1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30   RequiredArgs ReqArgs;
31   // Number of prefix arguments for the call. Ignores the `this` pointer.
32   unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
38                                   llvm::Value *This, llvm::Value *ImplicitParam,
39                                   QualType ImplicitParamTy, const CallExpr *CE,
40                                   CallArgList &Args, CallArgList *RtlArgs) {
41   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42          isa<CXXOperatorCallExpr>(CE));
43   assert(MD->isInstance() &&
44          "Trying to emit a member or operator call expr on a static method!");
45   ASTContext &C = CGF.getContext();
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
50   Args.add(RValue::get(This),
51            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53   // If there is an implicit parameter (e.g. VTT), emit it.
54   if (ImplicitParam) {
55     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56   }
57 
58   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60   unsigned PrefixSize = Args.size() - 1;
61 
62   // And the rest of the call args.
63   if (RtlArgs) {
64     // Special case: if the caller emitted the arguments right-to-left already
65     // (prior to emitting the *this argument), we're done. This happens for
66     // assignment operators.
67     Args.addFrom(*RtlArgs);
68   } else if (CE) {
69     // Special case: skip first argument of CXXOperatorCall (it is "this").
70     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72                      CE->getDirectCallee());
73   } else {
74     assert(
75         FPT->getNumParams() == 0 &&
76         "No CallExpr specified for function with non-zero number of arguments");
77   }
78   return {required, PrefixSize};
79 }
80 
81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
82     const CXXMethodDecl *MD, const CGCallee &Callee,
83     ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93                   CE ? CE->getExprLoc() : SourceLocation());
94 }
95 
96 RValue CodeGenFunction::EmitCXXDestructorCall(
97     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
99     StructorType Type) {
100   CallArgList Args;
101   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102                                     ImplicitParamTy, CE, Args, nullptr);
103   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104                   Callee, ReturnValueSlot(), Args);
105 }
106 
107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
108                                             const CXXPseudoDestructorExpr *E) {
109   QualType DestroyedType = E->getDestroyedType();
110   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111     // Automatic Reference Counting:
112     //   If the pseudo-expression names a retainable object with weak or
113     //   strong lifetime, the object shall be released.
114     Expr *BaseExpr = E->getBase();
115     Address BaseValue = Address::invalid();
116     Qualifiers BaseQuals;
117 
118     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119     if (E->isArrow()) {
120       BaseValue = EmitPointerWithAlignment(BaseExpr);
121       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122       BaseQuals = PTy->getPointeeType().getQualifiers();
123     } else {
124       LValue BaseLV = EmitLValue(BaseExpr);
125       BaseValue = BaseLV.getAddress();
126       QualType BaseTy = BaseExpr->getType();
127       BaseQuals = BaseTy.getQualifiers();
128     }
129 
130     switch (DestroyedType.getObjCLifetime()) {
131     case Qualifiers::OCL_None:
132     case Qualifiers::OCL_ExplicitNone:
133     case Qualifiers::OCL_Autoreleasing:
134       break;
135 
136     case Qualifiers::OCL_Strong:
137       EmitARCRelease(Builder.CreateLoad(BaseValue,
138                         DestroyedType.isVolatileQualified()),
139                      ARCPreciseLifetime);
140       break;
141 
142     case Qualifiers::OCL_Weak:
143       EmitARCDestroyWeak(BaseValue);
144       break;
145     }
146   } else {
147     // C++ [expr.pseudo]p1:
148     //   The result shall only be used as the operand for the function call
149     //   operator (), and the result of such a call has type void. The only
150     //   effect is the evaluation of the postfix-expression before the dot or
151     //   arrow.
152     EmitIgnoredExpr(E->getBase());
153   }
154 
155   return RValue::get(nullptr);
156 }
157 
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159   QualType T = E->getType();
160   if (const PointerType *PTy = T->getAs<PointerType>())
161     T = PTy->getPointeeType();
162   const RecordType *Ty = T->castAs<RecordType>();
163   return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165 
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169                                               ReturnValueSlot ReturnValue) {
170   const Expr *callee = CE->getCallee()->IgnoreParens();
171 
172   if (isa<BinaryOperator>(callee))
173     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174 
175   const MemberExpr *ME = cast<MemberExpr>(callee);
176   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177 
178   if (MD->isStatic()) {
179     // The method is static, emit it as we would a regular call.
180     CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
181     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
182                     ReturnValue);
183   }
184 
185   bool HasQualifier = ME->hasQualifier();
186   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
187   bool IsArrow = ME->isArrow();
188   const Expr *Base = ME->getBase();
189 
190   return EmitCXXMemberOrOperatorMemberCallExpr(
191       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
192 }
193 
194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
195     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
196     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
197     const Expr *Base) {
198   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
199 
200   // Compute the object pointer.
201   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
202 
203   const CXXMethodDecl *DevirtualizedMethod = nullptr;
204   if (CanUseVirtualCall &&
205       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
206     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
207     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
208     assert(DevirtualizedMethod);
209     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
210     const Expr *Inner = Base->ignoreParenBaseCasts();
211     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
212         MD->getReturnType().getCanonicalType())
213       // If the return types are not the same, this might be a case where more
214       // code needs to run to compensate for it. For example, the derived
215       // method might return a type that inherits form from the return
216       // type of MD and has a prefix.
217       // For now we just avoid devirtualizing these covariant cases.
218       DevirtualizedMethod = nullptr;
219     else if (getCXXRecord(Inner) == DevirtualizedClass)
220       // If the class of the Inner expression is where the dynamic method
221       // is defined, build the this pointer from it.
222       Base = Inner;
223     else if (getCXXRecord(Base) != DevirtualizedClass) {
224       // If the method is defined in a class that is not the best dynamic
225       // one or the one of the full expression, we would have to build
226       // a derived-to-base cast to compute the correct this pointer, but
227       // we don't have support for that yet, so do a virtual call.
228       DevirtualizedMethod = nullptr;
229     }
230   }
231 
232   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
233   // operator before the LHS.
234   CallArgList RtlArgStorage;
235   CallArgList *RtlArgs = nullptr;
236   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
237     if (OCE->isAssignmentOp()) {
238       RtlArgs = &RtlArgStorage;
239       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
240                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
241                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
242     }
243   }
244 
245   LValue This;
246   if (IsArrow) {
247     LValueBaseInfo BaseInfo;
248     TBAAAccessInfo TBAAInfo;
249     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
250     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
251   } else {
252     This = EmitLValue(Base);
253   }
254 
255 
256   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
257     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
258     if (isa<CXXConstructorDecl>(MD) &&
259         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
260       return RValue::get(nullptr);
261 
262     if (!MD->getParent()->mayInsertExtraPadding()) {
263       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
264         // We don't like to generate the trivial copy/move assignment operator
265         // when it isn't necessary; just produce the proper effect here.
266         LValue RHS = isa<CXXOperatorCallExpr>(CE)
267                          ? MakeNaturalAlignAddrLValue(
268                                (*RtlArgs)[0].RV.getScalarVal(),
269                                (*(CE->arg_begin() + 1))->getType())
270                          : EmitLValue(*CE->arg_begin());
271         EmitAggregateAssign(This, RHS, CE->getType());
272         return RValue::get(This.getPointer());
273       }
274 
275       if (isa<CXXConstructorDecl>(MD) &&
276           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
277         // Trivial move and copy ctor are the same.
278         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
279         const Expr *Arg = *CE->arg_begin();
280         LValue RHS = EmitLValue(Arg);
281         LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
282         EmitAggregateCopy(Dest, RHS, Arg->getType());
283         return RValue::get(This.getPointer());
284       }
285       llvm_unreachable("unknown trivial member function");
286     }
287   }
288 
289   // Compute the function type we're calling.
290   const CXXMethodDecl *CalleeDecl =
291       DevirtualizedMethod ? DevirtualizedMethod : MD;
292   const CGFunctionInfo *FInfo = nullptr;
293   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
294     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
295         Dtor, StructorType::Complete);
296   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
297     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
298         Ctor, StructorType::Complete);
299   else
300     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
301 
302   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
303 
304   // C++11 [class.mfct.non-static]p2:
305   //   If a non-static member function of a class X is called for an object that
306   //   is not of type X, or of a type derived from X, the behavior is undefined.
307   SourceLocation CallLoc;
308   ASTContext &C = getContext();
309   if (CE)
310     CallLoc = CE->getExprLoc();
311 
312   SanitizerSet SkippedChecks;
313   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
314     auto *IOA = CMCE->getImplicitObjectArgument();
315     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
316     if (IsImplicitObjectCXXThis)
317       SkippedChecks.set(SanitizerKind::Alignment, true);
318     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
319       SkippedChecks.set(SanitizerKind::Null, true);
320   }
321   EmitTypeCheck(
322       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
323                                           : CodeGenFunction::TCK_MemberCall,
324       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
325       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
326 
327   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
328   // 'CalleeDecl' instead.
