needsEHCleanup(DtorKind)) {
1053       // In principle we could tell the Cleanup where we are more
1054       // directly, but the control flow can get so varied here that it
1055       // would actually be quite complex.  Therefore we go through an
1056       // alloca.
1057       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1058                                    "array.init.end");
1059       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1060       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1061                                        ElementType, ElementAlign,
1062                                        getDestroyer(DtorKind));
1063       Cleanup = EHStack.stable_begin();
1064     }
1065 
1066     CharUnits StartAlign = CurPtr.getAlignment();
1067     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1068       // Tell the cleanup that it needs to destroy up to this
1069       // element.  TODO: some of these stores can be trivially
1070       // observed to be unnecessary.
1071       if (EndOfInit.isValid()) {
1072         auto FinishedPtr =
1073           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1074         Builder.CreateStore(FinishedPtr, EndOfInit);
1075       }
1076       // FIXME: If the last initializer is an incomplete initializer list for
1077       // an array, and we have an array filler, we can fold together the two
1078       // initialization loops.
1079       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1080                               ILE->getInit(i)->getType(), CurPtr,
1081                               AggValueSlot::DoesNotOverlap);
1082       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1083                                                  Builder.getSize(1),
1084                                                  "array.exp.next"),
1085                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1086     }
1087 
1088     // The remaining elements are filled with the array filler expression.
1089     Init = ILE->getArrayFiller();
1090 
1091     // Extract the initializer for the individual array elements by pulling
1092     // out the array filler from all the nested initializer lists. This avoids
1093     // generating a nested loop for the initialization.
1094     while (Init && Init->getType()->isConstantArrayType()) {
1095       auto *SubILE = dyn_cast<InitListExpr>(Init);
1096       if (!SubILE)
1097         break;
1098       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1099       Init = SubILE->getArrayFiller();
1100     }
1101 
1102     // Switch back to initializing one base element at a time.
1103     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1104   }
1105 
1106   // If all elements have already been initialized, skip any further
1107   // initialization.
1108   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1109   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1110     // If there was a Cleanup, deactivate it.
1111     if (CleanupDominator)
1112       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1113     return;
1114   }
1115 
1116   assert(Init && "have trailing elements to initialize but no initializer");
1117 
1118   // If this is a constructor call, try to optimize it out, and failing that
1119   // emit a single loop to initialize all remaining elements.
1120   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1121     CXXConstructorDecl *Ctor = CCE->getConstructor();
1122     if (Ctor->isTrivial()) {
1123       // If new expression did not specify value-initialization, then there
1124       // is no initialization.
1125       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1126         return;
1127 
1128       if (TryMemsetInitialization())
1129         return;
1130     }
1131 
1132     // Store the new Cleanup position for irregular Cleanups.
1133     //
1134     // FIXME: Share this cleanup with the constructor call emission rather than
1135     // having it create a cleanup of its own.
1136     if (EndOfInit.isValid())
1137       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1138 
1139     // Emit a constructor call loop to initialize the remaining elements.
1140     if (InitListElements)
1141       NumElements = Builder.CreateSub(
1142           NumElements,
1143           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1144     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1145                                /*NewPointerIsChecked*/true,
1146                                CCE->requiresZeroInitialization());
1147     return;
1148   }
1149 
1150   // If this is value-initialization, we can usually use memset.
1151   ImplicitValueInitExpr IVIE(ElementType);
1152   if (isa<ImplicitValueInitExpr>(Init)) {
1153     if (TryMemsetInitialization())
1154       return;
1155 
1156     // Switch to an ImplicitValueInitExpr for the element type. This handles
1157     // only one case: multidimensional array new of pointers to members. In
1158     // all other cases, we already have an initializer for the array element.
1159     Init = &IVIE;
1160   }
1161 
1162   // At this point we should have found an initializer for the individual
1163   // elements of the array.
1164   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1165          "got wrong type of element to initialize");
1166 
1167   // If we have an empty initializer list, we can usually use memset.
1168   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1169     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1170       return;
1171 
1172   // If we have a struct whose every field is value-initialized, we can
1173   // usually use memset.
1174   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1175     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1176       if (RType->getDecl()->isStruct()) {
1177         unsigned NumElements = 0;
1178         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1179           NumElements = CXXRD->getNumBases();
1180         for (auto *Field : RType->getDecl()->fields())
1181           if (!Field->isUnnamedBitfield())
1182             ++NumElements;
1183         // FIXME: Recurse into nested InitListExprs.
1184         if (ILE->getNumInits() == NumElements)
1185           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1186             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1187               --NumElements;
1188         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1189           return;
1190       }
1191     }
1192   }
1193 
1194   // Create the loop blocks.
1195   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1196   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1197   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1198 
1199   // Find the end of the array, hoisted out of the loop.
