1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "ConstantEmitter.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 struct MemberCallInfo { 28 RequiredArgs ReqArgs; 29 // Number of prefix arguments for the call. Ignores the `this` pointer. 30 unsigned PrefixSize; 31 }; 32 } 33 34 static MemberCallInfo 35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 36 llvm::Value *This, llvm::Value *ImplicitParam, 37 QualType ImplicitParamTy, const CallExpr *CE, 38 CallArgList &Args, CallArgList *RtlArgs) { 39 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 40 isa<CXXOperatorCallExpr>(CE)); 41 assert(MD->isInstance() && 42 "Trying to emit a member or operator call expr on a static method!"); 43 44 // Push the this ptr. 45 const CXXRecordDecl *RD = 46 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 47 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 48 49 // If there is an implicit parameter (e.g. VTT), emit it. 50 if (ImplicitParam) { 51 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 52 } 53 54 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 55 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 56 unsigned PrefixSize = Args.size() - 1; 57 58 // And the rest of the call args. 59 if (RtlArgs) { 60 // Special case: if the caller emitted the arguments right-to-left already 61 // (prior to emitting the *this argument), we're done. This happens for 62 // assignment operators. 63 Args.addFrom(*RtlArgs); 64 } else if (CE) { 65 // Special case: skip first argument of CXXOperatorCall (it is "this"). 66 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 67 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 68 CE->getDirectCallee()); 69 } else { 70 assert( 71 FPT->getNumParams() == 0 && 72 "No CallExpr specified for function with non-zero number of arguments"); 73 } 74 return {required, PrefixSize}; 75 } 76 77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 78 const CXXMethodDecl *MD, const CGCallee &Callee, 79 ReturnValueSlot ReturnValue, 80 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 81 const CallExpr *CE, CallArgList *RtlArgs) { 82 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 83 CallArgList Args; 84 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 85 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 86 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 87 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 88 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 89 CE ? CE->getExprLoc() : SourceLocation()); 90 } 91 92 RValue CodeGenFunction::EmitCXXDestructorCall( 93 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, 94 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 95 CallArgList Args; 96 commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()), 97 This, ImplicitParam, ImplicitParamTy, CE, 98 Args, nullptr); 99 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 100 ReturnValueSlot(), Args); 101 } 102 103 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 104 const CXXPseudoDestructorExpr *E) { 105 QualType DestroyedType = E->getDestroyedType(); 106 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 107 // Automatic Reference Counting: 108 // If the pseudo-expression names a retainable object with weak or 109 // strong lifetime, the object shall be released. 110 Expr *BaseExpr = E->getBase(); 111 Address BaseValue = Address::invalid(); 112 Qualifiers BaseQuals; 113 114 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 115 if (E->isArrow()) { 116 BaseValue = EmitPointerWithAlignment(BaseExpr); 117 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 118 BaseQuals = PTy->getPointeeType().getQualifiers(); 119 } else { 120 LValue BaseLV = EmitLValue(BaseExpr); 121 BaseValue = BaseLV.getAddress(); 122 QualType BaseTy = BaseExpr->getType(); 123 BaseQuals = BaseTy.getQualifiers(); 124 } 125 126 switch (DestroyedType.getObjCLifetime()) { 127 case Qualifiers::OCL_None: 128 case Qualifiers::OCL_ExplicitNone: 129 case Qualifiers::OCL_Autoreleasing: 130 break; 131 132 case Qualifiers::OCL_Strong: 133 EmitARCRelease(Builder.CreateLoad(BaseValue, 134 DestroyedType.isVolatileQualified()), 135 ARCPreciseLifetime); 136 break; 137 138 case Qualifiers::OCL_Weak: 139 EmitARCDestroyWeak(BaseValue); 140 break; 141 } 142 } else { 143 // C++ [expr.pseudo]p1: 144 // The result shall only be used as the operand for the function call 145 // operator (), and the result of such a call has type void. The only 146 // effect is the evaluation of the postfix-expression before the dot or 147 // arrow. 148 EmitIgnoredExpr(E->getBase()); 149 } 150 151 return RValue::get(nullptr); 152 } 153 154 static CXXRecordDecl *getCXXRecord(const Expr *E) { 155 QualType T = E->getType(); 156 if (const PointerType *PTy = T->getAs<PointerType>()) 157 T = PTy->getPointeeType(); 158 const RecordType *Ty = T->castAs<RecordType>(); 159 return cast<CXXRecordDecl>(Ty->getDecl()); 160 } 161 162 // Note: This function also emit constructor calls to support a MSVC 163 // extensions allowing explicit constructor function call. 164 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 165 ReturnValueSlot ReturnValue) { 166 const Expr *callee = CE->getCallee()->IgnoreParens(); 167 168 if (isa<BinaryOperator>(callee)) 169 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 170 171 const MemberExpr *ME = cast<MemberExpr>(callee); 172 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 173 174 if (MD->isStatic()) { 175 // The method is static, emit it as we would a regular call. 176 CGCallee callee = 177 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 178 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 179 ReturnValue); 180 } 181 182 bool HasQualifier = ME->hasQualifier(); 183 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 184 bool IsArrow = ME->isArrow(); 185 const Expr *Base = ME->getBase(); 186 187 return EmitCXXMemberOrOperatorMemberCallExpr( 188 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 189 } 190 191 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 192 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 193 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 194 const Expr *Base) { 195 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 196 197 // Compute the object pointer. 198 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 199 200 const CXXMethodDecl *DevirtualizedMethod = nullptr; 201 if (CanUseVirtualCall && 202 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 205 assert(DevirtualizedMethod); 206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 207 const Expr *Inner = Base->ignoreParenBaseCasts(); 208 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 209 MD->getReturnType().getCanonicalType()) 210 // If the return types are not the same, this might be a case where more 211 // code needs to run to compensate for it. For example, the derived 212 // method might return a type that inherits form from the return 213 // type of MD and has a prefix. 214 // For now we just avoid devirtualizing these covariant cases. 215 DevirtualizedMethod = nullptr; 216 else if (getCXXRecord(Inner) == DevirtualizedClass) 217 // If the class of the Inner expression is where the dynamic method 218 // is defined, build the this pointer from it. 219 Base = Inner; 220 else if (getCXXRecord(Base) != DevirtualizedClass) { 221 // If the method is defined in a class that is not the best dynamic 222 // one or the one of the full expression, we would have to build 223 // a derived-to-base cast to compute the correct this pointer, but 224 // we don't have support for that yet, so do a virtual call. 225 DevirtualizedMethod = nullptr; 226 } 227 } 228 229 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 230 // operator before the LHS. 231 CallArgList RtlArgStorage; 232 CallArgList *RtlArgs = nullptr; 233 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 234 if (OCE->isAssignmentOp()) { 235 RtlArgs = &RtlArgStorage; 236 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 237 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 238 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 239 } 240 } 241 242 LValue This; 243 if (IsArrow) { 244 LValueBaseInfo BaseInfo; 245 TBAAAccessInfo TBAAInfo; 246 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 247 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 248 } else { 249 This = EmitLValue(Base); 250 } 251 252 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 253 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 254 // constructing a new complete object of type Ctor. 255 assert(!RtlArgs); 256 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 257 CallArgList Args; 258 commonEmitCXXMemberOrOperatorCall( 259 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr, 260 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 261 262 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 263 /*Delegating=*/false, This.getAddress(), Args, 264 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 265 /*NewPointerIsChecked=*/false); 266 return RValue::get(nullptr); 267 } 268 269 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 270 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 271 if (!MD->getParent()->mayInsertExtraPadding()) { 272 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 273 // We don't like to generate the trivial copy/move assignment operator 274 // when it isn't necessary; just produce the proper effect here. 275 LValue RHS = isa<CXXOperatorCallExpr>(CE) 276 ? MakeNaturalAlignAddrLValue( 277 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 278 (*(CE->arg_begin() + 1))->getType()) 279 : EmitLValue(*CE->arg_begin()); 280 EmitAggregateAssign(This, RHS, CE->getType()); 281 return RValue::get(This.getPointer()); 282 } 283 llvm_unreachable("unknown trivial member function"); 284 } 285 } 286 287 // Compute the function type we're calling. 