329 
330   // C++ [class.virtual]p12:
331   //   Explicit qualification with the scope operator (5.1) suppresses the
332   //   virtual call mechanism.
333   //
334   // We also don't emit a virtual call if the base expression has a record type
335   // because then we know what the type is.
336   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
337 
338   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
339     assert(CE->arg_begin() == CE->arg_end() &&
340            "Destructor shouldn't have explicit parameters");
341     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
342     if (UseVirtualCall) {
343       CGM.getCXXABI().EmitVirtualDestructorCall(
344           *this, Dtor, Dtor_Complete, This.getAddress(),
345           cast<CXXMemberCallExpr>(CE));
346     } else {
347       CGCallee Callee;
348       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
349         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
350       else if (!DevirtualizedMethod)
351         Callee = CGCallee::forDirect(
352             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
353                                      Dtor);
354       else {
355         const CXXDestructorDecl *DDtor =
356           cast<CXXDestructorDecl>(DevirtualizedMethod);
357         Callee = CGCallee::forDirect(
358                   CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
359                                      DDtor);
360       }
361       EmitCXXMemberOrOperatorCall(
362           CalleeDecl, Callee, ReturnValue, This.getPointer(),
363           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
364     }
365     return RValue::get(nullptr);
366   }
367 
368   CGCallee Callee;
369   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
370     Callee = CGCallee::forDirect(
371                   CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
372                                  Ctor);
373   } else if (UseVirtualCall) {
374     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD,
375                                                        This.getAddress(), Ty,
376                                                        CE->getLocStart());
377   } else {
378     if (SanOpts.has(SanitizerKind::CFINVCall) &&
379         MD->getParent()->isDynamicClass()) {
380       llvm::Value *VTable;
381       const CXXRecordDecl *RD;
382       std::tie(VTable, RD) =
383           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
384                                         MD->getParent());
385       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart());
386     }
387 
388     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
389       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
390     else if (!DevirtualizedMethod)
391       Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
392     else {
393       Callee = CGCallee::forDirect(
394                                 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
395                                    DevirtualizedMethod);
396     }
397   }
398 
399   if (MD->isVirtual()) {
400     Address NewThisAddr =
401         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
402             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
403     This.setAddress(NewThisAddr);
404   }
405 
406   return EmitCXXMemberOrOperatorCall(
407       CalleeDecl, Callee, ReturnValue, This.getPointer(),
408       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
409 }
410 
411 RValue
412 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
413                                               ReturnValueSlot ReturnValue) {
414   const BinaryOperator *BO =
415       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
416   const Expr *BaseExpr = BO->getLHS();
417   const Expr *MemFnExpr = BO->getRHS();
418 
419   const MemberPointerType *MPT =
420     MemFnExpr->getType()->castAs<MemberPointerType>();
421 
422   const FunctionProtoType *FPT =
423     MPT->getPointeeType()->castAs<FunctionProtoType>();
424   const CXXRecordDecl *RD =
425     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
426 
427   // Emit the 'this' pointer.
428   Address This = Address::invalid();
429   if (BO->getOpcode() == BO_PtrMemI)
430     This = EmitPointerWithAlignment(BaseExpr);
431   else
432     This = EmitLValue(BaseExpr).getAddress();
433 
434   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
435                 QualType(MPT->getClass(), 0));
436 
437   // Get the member function pointer.
438   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
439 
440   // Ask the ABI to load the callee.  Note that This is modified.
441   llvm::Value *ThisPtrForCall = nullptr;
442   CGCallee Callee =
443     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
444                                              ThisPtrForCall, MemFnPtr, MPT);
445 
446   CallArgList Args;
447 
448   QualType ThisType =
449     getContext().getPointerType(getContext().getTagDeclType(RD));
450 
451   // Push the this ptr.
452   Args.add(RValue::get(ThisPtrForCall), ThisType);
453 
454   RequiredArgs required =
455       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
456 
457   // And the rest of the call args
458   EmitCallArgs(Args, FPT, E->arguments());
459   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
460                                                       /*PrefixSize=*/0),
461                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
462 }
463 
464 RValue
465 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
466                                                const CXXMethodDecl *MD,
467                                                ReturnValueSlot ReturnValue) {
468   assert(MD->isInstance() &&
469          "Trying to emit a member call expr on a static method!");
470   return EmitCXXMemberOrOperatorMemberCallExpr(
471       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
472       /*IsArrow=*/false, E->getArg(0));
473 }
474 
475 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
476                                                ReturnValueSlot ReturnValue) {
477   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
478 }
479 
480 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
481                                             Address DestPtr,
482                                             const CXXRecordDecl *Base) {
483   if (Base->isEmpty())
484     return;
485 
486   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
487 
488   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
489   CharUnits NVSize = Layout.getNonVirtualSize();
490 
491   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
492   // present, they are initialized by the most derived class before calling the
493   // constructor.
494   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
495   Stores.emplace_back(CharUnits::Zero(), NVSize);
496 
497   // Each store is split by the existence of a vbptr.
498   CharUnits VBPtrWidth = CGF.getPointerSize();
499   std::vector<CharUnits> VBPtrOffsets =
500       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
501   for (CharUnits VBPtrOffset : VBPtrOffsets) {
502     // Stop before we hit any virtual base pointers located in virtual bases.
503     if (VBPtrOffset >= NVSize)
504       break;
505     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
506     CharUnits LastStoreOffset = LastStore.first;
507     CharUnits LastStoreSize = LastStore.second;
508 
509     CharUnits SplitBeforeOffset = LastStoreOffset;
510     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
511     assert(!SplitBeforeSize.isNegative() && "negative store size!");
512     if (!SplitBeforeSize.isZero())
513       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
514 
515     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
516     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
517     assert(!SplitAfterSize.isNegative() && "negative store size!");
518     if (!SplitAfterSize.isZero())
519       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
520   }
521 
522   // If the type contains a pointer to data member we can't memset it to zero.
523   // Instead, create a null constant and copy it to the destination.
524   // TODO: there are other patterns besides zero that we can usefully memset,
525   // like -1, which happens to be the pattern used by member-pointers.
526   // TODO: isZeroInitializable can be over-conservative in the case where a
527   // virtual base contains a member pointer.
528   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
529   if (!NullConstantForBase->isNullValue()) {
530     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
531         CGF.CGM.getModule(), NullConstantForBase->getType(),
532         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
533         NullConstantForBase, Twine());
534 
535     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
536                                DestPtr.getAlignment());
537     NullVariable->setAlignment(Align.getQuantity());
538 
539     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
540 
541     // Get and call the appropriate llvm.memcpy overload.
542     for (std::pair<CharUnits, CharUnits> Store : Stores) {
543       CharUnits StoreOffset = Store.first;
544       CharUnits StoreSize = Store.second;
545       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
546       CGF.Builder.CreateMemCpy(
547           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
548           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
549           StoreSizeVal);
550     }
551 
552   // Otherwise, just memset the whole thing to zero.  This is legal
553   // because in LLVM, all default initializers (other than the ones we just
554   // handled above) are guaranteed to have a bit pattern of all zeros.
555   } else {
556     for (std::pair<CharUnits, CharUnits> Store : Stores) {
557       CharUnits StoreOffset = Store.first;
558       CharUnits StoreSize = Store.second;
559       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
560       CGF.Builder.CreateMemSet(
561           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
562           CGF.Builder.getInt8(0), StoreSizeVal);
563     }
564   }
565 }
566 
567 void
568 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
569                                       AggValueSlot Dest) {
570   assert(!Dest.isIgnored() && "Must have a destination!");
571   const CXXConstructorDecl *CD = E->getConstructor();
572 
573   // If we require zero initialization before (or instead of) calling the
574   // constructor, as can be the case with a non-user-provided default
575   // constructor, emit the zero initialization now, unless destination is
576   // already zeroed.
577   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
578     switch (E->getConstructionKind()) {
579     case CXXConstructExpr::CK_Delegating:
580     case CXXConstructExpr::CK_Complete:
581       EmitNullInitialization(Dest.getAddress(), E->getType());
582       break;
583     case CXXConstructExpr::CK_VirtualBase:
584     case CXXConstructExpr::CK_NonVirtualBase:
585       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
586                                       CD->getParent());
587       break;
588     }
589   }
590 
591   // If this is a call to a trivial default constructor, do nothing.
592   if (CD->isTrivial() && CD->isDefaultConstructor())
593     return;
594 
595   // Elide the constructor if we're constructing from a temporary.
596   // The temporary check is required because Sema sets this on NRVO
597   // returns.