1200   llvm::Value *EndPtr =
1201     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1202 
1203   // If the number of elements isn't constant, we have to now check if there is
1204   // anything left to initialize.
1205   if (!ConstNum) {
1206     llvm::Value *IsEmpty =
1207       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1208     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1209   }
1210 
1211   // Enter the loop.
1212   EmitBlock(LoopBB);
1213 
1214   // Set up the current-element phi.
1215   llvm::PHINode *CurPtrPhi =
1216     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1217   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1218 
1219   CurPtr = Address(CurPtrPhi, ElementAlign);
1220 
1221   // Store the new Cleanup position for irregular Cleanups.
1222   if (EndOfInit.isValid())
1223     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1224 
1225   // Enter a partial-destruction Cleanup if necessary.
1226   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1227     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1228                                    ElementType, ElementAlign,
1229                                    getDestroyer(DtorKind));
1230     Cleanup = EHStack.stable_begin();
1231     CleanupDominator = Builder.CreateUnreachable();
1232   }
1233 
1234   // Emit the initializer into this element.
1235   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1236                           AggValueSlot::DoesNotOverlap);
1237 
1238   // Leave the Cleanup if we entered one.
1239   if (CleanupDominator) {
1240     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1241     CleanupDominator->eraseFromParent();
1242   }
1243 
1244   // Advance to the next element by adjusting the pointer type as necessary.
1245   llvm::Value *NextPtr =
1246     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1247                                        "array.next");
1248 
1249   // Check whether we've gotten to the end of the array and, if so,
1250   // exit the loop.
1251   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1252   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1253   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1254 
1255   EmitBlock(ContBB);
1256 }
1257 
1258 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1259                                QualType ElementType, llvm::Type *ElementTy,
1260                                Address NewPtr, llvm::Value *NumElements,
1261                                llvm::Value *AllocSizeWithoutCookie) {
1262   ApplyDebugLocation DL(CGF, E);
1263   if (E->isArray())
1264     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1265                                 AllocSizeWithoutCookie);
1266   else if (const Expr *Init = E->getInitializer())
1267     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1268                             AggValueSlot::DoesNotOverlap);
1269 }
1270 
1271 /// Emit a call to an operator new or operator delete function, as implicitly
1272 /// created by new-expressions and delete-expressions.
1273 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1274                                 const FunctionDecl *CalleeDecl,
1275                                 const FunctionProtoType *CalleeType,
1276                                 const CallArgList &Args) {
1277   llvm::CallBase *CallOrInvoke;
1278   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1279   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1280   RValue RV =
1281       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1282                        Args, CalleeType, /*chainCall=*/false),
1283                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1284 
1285   /// C++1y [expr.new]p10:
1286   ///   [In a new-expression,] an implementation is allowed to omit a call
1287   ///   to a replaceable global allocation function.
1288   ///
1289   /// We model such elidable calls with the 'builtin' attribute.
1290   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1291   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1292       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1293     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1294                                llvm::Attribute::Builtin);
1295   }
1296 
1297   return RV;
1298 }
1299 
1300 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1301                                                  const CallExpr *TheCall,
1302                                                  bool IsDelete) {
1303   CallArgList Args;
1304   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1305   // Find the allocation or deallocation function that we're calling.
1306   ASTContext &Ctx = getContext();
1307   DeclarationName Name = Ctx.DeclarationNames
1308       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1309 
1310   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1311     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1312       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1313         return EmitNewDeleteCall(*this, FD, Type, Args);
1314   llvm_unreachable("predeclared global operator new/delete is missing");
1315 }
1316 
1317 namespace {
1318 /// The parameters to pass to a usual operator delete.
1319 struct UsualDeleteParams {
1320   bool DestroyingDelete = false;
1321   bool Size = false;
1322   bool Alignment = false;
1323 };
1324 }
1325 
1326 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1327   UsualDeleteParams Params;
1328 
1329   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1330   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1331 
1332   // The first argument is always a void*.
1333   ++AI;
1334 
1335   // The next parameter may be a std::destroying_delete_t.
1336   if (FD->isDestroyingOperatorDelete()) {
1337     Params.DestroyingDelete = true;
1338     assert(AI != AE);
1339     ++AI;
1340   }
1341 
1342   // Figure out what other parameters we should be implicitly passing.
1343   if (AI != AE && (*AI)->isIntegerType()) {
1344     Params.Size = true;
1345     ++AI;
1346   }
1347 
1348   if (AI != AE && (*AI)->isAlignValT()) {
1349     Params.Alignment = true;
1350     ++AI;
1351   }
1352 
1353   assert(AI == AE && "unexpected usual deallocation function parameter");
1354   return Params;
1355 }
1356 
1357 namespace {
1358   /// A cleanup to call the given 'operator delete' function upon abnormal
1359   /// exit from a new expression. Templated on a traits type that deals with
1360   /// ensuring that the arguments dominate the cleanup if necessary.