288 const CXXMethodDecl *CalleeDecl = 289 DevirtualizedMethod ? DevirtualizedMethod : MD; 290 const CGFunctionInfo *FInfo = nullptr; 291 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 292 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 293 GlobalDecl(Dtor, Dtor_Complete)); 294 else 295 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 296 297 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 298 299 // C++11 [class.mfct.non-static]p2: 300 // If a non-static member function of a class X is called for an object that 301 // is not of type X, or of a type derived from X, the behavior is undefined. 302 SourceLocation CallLoc; 303 ASTContext &C = getContext(); 304 if (CE) 305 CallLoc = CE->getExprLoc(); 306 307 SanitizerSet SkippedChecks; 308 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 309 auto *IOA = CMCE->getImplicitObjectArgument(); 310 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 311 if (IsImplicitObjectCXXThis) 312 SkippedChecks.set(SanitizerKind::Alignment, true); 313 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 314 SkippedChecks.set(SanitizerKind::Null, true); 315 } 316 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(), 317 C.getRecordType(CalleeDecl->getParent()), 318 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 319 320 // C++ [class.virtual]p12: 321 // Explicit qualification with the scope operator (5.1) suppresses the 322 // virtual call mechanism. 323 // 324 // We also don't emit a virtual call if the base expression has a record type 325 // because then we know what the type is. 326 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 327 328 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 329 assert(CE->arg_begin() == CE->arg_end() && 330 "Destructor shouldn't have explicit parameters"); 331 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 332 if (UseVirtualCall) { 333 CGM.getCXXABI().EmitVirtualDestructorCall( 334 *this, Dtor, Dtor_Complete, This.getAddress(), 335 cast<CXXMemberCallExpr>(CE)); 336 } else { 337 GlobalDecl GD(Dtor, Dtor_Complete); 338 CGCallee Callee; 339 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 340 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 341 else if (!DevirtualizedMethod) 342 Callee = 343 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 344 else { 345 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 346 } 347 348 EmitCXXDestructorCall(GD, Callee, This.getPointer(), 349 /*ImplicitParam=*/nullptr, 350 /*ImplicitParamTy=*/QualType(), nullptr); 351 } 352 return RValue::get(nullptr); 353 } 354 355 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 356 // 'CalleeDecl' instead. 357 358 CGCallee Callee; 359 if (UseVirtualCall) { 360 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 361 } else { 362 if (SanOpts.has(SanitizerKind::CFINVCall) && 363 MD->getParent()->isDynamicClass()) { 364 llvm::Value *VTable; 365 const CXXRecordDecl *RD; 366 std::tie(VTable, RD) = 367 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 368 MD->getParent()); 369 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 370 } 371 372 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 373 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 374 else if (!DevirtualizedMethod) 375 Callee = 376 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 377 else { 378 Callee = 379 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 380 GlobalDecl(DevirtualizedMethod)); 381 } 382 } 383 384 if (MD->isVirtual()) { 385 Address NewThisAddr = 386 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 387 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 388 This.setAddress(NewThisAddr); 389 } 390 391 return EmitCXXMemberOrOperatorCall( 392 CalleeDecl, Callee, ReturnValue, This.getPointer(), 393 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 394 } 395 396 RValue 397 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 398 ReturnValueSlot ReturnValue) { 399 const BinaryOperator *BO = 400 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 401 const Expr *BaseExpr = BO->getLHS(); 402 const Expr *MemFnExpr = BO->getRHS(); 403 404 const MemberPointerType *MPT = 405 MemFnExpr->getType()->castAs<MemberPointerType>(); 406 407 const FunctionProtoType *FPT = 408 MPT->getPointeeType()->castAs<FunctionProtoType>(); 409 const CXXRecordDecl *RD = 410 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 411 412 // Emit the 'this' pointer. 413 Address This = Address::invalid(); 414 if (BO->getOpcode() == BO_PtrMemI) 415 This = EmitPointerWithAlignment(BaseExpr); 416 else 417 This = EmitLValue(BaseExpr).getAddress(); 418 419 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 420 QualType(MPT->getClass(), 0)); 421 422 // Get the member function pointer. 423 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 424 425 // Ask the ABI to load the callee. Note that This is modified. 426 llvm::Value *ThisPtrForCall = nullptr; 427 CGCallee Callee = 428 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 429 ThisPtrForCall, MemFnPtr, MPT); 430 431 CallArgList Args; 432 433 QualType ThisType = 434 getContext().getPointerType(getContext().getTagDeclType(RD)); 435 436 // Push the this ptr. 437 Args.add(RValue::get(ThisPtrForCall), ThisType); 438 439 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 440 441 // And the rest of the call args 442 EmitCallArgs(Args, FPT, E->arguments()); 443 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 444 /*PrefixSize=*/0), 445 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 446 } 447 448 RValue 449 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 450 const CXXMethodDecl *MD, 451 ReturnValueSlot ReturnValue) { 452 assert(MD->isInstance() && 453 "Trying to emit a member call expr on a static method!"); 454 return EmitCXXMemberOrOperatorMemberCallExpr( 455 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 456 /*IsArrow=*/false, E->getArg(0)); 457 } 458 459 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 460 ReturnValueSlot ReturnValue) { 461 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 462 } 463 464 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 465 Address DestPtr, 466 const CXXRecordDecl *Base) { 467 if (Base->isEmpty()) 468 return; 469 470 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 471 472 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 473 CharUnits NVSize = Layout.getNonVirtualSize(); 474 475 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 476 // present, they are initialized by the most derived class before calling the 477 // constructor. 478 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 479 Stores.emplace_back(CharUnits::Zero(), NVSize); 480 481 // Each store is split by the existence of a vbptr. 482 CharUnits VBPtrWidth = CGF.getPointerSize(); 483 std::vector<CharUnits> VBPtrOffsets = 484 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 485 for (CharUnits VBPtrOffset : VBPtrOffsets) { 486 // Stop before we hit any virtual base pointers located in virtual bases. 487 if (VBPtrOffset >= NVSize) 488 break; 489 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 490 CharUnits LastStoreOffset = LastStore.first; 491 CharUnits LastStoreSize = LastStore.second; 492 493 CharUnits SplitBeforeOffset = LastStoreOffset; 494 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 495 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 496 if (!SplitBeforeSize.isZero()) 497 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 498 499 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 500 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 501 assert(!SplitAfterSize.isNegative() && "negative store size!"); 502 if (!SplitAfterSize.isZero()) 503 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 504 } 505 506 // If the type contains a pointer to data member we can't memset it to zero. 507 // Instead, create a null constant and copy it to the destination. 508 // TODO: there are other patterns besides zero that we can usefully memset, 509 // like -1, which happens to be the pattern used by member-pointers. 510 // TODO: isZeroInitializable can be over-conservative in the case where a 511 // virtual base contains a member pointer. 512 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 513 if (!NullConstantForBase->isNullValue()) { 514 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 515 CGF.CGM.getModule(), NullConstantForBase->getType(), 516 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 517 NullConstantForBase, Twine()); 518 519 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 520 DestPtr.getAlignment()); 521 NullVariable->setAlignment(Align.getQuantity()); 522 523 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 524 525 // Get and call the appropriate llvm.memcpy overload. 526 for (std::pair<CharUnits, CharUnits> Store : Stores) { 527 CharUnits StoreOffset = Store.first; 528 CharUnits StoreSize = Store.second; 529 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 530 CGF.Builder.CreateMemCpy( 531 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 532 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 533 StoreSizeVal); 534 } 535 536 // Otherwise, just memset the whole thing to zero. This is legal 537 // because in LLVM, all default initializers (other than the ones we just 538 // handled above) are guaranteed to have a bit pattern of all zeros. 539 } else { 540 for (std::pair<CharUnits, CharUnits> Store : Stores) { 541 CharUnits StoreOffset = Store.first; 542 CharUnits StoreSize = Store.second; 543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 544 CGF.Builder.CreateMemSet( 545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 546 CGF.Builder.getInt8(0), StoreSizeVal); 547 } 548 } 549 } 550 551 void 552 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 553 AggValueSlot Dest) { 554 assert(!Dest.isIgnored() && "Must have a destination!"); 555 const CXXConstructorDecl *CD = E->getConstructor(); 556 557 // If we require zero initialization before (or instead of) calling the 558 // constructor, as can be the case with a non-user-provided default 559 // constructor, emit the zero initialization now, unless destination is 560 // already zeroed. 