598   if (getLangOpts().ElideConstructors && E->isElidable()) {
599     assert(getContext().hasSameUnqualifiedType(E->getType(),
600                                                E->getArg(0)->getType()));
601     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
602       EmitAggExpr(E->getArg(0), Dest);
603       return;
604     }
605   }
606 
607   if (const ArrayType *arrayType
608         = getContext().getAsArrayType(E->getType())) {
609     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
610   } else {
611     CXXCtorType Type = Ctor_Complete;
612     bool ForVirtualBase = false;
613     bool Delegating = false;
614 
615     switch (E->getConstructionKind()) {
616      case CXXConstructExpr::CK_Delegating:
617       // We should be emitting a constructor; GlobalDecl will assert this
618       Type = CurGD.getCtorType();
619       Delegating = true;
620       break;
621 
622      case CXXConstructExpr::CK_Complete:
623       Type = Ctor_Complete;
624       break;
625 
626      case CXXConstructExpr::CK_VirtualBase:
627       ForVirtualBase = true;
628       LLVM_FALLTHROUGH;
629 
630      case CXXConstructExpr::CK_NonVirtualBase:
631       Type = Ctor_Base;
632     }
633 
634     // Call the constructor.
635     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
636                            Dest.getAddress(), E);
637   }
638 }
639 
640 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
641                                                  const Expr *Exp) {
642   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
643     Exp = E->getSubExpr();
644   assert(isa<CXXConstructExpr>(Exp) &&
645          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
646   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
647   const CXXConstructorDecl *CD = E->getConstructor();
648   RunCleanupsScope Scope(*this);
649 
650   // If we require zero initialization before (or instead of) calling the
651   // constructor, as can be the case with a non-user-provided default
652   // constructor, emit the zero initialization now.
653   // FIXME. Do I still need this for a copy ctor synthesis?
654   if (E->requiresZeroInitialization())
655     EmitNullInitialization(Dest, E->getType());
656 
657   assert(!getContext().getAsConstantArrayType(E->getType())
658          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
659   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
660 }
661 
662 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
663                                         const CXXNewExpr *E) {
664   if (!E->isArray())
665     return CharUnits::Zero();
666 
667   // No cookie is required if the operator new[] being used is the
668   // reserved placement operator new[].
669   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
670     return CharUnits::Zero();
671 
672   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
673 }
674 
675 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
676                                         const CXXNewExpr *e,
677                                         unsigned minElements,
678                                         llvm::Value *&numElements,
679                                         llvm::Value *&sizeWithoutCookie) {
680   QualType type = e->getAllocatedType();
681 
682   if (!e->isArray()) {
683     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
684     sizeWithoutCookie
685       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
686     return sizeWithoutCookie;
687   }
688 
689   // The width of size_t.
690   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
691 
692   // Figure out the cookie size.
693   llvm::APInt cookieSize(sizeWidth,
694                          CalculateCookiePadding(CGF, e).getQuantity());
695 
696   // Emit the array size expression.
697   // We multiply the size of all dimensions for NumElements.
698   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
699   numElements =
700     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
701   if (!numElements)
702     numElements = CGF.EmitScalarExpr(e->getArraySize());
703   assert(isa<llvm::IntegerType>(numElements->getType()));
704 
705   // The number of elements can be have an arbitrary integer type;
706   // essentially, we need to multiply it by a constant factor, add a
707   // cookie size, and verify that the result is representable as a
708   // size_t.  That's just a gloss, though, and it's wrong in one
709   // important way: if the count is negative, it's an error even if
710   // the cookie size would bring the total size >= 0.
711   bool isSigned
712     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
713   llvm::IntegerType *numElementsType
714     = cast<llvm::IntegerType>(numElements->getType());
715   unsigned numElementsWidth = numElementsType->getBitWidth();
716 
717   // Compute the constant factor.
718   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
719   while (const ConstantArrayType *CAT
720              = CGF.getContext().getAsConstantArrayType(type)) {
721     type = CAT->getElementType();
722     arraySizeMultiplier *= CAT->getSize();
723   }
724 
725   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
726   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
727   typeSizeMultiplier *= arraySizeMultiplier;
728 
729   // This will be a size_t.
730   llvm::Value *size;
731 
732   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
733   // Don't bloat the -O0 code.
734   if (llvm::ConstantInt *numElementsC =
735         dyn_cast<llvm::ConstantInt>(numElements)) {
736     const llvm::APInt &count = numElementsC->getValue();
737 
738     bool hasAnyOverflow = false;
739 
740     // If 'count' was a negative number, it's an overflow.
741     if (isSigned && count.isNegative())
742       hasAnyOverflow = true;
743 
744     // We want to do all this arithmetic in size_t.  If numElements is
745     // wider than that, check whether it's already too big, and if so,
746     // overflow.
747     else if (numElementsWidth > sizeWidth &&
748              numElementsWidth - sizeWidth > count.countLeadingZeros())
749       hasAnyOverflow = true;
750 
751     // Okay, compute a count at the right width.
752     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
753 
754     // If there is a brace-initializer, we cannot allocate fewer elements than
755     // there are initializers. If we do, that's treated like an overflow.
756     if (adjustedCount.ult(minElements))
757       hasAnyOverflow = true;
758 
759     // Scale numElements by that.  This might overflow, but we don't
760     // care because it only overflows if allocationSize does, too, and
761     // if that overflows then we shouldn't use this.
762     numElements = llvm::ConstantInt::get(CGF.SizeTy,
763                                          adjustedCount * arraySizeMultiplier);
764 
765     // Compute the size before cookie, and track whether it overflowed.
766     bool overflow;
767     llvm::APInt allocationSize
768       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
769     hasAnyOverflow |= overflow;
770 
771     // Add in the cookie, and check whether it's overflowed.
772     if (cookieSize != 0) {
773       // Save the current size without a cookie.  This shouldn't be
774       // used if there was overflow.
775       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
776 
777       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
778       hasAnyOverflow |= overflow;
779     }
780 
781     // On overflow, produce a -1 so operator new will fail.
782     if (hasAnyOverflow) {
783       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
784     } else {
785       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
786     }
787 
788   // Otherwise, we might need to use the overflow intrinsics.
789   } else {
790     // There are up to five conditions we need to test for:
791     // 1) if isSigned, we need to check whether numElements is negative;
792     // 2) if numElementsWidth > sizeWidth, we need to check whether
793     //   numElements is larger than something representable in size_t;
794     // 3) if minElements > 0, we need to check whether numElements is smaller
795     //    than that.
796     // 4) we need to compute
797     //      sizeWithoutCookie := numElements * typeSizeMultiplier
798     //    and check whether it overflows; and
799     // 5) if we need a cookie, we need to compute
800     //      size := sizeWithoutCookie + cookieSize
801     //    and check whether it overflows.
802 
803     llvm::Value *hasOverflow = nullptr;
804 
805     // If numElementsWidth > sizeWidth, then one way or another, we're
806     // going to have to do a comparison for (2), and this happens to
807     // take care of (1), too.
808     if (numElementsWidth > sizeWidth) {
809       llvm::APInt threshold(numElementsWidth, 1);
810       threshold <<= sizeWidth;
811 
812       llvm::Value *thresholdV
813         = llvm::ConstantInt::get(numElementsType, threshold);
814 
815       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
816       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
817 
818     // Otherwise, if we're signed, we want to sext up to size_t.
819     } else if (isSigned) {
820       if (numElementsWidth < sizeWidth)
821         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
822 
823       // If there's a non-1 type size multiplier, then we can do the
824       // signedness check at the same time as we do the multiply
825       // because a negative number times anything will cause an
826       // unsigned overflow.  Otherwise, we have to do it here. But at least
827       // in this case, we can subsume the >= minElements check.
828       if (typeSizeMultiplier == 1)
829         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
830                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
831 
832     // Otherwise, zext up to size_t if necessary.
833     } else if (numElementsWidth < sizeWidth) {
834       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
835     }
836 
837     assert(numElements->getType() == CGF.SizeTy);
838 
839     if (minElements) {
840       // Don't allow allocation of fewer elements than we have initializers.
841       if (!hasOverflow) {
842         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
843                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
844       } else if (numElementsWidth > sizeWidth) {
845         // The other existing overflow subsumes this check.
846         // We do an unsigned comparison, since any signed value < -1 is
847         // taken care of either above or below.
848         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
849                           CGF.Builder.CreateICmpULT(numElements,
850                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
851       }
852     }
853 
854     size = numElements;
855 
856     // Multiply by the type size if necessary.  This multiplier
857     // includes all the factors for nested arrays.
858     //
859     // This step also causes numElements to be scaled up by the
860     // nested-array factor if necessary.  Overflow on this computation
861     // can be ignored because the result shouldn't be used if
862     // allocation fails.