1361   template<typename Traits>
1362   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1363     /// Type used to hold llvm::Value*s.
1364     typedef typename Traits::ValueTy ValueTy;
1365     /// Type used to hold RValues.
1366     typedef typename Traits::RValueTy RValueTy;
1367     struct PlacementArg {
1368       RValueTy ArgValue;
1369       QualType ArgType;
1370     };
1371 
1372     unsigned NumPlacementArgs : 31;
1373     unsigned PassAlignmentToPlacementDelete : 1;
1374     const FunctionDecl *OperatorDelete;
1375     ValueTy Ptr;
1376     ValueTy AllocSize;
1377     CharUnits AllocAlign;
1378 
1379     PlacementArg *getPlacementArgs() {
1380       return reinterpret_cast<PlacementArg *>(this + 1);
1381     }
1382 
1383   public:
1384     static size_t getExtraSize(size_t NumPlacementArgs) {
1385       return NumPlacementArgs * sizeof(PlacementArg);
1386     }
1387 
1388     CallDeleteDuringNew(size_t NumPlacementArgs,
1389                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1390                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1391                         CharUnits AllocAlign)
1392       : NumPlacementArgs(NumPlacementArgs),
1393         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1394         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1395         AllocAlign(AllocAlign) {}
1396 
1397     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1398       assert(I < NumPlacementArgs && "index out of range");
1399       getPlacementArgs()[I] = {Arg, Type};
1400     }
1401 
1402     void Emit(CodeGenFunction &CGF, Flags flags) override {
1403       const FunctionProtoType *FPT =
1404           OperatorDelete->getType()->getAs<FunctionProtoType>();
1405       CallArgList DeleteArgs;
1406 
1407       // The first argument is always a void* (or C* for a destroying operator
1408       // delete for class type C).
1409       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1410 
1411       // Figure out what other parameters we should be implicitly passing.
1412       UsualDeleteParams Params;
1413       if (NumPlacementArgs) {
1414         // A placement deallocation function is implicitly passed an alignment
1415         // if the placement allocation function was, but is never passed a size.
1416         Params.Alignment = PassAlignmentToPlacementDelete;
1417       } else {
1418         // For a non-placement new-expression, 'operator delete' can take a
1419         // size and/or an alignment if it has the right parameters.
1420         Params = getUsualDeleteParams(OperatorDelete);
1421       }
1422 
1423       assert(!Params.DestroyingDelete &&
1424              "should not call destroying delete in a new-expression");
1425 
1426       // The second argument can be a std::size_t (for non-placement delete).
1427       if (Params.Size)
1428         DeleteArgs.add(Traits::get(CGF, AllocSize),
1429                        CGF.getContext().getSizeType());
1430 
1431       // The next (second or third) argument can be a std::align_val_t, which
1432       // is an enum whose underlying type is std::size_t.
1433       // FIXME: Use the right type as the parameter type. Note that in a call
1434       // to operator delete(size_t, ...), we may not have it available.
1435       if (Params.Alignment)
1436         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1437                            CGF.SizeTy, AllocAlign.getQuantity())),
1438                        CGF.getContext().getSizeType());
1439 
1440       // Pass the rest of the arguments, which must match exactly.
1441       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1442         auto Arg = getPlacementArgs()[I];
1443         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1444       }
1445 
1446       // Call 'operator delete'.
1447       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1448     }
1449   };
1450 }
1451 
1452 /// Enter a cleanup to call 'operator delete' if the initializer in a
1453 /// new-expression throws.
1454 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1455                                   const CXXNewExpr *E,
1456                                   Address NewPtr,
1457                                   llvm::Value *AllocSize,
1458                                   CharUnits AllocAlign,
1459                                   const CallArgList &NewArgs) {
1460   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1461 
1462   // If we're not inside a conditional branch, then the cleanup will
1463   // dominate and we can do the easier (and more efficient) thing.
1464   if (!CGF.isInConditionalBranch()) {
1465     struct DirectCleanupTraits {
1466       typedef llvm::Value *ValueTy;
1467       typedef RValue RValueTy;
1468       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1469       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1470     };
1471 
1472     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1473 
1474     DirectCleanup *Cleanup = CGF.EHStack
1475       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1476                                            E->getNumPlacementArgs(),
1477                                            E->getOperatorDelete(),
1478                                            NewPtr.getPointer(),
1479                                            AllocSize,
1480                                            E->passAlignment(),
1481                                            AllocAlign);
1482     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1483       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1484       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1485     }
1486 
1487     return;
1488   }
1489 
1490   // Otherwise, we need to save all this stuff.