561 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 562 switch (E->getConstructionKind()) { 563 case CXXConstructExpr::CK_Delegating: 564 case CXXConstructExpr::CK_Complete: 565 EmitNullInitialization(Dest.getAddress(), E->getType()); 566 break; 567 case CXXConstructExpr::CK_VirtualBase: 568 case CXXConstructExpr::CK_NonVirtualBase: 569 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 570 CD->getParent()); 571 break; 572 } 573 } 574 575 // If this is a call to a trivial default constructor, do nothing. 576 if (CD->isTrivial() && CD->isDefaultConstructor()) 577 return; 578 579 // Elide the constructor if we're constructing from a temporary. 580 // The temporary check is required because Sema sets this on NRVO 581 // returns. 582 if (getLangOpts().ElideConstructors && E->isElidable()) { 583 assert(getContext().hasSameUnqualifiedType(E->getType(), 584 E->getArg(0)->getType())); 585 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 586 EmitAggExpr(E->getArg(0), Dest); 587 return; 588 } 589 } 590 591 if (const ArrayType *arrayType 592 = getContext().getAsArrayType(E->getType())) { 593 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 594 Dest.isSanitizerChecked()); 595 } else { 596 CXXCtorType Type = Ctor_Complete; 597 bool ForVirtualBase = false; 598 bool Delegating = false; 599 600 switch (E->getConstructionKind()) { 601 case CXXConstructExpr::CK_Delegating: 602 // We should be emitting a constructor; GlobalDecl will assert this 603 Type = CurGD.getCtorType(); 604 Delegating = true; 605 break; 606 607 case CXXConstructExpr::CK_Complete: 608 Type = Ctor_Complete; 609 break; 610 611 case CXXConstructExpr::CK_VirtualBase: 612 ForVirtualBase = true; 613 LLVM_FALLTHROUGH; 614 615 case CXXConstructExpr::CK_NonVirtualBase: 616 Type = Ctor_Base; 617 } 618 619 // Call the constructor. 620 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 621 Dest.getAddress(), E, Dest.mayOverlap(), 622 Dest.isSanitizerChecked()); 623 } 624 } 625 626 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 627 const Expr *Exp) { 628 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 629 Exp = E->getSubExpr(); 630 assert(isa<CXXConstructExpr>(Exp) && 631 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 632 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 633 const CXXConstructorDecl *CD = E->getConstructor(); 634 RunCleanupsScope Scope(*this); 635 636 // If we require zero initialization before (or instead of) calling the 637 // constructor, as can be the case with a non-user-provided default 638 // constructor, emit the zero initialization now. 639 // FIXME. Do I still need this for a copy ctor synthesis? 640 if (E->requiresZeroInitialization()) 641 EmitNullInitialization(Dest, E->getType()); 642 643 assert(!getContext().getAsConstantArrayType(E->getType()) 644 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 645 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 646 } 647 648 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 649 const CXXNewExpr *E) { 650 if (!E->isArray()) 651 return CharUnits::Zero(); 652 653 // No cookie is required if the operator new[] being used is the 654 // reserved placement operator new[]. 655 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 656 return CharUnits::Zero(); 657 658 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 659 } 660 661 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 662 const CXXNewExpr *e, 663 unsigned minElements, 664 llvm::Value *&numElements, 665 llvm::Value *&sizeWithoutCookie) { 666 QualType type = e->getAllocatedType(); 667 668 if (!e->isArray()) { 669 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 670 sizeWithoutCookie 671 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 672 return sizeWithoutCookie; 673 } 674 675 // The width of size_t. 676 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 677 678 // Figure out the cookie size. 679 llvm::APInt cookieSize(sizeWidth, 680 CalculateCookiePadding(CGF, e).getQuantity()); 681 682 // Emit the array size expression. 683 // We multiply the size of all dimensions for NumElements. 684 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 685 numElements = 686 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 687 if (!numElements) 688 numElements = CGF.EmitScalarExpr(e->getArraySize()); 689 assert(isa<llvm::IntegerType>(numElements->getType())); 690 691 // The number of elements can be have an arbitrary integer type; 692 // essentially, we need to multiply it by a constant factor, add a 693 // cookie size, and verify that the result is representable as a 694 // size_t. That's just a gloss, though, and it's wrong in one 695 // important way: if the count is negative, it's an error even if 696 // the cookie size would bring the total size >= 0. 697 bool isSigned 698 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 699 llvm::IntegerType *numElementsType 700 = cast<llvm::IntegerType>(numElements->getType()); 701 unsigned numElementsWidth = numElementsType->getBitWidth(); 702 703 // Compute the constant factor. 704 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 705 while (const ConstantArrayType *CAT 706 = CGF.getContext().getAsConstantArrayType(type)) { 707 type = CAT->getElementType(); 708 arraySizeMultiplier *= CAT->getSize(); 709 } 710 711 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 712 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 713 typeSizeMultiplier *= arraySizeMultiplier; 714 715 // This will be a size_t. 716 llvm::Value *size; 717 718 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 719 // Don't bloat the -O0 code. 720 if (llvm::ConstantInt *numElementsC = 721 dyn_cast<llvm::ConstantInt>(numElements)) { 722 const llvm::APInt &count = numElementsC->getValue(); 723 724 bool hasAnyOverflow = false; 725 726 // If 'count' was a negative number, it's an overflow. 727 if (isSigned && count.isNegative()) 728 hasAnyOverflow = true; 729 730 // We want to do all this arithmetic in size_t. If numElements is 731 // wider than that, check whether it's already too big, and if so, 732 // overflow. 733 else if (numElementsWidth > sizeWidth && 734 numElementsWidth - sizeWidth > count.countLeadingZeros()) 735 hasAnyOverflow = true; 736 737 // Okay, compute a count at the right width. 738 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 739 740 // If there is a brace-initializer, we cannot allocate fewer elements than 741 // there are initializers. If we do, that's treated like an overflow. 742 if (adjustedCount.ult(minElements)) 743 hasAnyOverflow = true; 744 745 // Scale numElements by that. This might overflow, but we don't 746 // care because it only overflows if allocationSize does, too, and 747 // if that overflows then we shouldn't use this. 748 numElements = llvm::ConstantInt::get(CGF.SizeTy, 749 adjustedCount * arraySizeMultiplier); 750 751 // Compute the size before cookie, and track whether it overflowed. 752 bool overflow; 753 llvm::APInt allocationSize 754 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 755 hasAnyOverflow |= overflow; 756 757 // Add in the cookie, and check whether it's overflowed. 758 if (cookieSize != 0) { 759 // Save the current size without a cookie. This shouldn't be 760 // used if there was overflow. 761 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 762 763 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 764 hasAnyOverflow |= overflow; 765 } 766 767 // On overflow, produce a -1 so operator new will fail. 768 if (hasAnyOverflow) { 769 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 770 } else { 771 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 772 } 773 774 // Otherwise, we might need to use the overflow intrinsics. 775 } else { 776 // There are up to five conditions we need to test for: 777 // 1) if isSigned, we need to check whether numElements is negative; 778 // 2) if numElementsWidth > sizeWidth, we need to check whether 779 // numElements is larger than something representable in size_t; 780 // 3) if minElements > 0, we need to check whether numElements is smaller 781 // than that. 782 // 4) we need to compute 783 // sizeWithoutCookie := numElements * typeSizeMultiplier 784 // and check whether it overflows; and 785 // 5) if we need a cookie, we need to compute 786 // size := sizeWithoutCookie + cookieSize 787 // and check whether it overflows. 788 789 llvm::Value *hasOverflow = nullptr; 790 791 // If numElementsWidth > sizeWidth, then one way or another, we're 792 // going to have to do a comparison for (2), and this happens to 793 // take care of (1), too. 794 if (numElementsWidth > sizeWidth) { 795 llvm::APInt threshold(numElementsWidth, 1); 796 threshold <<= sizeWidth; 797 798 llvm::Value *thresholdV 799 = llvm::ConstantInt::get(numElementsType, threshold); 800 801 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 802 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 803 804 // Otherwise, if we're signed, we want to sext up to size_t. 805 } else if (isSigned) { 806 if (numElementsWidth < sizeWidth) 807 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 808 809 // If there's a non-1 type size multiplier, then we can do the 810 // signedness check at the same time as we do the multiply 811 // because a negative number times anything will cause an 812 // unsigned overflow. Otherwise, we have to do it here. But at least 813 // in this case, we can subsume the >= minElements check. 814 if (typeSizeMultiplier == 1) 815 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 816 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 817 818 // Otherwise, zext up to size_t if necessary. 819 } else if (numElementsWidth < sizeWidth) { 820 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 821 } 822 823 assert(numElements->getType() == CGF.SizeTy); 824 825 if (minElements) { 826 // Don't allow allocation of fewer elements than we have initializers. 827 if (!hasOverflow) { 828 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 829 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 830 } else if (numElementsWidth > sizeWidth) { 831 // The other existing overflow subsumes this check. 832 // We do an unsigned comparison, since any signed value < -1 is 833 // taken care of either above or below. 