863     if (typeSizeMultiplier != 1) {
864       llvm::Value *umul_with_overflow
865         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
866 
867       llvm::Value *tsmV =
868         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
869       llvm::Value *result =
870           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
871 
872       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
873       if (hasOverflow)
874         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
875       else
876         hasOverflow = overflowed;
877 
878       size = CGF.Builder.CreateExtractValue(result, 0);
879 
880       // Also scale up numElements by the array size multiplier.
881       if (arraySizeMultiplier != 1) {
882         // If the base element type size is 1, then we can re-use the
883         // multiply we just did.
884         if (typeSize.isOne()) {
885           assert(arraySizeMultiplier == typeSizeMultiplier);
886           numElements = size;
887 
888         // Otherwise we need a separate multiply.
889         } else {
890           llvm::Value *asmV =
891             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
892           numElements = CGF.Builder.CreateMul(numElements, asmV);
893         }
894       }
895     } else {
896       // numElements doesn't need to be scaled.
897       assert(arraySizeMultiplier == 1);
898     }
899 
900     // Add in the cookie size if necessary.
901     if (cookieSize != 0) {
902       sizeWithoutCookie = size;
903 
904       llvm::Value *uadd_with_overflow
905         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
906 
907       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
908       llvm::Value *result =
909           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
910 
911       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
912       if (hasOverflow)
913         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
914       else
915         hasOverflow = overflowed;
916 
917       size = CGF.Builder.CreateExtractValue(result, 0);
918     }
919 
920     // If we had any possibility of dynamic overflow, make a select to
921     // overwrite 'size' with an all-ones value, which should cause
922     // operator new to throw.
923     if (hasOverflow)
924       size = CGF.Builder.CreateSelect(hasOverflow,
925                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
926                                       size);
927   }
928 
929   if (cookieSize == 0)
930     sizeWithoutCookie = size;
931   else
932     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
933 
934   return size;
935 }
936 
937 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
938                                     QualType AllocType, Address NewPtr) {
939   // FIXME: Refactor with EmitExprAsInit.
940   switch (CGF.getEvaluationKind(AllocType)) {
941   case TEK_Scalar:
942     CGF.EmitScalarInit(Init, nullptr,
943                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
944     return;
945   case TEK_Complex:
946     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
947                                   /*isInit*/ true);
948     return;
949   case TEK_Aggregate: {
950     AggValueSlot Slot
951       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
952                               AggValueSlot::IsDestructed,
953                               AggValueSlot::DoesNotNeedGCBarriers,
954                               AggValueSlot::IsNotAliased);
955     CGF.EmitAggExpr(Init, Slot);
956     return;
957   }
958   }
959   llvm_unreachable("bad evaluation kind");
960 }
961 
962 void CodeGenFunction::EmitNewArrayInitializer(
963     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
964     Address BeginPtr, llvm::Value *NumElements,
965     llvm::Value *AllocSizeWithoutCookie) {
966   // If we have a type with trivial initialization and no initializer,
967   // there's nothing to do.
968   if (!E->hasInitializer())
969     return;
970 
971   Address CurPtr = BeginPtr;
972 
973   unsigned InitListElements = 0;
974 
975   const Expr *Init = E->getInitializer();
976   Address EndOfInit = Address::invalid();
977   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
978   EHScopeStack::stable_iterator Cleanup;
979   llvm::Instruction *CleanupDominator = nullptr;
980 
981   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
982   CharUnits ElementAlign =
983     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
984 
985   // Attempt to perform zero-initialization using memset.
986   auto TryMemsetInitialization = [&]() -> bool {
987     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
988     // we can initialize with a memset to -1.
989     if (!CGM.getTypes().isZeroInitializable(ElementType))
990       return false;
991 
992     // Optimization: since zero initialization will just set the memory
993     // to all zeroes, generate a single memset to do it in one shot.
994 
995     // Subtract out the size of any elements we've already initialized.
996     auto *RemainingSize = AllocSizeWithoutCookie;
997     if (InitListElements) {
998       // We know this can't overflow; we check this when doing the allocation.
999       auto *InitializedSize = llvm::ConstantInt::get(
1000           RemainingSize->getType(),
1001           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1002               InitListElements);
1003       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1004     }
1005 
1006     // Create the memset.
1007     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1008     return true;
1009   };
1010 
1011   // If the initializer is an initializer list, first do the explicit elements.
1012   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1013     // Initializing from a (braced) string literal is a special case; the init
1014     // list element does not initialize a (single) array element.
1015     if (ILE->isStringLiteralInit()) {
1016       // Initialize the initial portion of length equal to that of the string
1017       // literal. The allocation must be for at least this much; we emitted a
1018       // check for that earlier.
1019       AggValueSlot Slot =
1020           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1021                                 AggValueSlot::IsDestructed,
1022                                 AggValueSlot::DoesNotNeedGCBarriers,
1023                                 AggValueSlot::IsNotAliased);
1024       EmitAggExpr(ILE->getInit(0), Slot);
1025 
1026       // Move past these elements.
1027       InitListElements =
1028           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1029               ->getSize().getZExtValue();
1030       CurPtr =
1031           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1032                                             Builder.getSize(InitListElements),
1033                                             "string.init.end"),
1034                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1035                                                           ElementSize));
1036 
1037       // Zero out the rest, if any remain.
1038       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1039       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1040         bool OK = TryMemsetInitialization();
1041         (void)OK;
1042         assert(OK && "couldn't memset character type?");
1043       }
1044       return;
1045     }
1046 
1047     InitListElements = ILE->getNumInits();
1048 
1049     // If this is a multi-dimensional array new, we will initialize multiple
1050     // elements with each init list element.
1051     QualType AllocType = E->getAllocatedType();
1052     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1053             AllocType->getAsArrayTypeUnsafe())) {
1054       ElementTy = ConvertTypeForMem(AllocType);
1055       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1056       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1057     }
1058 
1059     // Enter a partial-destruction Cleanup if necessary.
1060     if (needsEHCleanup(DtorKind)) {
1061       // In principle we could tell the Cleanup where we are more
1062       // directly, but the control flow can get so varied here that it
1063       // would actually be quite complex.  Therefore we go through an
1064       // alloca.
1065       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1066                                    "array.init.end");
1067       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1068       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1069                                        ElementType, ElementAlign,
1070                                        getDestroyer(DtorKind));
1071       Cleanup = EHStack.stable_begin();
1072     }
1073 
1074     CharUnits StartAlign = CurPtr.getAlignment();
1075     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1076       // Tell the cleanup that it needs to destroy up to this
1077       // element.  TODO: some of these stores can be trivially
1078       // observed to be unnecessary.
1079       if (EndOfInit.isValid()) {
1080         auto FinishedPtr =
1081           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1082         Builder.CreateStore(FinishedPtr, EndOfInit);
1083       }
1084       // FIXME: If the last initializer is an incomplete initializer list for
1085       // an array, and we have an array filler, we can fold together the two
1086       // initialization loops.
1087       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1088                               ILE->getInit(i)->getType(), CurPtr);
1089       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1090                                                  Builder.getSize(1),
1091                                                  "array.exp.next"),
1092                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1093     }
1094 
1095     // The remaining elements are filled with the array filler expression.
1096     Init = ILE->getArrayFiller();
1097 
1098     // Extract the initializer for the individual array elements by pulling
1099     // out the array filler from all the nested initializer lists. This avoids
1100     // generating a nested loop for the initialization.
1101     while (Init && Init->getType()->isConstantArrayType()) {
1102       auto *SubILE = dyn_cast<InitListExpr>(Init);
1103       if (!SubILE)
1104         break;
1105       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1106       Init = SubILE->getArrayFiller();
1107     }
1108 
1109     // Switch back to initializing one base element at a time.
1110     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1111   }
1112 
1113   // If all elements have already been initialized, skip any further
1114   // initialization.
1115   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1116   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1117     // If there was a Cleanup, deactivate it.
1118     if (CleanupDominator)
1119       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1120     return;
1121   }
1122 
1123   assert(Init && "have trailing elements to initialize but no initializer");
1124 
1125   // If this is a constructor call, try to optimize it out, and failing that
1126   // emit a single loop to initialize all remaining elements.
1127   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1128     CXXConstructorDecl *Ctor = CCE->getConstructor();
1129     if (Ctor->isTrivial()) {
1130       // If new expression did not specify value-initialization, then there
1131       // is no initialization.
1132       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1133         return;
1134 
1135       if (TryMemsetInitialization())
1136         return;
1137     }
1138 
1139     // Store the new Cleanup position for irregular Cleanups.
1140     //
1141     // FIXME: Share this cleanup with the constructor call emission rather than
1142     // having it create a cleanup of its own.
1143     if (EndOfInit.isValid())
1144       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1145 
1146     // Emit a constructor call loop to initialize the remaining elements.