1491   DominatingValue<RValue>::saved_type SavedNewPtr =
1492     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1493   DominatingValue<RValue>::saved_type SavedAllocSize =
1494     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1495 
1496   struct ConditionalCleanupTraits {
1497     typedef DominatingValue<RValue>::saved_type ValueTy;
1498     typedef DominatingValue<RValue>::saved_type RValueTy;
1499     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1500       return V.restore(CGF);
1501     }
1502   };
1503   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1504 
1505   ConditionalCleanup *Cleanup = CGF.EHStack
1506     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1507                                               E->getNumPlacementArgs(),
1508                                               E->getOperatorDelete(),
1509                                               SavedNewPtr,
1510                                               SavedAllocSize,
1511                                               E->passAlignment(),
1512                                               AllocAlign);
1513   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1514     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1515     Cleanup->setPlacementArg(
1516         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1517   }
1518 
1519   CGF.initFullExprCleanup();
1520 }
1521 
1522 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1523   // The element type being allocated.
1524   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1525 
1526   // 1. Build a call to the allocation function.
1527   FunctionDecl *allocator = E->getOperatorNew();
1528 
1529   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1530   unsigned minElements = 0;
1531   if (E->isArray() && E->hasInitializer()) {
1532     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1533     if (ILE && ILE->isStringLiteralInit())
1534       minElements =
1535           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1536               ->getSize().getZExtValue();
1537     else if (ILE)
1538       minElements = ILE->getNumInits();
1539   }
1540 
1541   llvm::Value *numElements = nullptr;
1542   llvm::Value *allocSizeWithoutCookie = nullptr;
1543   llvm::Value *allocSize =
1544     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1545                         allocSizeWithoutCookie);
1546   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1547 
1548   // Emit the allocation call.  If the allocator is a global placement
1549   // operator, just "inline" it directly.
1550   Address allocation = Address::invalid();
1551   CallArgList allocatorArgs;
1552   if (allocator->isReservedGlobalPlacementOperator()) {
1553     assert(E->getNumPlacementArgs() == 1);
1554     const Expr *arg = *E->placement_arguments().begin();
1555 
1556     LValueBaseInfo BaseInfo;
1557     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1558 
1559     // The pointer expression will, in many cases, be an opaque void*.
1560     // In these cases, discard the computed alignment and use the
1561     // formal alignment of the allocated type.
1562     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1563       allocation = Address(allocation.getPointer(), allocAlign);
1564 
1565     // Set up allocatorArgs for the call to operator delete if it's not
1566     // the reserved global operator.
1567     if (E->getOperatorDelete() &&
1568         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1569       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1570       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1571     }
1572 
1573   } else {
1574     const FunctionProtoType *allocatorType =
1575       allocator->getType()->castAs<FunctionProtoType>();
1576     unsigned ParamsToSkip = 0;
1577 
1578     // The allocation size is the first argument.
1579     QualType sizeType = getContext().getSizeType();
1580     allocatorArgs.add(RValue::get(allocSize), sizeType);
1581     ++ParamsToSkip;
1582 
1583     if (allocSize != allocSizeWithoutCookie) {
1584       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1585       allocAlign = std::max(allocAlign, cookieAlign);
1586     }
1587 
1588     // The allocation alignment may be passed as the second argument.
1589     if (E->passAlignment()) {
1590       QualType AlignValT = sizeType;
1591       if (allocatorType->getNumParams() > 1) {
1592         AlignValT = allocatorType->getParamType(1);
1593         assert(getContext().hasSameUnqualifiedType(
1594                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1595                    sizeType) &&
1596                "wrong type for alignment parameter");
1597         ++ParamsToSkip;
1598       } else {
1599         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1600         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1601       }
1602       allocatorArgs.add(
1603           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1604           AlignValT);
1605     }
1606 
1607     // FIXME: Why do we not pass a CalleeDecl here?
1608     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1609                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1610 
1611     RValue RV =
1612       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1613 
1614     // If this was a call to a global replaceable allocation function that does
1615     // not take an alignment argument, the allocator is known to produce
1616     // storage that's suitably aligned for any object that fits, up to a known
1617     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1618     CharUnits allocationAlign = allocAlign;
1619     if (!E->passAlignment() &&
1620         allocator->isReplaceableGlobalAllocationFunction()) {
1621       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1622           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1623       allocationAlign = std::max(
1624           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1625     }
1626 
1627     allocation = Address(RV.getScalarVal(), allocationAlign);
1628   }
1629 
1630   // Emit a null check on the allocation result if the allocation
1631   // function is allowed to return null (because it has a non-throwing
1632   // exception spec or is the reserved placement new) and we have an
1633   // interesting initializer will be running sanitizers on the initialization.