834 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 835 CGF.Builder.CreateICmpULT(numElements, 836 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 837 } 838 } 839 840 size = numElements; 841 842 // Multiply by the type size if necessary. This multiplier 843 // includes all the factors for nested arrays. 844 // 845 // This step also causes numElements to be scaled up by the 846 // nested-array factor if necessary. Overflow on this computation 847 // can be ignored because the result shouldn't be used if 848 // allocation fails. 849 if (typeSizeMultiplier != 1) { 850 llvm::Function *umul_with_overflow 851 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 852 853 llvm::Value *tsmV = 854 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 855 llvm::Value *result = 856 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 857 858 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 859 if (hasOverflow) 860 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 861 else 862 hasOverflow = overflowed; 863 864 size = CGF.Builder.CreateExtractValue(result, 0); 865 866 // Also scale up numElements by the array size multiplier. 867 if (arraySizeMultiplier != 1) { 868 // If the base element type size is 1, then we can re-use the 869 // multiply we just did. 870 if (typeSize.isOne()) { 871 assert(arraySizeMultiplier == typeSizeMultiplier); 872 numElements = size; 873 874 // Otherwise we need a separate multiply. 875 } else { 876 llvm::Value *asmV = 877 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 878 numElements = CGF.Builder.CreateMul(numElements, asmV); 879 } 880 } 881 } else { 882 // numElements doesn't need to be scaled. 883 assert(arraySizeMultiplier == 1); 884 } 885 886 // Add in the cookie size if necessary. 887 if (cookieSize != 0) { 888 sizeWithoutCookie = size; 889 890 llvm::Function *uadd_with_overflow 891 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 892 893 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 894 llvm::Value *result = 895 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 896 897 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 898 if (hasOverflow) 899 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 900 else 901 hasOverflow = overflowed; 902 903 size = CGF.Builder.CreateExtractValue(result, 0); 904 } 905 906 // If we had any possibility of dynamic overflow, make a select to 907 // overwrite 'size' with an all-ones value, which should cause 908 // operator new to throw. 909 if (hasOverflow) 910 size = CGF.Builder.CreateSelect(hasOverflow, 911 llvm::Constant::getAllOnesValue(CGF.SizeTy), 912 size); 913 } 914 915 if (cookieSize == 0) 916 sizeWithoutCookie = size; 917 else 918 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 919 920 return size; 921 } 922 923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 924 QualType AllocType, Address NewPtr, 925 AggValueSlot::Overlap_t MayOverlap) { 926 // FIXME: Refactor with EmitExprAsInit. 927 switch (CGF.getEvaluationKind(AllocType)) { 928 case TEK_Scalar: 929 CGF.EmitScalarInit(Init, nullptr, 930 CGF.MakeAddrLValue(NewPtr, AllocType), false); 931 return; 932 case TEK_Complex: 933 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 934 /*isInit*/ true); 935 return; 936 case TEK_Aggregate: { 937 AggValueSlot Slot 938 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 939 AggValueSlot::IsDestructed, 940 AggValueSlot::DoesNotNeedGCBarriers, 941 AggValueSlot::IsNotAliased, 942 MayOverlap, AggValueSlot::IsNotZeroed, 943 AggValueSlot::IsSanitizerChecked); 944 CGF.EmitAggExpr(Init, Slot); 945 return; 946 } 947 } 948 llvm_unreachable("bad evaluation kind"); 949 } 950 951 void CodeGenFunction::EmitNewArrayInitializer( 952 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 953 Address BeginPtr, llvm::Value *NumElements, 954 llvm::Value *AllocSizeWithoutCookie) { 955 // If we have a type with trivial initialization and no initializer, 956 // there's nothing to do. 957 if (!E->hasInitializer()) 958 return; 959 960 Address CurPtr = BeginPtr; 961 962 unsigned InitListElements = 0; 963 964 const Expr *Init = E->getInitializer(); 965 Address EndOfInit = Address::invalid(); 966 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 967 EHScopeStack::stable_iterator Cleanup; 968 llvm::Instruction *CleanupDominator = nullptr; 969 970 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 971 CharUnits ElementAlign = 972 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 973 974 // Attempt to perform zero-initialization using memset. 975 auto TryMemsetInitialization = [&]() -> bool { 976 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 977 // we can initialize with a memset to -1. 978 if (!CGM.getTypes().isZeroInitializable(ElementType)) 979 return false; 980 981 // Optimization: since zero initialization will just set the memory 982 // to all zeroes, generate a single memset to do it in one shot. 983 984 // Subtract out the size of any elements we've already initialized. 985 auto *RemainingSize = AllocSizeWithoutCookie; 986 if (InitListElements) { 987 // We know this can't overflow; we check this when doing the allocation. 988 auto *InitializedSize = llvm::ConstantInt::get( 989 RemainingSize->getType(), 990 getContext().getTypeSizeInChars(ElementType).getQuantity() * 991 InitListElements); 992 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 993 } 994 995 // Create the memset. 996 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 997 return true; 998 }; 999 1000 // If the initializer is an initializer list, first do the explicit elements. 1001 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1002 // Initializing from a (braced) string literal is a special case; the init 1003 // list element does not initialize a (single) array element. 1004 if (ILE->isStringLiteralInit()) { 1005 // Initialize the initial portion of length equal to that of the string 1006 // literal. The allocation must be for at least this much; we emitted a 1007 // check for that earlier. 1008 AggValueSlot Slot = 1009 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1010 AggValueSlot::IsDestructed, 1011 AggValueSlot::DoesNotNeedGCBarriers, 1012 AggValueSlot::IsNotAliased, 1013 AggValueSlot::DoesNotOverlap, 1014 AggValueSlot::IsNotZeroed, 1015 AggValueSlot::IsSanitizerChecked); 1016 EmitAggExpr(ILE->getInit(0), Slot); 1017 1018 // Move past these elements. 1019 InitListElements = 1020 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1021 ->getSize().getZExtValue(); 1022 CurPtr = 1023 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1024 Builder.getSize(InitListElements), 1025 "string.init.end"), 1026 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1027 ElementSize)); 1028 1029 // Zero out the rest, if any remain. 1030 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1031 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1032 bool OK = TryMemsetInitialization(); 1033 (void)OK; 1034 assert(OK && "couldn't memset character type?"); 1035 } 1036 return; 1037 } 1038 1039 InitListElements = ILE->getNumInits(); 1040 1041 // If this is a multi-dimensional array new, we will initialize multiple 1042 // elements with each init list element. 1043 QualType AllocType = E->getAllocatedType(); 1044 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1045 AllocType->getAsArrayTypeUnsafe())) { 1046 ElementTy = ConvertTypeForMem(AllocType); 1047 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1048 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1049 } 1050 1051 // Enter a partial-destruction Cleanup if necessary. 1052 if (needsEHCleanup(DtorKind)) { 1053 // In principle we could tell the Cleanup where we are more 1054 // directly, but the control flow can get so varied here that it 1055 // would actually be quite complex. Therefore we go through an 1056 // alloca. 1057 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1058 "array.init.end"); 1059 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1060 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1061 ElementType, ElementAlign, 1062 getDestroyer(DtorKind)); 1063 Cleanup = EHStack.stable_begin(); 1064 } 1065 1066 CharUnits StartAlign = CurPtr.getAlignment(); 1067 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1068 // Tell the cleanup that it needs to destroy up to this 1069 // element. TODO: some of these stores can be trivially 1070 // observed to be unnecessary. 1071 if (EndOfInit.isValid()) { 1072 auto FinishedPtr = 1073 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1074 Builder.CreateStore(FinishedPtr, EndOfInit); 1075 } 1076 // FIXME: If the last initializer is an incomplete initializer list for 1077 // an array, and we have an array filler, we can fold together the two 1078 // initialization loops. 1079 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1080 ILE->getInit(i)->getType(), CurPtr, 1081 AggValueSlot::DoesNotOverlap); 1082 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1083 Builder.getSize(1), 1084 "array.exp.next"), 1085 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1086 } 1087 1088 // The remaining elements are filled with the array filler expression. 1089 Init = ILE->getArrayFiller(); 1090 1091 // Extract the initializer for the individual array elements by pulling 1092 // out the array filler from all the nested initializer lists. This avoids 1093 // generating a nested loop for the initialization. 1094 while (Init && Init->getType()->isConstantArrayType()) { 1095 auto *SubILE = dyn_cast<InitListExpr>(Init); 1096 if (!SubILE) 1097 break; 1098 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1099 Init = SubILE->getArrayFiller(); 1100 } 1101 1102 // Switch back to initializing one base element at a time. 1103 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1104 } 1105 1106 // If all elements have already been initialized, skip any further 1107 // initialization. 1108 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1109 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1110 // If there was a Cleanup, deactivate it. 1111 if (CleanupDominator) 1112 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1113 return; 1114 } 1115 1116 assert(Init && "have trailing elements to initialize but no initializer"); 1117 1118 // If this is a constructor call, try to optimize it out, and failing that 1119 // emit a single loop to initialize all remaining elements. 