1147     if (InitListElements)
1148       NumElements = Builder.CreateSub(
1149           NumElements,
1150           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1151     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1152                                CCE->requiresZeroInitialization());
1153     return;
1154   }
1155 
1156   // If this is value-initialization, we can usually use memset.
1157   ImplicitValueInitExpr IVIE(ElementType);
1158   if (isa<ImplicitValueInitExpr>(Init)) {
1159     if (TryMemsetInitialization())
1160       return;
1161 
1162     // Switch to an ImplicitValueInitExpr for the element type. This handles
1163     // only one case: multidimensional array new of pointers to members. In
1164     // all other cases, we already have an initializer for the array element.
1165     Init = &IVIE;
1166   }
1167 
1168   // At this point we should have found an initializer for the individual
1169   // elements of the array.
1170   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1171          "got wrong type of element to initialize");
1172 
1173   // If we have an empty initializer list, we can usually use memset.
1174   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1175     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1176       return;
1177 
1178   // If we have a struct whose every field is value-initialized, we can
1179   // usually use memset.
1180   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1181     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1182       if (RType->getDecl()->isStruct()) {
1183         unsigned NumElements = 0;
1184         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1185           NumElements = CXXRD->getNumBases();
1186         for (auto *Field : RType->getDecl()->fields())
1187           if (!Field->isUnnamedBitfield())
1188             ++NumElements;
1189         // FIXME: Recurse into nested InitListExprs.
1190         if (ILE->getNumInits() == NumElements)
1191           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1192             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1193               --NumElements;
1194         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1195           return;
1196       }
1197     }
1198   }
1199 
1200   // Create the loop blocks.
1201   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1202   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1203   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1204 
1205   // Find the end of the array, hoisted out of the loop.
1206   llvm::Value *EndPtr =
1207     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1208 
1209   // If the number of elements isn't constant, we have to now check if there is
1210   // anything left to initialize.
1211   if (!ConstNum) {
1212     llvm::Value *IsEmpty =
1213       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1214     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1215   }
1216 
1217   // Enter the loop.
1218   EmitBlock(LoopBB);
1219 
1220   // Set up the current-element phi.
1221   llvm::PHINode *CurPtrPhi =
1222     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1223   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1224 
1225   CurPtr = Address(CurPtrPhi, ElementAlign);
1226 
1227   // Store the new Cleanup position for irregular Cleanups.
1228   if (EndOfInit.isValid())
1229     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1230 
1231   // Enter a partial-destruction Cleanup if necessary.
1232   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1233     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1234                                    ElementType, ElementAlign,
1235                                    getDestroyer(DtorKind));
1236     Cleanup = EHStack.stable_begin();
1237     CleanupDominator = Builder.CreateUnreachable();
1238   }
1239 
1240   // Emit the initializer into this element.
1241   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1242 
1243   // Leave the Cleanup if we entered one.
1244   if (CleanupDominator) {
1245     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1246     CleanupDominator->eraseFromParent();
1247   }
1248 
1249   // Advance to the next element by adjusting the pointer type as necessary.
1250   llvm::Value *NextPtr =
1251     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1252                                        "array.next");
1253 
1254   // Check whether we've gotten to the end of the array and, if so,
1255   // exit the loop.
1256   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1257   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1258   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1259 
1260   EmitBlock(ContBB);
1261 }
1262 
1263 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1264                                QualType ElementType, llvm::Type *ElementTy,
1265                                Address NewPtr, llvm::Value *NumElements,
1266                                llvm::Value *AllocSizeWithoutCookie) {
1267   ApplyDebugLocation DL(CGF, E);
1268   if (E->isArray())
1269     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1270                                 AllocSizeWithoutCookie);
1271   else if (const Expr *Init = E->getInitializer())
1272     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1273 }
1274 
1275 /// Emit a call to an operator new or operator delete function, as implicitly
1276 /// created by new-expressions and delete-expressions.
1277 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1278                                 const FunctionDecl *CalleeDecl,
1279                                 const FunctionProtoType *CalleeType,
1280                                 const CallArgList &Args) {
1281   llvm::Instruction *CallOrInvoke;
1282   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1283   CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1284   RValue RV =
1285       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1286                        Args, CalleeType, /*chainCall=*/false),
1287                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1288 
1289   /// C++1y [expr.new]p10:
1290   ///   [In a new-expression,] an implementation is allowed to omit a call
1291   ///   to a replaceable global allocation function.
1292   ///
1293   /// We model such elidable calls with the 'builtin' attribute.
1294   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1295   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1296       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1297     // FIXME: Add addAttribute to CallSite.
1298     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1299       CI->addAttribute(llvm::AttributeList::FunctionIndex,
1300                        llvm::Attribute::Builtin);
1301     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1302       II->addAttribute(llvm::AttributeList::FunctionIndex,
1303                        llvm::Attribute::Builtin);
1304     else
1305       llvm_unreachable("unexpected kind of call instruction");
1306   }
1307 
1308   return RV;
1309 }
1310 
1311 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1312                                                  const Expr *Arg,
1313                                                  bool IsDelete) {
1314   CallArgList Args;
1315   const Stmt *ArgS = Arg;
1316   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1317   // Find the allocation or deallocation function that we're calling.
1318   ASTContext &Ctx = getContext();
1319   DeclarationName Name = Ctx.DeclarationNames
1320       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1321   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1322     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1323       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1324         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1325   llvm_unreachable("predeclared global operator new/delete is missing");
1326 }
1327 
1328 namespace {
1329 /// The parameters to pass to a usual operator delete.
1330 struct UsualDeleteParams {
1331   bool DestroyingDelete = false;
1332   bool Size = false;
1333   bool Alignment = false;
1334 };
1335 }
1336 
1337 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1338   UsualDeleteParams Params;
1339 
1340   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1341   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1342 
1343   // The first argument is always a void*.
1344   ++AI;
1345 
1346   // The next parameter may be a std::destroying_delete_t.
1347   if (FD->isDestroyingOperatorDelete()) {
1348     Params.DestroyingDelete = true;
1349     assert(AI != AE);
1350     ++AI;
1351   }
1352 
1353   // Figure out what other parameters we should be implicitly passing.
1354   if (AI != AE && (*AI)->isIntegerType()) {
1355     Params.Size = true;
1356     ++AI;
1357   }
1358 
1359   if (AI != AE && (*AI)->isAlignValT()) {
1360     Params.Alignment = true;
1361     ++AI;
1362   }
1363 
1364   assert(AI == AE && "unexpected usual deallocation function parameter");
1365   return Params;
1366 }
1367 
1368 namespace {
1369   /// A cleanup to call the given 'operator delete' function upon abnormal
1370   /// exit from a new expression. Templated on a traits type that deals with
1371   /// ensuring that the arguments dominate the cleanup if necessary.
1372   template<typename Traits>
1373   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1374     /// Type used to hold llvm::Value*s.
1375     typedef typename Traits::ValueTy ValueTy;
1376     /// Type used to hold RValues.
1377     typedef typename Traits::RValueTy RValueTy;
1378     struct PlacementArg {
1379       RValueTy ArgValue;
1380       QualType ArgType;
1381     };
1382 
1383     unsigned NumPlacementArgs : 31;
1384     unsigned PassAlignmentToPlacementDelete : 1;
1385     const FunctionDecl *OperatorDelete;
1386     ValueTy Ptr;
1387     ValueTy AllocSize;
1388     CharUnits AllocAlign;
1389 
1390     PlacementArg *getPlacementArgs() {
1391       return reinterpret_cast<PlacementArg *>(this + 1);
1392     }
1393 
1394   public:
1395     static size_t getExtraSize(size_t NumPlacementArgs) {
1396       return NumPlacementArgs * sizeof(PlacementArg);
1397     }
1398 
1399     CallDeleteDuringNew(size_t NumPlacementArgs,
1400                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1401                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1402                         CharUnits AllocAlign)
1403       : NumPlacementArgs(NumPlacementArgs),
1404         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1405         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1406         AllocAlign(AllocAlign) {}
1407 
1408     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1409       assert(I < NumPlacementArgs && "index out of range");
1410       getPlacementArgs()[I] = {Arg, Type};
1411     }
1412 
1413     void Emit(CodeGenFunction &CGF, Flags flags) override {
1414       const FunctionProtoType *FPT =
1415           OperatorDelete->getType()->getAs<FunctionProtoType>();
1416       CallArgList DeleteArgs;
1417 
1418       // The first argument is always a void* (or C* for a destroying operator
1419       // delete for class type C).
1420       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1421 
1422       // Figure out what other parameters we should be implicitly passing.
1423       UsualDeleteParams Params;
1424       if (NumPlacementArgs) {
1425         // A placement deallocation function is implicitly passed an alignment
1426         // if the placement allocation function was, but is never passed a size.