1634   bool nullCheck = E->shouldNullCheckAllocation() &&
1635                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1636                     sanitizePerformTypeCheck());
1637 
1638   llvm::BasicBlock *nullCheckBB = nullptr;
1639   llvm::BasicBlock *contBB = nullptr;
1640 
1641   // The null-check means that the initializer is conditionally
1642   // evaluated.
1643   ConditionalEvaluation conditional(*this);
1644 
1645   if (nullCheck) {
1646     conditional.begin(*this);
1647 
1648     nullCheckBB = Builder.GetInsertBlock();
1649     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1650     contBB = createBasicBlock("new.cont");
1651 
1652     llvm::Value *isNull =
1653       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1654     Builder.CreateCondBr(isNull, contBB, notNullBB);
1655     EmitBlock(notNullBB);
1656   }
1657 
1658   // If there's an operator delete, enter a cleanup to call it if an
1659   // exception is thrown.
1660   EHScopeStack::stable_iterator operatorDeleteCleanup;
1661   llvm::Instruction *cleanupDominator = nullptr;
1662   if (E->getOperatorDelete() &&
1663       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1664     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1665                           allocatorArgs);
1666     operatorDeleteCleanup = EHStack.stable_begin();
1667     cleanupDominator = Builder.CreateUnreachable();
1668   }
1669 
1670   assert((allocSize == allocSizeWithoutCookie) ==
1671          CalculateCookiePadding(*this, E).isZero());
1672   if (allocSize != allocSizeWithoutCookie) {
1673     assert(E->isArray());
1674     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1675                                                        numElements,
1676                                                        E, allocType);
1677   }
1678 
1679   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1680   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1681 
1682   // Passing pointer through launder.invariant.group to avoid propagation of
1683   // vptrs information which may be included in previous type.
1684   // To not break LTO with different optimizations levels, we do it regardless
1685   // of optimization level.
1686   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1687       allocator->isReservedGlobalPlacementOperator())
1688     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1689                      result.getAlignment());
1690 
1691   // Emit sanitizer checks for pointer value now, so that in the case of an
1692   // array it was checked only once and not at each constructor call. We may
1693   // have already checked that the pointer is non-null.
1694   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1695   // we'll null check the wrong pointer here.
1696   SanitizerSet SkippedChecks;
1697   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1698   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1699                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1700                 result.getPointer(), allocType, result.getAlignment(),
1701                 SkippedChecks, numElements);
1702 
1703   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1704                      allocSizeWithoutCookie);
1705   if (E->isArray()) {
1706     // NewPtr is a pointer to the base element type.  If we're
1707     // allocating an array of arrays, we'll need to cast back to the
1708     // array pointer type.
1709     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1710     if (result.getType() != resultType)
1711       result = Builder.CreateBitCast(result, resultType);
1712   }
1713 
1714   // Deactivate the 'operator delete' cleanup if we finished
1715   // initialization.
1716   if (operatorDeleteCleanup.isValid()) {
1717     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1718     cleanupDominator->eraseFromParent();
1719   }
1720 
1721   llvm::Value *resultPtr = result.getPointer();
1722   if (nullCheck) {
1723     conditional.end(*this);
1724 
1725     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1726     EmitBlock(contBB);
1727 
1728     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1729     PHI->addIncoming(resultPtr, notNullBB);
1730     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1731                      nullCheckBB);
1732 
1733     resultPtr = PHI;
1734   }
1735 
1736   return resultPtr;
1737 }
1738 
1739 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1740                                      llvm::Value *Ptr, QualType DeleteTy,
1741                                      llvm::Value *NumElements,
1742                                      CharUnits CookieSize) {
1743   assert((!NumElements && CookieSize.isZero()) ||
1744          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1745 
1746   const FunctionProtoType *DeleteFTy =
1747     DeleteFD->getType()->getAs<FunctionProtoType>();
1748 
1749   CallArgList DeleteArgs;
1750 
1751   auto Params = getUsualDeleteParams(DeleteFD);
1752   auto ParamTypeIt = DeleteFTy->param_type_begin();
1753 
1754   // Pass the pointer itself.
1755   QualType ArgTy = *ParamTypeIt++;
1756   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1757   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1758 
1759   // Pass the std::destroying_delete tag if present.
1760   if (Params.DestroyingDelete) {
1761     QualType DDTag = *ParamTypeIt++;
1762     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1763     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1764     DeleteArgs.add(RValue::get(V), DDTag);
1765   }
1766 
1767   // Pass the size if the delete function has a size_t parameter.
1768   if (Params.Size) {
1769     QualType SizeType = *ParamTypeIt++;
1770     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1771     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1772                                                DeleteTypeSize.getQuantity());
1773 
1774     // For array new, multiply by the number of elements.
1775     if (NumElements)
1776       Size = Builder.CreateMul(Size, NumElements);
1777 
1778     // If there is a cookie, add the cookie size.