1120 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1121 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1122 if (Ctor->isTrivial()) { 1123 // If new expression did not specify value-initialization, then there 1124 // is no initialization. 1125 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1126 return; 1127 1128 if (TryMemsetInitialization()) 1129 return; 1130 } 1131 1132 // Store the new Cleanup position for irregular Cleanups. 1133 // 1134 // FIXME: Share this cleanup with the constructor call emission rather than 1135 // having it create a cleanup of its own. 1136 if (EndOfInit.isValid()) 1137 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1138 1139 // Emit a constructor call loop to initialize the remaining elements. 1140 if (InitListElements) 1141 NumElements = Builder.CreateSub( 1142 NumElements, 1143 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1144 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1145 /*NewPointerIsChecked*/true, 1146 CCE->requiresZeroInitialization()); 1147 return; 1148 } 1149 1150 // If this is value-initialization, we can usually use memset. 1151 ImplicitValueInitExpr IVIE(ElementType); 1152 if (isa<ImplicitValueInitExpr>(Init)) { 1153 if (TryMemsetInitialization()) 1154 return; 1155 1156 // Switch to an ImplicitValueInitExpr for the element type. This handles 1157 // only one case: multidimensional array new of pointers to members. In 1158 // all other cases, we already have an initializer for the array element. 1159 Init = &IVIE; 1160 } 1161 1162 // At this point we should have found an initializer for the individual 1163 // elements of the array. 1164 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1165 "got wrong type of element to initialize"); 1166 1167 // If we have an empty initializer list, we can usually use memset. 1168 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1169 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1170 return; 1171 1172 // If we have a struct whose every field is value-initialized, we can 1173 // usually use memset. 1174 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1175 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1176 if (RType->getDecl()->isStruct()) { 1177 unsigned NumElements = 0; 1178 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1179 NumElements = CXXRD->getNumBases(); 1180 for (auto *Field : RType->getDecl()->fields()) 1181 if (!Field->isUnnamedBitfield()) 1182 ++NumElements; 1183 // FIXME: Recurse into nested InitListExprs. 1184 if (ILE->getNumInits() == NumElements) 1185 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1186 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1187 --NumElements; 1188 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1189 return; 1190 } 1191 } 1192 } 1193 1194 // Create the loop blocks. 1195 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1196 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1197 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1198 1199 // Find the end of the array, hoisted out of the loop. 1200 llvm::Value *EndPtr = 1201 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1202 1203 // If the number of elements isn't constant, we have to now check if there is 1204 // anything left to initialize. 1205 if (!ConstNum) { 1206 llvm::Value *IsEmpty = 1207 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1208 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1209 } 1210 1211 // Enter the loop. 1212 EmitBlock(LoopBB); 1213 1214 // Set up the current-element phi. 1215 llvm::PHINode *CurPtrPhi = 1216 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1217 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1218 1219 CurPtr = Address(CurPtrPhi, ElementAlign); 1220 1221 // Store the new Cleanup position for irregular Cleanups. 1222 if (EndOfInit.isValid()) 1223 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1224 1225 // Enter a partial-destruction Cleanup if necessary. 1226 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1227 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1228 ElementType, ElementAlign, 1229 getDestroyer(DtorKind)); 1230 Cleanup = EHStack.stable_begin(); 1231 CleanupDominator = Builder.CreateUnreachable(); 1232 } 1233 1234 // Emit the initializer into this element. 1235 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1236 AggValueSlot::DoesNotOverlap); 1237 1238 // Leave the Cleanup if we entered one. 1239 if (CleanupDominator) { 1240 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1241 CleanupDominator->eraseFromParent(); 1242 } 1243 1244 // Advance to the next element by adjusting the pointer type as necessary. 1245 llvm::Value *NextPtr = 1246 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1247 "array.next"); 1248 1249 // Check whether we've gotten to the end of the array and, if so, 1250 // exit the loop. 1251 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1252 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1253 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1254 1255 EmitBlock(ContBB); 1256 } 1257 1258 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1259 QualType ElementType, llvm::Type *ElementTy, 1260 Address NewPtr, llvm::Value *NumElements, 1261 llvm::Value *AllocSizeWithoutCookie) { 1262 ApplyDebugLocation DL(CGF, E); 1263 if (E->isArray()) 1264 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1265 AllocSizeWithoutCookie); 1266 else if (const Expr *Init = E->getInitializer()) 1267 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1268 AggValueSlot::DoesNotOverlap); 1269 } 1270 1271 /// Emit a call to an operator new or operator delete function, as implicitly 1272 /// created by new-expressions and delete-expressions. 1273 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1274 const FunctionDecl *CalleeDecl, 1275 const FunctionProtoType *CalleeType, 1276 const CallArgList &Args) { 1277 llvm::CallBase *CallOrInvoke; 1278 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1279 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1280 RValue RV = 1281 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1282 Args, CalleeType, /*chainCall=*/false), 1283 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1284 1285 /// C++1y [expr.new]p10: 1286 /// [In a new-expression,] an implementation is allowed to omit a call 1287 /// to a replaceable global allocation function. 1288 /// 1289 /// We model such elidable calls with the 'builtin' attribute. 1290 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1291 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1292 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1293 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1294 llvm::Attribute::Builtin); 1295 } 1296 1297 return RV; 1298 } 1299 1300 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1301 const CallExpr *TheCall, 1302 bool IsDelete) { 1303 CallArgList Args; 1304 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1305 // Find the allocation or deallocation function that we're calling. 1306 ASTContext &Ctx = getContext(); 1307 DeclarationName Name = Ctx.DeclarationNames 1308 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1309 1310 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1311 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1312 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1313 return EmitNewDeleteCall(*this, FD, Type, Args); 1314 llvm_unreachable("predeclared global operator new/delete is missing"); 1315 } 1316 1317 namespace { 1318 /// The parameters to pass to a usual operator delete. 1319 struct UsualDeleteParams { 1320 bool DestroyingDelete = false; 1321 bool Size = false; 1322 bool Alignment = false; 1323 }; 1324 } 1325 1326 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1327 UsualDeleteParams Params; 1328 1329 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1330 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1331 1332 // The first argument is always a void*. 1333 ++AI; 1334 1335 // The next parameter may be a std::destroying_delete_t. 1336 if (FD->isDestroyingOperatorDelete()) { 1337 Params.DestroyingDelete = true; 1338 assert(AI != AE); 1339 ++AI; 1340 } 1341 1342 // Figure out what other parameters we should be implicitly passing. 1343 if (AI != AE && (*AI)->isIntegerType()) { 1344 Params.Size = true; 1345 ++AI; 1346 } 1347 1348 if (AI != AE && (*AI)->isAlignValT()) { 1349 Params.Alignment = true; 1350 ++AI; 1351 } 1352 1353 assert(AI == AE && "unexpected usual deallocation function parameter"); 1354 return Params; 1355 } 1356 1357 namespace { 1358 /// A cleanup to call the given 'operator delete' function upon abnormal 1359 /// exit from a new expression. Templated on a traits type that deals with 1360 /// ensuring that the arguments dominate the cleanup if necessary. 1361 template<typename Traits> 1362 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1363 /// Type used to hold llvm::Value*s. 1364 typedef typename Traits::ValueTy ValueTy; 1365 /// Type used to hold RValues. 1366 typedef typename Traits::RValueTy RValueTy; 1367 struct PlacementArg { 1368 RValueTy ArgValue; 1369 QualType ArgType; 1370 }; 1371 1372 unsigned NumPlacementArgs : 31; 1373 unsigned PassAlignmentToPlacementDelete : 1; 1374 const FunctionDecl *OperatorDelete; 1375 ValueTy Ptr; 1376 ValueTy AllocSize; 1377 CharUnits AllocAlign; 1378 1379 PlacementArg *getPlacementArgs() { 1380 return reinterpret_cast<PlacementArg *>(this + 1); 1381 } 1382 1383 public: 1384 static size_t getExtraSize(size_t NumPlacementArgs) { 1385 return NumPlacementArgs * sizeof(PlacementArg); 1386 } 1387 1388 CallDeleteDuringNew(size_t NumPlacementArgs, 1389 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1390 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1391 CharUnits AllocAlign) 1392 : NumPlacementArgs(NumPlacementArgs), 1393 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1394 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1395 AllocAlign(AllocAlign) {} 1396 1397 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1398 assert(I < NumPlacementArgs && "index out of range"); 1399 getPlacementArgs()[I] = {Arg, Type}; 1400 } 1401 1402 void Emit(CodeGenFunction &CGF, Flags flags) override { 1403 const FunctionProtoType *FPT = 1404 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1405 CallArgList DeleteArgs; 1406 1407 // The first argument is always a void* (or C* for a destroying operator 1408 // delete for class type C). 