1427         Params.Alignment = PassAlignmentToPlacementDelete;
1428       } else {
1429         // For a non-placement new-expression, 'operator delete' can take a
1430         // size and/or an alignment if it has the right parameters.
1431         Params = getUsualDeleteParams(OperatorDelete);
1432       }
1433 
1434       assert(!Params.DestroyingDelete &&
1435              "should not call destroying delete in a new-expression");
1436 
1437       // The second argument can be a std::size_t (for non-placement delete).
1438       if (Params.Size)
1439         DeleteArgs.add(Traits::get(CGF, AllocSize),
1440                        CGF.getContext().getSizeType());
1441 
1442       // The next (second or third) argument can be a std::align_val_t, which
1443       // is an enum whose underlying type is std::size_t.
1444       // FIXME: Use the right type as the parameter type. Note that in a call
1445       // to operator delete(size_t, ...), we may not have it available.
1446       if (Params.Alignment)
1447         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1448                            CGF.SizeTy, AllocAlign.getQuantity())),
1449                        CGF.getContext().getSizeType());
1450 
1451       // Pass the rest of the arguments, which must match exactly.
1452       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1453         auto Arg = getPlacementArgs()[I];
1454         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1455       }
1456 
1457       // Call 'operator delete'.
1458       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1459     }
1460   };
1461 }
1462 
1463 /// Enter a cleanup to call 'operator delete' if the initializer in a
1464 /// new-expression throws.
1465 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1466                                   const CXXNewExpr *E,
1467                                   Address NewPtr,
1468                                   llvm::Value *AllocSize,
1469                                   CharUnits AllocAlign,
1470                                   const CallArgList &NewArgs) {
1471   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1472 
1473   // If we're not inside a conditional branch, then the cleanup will
1474   // dominate and we can do the easier (and more efficient) thing.
1475   if (!CGF.isInConditionalBranch()) {
1476     struct DirectCleanupTraits {
1477       typedef llvm::Value *ValueTy;
1478       typedef RValue RValueTy;
1479       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1480       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1481     };
1482 
1483     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1484 
1485     DirectCleanup *Cleanup = CGF.EHStack
1486       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1487                                            E->getNumPlacementArgs(),
1488                                            E->getOperatorDelete(),
1489                                            NewPtr.getPointer(),
1490                                            AllocSize,
1491                                            E->passAlignment(),
1492                                            AllocAlign);
1493     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1494       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1495       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1496     }
1497 
1498     return;
1499   }
1500 
1501   // Otherwise, we need to save all this stuff.
1502   DominatingValue<RValue>::saved_type SavedNewPtr =
1503     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1504   DominatingValue<RValue>::saved_type SavedAllocSize =
1505     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1506 
1507   struct ConditionalCleanupTraits {
1508     typedef DominatingValue<RValue>::saved_type ValueTy;
1509     typedef DominatingValue<RValue>::saved_type RValueTy;
1510     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1511       return V.restore(CGF);
1512     }
1513   };
1514   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1515 
1516   ConditionalCleanup *Cleanup = CGF.EHStack
1517     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1518                                               E->getNumPlacementArgs(),
1519                                               E->getOperatorDelete(),
1520                                               SavedNewPtr,
1521                                               SavedAllocSize,
1522                                               E->passAlignment(),
1523                                               AllocAlign);
1524   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1525     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1526     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1527                              Arg.Ty);
1528   }
1529 
1530   CGF.initFullExprCleanup();
1531 }
1532 
1533 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1534   // The element type being allocated.
1535   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1536 
1537   // 1. Build a call to the allocation function.
1538   FunctionDecl *allocator = E->getOperatorNew();
1539 
1540   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1541   unsigned minElements = 0;
1542   if (E->isArray() && E->hasInitializer()) {
1543     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1544     if (ILE && ILE->isStringLiteralInit())
1545       minElements =
1546           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1547               ->getSize().getZExtValue();
1548     else if (ILE)
1549       minElements = ILE->getNumInits();
1550   }
1551 
1552   llvm::Value *numElements = nullptr;
1553   llvm::Value *allocSizeWithoutCookie = nullptr;
1554   llvm::Value *allocSize =
1555     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1556                         allocSizeWithoutCookie);
1557   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1558 
1559   // Emit the allocation call.  If the allocator is a global placement
1560   // operator, just "inline" it directly.
1561   Address allocation = Address::invalid();
1562   CallArgList allocatorArgs;
1563   if (allocator->isReservedGlobalPlacementOperator()) {
1564     assert(E->getNumPlacementArgs() == 1);
1565     const Expr *arg = *E->placement_arguments().begin();
1566 
1567     LValueBaseInfo BaseInfo;
1568     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1569 
1570     // The pointer expression will, in many cases, be an opaque void*.
1571     // In these cases, discard the computed alignment and use the
1572     // formal alignment of the allocated type.
1573     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1574       allocation = Address(allocation.getPointer(), allocAlign);
1575 
1576     // Set up allocatorArgs for the call to operator delete if it's not
1577     // the reserved global operator.
1578     if (E->getOperatorDelete() &&
1579         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1580       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1581       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1582     }
1583 
1584   } else {
1585     const FunctionProtoType *allocatorType =
1586       allocator->getType()->castAs<FunctionProtoType>();
1587     unsigned ParamsToSkip = 0;
1588 
1589     // The allocation size is the first argument.
1590     QualType sizeType = getContext().getSizeType();
1591     allocatorArgs.add(RValue::get(allocSize), sizeType);
1592     ++ParamsToSkip;
1593 
1594     if (allocSize != allocSizeWithoutCookie) {
1595       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1596       allocAlign = std::max(allocAlign, cookieAlign);
1597     }
1598 
1599     // The allocation alignment may be passed as the second argument.
1600     if (E->passAlignment()) {
1601       QualType AlignValT = sizeType;
1602       if (allocatorType->getNumParams() > 1) {
1603         AlignValT = allocatorType->getParamType(1);
1604         assert(getContext().hasSameUnqualifiedType(
1605                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1606                    sizeType) &&
1607                "wrong type for alignment parameter");
1608         ++ParamsToSkip;
1609       } else {
1610         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1611         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1612       }
1613       allocatorArgs.add(
1614           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1615           AlignValT);
1616     }
1617 
1618     // FIXME: Why do we not pass a CalleeDecl here?
1619     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1620                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1621 
1622     RValue RV =
1623       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1624 
1625     // If this was a call to a global replaceable allocation function that does
1626     // not take an alignment argument, the allocator is known to produce
1627     // storage that's suitably aligned for any object that fits, up to a known
1628     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1629     CharUnits allocationAlign = allocAlign;
1630     if (!E->passAlignment() &&
1631         allocator->isReplaceableGlobalAllocationFunction()) {
1632       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1633           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1634       allocationAlign = std::max(
1635           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1636     }
1637 
1638     allocation = Address(RV.getScalarVal(), allocationAlign);
1639   }
1640 
1641   // Emit a null check on the allocation result if the allocation
1642   // function is allowed to return null (because it has a non-throwing
1643   // exception spec or is the reserved placement new) and we have an
1644   // interesting initializer.
1645   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1646     (!allocType.isPODType(getContext()) || E->hasInitializer());
1647 
1648   llvm::BasicBlock *nullCheckBB = nullptr;
1649   llvm::BasicBlock *contBB = nullptr;
1650 
1651   // The null-check means that the initializer is conditionally
1652   // evaluated.
1653   ConditionalEvaluation conditional(*this);
1654 
1655   if (nullCheck) {
1656     conditional.begin(*this);
1657 
1658     nullCheckBB = Builder.GetInsertBlock();
1659     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1660     contBB = createBasicBlock("new.cont");
1661 
1662     llvm::Value *isNull =
1663       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1664     Builder.CreateCondBr(isNull, contBB, notNullBB);
1665     EmitBlock(notNullBB);
1666   }
1667 
1668   // If there's an operator delete, enter a cleanup to call it if an
1669   // exception is thrown.
1670   EHScopeStack::stable_iterator operatorDeleteCleanup;
1671   llvm::Instruction *cleanupDominator = nullptr;
1672   if (E->getOperatorDelete() &&
1673       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1674     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1675                           allocatorArgs);
1676     operatorDeleteCleanup = EHStack.stable_begin();
1677     cleanupDominator = Builder.CreateUnreachable();
1678   }
1679 
1680   assert((allocSize == allocSizeWithoutCookie) ==
1681          CalculateCookiePadding(*this, E).isZero());
1682   if (allocSize != allocSizeWithoutCookie) {
1683     assert(E->isArray());
1684     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1685                                                        numElements,
1686                                                        E, allocType);
1687   }
1688 
1689   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1690   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1691 
1692   // Passing pointer through invariant.group.barrier to avoid propagation of
1693   // vptrs information which may be included in previous type.