1779     if (!CookieSize.isZero())
1780       Size = Builder.CreateAdd(
1781           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1782 
1783     DeleteArgs.add(RValue::get(Size), SizeType);
1784   }
1785 
1786   // Pass the alignment if the delete function has an align_val_t parameter.
1787   if (Params.Alignment) {
1788     QualType AlignValType = *ParamTypeIt++;
1789     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1790         getContext().getTypeAlignIfKnown(DeleteTy));
1791     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1792                                                 DeleteTypeAlign.getQuantity());
1793     DeleteArgs.add(RValue::get(Align), AlignValType);
1794   }
1795 
1796   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1797          "unknown parameter to usual delete function");
1798 
1799   // Emit the call to delete.
1800   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1801 }
1802 
1803 namespace {
1804   /// Calls the given 'operator delete' on a single object.
1805   struct CallObjectDelete final : EHScopeStack::Cleanup {
1806     llvm::Value *Ptr;
1807     const FunctionDecl *OperatorDelete;
1808     QualType ElementType;
1809 
1810     CallObjectDelete(llvm::Value *Ptr,
1811                      const FunctionDecl *OperatorDelete,
1812                      QualType ElementType)
1813       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1814 
1815     void Emit(CodeGenFunction &CGF, Flags flags) override {
1816       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1817     }
1818   };
1819 }
1820 
1821 void
1822 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1823                                              llvm::Value *CompletePtr,
1824                                              QualType ElementType) {
1825   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1826                                         OperatorDelete, ElementType);
1827 }
1828 
1829 /// Emit the code for deleting a single object with a destroying operator
1830 /// delete. If the element type has a non-virtual destructor, Ptr has already
1831 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1832 /// Ptr points to an object of the static type.
1833 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1834                                        const CXXDeleteExpr *DE, Address Ptr,
1835                                        QualType ElementType) {
1836   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1837   if (Dtor && Dtor->isVirtual())
1838     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1839                                                 Dtor);
1840   else
1841     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1842 }
1843 
1844 /// Emit the code for deleting a single object.
1845 static void EmitObjectDelete(CodeGenFunction &CGF,
1846                              const CXXDeleteExpr *DE,
1847                              Address Ptr,
1848                              QualType ElementType) {
1849   // C++11 [expr.delete]p3:
1850   //   If the static type of the object to be deleted is different from its
1851   //   dynamic type, the static type shall be a base class of the dynamic type
1852   //   of the object to be deleted and the static type shall have a virtual
1853   //   destructor or the behavior is undefined.
1854   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1855                     DE->getExprLoc(), Ptr.getPointer(),
1856                     ElementType);
1857 
1858   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1859   assert(!OperatorDelete->isDestroyingOperatorDelete());
1860 
1861   // Find the destructor for the type, if applicable.  If the
1862   // destructor is virtual, we'll just emit the vcall and return.
1863   const CXXDestructorDecl *Dtor = nullptr;
1864   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1865     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1866     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1867       Dtor = RD->getDestructor();
1868 
1869       if (Dtor->isVirtual()) {
1870         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1871                                                     Dtor);
1872         return;
1873       }
1874     }
1875   }
1876 
1877   // Make sure that we call delete even if the dtor throws.
1878   // This doesn't have to a conditional cleanup because we're going
1879   // to pop it off in a second.
1880   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1881                                             Ptr.getPointer(),
1882                                             OperatorDelete, ElementType);
1883 
1884   if (Dtor)
1885     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1886                               /*ForVirtualBase=*/false,
1887                               /*Delegating=*/false,
1888                               Ptr);
1889   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1890     switch (Lifetime) {
1891     case Qualifiers::OCL_None:
1892     case Qualifiers::OCL_ExplicitNone:
1893     case Qualifiers::OCL_Autoreleasing:
1894       break;
1895 
1896     case Qualifiers::OCL_Strong:
1897       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1898       break;
1899 
1900     case Qualifiers::OCL_Weak:
1901       CGF.EmitARCDestroyWeak(Ptr);
1902       break;
1903     }
1904   }
1905 
1906   CGF.PopCleanupBlock();
1907 }
1908 
1909 namespace {
1910   /// Calls the given 'operator delete' on an array of objects.
1911   struct CallArrayDelete final : EHScopeStack::Cleanup {
1912     llvm::Value *Ptr;
1913     const FunctionDecl *OperatorDelete;
1914     llvm::Value *NumElements;
1915     QualType ElementType;
1916     CharUnits CookieSize;
1917 
1918     CallArrayDelete(llvm::Value *Ptr,
1919                     const FunctionDecl *OperatorDelete,
1920                     llvm::Value *NumElements,
1921                     QualType ElementType,
1922                     CharUnits CookieSize)
1923       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1924         ElementType(ElementType), CookieSize(CookieSize) {}
1925 
1926     void Emit(CodeGenFunction &CGF, Flags flags) override {
1927       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1928                          CookieSize);
1929     }
1930   };
1931 }
1932 
1933 /// Emit the code for deleting an array of objects.