1409 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1410 1411 // Figure out what other parameters we should be implicitly passing. 1412 UsualDeleteParams Params; 1413 if (NumPlacementArgs) { 1414 // A placement deallocation function is implicitly passed an alignment 1415 // if the placement allocation function was, but is never passed a size. 1416 Params.Alignment = PassAlignmentToPlacementDelete; 1417 } else { 1418 // For a non-placement new-expression, 'operator delete' can take a 1419 // size and/or an alignment if it has the right parameters. 1420 Params = getUsualDeleteParams(OperatorDelete); 1421 } 1422 1423 assert(!Params.DestroyingDelete && 1424 "should not call destroying delete in a new-expression"); 1425 1426 // The second argument can be a std::size_t (for non-placement delete). 1427 if (Params.Size) 1428 DeleteArgs.add(Traits::get(CGF, AllocSize), 1429 CGF.getContext().getSizeType()); 1430 1431 // The next (second or third) argument can be a std::align_val_t, which 1432 // is an enum whose underlying type is std::size_t. 1433 // FIXME: Use the right type as the parameter type. Note that in a call 1434 // to operator delete(size_t, ...), we may not have it available. 1435 if (Params.Alignment) 1436 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1437 CGF.SizeTy, AllocAlign.getQuantity())), 1438 CGF.getContext().getSizeType()); 1439 1440 // Pass the rest of the arguments, which must match exactly. 1441 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1442 auto Arg = getPlacementArgs()[I]; 1443 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1444 } 1445 1446 // Call 'operator delete'. 1447 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1448 } 1449 }; 1450 } 1451 1452 /// Enter a cleanup to call 'operator delete' if the initializer in a 1453 /// new-expression throws. 1454 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1455 const CXXNewExpr *E, 1456 Address NewPtr, 1457 llvm::Value *AllocSize, 1458 CharUnits AllocAlign, 1459 const CallArgList &NewArgs) { 1460 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1461 1462 // If we're not inside a conditional branch, then the cleanup will 1463 // dominate and we can do the easier (and more efficient) thing. 1464 if (!CGF.isInConditionalBranch()) { 1465 struct DirectCleanupTraits { 1466 typedef llvm::Value *ValueTy; 1467 typedef RValue RValueTy; 1468 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1469 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1470 }; 1471 1472 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1473 1474 DirectCleanup *Cleanup = CGF.EHStack 1475 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1476 E->getNumPlacementArgs(), 1477 E->getOperatorDelete(), 1478 NewPtr.getPointer(), 1479 AllocSize, 1480 E->passAlignment(), 1481 AllocAlign); 1482 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1483 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1484 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1485 } 1486 1487 return; 1488 } 1489 1490 // Otherwise, we need to save all this stuff. 1491 DominatingValue<RValue>::saved_type SavedNewPtr = 1492 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1493 DominatingValue<RValue>::saved_type SavedAllocSize = 1494 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1495 1496 struct ConditionalCleanupTraits { 1497 typedef DominatingValue<RValue>::saved_type ValueTy; 1498 typedef DominatingValue<RValue>::saved_type RValueTy; 1499 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1500 return V.restore(CGF); 1501 } 1502 }; 1503 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1504 1505 ConditionalCleanup *Cleanup = CGF.EHStack 1506 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1507 E->getNumPlacementArgs(), 1508 E->getOperatorDelete(), 1509 SavedNewPtr, 1510 SavedAllocSize, 1511 E->passAlignment(), 1512 AllocAlign); 1513 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1514 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1515 Cleanup->setPlacementArg( 1516 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1517 } 1518 1519 CGF.initFullExprCleanup(); 1520 } 1521 1522 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1523 // The element type being allocated. 1524 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1525 1526 // 1. Build a call to the allocation function. 1527 FunctionDecl *allocator = E->getOperatorNew(); 1528 1529 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1530 unsigned minElements = 0; 1531 if (E->isArray() && E->hasInitializer()) { 1532 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1533 if (ILE && ILE->isStringLiteralInit()) 1534 minElements = 1535 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1536 ->getSize().getZExtValue(); 1537 else if (ILE) 1538 minElements = ILE->getNumInits(); 1539 } 1540 1541 llvm::Value *numElements = nullptr; 1542 llvm::Value *allocSizeWithoutCookie = nullptr; 1543 llvm::Value *allocSize = 1544 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1545 allocSizeWithoutCookie); 1546 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1547 1548 // Emit the allocation call. If the allocator is a global placement 1549 // operator, just "inline" it directly. 1550 Address allocation = Address::invalid(); 1551 CallArgList allocatorArgs; 1552 if (allocator->isReservedGlobalPlacementOperator()) { 1553 assert(E->getNumPlacementArgs() == 1); 1554 const Expr *arg = *E->placement_arguments().begin(); 1555 1556 LValueBaseInfo BaseInfo; 1557 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1558 1559 // The pointer expression will, in many cases, be an opaque void*. 1560 // In these cases, discard the computed alignment and use the 1561 // formal alignment of the allocated type. 1562 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1563 allocation = Address(allocation.getPointer(), allocAlign); 1564 1565 // Set up allocatorArgs for the call to operator delete if it's not 1566 // the reserved global operator. 1567 if (E->getOperatorDelete() && 1568 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1569 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1570 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1571 } 1572 1573 } else { 1574 const FunctionProtoType *allocatorType = 1575 allocator->getType()->castAs<FunctionProtoType>(); 1576 unsigned ParamsToSkip = 0; 1577 1578 // The allocation size is the first argument. 1579 QualType sizeType = getContext().getSizeType(); 1580 allocatorArgs.add(RValue::get(allocSize), sizeType); 1581 ++ParamsToSkip; 1582 1583 if (allocSize != allocSizeWithoutCookie) { 1584 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1585 allocAlign = std::max(allocAlign, cookieAlign); 1586 } 1587 1588 // The allocation alignment may be passed as the second argument. 1589 if (E->passAlignment()) { 1590 QualType AlignValT = sizeType; 1591 if (allocatorType->getNumParams() > 1) { 1592 AlignValT = allocatorType->getParamType(1); 1593 assert(getContext().hasSameUnqualifiedType( 1594 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1595 sizeType) && 1596 "wrong type for alignment parameter"); 1597 ++ParamsToSkip; 1598 } else { 1599 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1600 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1601 } 1602 allocatorArgs.add( 1603 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1604 AlignValT); 1605 } 1606 1607 // FIXME: Why do we not pass a CalleeDecl here? 1608 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1609 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1610 1611 RValue RV = 1612 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1613 1614 // If this was a call to a global replaceable allocation function that does 1615 // not take an alignment argument, the allocator is known to produce 1616 // storage that's suitably aligned for any object that fits, up to a known 1617 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1618 CharUnits allocationAlign = allocAlign; 1619 if (!E->passAlignment() && 1620 allocator->isReplaceableGlobalAllocationFunction()) { 1621 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1622 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1623 allocationAlign = std::max( 1624 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1625 } 1626 1627 allocation = Address(RV.getScalarVal(), allocationAlign); 1628 } 1629 1630 // Emit a null check on the allocation result if the allocation 1631 // function is allowed to return null (because it has a non-throwing 1632 // exception spec or is the reserved placement new) and we have an 1633 // interesting initializer will be running sanitizers on the initialization. 1634 bool nullCheck = E->shouldNullCheckAllocation() && 1635 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1636 sanitizePerformTypeCheck()); 1637 1638 llvm::BasicBlock *nullCheckBB = nullptr; 1639 llvm::BasicBlock *contBB = nullptr; 1640 1641 // The null-check means that the initializer is conditionally 1642 // evaluated. 1643 ConditionalEvaluation conditional(*this); 1644 1645 if (nullCheck) { 1646 conditional.begin(*this); 1647 1648 nullCheckBB = Builder.GetInsertBlock(); 1649 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1650 contBB = createBasicBlock("new.cont"); 1651 1652 llvm::Value *isNull = 1653 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1654 Builder.CreateCondBr(isNull, contBB, notNullBB); 1655 EmitBlock(notNullBB); 1656 } 1657 1658 // If there's an operator delete, enter a cleanup to call it if an 1659 // exception is thrown. 