1694   // To not break LTO with different optimizations levels, we do it regardless
1695   // of optimization level.
1696   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1697       allocator->isReservedGlobalPlacementOperator())
1698     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1699                      result.getAlignment());
1700 
1701   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1702                      allocSizeWithoutCookie);
1703   if (E->isArray()) {
1704     // NewPtr is a pointer to the base element type.  If we're
1705     // allocating an array of arrays, we'll need to cast back to the
1706     // array pointer type.
1707     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1708     if (result.getType() != resultType)
1709       result = Builder.CreateBitCast(result, resultType);
1710   }
1711 
1712   // Deactivate the 'operator delete' cleanup if we finished
1713   // initialization.
1714   if (operatorDeleteCleanup.isValid()) {
1715     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1716     cleanupDominator->eraseFromParent();
1717   }
1718 
1719   llvm::Value *resultPtr = result.getPointer();
1720   if (nullCheck) {
1721     conditional.end(*this);
1722 
1723     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1724     EmitBlock(contBB);
1725 
1726     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1727     PHI->addIncoming(resultPtr, notNullBB);
1728     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1729                      nullCheckBB);
1730 
1731     resultPtr = PHI;
1732   }
1733 
1734   return resultPtr;
1735 }
1736 
1737 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1738                                      llvm::Value *Ptr, QualType DeleteTy,
1739                                      llvm::Value *NumElements,
1740                                      CharUnits CookieSize) {
1741   assert((!NumElements && CookieSize.isZero()) ||
1742          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1743 
1744   const FunctionProtoType *DeleteFTy =
1745     DeleteFD->getType()->getAs<FunctionProtoType>();
1746 
1747   CallArgList DeleteArgs;
1748 
1749   auto Params = getUsualDeleteParams(DeleteFD);
1750   auto ParamTypeIt = DeleteFTy->param_type_begin();
1751 
1752   // Pass the pointer itself.
1753   QualType ArgTy = *ParamTypeIt++;
1754   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1755   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1756 
1757   // Pass the std::destroying_delete tag if present.
1758   if (Params.DestroyingDelete) {
1759     QualType DDTag = *ParamTypeIt++;
1760     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1761     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1762     DeleteArgs.add(RValue::get(V), DDTag);
1763   }
1764 
1765   // Pass the size if the delete function has a size_t parameter.
1766   if (Params.Size) {
1767     QualType SizeType = *ParamTypeIt++;
1768     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1769     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1770                                                DeleteTypeSize.getQuantity());
1771 
1772     // For array new, multiply by the number of elements.
1773     if (NumElements)
1774       Size = Builder.CreateMul(Size, NumElements);
1775 
1776     // If there is a cookie, add the cookie size.
1777     if (!CookieSize.isZero())
1778       Size = Builder.CreateAdd(
1779           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1780 
1781     DeleteArgs.add(RValue::get(Size), SizeType);
1782   }
1783 
1784   // Pass the alignment if the delete function has an align_val_t parameter.
1785   if (Params.Alignment) {
1786     QualType AlignValType = *ParamTypeIt++;
1787     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1788         getContext().getTypeAlignIfKnown(DeleteTy));
1789     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1790                                                 DeleteTypeAlign.getQuantity());
1791     DeleteArgs.add(RValue::get(Align), AlignValType);
1792   }
1793 
1794   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1795          "unknown parameter to usual delete function");
1796 
1797   // Emit the call to delete.
1798   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1799 }
1800 
1801 namespace {
1802   /// Calls the given 'operator delete' on a single object.
1803   struct CallObjectDelete final : EHScopeStack::Cleanup {
1804     llvm::Value *Ptr;
1805     const FunctionDecl *OperatorDelete;
1806     QualType ElementType;
1807 
1808     CallObjectDelete(llvm::Value *Ptr,
1809                      const FunctionDecl *OperatorDelete,
1810                      QualType ElementType)
1811       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1812 
1813     void Emit(CodeGenFunction &CGF, Flags flags) override {
1814       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1815     }
1816   };
1817 }
1818 
1819 void
1820 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1821                                              llvm::Value *CompletePtr,
1822                                              QualType ElementType) {
1823   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1824                                         OperatorDelete, ElementType);
1825 }
1826 
1827 /// Emit the code for deleting a single object with a destroying operator
1828 /// delete. If the element type has a non-virtual destructor, Ptr has already
1829 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1830 /// Ptr points to an object of the static type.
1831 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1832                                        const CXXDeleteExpr *DE, Address Ptr,
1833                                        QualType ElementType) {
1834   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1835   if (Dtor && Dtor->isVirtual())
1836     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1837                                                 Dtor);
1838   else
1839     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1840 }
1841 
1842 /// Emit the code for deleting a single object.
1843 static void EmitObjectDelete(CodeGenFunction &CGF,
1844                              const CXXDeleteExpr *DE,
1845                              Address Ptr,
1846                              QualType ElementType) {
1847   // C++11 [expr.delete]p3:
1848   //   If the static type of the object to be deleted is different from its
1849   //   dynamic type, the static type shall be a base class of the dynamic type
1850   //   of the object to be deleted and the static type shall have a virtual
1851   //   destructor or the behavior is undefined.
1852   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1853                     DE->getExprLoc(), Ptr.getPointer(),
1854                     ElementType);
1855 
1856   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1857   assert(!OperatorDelete->isDestroyingOperatorDelete());
1858 
1859   // Find the destructor for the type, if applicable.  If the
1860   // destructor is virtual, we'll just emit the vcall and return.
1861   const CXXDestructorDecl *Dtor = nullptr;
1862   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1863     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1864     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1865       Dtor = RD->getDestructor();
1866 
1867       if (Dtor->isVirtual()) {
1868         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1869                                                     Dtor);
1870         return;
1871       }
1872     }
1873   }
1874 
1875   // Make sure that we call delete even if the dtor throws.
1876   // This doesn't have to a conditional cleanup because we're going
1877   // to pop it off in a second.
1878   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1879                                             Ptr.getPointer(),
1880                                             OperatorDelete, ElementType);
1881 
1882   if (Dtor)
1883     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1884                               /*ForVirtualBase=*/false,
1885                               /*Delegating=*/false,
1886                               Ptr);
1887   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1888     switch (Lifetime) {
1889     case Qualifiers::OCL_None:
1890     case Qualifiers::OCL_ExplicitNone:
1891     case Qualifiers::OCL_Autoreleasing:
1892       break;
1893 
1894     case Qualifiers::OCL_Strong:
1895       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1896       break;
1897 
1898     case Qualifiers::OCL_Weak:
1899       CGF.EmitARCDestroyWeak(Ptr);
1900       break;
1901     }
1902   }
1903 
1904   CGF.PopCleanupBlock();
1905 }
1906 
1907 namespace {
1908   /// Calls the given 'operator delete' on an array of objects.
1909   struct CallArrayDelete final : EHScopeStack::Cleanup {
1910     llvm::Value *Ptr;
1911     const FunctionDecl *OperatorDelete;
1912     llvm::Value *NumElements;
1913     QualType ElementType;
1914     CharUnits CookieSize;
1915 
1916     CallArrayDelete(llvm::Value *Ptr,
1917                     const FunctionDecl *OperatorDelete,
1918                     llvm::Value *NumElements,
1919                     QualType ElementType,
1920                     CharUnits CookieSize)
1921       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1922         ElementType(ElementType), CookieSize(CookieSize) {}
1923 
1924     void Emit(CodeGenFunction &CGF, Flags flags) override {
1925       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1926                          CookieSize);
1927     }
1928   };
1929 }
1930 
1931 /// Emit the code for deleting an array of objects.
1932 static void EmitArrayDelete(CodeGenFunction &CGF,
1933                             const CXXDeleteExpr *E,
1934                             Address deletedPtr,
1935                             QualType elementType) {
1936   llvm::Value *numElements = nullptr;
1937   llvm::Value *allocatedPtr = nullptr;
1938   CharUnits cookieSize;
1939   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1940                                       numElements, allocatedPtr, cookieSize);
1941 
1942   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1943 
1944   // Make sure that we call delete even if one of the dtors throws.
1945   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1946   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1947                                            allocatedPtr, operatorDelete,
1948                                            numElements, elementType,
1949                                            cookieSize);
1950 
1951   // Destroy the elements.
1952   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1953     assert(numElements && "no element count for a type with a destructor!");
1954 
1955     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1956     CharUnits elementAlign =
1957       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1958 
1959     llvm::Value *arrayBegin = deletedPtr.getPointer();
1960     llvm::Value *arrayEnd =
1961       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1962 
1963     // Note that it is legal to allocate a zero-length array, and we
1964     // can never fold the check away because the length should always
1965     // come from a cookie.