1934 static void EmitArrayDelete(CodeGenFunction &CGF,
1935                             const CXXDeleteExpr *E,
1936                             Address deletedPtr,
1937                             QualType elementType) {
1938   llvm::Value *numElements = nullptr;
1939   llvm::Value *allocatedPtr = nullptr;
1940   CharUnits cookieSize;
1941   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1942                                       numElements, allocatedPtr, cookieSize);
1943 
1944   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1945 
1946   // Make sure that we call delete even if one of the dtors throws.
1947   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1948   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1949                                            allocatedPtr, operatorDelete,
1950                                            numElements, elementType,
1951                                            cookieSize);
1952 
1953   // Destroy the elements.
1954   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1955     assert(numElements && "no element count for a type with a destructor!");
1956 
1957     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1958     CharUnits elementAlign =
1959       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1960 
1961     llvm::Value *arrayBegin = deletedPtr.getPointer();
1962     llvm::Value *arrayEnd =
1963       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1964 
1965     // Note that it is legal to allocate a zero-length array, and we
1966     // can never fold the check away because the length should always
1967     // come from a cookie.
1968     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1969                          CGF.getDestroyer(dtorKind),
1970                          /*checkZeroLength*/ true,
1971                          CGF.needsEHCleanup(dtorKind));
1972   }
1973 
1974   // Pop the cleanup block.
1975   CGF.PopCleanupBlock();
1976 }
1977 
1978 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1979   const Expr *Arg = E->getArgument();
1980   Address Ptr = EmitPointerWithAlignment(Arg);
1981 
1982   // Null check the pointer.
1983   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1984   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1985 
1986   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1987 
1988   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1989   EmitBlock(DeleteNotNull);
1990 
1991   QualType DeleteTy = E->getDestroyedType();
1992 
1993   // A destroying operator delete overrides the entire operation of the
1994   // delete expression.
1995   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1996     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1997     EmitBlock(DeleteEnd);
1998     return;
1999   }
2000 
2001   // We might be deleting a pointer to array.  If so, GEP down to the
2002   // first non-array element.
2003   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2004   if (DeleteTy->isConstantArrayType()) {
2005     llvm::Value *Zero = Builder.getInt32(0);
2006     SmallVector<llvm::Value*,8> GEP;
2007 
2008     GEP.push_back(Zero); // point at the outermost array
2009 
2010     // For each layer of array type we're pointing at:
2011     while (const ConstantArrayType *Arr
2012              = getContext().getAsConstantArrayType(DeleteTy)) {
2013       // 1. Unpeel the array type.
2014       DeleteTy = Arr->getElementType();
2015 
2016       // 2. GEP to the first element of the array.
2017       GEP.push_back(Zero);
2018     }
2019 
2020     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2021                   Ptr.getAlignment());
2022   }
2023 
2024   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2025 
2026   if (E->isArrayForm()) {
2027     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2028   } else {
2029     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2030   }
2031 
2032   EmitBlock(DeleteEnd);
2033 }
2034 
2035 static bool isGLValueFromPointerDeref(const Expr *E) {
2036   E = E->IgnoreParens();
2037 
2038   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2039     if (!CE->getSubExpr()->isGLValue())
2040       return false;
2041     return isGLValueFromPointerDeref(CE->getSubExpr());
2042   }
2043 
2044   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2045     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2046 
2047   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2048     if (BO->getOpcode() == BO_Comma)
2049       return isGLValueFromPointerDeref(BO->getRHS());
2050 
2051   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2052     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2053            isGLValueFromPointerDeref(ACO->getFalseExpr());
2054 
2055   // C++11 [expr.sub]p1:
2056   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2057   if (isa<ArraySubscriptExpr>(E))
2058     return true;
2059 
2060   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2061     if (UO->getOpcode() == UO_Deref)
2062       return true;
2063 
2064   return false;
2065 }
2066 
2067 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2068                                          llvm::Type *StdTypeInfoPtrTy) {
2069   // Get the vtable pointer.
2070   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2071 
2072   QualType SrcRecordTy = E->getType();
2073 
2074   // C++ [class.cdtor]p4:
2075   //   If the operand of typeid refers to the object under construction or
2076   //   destruction and the static type of the operand is neither the constructor
2077   //   or destructor’s class nor one of its bases, the behavior is undefined.
2078   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2079                     ThisPtr.getPointer(), SrcRecordTy);
2080 
2081   // C++ [expr.typeid]p2:
2082   //   If the glvalue expression is obtained by applying the unary * operator to
2083   //   a pointer and the pointer is a null pointer value, the typeid expression
2084   //   throws the std::bad_typeid exception.