1660 EHScopeStack::stable_iterator operatorDeleteCleanup; 1661 llvm::Instruction *cleanupDominator = nullptr; 1662 if (E->getOperatorDelete() && 1663 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1664 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1665 allocatorArgs); 1666 operatorDeleteCleanup = EHStack.stable_begin(); 1667 cleanupDominator = Builder.CreateUnreachable(); 1668 } 1669 1670 assert((allocSize == allocSizeWithoutCookie) == 1671 CalculateCookiePadding(*this, E).isZero()); 1672 if (allocSize != allocSizeWithoutCookie) { 1673 assert(E->isArray()); 1674 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1675 numElements, 1676 E, allocType); 1677 } 1678 1679 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1680 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1681 1682 // Passing pointer through launder.invariant.group to avoid propagation of 1683 // vptrs information which may be included in previous type. 1684 // To not break LTO with different optimizations levels, we do it regardless 1685 // of optimization level. 1686 if (CGM.getCodeGenOpts().StrictVTablePointers && 1687 allocator->isReservedGlobalPlacementOperator()) 1688 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1689 result.getAlignment()); 1690 1691 // Emit sanitizer checks for pointer value now, so that in the case of an 1692 // array it was checked only once and not at each constructor call. We may 1693 // have already checked that the pointer is non-null. 1694 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1695 // we'll null check the wrong pointer here. 1696 SanitizerSet SkippedChecks; 1697 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1698 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1699 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1700 result.getPointer(), allocType, result.getAlignment(), 1701 SkippedChecks, numElements); 1702 1703 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1704 allocSizeWithoutCookie); 1705 if (E->isArray()) { 1706 // NewPtr is a pointer to the base element type. If we're 1707 // allocating an array of arrays, we'll need to cast back to the 1708 // array pointer type. 1709 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1710 if (result.getType() != resultType) 1711 result = Builder.CreateBitCast(result, resultType); 1712 } 1713 1714 // Deactivate the 'operator delete' cleanup if we finished 1715 // initialization. 1716 if (operatorDeleteCleanup.isValid()) { 1717 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1718 cleanupDominator->eraseFromParent(); 1719 } 1720 1721 llvm::Value *resultPtr = result.getPointer(); 1722 if (nullCheck) { 1723 conditional.end(*this); 1724 1725 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1726 EmitBlock(contBB); 1727 1728 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1729 PHI->addIncoming(resultPtr, notNullBB); 1730 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1731 nullCheckBB); 1732 1733 resultPtr = PHI; 1734 } 1735 1736 return resultPtr; 1737 } 1738 1739 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1740 llvm::Value *Ptr, QualType DeleteTy, 1741 llvm::Value *NumElements, 1742 CharUnits CookieSize) { 1743 assert((!NumElements && CookieSize.isZero()) || 1744 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1745 1746 const FunctionProtoType *DeleteFTy = 1747 DeleteFD->getType()->getAs<FunctionProtoType>(); 1748 1749 CallArgList DeleteArgs; 1750 1751 auto Params = getUsualDeleteParams(DeleteFD); 1752 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1753 1754 // Pass the pointer itself. 1755 QualType ArgTy = *ParamTypeIt++; 1756 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1757 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1758 1759 // Pass the std::destroying_delete tag if present. 1760 if (Params.DestroyingDelete) { 1761 QualType DDTag = *ParamTypeIt++; 1762 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1763 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1764 DeleteArgs.add(RValue::get(V), DDTag); 1765 } 1766 1767 // Pass the size if the delete function has a size_t parameter. 1768 if (Params.Size) { 1769 QualType SizeType = *ParamTypeIt++; 1770 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1771 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1772 DeleteTypeSize.getQuantity()); 1773 1774 // For array new, multiply by the number of elements. 1775 if (NumElements) 1776 Size = Builder.CreateMul(Size, NumElements); 1777 1778 // If there is a cookie, add the cookie size. 1779 if (!CookieSize.isZero()) 1780 Size = Builder.CreateAdd( 1781 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1782 1783 DeleteArgs.add(RValue::get(Size), SizeType); 1784 } 1785 1786 // Pass the alignment if the delete function has an align_val_t parameter. 1787 if (Params.Alignment) { 1788 QualType AlignValType = *ParamTypeIt++; 1789 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1790 getContext().getTypeAlignIfKnown(DeleteTy)); 1791 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1792 DeleteTypeAlign.getQuantity()); 1793 DeleteArgs.add(RValue::get(Align), AlignValType); 1794 } 1795 1796 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1797 "unknown parameter to usual delete function"); 1798 1799 // Emit the call to delete. 1800 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1801 } 1802 1803 namespace { 1804 /// Calls the given 'operator delete' on a single object. 1805 struct CallObjectDelete final : EHScopeStack::Cleanup { 1806 llvm::Value *Ptr; 1807 const FunctionDecl *OperatorDelete; 1808 QualType ElementType; 1809 1810 CallObjectDelete(llvm::Value *Ptr, 1811 const FunctionDecl *OperatorDelete, 1812 QualType ElementType) 1813 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1814 1815 void Emit(CodeGenFunction &CGF, Flags flags) override { 1816 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1817 } 1818 }; 1819 } 1820 1821 void 1822 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1823 llvm::Value *CompletePtr, 1824 QualType ElementType) { 1825 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1826 OperatorDelete, ElementType); 1827 } 1828 1829 /// Emit the code for deleting a single object with a destroying operator 1830 /// delete. If the element type has a non-virtual destructor, Ptr has already 1831 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1832 /// Ptr points to an object of the static type. 1833 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1834 const CXXDeleteExpr *DE, Address Ptr, 1835 QualType ElementType) { 1836 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1837 if (Dtor && Dtor->isVirtual()) 1838 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1839 Dtor); 1840 else 1841 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1842 } 1843 1844 /// Emit the code for deleting a single object. 1845 static void EmitObjectDelete(CodeGenFunction &CGF, 1846 const CXXDeleteExpr *DE, 1847 Address Ptr, 1848 QualType ElementType) { 1849 // C++11 [expr.delete]p3: 1850 // If the static type of the object to be deleted is different from its 1851 // dynamic type, the static type shall be a base class of the dynamic type 1852 // of the object to be deleted and the static type shall have a virtual 1853 // destructor or the behavior is undefined. 1854 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1855 DE->getExprLoc(), Ptr.getPointer(), 1856 ElementType); 1857 1858 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1859 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1860 1861 // Find the destructor for the type, if applicable. If the 1862 // destructor is virtual, we'll just emit the vcall and return. 1863 const CXXDestructorDecl *Dtor = nullptr; 1864 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1865 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1866 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1867 Dtor = RD->getDestructor(); 1868 1869 if (Dtor->isVirtual()) { 1870 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1871 Dtor); 1872 return; 1873 } 1874 } 1875 } 1876 1877 // Make sure that we call delete even if the dtor throws. 1878 // This doesn't have to a conditional cleanup because we're going 1879 // to pop it off in a second. 1880 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1881 Ptr.getPointer(), 1882 OperatorDelete, ElementType); 1883 1884 if (Dtor) 1885 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1886 /*ForVirtualBase=*/false, 1887 /*Delegating=*/false, 1888 Ptr); 1889 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1890 switch (Lifetime) { 1891 case Qualifiers::OCL_None: 1892 case Qualifiers::OCL_ExplicitNone: 1893 case Qualifiers::OCL_Autoreleasing: 1894 break; 1895 1896 case Qualifiers::OCL_Strong: 1897 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1898 break; 1899 1900 case Qualifiers::OCL_Weak: 1901 CGF.EmitARCDestroyWeak(Ptr); 1902 break; 1903 } 1904 } 1905 1906 CGF.PopCleanupBlock(); 1907 } 1908 1909 namespace { 1910 /// Calls the given 'operator delete' on an array of objects. 1911 struct CallArrayDelete final : EHScopeStack::Cleanup { 1912 llvm::Value *Ptr; 1913 const FunctionDecl *OperatorDelete; 1914 llvm::Value *NumElements; 1915 QualType ElementType; 1916 CharUnits CookieSize; 1917 1918 CallArrayDelete(llvm::Value *Ptr, 1919 const FunctionDecl *OperatorDelete, 1920 llvm::Value *NumElements, 1921 QualType ElementType, 1922 CharUnits CookieSize) 1923 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1924 ElementType(ElementType), CookieSize(CookieSize) {} 1925 1926 void Emit(CodeGenFunction &CGF, Flags flags) override { 1927 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1928 CookieSize); 1929 } 1930 }; 1931 } 1932 1933 /// Emit the code for deleting an array of objects. 1934 static void EmitArrayDelete(CodeGenFunction &CGF, 1935 const CXXDeleteExpr *E, 1936 Address deletedPtr, 1937 QualType elementType) { 1938 llvm::Value *numElements = nullptr; 1939 llvm::Value *allocatedPtr = nullptr; 1940 CharUnits cookieSize; 1941 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1942 numElements, allocatedPtr, cookieSize); 1943 1944 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1945 1946 // Make sure that we call delete even if one of the dtors throws. 