1966     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1967                          CGF.getDestroyer(dtorKind),
1968                          /*checkZeroLength*/ true,
1969                          CGF.needsEHCleanup(dtorKind));
1970   }
1971 
1972   // Pop the cleanup block.
1973   CGF.PopCleanupBlock();
1974 }
1975 
1976 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1977   const Expr *Arg = E->getArgument();
1978   Address Ptr = EmitPointerWithAlignment(Arg);
1979 
1980   // Null check the pointer.
1981   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1982   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1983 
1984   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1985 
1986   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1987   EmitBlock(DeleteNotNull);
1988 
1989   QualType DeleteTy = E->getDestroyedType();
1990 
1991   // A destroying operator delete overrides the entire operation of the
1992   // delete expression.
1993   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1994     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1995     EmitBlock(DeleteEnd);
1996     return;
1997   }
1998 
1999   // We might be deleting a pointer to array.  If so, GEP down to the
2000   // first non-array element.
2001   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2002   if (DeleteTy->isConstantArrayType()) {
2003     llvm::Value *Zero = Builder.getInt32(0);
2004     SmallVector<llvm::Value*,8> GEP;
2005 
2006     GEP.push_back(Zero); // point at the outermost array
2007 
2008     // For each layer of array type we're pointing at:
2009     while (const ConstantArrayType *Arr
2010              = getContext().getAsConstantArrayType(DeleteTy)) {
2011       // 1. Unpeel the array type.
2012       DeleteTy = Arr->getElementType();
2013 
2014       // 2. GEP to the first element of the array.
2015       GEP.push_back(Zero);
2016     }
2017 
2018     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2019                   Ptr.getAlignment());
2020   }
2021 
2022   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2023 
2024   if (E->isArrayForm()) {
2025     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2026   } else {
2027     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2028   }
2029 
2030   EmitBlock(DeleteEnd);
2031 }
2032 
2033 static bool isGLValueFromPointerDeref(const Expr *E) {
2034   E = E->IgnoreParens();
2035 
2036   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2037     if (!CE->getSubExpr()->isGLValue())
2038       return false;
2039     return isGLValueFromPointerDeref(CE->getSubExpr());
2040   }
2041 
2042   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2043     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2044 
2045   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2046     if (BO->getOpcode() == BO_Comma)
2047       return isGLValueFromPointerDeref(BO->getRHS());
2048 
2049   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2050     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2051            isGLValueFromPointerDeref(ACO->getFalseExpr());
2052 
2053   // C++11 [expr.sub]p1:
2054   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2055   if (isa<ArraySubscriptExpr>(E))
2056     return true;
2057 
2058   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2059     if (UO->getOpcode() == UO_Deref)
2060       return true;
2061 
2062   return false;
2063 }
2064 
2065 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2066                                          llvm::Type *StdTypeInfoPtrTy) {
2067   // Get the vtable pointer.
2068   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2069 
2070   QualType SrcRecordTy = E->getType();
2071 
2072   // C++ [class.cdtor]p4:
2073   //   If the operand of typeid refers to the object under construction or
2074   //   destruction and the static type of the operand is neither the constructor
2075   //   or destructor’s class nor one of its bases, the behavior is undefined.
2076   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2077                     ThisPtr.getPointer(), SrcRecordTy);
2078 
2079   // C++ [expr.typeid]p2:
2080   //   If the glvalue expression is obtained by applying the unary * operator to
2081   //   a pointer and the pointer is a null pointer value, the typeid expression
2082   //   throws the std::bad_typeid exception.
2083   //
2084   // However, this paragraph's intent is not clear.  We choose a very generous
2085   // interpretation which implores us to consider comma operators, conditional
2086   // operators, parentheses and other such constructs.
2087   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2088           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2089     llvm::BasicBlock *BadTypeidBlock =
2090         CGF.createBasicBlock("typeid.bad_typeid");
2091     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2092 
2093     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2094     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2095 
2096     CGF.EmitBlock(BadTypeidBlock);
2097     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2098     CGF.EmitBlock(EndBlock);
2099   }
2100 
2101   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2102                                         StdTypeInfoPtrTy);
2103 }
2104 
2105 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2106   llvm::Type *StdTypeInfoPtrTy =
2107     ConvertType(E->getType())->getPointerTo();
2108 
2109   if (E->isTypeOperand()) {
2110     llvm::Constant *TypeInfo =
2111         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2112     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2113   }
2114 
2115   // C++ [expr.typeid]p2:
2116   //   When typeid is applied to a glvalue expression whose type is a
2117   //   polymorphic class type, the result refers to a std::type_info object
2118   //   representing the type of the most derived object (that is, the dynamic
2119   //   type) to which the glvalue refers.
2120   if (E->isPotentiallyEvaluated())
2121     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2122                                 StdTypeInfoPtrTy);
2123 
2124   QualType OperandTy = E->getExprOperand()->getType();
2125   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2126                                StdTypeInfoPtrTy);
2127 }
2128 
2129 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2130                                           QualType DestTy) {
2131   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2132   if (DestTy->isPointerType())
2133     return llvm::Constant::getNullValue(DestLTy);
2134 
2135   /// C++ [expr.dynamic.cast]p9:
2136   ///   A failed cast to reference type throws std::bad_cast
2137   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2138     return nullptr;
2139 
2140   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2141   return llvm::UndefValue::get(DestLTy);
2142 }
2143 
2144 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2145                                               const CXXDynamicCastExpr *DCE) {
2146   CGM.EmitExplicitCastExprType(DCE, this);
2147   QualType DestTy = DCE->getTypeAsWritten();
2148 
2149   QualType SrcTy = DCE->getSubExpr()->getType();
2150 
2151   // C++ [expr.dynamic.cast]p7:
2152   //   If T is "pointer to cv void," then the result is a pointer to the most
2153   //   derived object pointed to by v.
2154   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2155 
2156   bool isDynamicCastToVoid;
2157   QualType SrcRecordTy;
2158   QualType DestRecordTy;
2159   if (DestPTy) {
2160     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2161     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2162     DestRecordTy = DestPTy->getPointeeType();
2163   } else {
2164     isDynamicCastToVoid = false;
2165     SrcRecordTy = SrcTy;
2166     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2167   }
2168 
2169   // C++ [class.cdtor]p5:
2170   //   If the operand of the dynamic_cast refers to the object under
2171   //   construction or destruction and the static type of the operand is not a
2172   //   pointer to or object of the constructor or destructor’s own class or one
2173   //   of its bases, the dynamic_cast results in undefined behavior.
2174   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2175                 SrcRecordTy);
2176 
2177   if (DCE->isAlwaysNull())
2178     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2179       return T;
2180 
2181   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2182 
2183   // C++ [expr.dynamic.cast]p4:
2184   //   If the value of v is a null pointer value in the pointer case, the result
2185   //   is the null pointer value of type T.
2186   bool ShouldNullCheckSrcValue =
2187       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2188                                                          SrcRecordTy);
2189 
2190   llvm::BasicBlock *CastNull = nullptr;
2191   llvm::BasicBlock *CastNotNull = nullptr;
2192   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2193 
2194   if (ShouldNullCheckSrcValue) {
2195     CastNull = createBasicBlock("dynamic_cast.null");
2196     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2197 
2198     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2199     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2200     EmitBlock(CastNotNull);
2201   }
2202 
2203   llvm::Value *Value;
2204   if (isDynamicCastToVoid) {
2205     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2206                                                   DestTy);
2207   } else {
2208     assert(DestRecordTy->isRecordType() &&
2209            "destination type must be a record type!");
2210     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2211                                                 DestTy, DestRecordTy, CastEnd);
2212     CastNotNull = Builder.GetInsertBlock();
2213   }
2214 
2215   if (ShouldNullCheckSrcValue) {
2216     EmitBranch(CastEnd);
2217 
2218     EmitBlock(CastNull);
2219     EmitBranch(CastEnd);
2220   }
2221 
2222   EmitBlock(CastEnd);
2223 
2224   if (ShouldNullCheckSrcValue) {
2225     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2226     PHI->addIncoming(Value, CastNotNull);
2227     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2228 
2229     Value = PHI;
2230   }
2231 
2232   return Value;
2233 }
2234 
2235 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2236   RunCleanupsScope Scope(*this);
2237   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2238 
2239   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2240   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2241                                                e = E->capture_init_end();
2242        i != e; ++i, ++CurField) {
2243     // Emit initialization
2244     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2245     if (CurField->hasCapturedVLAType()) {
2246       auto VAT = CurField->getCapturedVLAType();
2247       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2248     } else {
2249       EmitInitializerForField(*CurField, LV, *i);
2250     }
2251   }
2252 }
2253