2085   //
2086   // However, this paragraph's intent is not clear.  We choose a very generous
2087   // interpretation which implores us to consider comma operators, conditional
2088   // operators, parentheses and other such constructs.
2089   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2090           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2091     llvm::BasicBlock *BadTypeidBlock =
2092         CGF.createBasicBlock("typeid.bad_typeid");
2093     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2094 
2095     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2096     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2097 
2098     CGF.EmitBlock(BadTypeidBlock);
2099     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2100     CGF.EmitBlock(EndBlock);
2101   }
2102 
2103   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2104                                         StdTypeInfoPtrTy);
2105 }
2106 
2107 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2108   llvm::Type *StdTypeInfoPtrTy =
2109     ConvertType(E->getType())->getPointerTo();
2110 
2111   if (E->isTypeOperand()) {
2112     llvm::Constant *TypeInfo =
2113         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2114     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2115   }
2116 
2117   // C++ [expr.typeid]p2:
2118   //   When typeid is applied to a glvalue expression whose type is a
2119   //   polymorphic class type, the result refers to a std::type_info object
2120   //   representing the type of the most derived object (that is, the dynamic
2121   //   type) to which the glvalue refers.
2122   if (E->isPotentiallyEvaluated())
2123     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2124                                 StdTypeInfoPtrTy);
2125 
2126   QualType OperandTy = E->getExprOperand()->getType();
2127   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2128                                StdTypeInfoPtrTy);
2129 }
2130 
2131 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2132                                           QualType DestTy) {
2133   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2134   if (DestTy->isPointerType())
2135     return llvm::Constant::getNullValue(DestLTy);
2136 
2137   /// C++ [expr.dynamic.cast]p9:
2138   ///   A failed cast to reference type throws std::bad_cast
2139   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2140     return nullptr;
2141 
2142   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2143   return llvm::UndefValue::get(DestLTy);
2144 }
2145 
2146 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2147                                               const CXXDynamicCastExpr *DCE) {
2148   CGM.EmitExplicitCastExprType(DCE, this);
2149   QualType DestTy = DCE->getTypeAsWritten();
2150 
2151   QualType SrcTy = DCE->getSubExpr()->getType();
2152 
2153   // C++ [expr.dynamic.cast]p7:
2154   //   If T is "pointer to cv void," then the result is a pointer to the most
2155   //   derived object pointed to by v.
2156   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2157 
2158   bool isDynamicCastToVoid;
2159   QualType SrcRecordTy;
2160   QualType DestRecordTy;
2161   if (DestPTy) {
2162     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2163     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2164     DestRecordTy = DestPTy->getPointeeType();
2165   } else {
2166     isDynamicCastToVoid = false;
2167     SrcRecordTy = SrcTy;
2168     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2169   }
2170 
2171   // C++ [class.cdtor]p5:
2172   //   If the operand of the dynamic_cast refers to the object under
2173   //   construction or destruction and the static type of the operand is not a
2174   //   pointer to or object of the constructor or destructor’s own class or one
2175   //   of its bases, the dynamic_cast results in undefined behavior.
2176   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2177                 SrcRecordTy);
2178 
2179   if (DCE->isAlwaysNull())
2180     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2181       return T;
2182 
2183   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2184 
2185   // C++ [expr.dynamic.cast]p4:
2186   //   If the value of v is a null pointer value in the pointer case, the result
2187   //   is the null pointer value of type T.
2188   bool ShouldNullCheckSrcValue =
2189       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2190                                                          SrcRecordTy);
2191 
2192   llvm::BasicBlock *CastNull = nullptr;
2193   llvm::BasicBlock *CastNotNull = nullptr;
2194   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2195 
2196   if (ShouldNullCheckSrcValue) {
2197     CastNull = createBasicBlock("dynamic_cast.null");
2198     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2199 
2200     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2201     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2202     EmitBlock(CastNotNull);
2203   }
2204 
2205   llvm::Value *Value;
2206   if (isDynamicCastToVoid) {
2207     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2208                                                   DestTy);
2209   } else {
2210     assert(DestRecordTy->isRecordType() &&
2211            "destination type must be a record type!");
2212     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2213                                                 DestTy, DestRecordTy, CastEnd);
2214     CastNotNull = Builder.GetInsertBlock();
2215   }
2216 
2217   if (ShouldNullCheckSrcValue) {
2218     EmitBranch(CastEnd);
2219 
2220     EmitBlock(CastNull);
2221     EmitBranch(CastEnd);
2222   }
2223 
2224   EmitBlock(CastEnd);
2225 
2226   if (ShouldNullCheckSrcValue) {
2227     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2228     PHI->addIncoming(Value, CastNotNull);
2229     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2230 
2231     Value = PHI;
2232   }
2233 
2234   return Value;
2235 }
2236