1947 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1948 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1949 allocatedPtr, operatorDelete, 1950 numElements, elementType, 1951 cookieSize); 1952 1953 // Destroy the elements. 1954 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1955 assert(numElements && "no element count for a type with a destructor!"); 1956 1957 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1958 CharUnits elementAlign = 1959 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1960 1961 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1962 llvm::Value *arrayEnd = 1963 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1964 1965 // Note that it is legal to allocate a zero-length array, and we 1966 // can never fold the check away because the length should always 1967 // come from a cookie. 1968 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1969 CGF.getDestroyer(dtorKind), 1970 /*checkZeroLength*/ true, 1971 CGF.needsEHCleanup(dtorKind)); 1972 } 1973 1974 // Pop the cleanup block. 1975 CGF.PopCleanupBlock(); 1976 } 1977 1978 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1979 const Expr *Arg = E->getArgument(); 1980 Address Ptr = EmitPointerWithAlignment(Arg); 1981 1982 // Null check the pointer. 1983 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1984 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1985 1986 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1987 1988 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1989 EmitBlock(DeleteNotNull); 1990 1991 QualType DeleteTy = E->getDestroyedType(); 1992 1993 // A destroying operator delete overrides the entire operation of the 1994 // delete expression. 1995 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1996 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 1997 EmitBlock(DeleteEnd); 1998 return; 1999 } 2000 2001 // We might be deleting a pointer to array. If so, GEP down to the 2002 // first non-array element. 2003 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2004 if (DeleteTy->isConstantArrayType()) { 2005 llvm::Value *Zero = Builder.getInt32(0); 2006 SmallVector<llvm::Value*,8> GEP; 2007 2008 GEP.push_back(Zero); // point at the outermost array 2009 2010 // For each layer of array type we're pointing at: 2011 while (const ConstantArrayType *Arr 2012 = getContext().getAsConstantArrayType(DeleteTy)) { 2013 // 1. Unpeel the array type. 2014 DeleteTy = Arr->getElementType(); 2015 2016 // 2. GEP to the first element of the array. 2017 GEP.push_back(Zero); 2018 } 2019 2020 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2021 Ptr.getAlignment()); 2022 } 2023 2024 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2025 2026 if (E->isArrayForm()) { 2027 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2028 } else { 2029 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2030 } 2031 2032 EmitBlock(DeleteEnd); 2033 } 2034 2035 static bool isGLValueFromPointerDeref(const Expr *E) { 2036 E = E->IgnoreParens(); 2037 2038 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2039 if (!CE->getSubExpr()->isGLValue()) 2040 return false; 2041 return isGLValueFromPointerDeref(CE->getSubExpr()); 2042 } 2043 2044 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2045 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2046 2047 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2048 if (BO->getOpcode() == BO_Comma) 2049 return isGLValueFromPointerDeref(BO->getRHS()); 2050 2051 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2052 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2053 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2054 2055 // C++11 [expr.sub]p1: 2056 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2057 if (isa<ArraySubscriptExpr>(E)) 2058 return true; 2059 2060 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2061 if (UO->getOpcode() == UO_Deref) 2062 return true; 2063 2064 return false; 2065 } 2066 2067 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2068 llvm::Type *StdTypeInfoPtrTy) { 2069 // Get the vtable pointer. 2070 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2071 2072 QualType SrcRecordTy = E->getType(); 2073 2074 // C++ [class.cdtor]p4: 2075 // If the operand of typeid refers to the object under construction or 2076 // destruction and the static type of the operand is neither the constructor 2077 // or destructor’s class nor one of its bases, the behavior is undefined. 2078 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2079 ThisPtr.getPointer(), SrcRecordTy); 2080 2081 // C++ [expr.typeid]p2: 2082 // If the glvalue expression is obtained by applying the unary * operator to 2083 // a pointer and the pointer is a null pointer value, the typeid expression 2084 // throws the std::bad_typeid exception. 2085 // 2086 // However, this paragraph's intent is not clear. We choose a very generous 2087 // interpretation which implores us to consider comma operators, conditional 2088 // operators, parentheses and other such constructs. 2089 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2090 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2091 llvm::BasicBlock *BadTypeidBlock = 2092 CGF.createBasicBlock("typeid.bad_typeid"); 2093 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2094 2095 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2096 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2097 2098 CGF.EmitBlock(BadTypeidBlock); 2099 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2100 CGF.EmitBlock(EndBlock); 2101 } 2102 2103 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2104 StdTypeInfoPtrTy); 2105 } 2106 2107 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2108 llvm::Type *StdTypeInfoPtrTy = 2109 ConvertType(E->getType())->getPointerTo(); 2110 2111 if (E->isTypeOperand()) { 2112 llvm::Constant *TypeInfo = 2113 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2114 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2115 } 2116 2117 // C++ [expr.typeid]p2: 2118 // When typeid is applied to a glvalue expression whose type is a 2119 // polymorphic class type, the result refers to a std::type_info object 2120 // representing the type of the most derived object (that is, the dynamic 2121 // type) to which the glvalue refers. 2122 if (E->isPotentiallyEvaluated()) 2123 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2124 StdTypeInfoPtrTy); 2125 2126 QualType OperandTy = E->getExprOperand()->getType(); 2127 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2128 StdTypeInfoPtrTy); 2129 } 2130 2131 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2132 QualType DestTy) { 2133 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2134 if (DestTy->isPointerType()) 2135 return llvm::Constant::getNullValue(DestLTy); 2136 2137 /// C++ [expr.dynamic.cast]p9: 2138 /// A failed cast to reference type throws std::bad_cast 2139 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2140 return nullptr; 2141 2142 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2143 return llvm::UndefValue::get(DestLTy); 2144 } 2145 2146 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2147 const CXXDynamicCastExpr *DCE) { 2148 CGM.EmitExplicitCastExprType(DCE, this); 2149 QualType DestTy = DCE->getTypeAsWritten(); 2150 2151 QualType SrcTy = DCE->getSubExpr()->getType(); 2152 2153 // C++ [expr.dynamic.cast]p7: 2154 // If T is "pointer to cv void," then the result is a pointer to the most 2155 // derived object pointed to by v. 2156 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2157 2158 bool isDynamicCastToVoid; 2159 QualType SrcRecordTy; 2160 QualType DestRecordTy; 2161 if (DestPTy) { 2162 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2163 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2164 DestRecordTy = DestPTy->getPointeeType(); 2165 } else { 2166 isDynamicCastToVoid = false; 2167 SrcRecordTy = SrcTy; 2168 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2169 } 2170 2171 // C++ [class.cdtor]p5: 2172 // If the operand of the dynamic_cast refers to the object under 2173 // construction or destruction and the static type of the operand is not a 2174 // pointer to or object of the constructor or destructor’s own class or one 2175 // of its bases, the dynamic_cast results in undefined behavior. 2176 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2177 SrcRecordTy); 2178 2179 if (DCE->isAlwaysNull()) 2180 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2181 return T; 2182 2183 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2184 2185 // C++ [expr.dynamic.cast]p4: 2186 // If the value of v is a null pointer value in the pointer case, the result 2187 // is the null pointer value of type T. 2188 bool ShouldNullCheckSrcValue = 2189 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2190 SrcRecordTy); 2191 2192 llvm::BasicBlock *CastNull = nullptr; 2193 llvm::BasicBlock *CastNotNull = nullptr; 2194 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2195 2196 if (ShouldNullCheckSrcValue) { 2197 CastNull = createBasicBlock("dynamic_cast.null"); 2198 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2199 2200 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2201 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2202 EmitBlock(CastNotNull); 2203 } 2204 2205 llvm::Value *Value; 2206 if (isDynamicCastToVoid) { 2207 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2208 DestTy); 2209 } else { 2210 assert(DestRecordTy->isRecordType() && 2211 "destination type must be a record type!"); 2212 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2213 DestTy, DestRecordTy, CastEnd); 2214 CastNotNull = Builder.GetInsertBlock(); 2215 } 2216 2217 if (ShouldNullCheckSrcValue) { 2218 EmitBranch(CastEnd); 2219 2220 EmitBlock(CastNull); 2221 EmitBranch(CastEnd); 2222 } 2223 2224 EmitBlock(CastEnd); 2225 2226 if (ShouldNullCheckSrcValue) { 2227 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2228 PHI->addIncoming(Value, CastNotNull); 2229 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2230 2231 Value = PHI; 2232 } 2233 2234 return Value; 2235 } 2236