1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 32 isa<CXXOperatorCallExpr>(CE)); 33 assert(MD->isInstance() && 34 "Trying to emit a member or operator call expr on a static method!"); 35 36 // C++11 [class.mfct.non-static]p2: 37 // If a non-static member function of a class X is called for an object that 38 // is not of type X, or of a type derived from X, the behavior is undefined. 39 SourceLocation CallLoc; 40 if (CE) 41 CallLoc = CE->getExprLoc(); 42 CGF.EmitTypeCheck( 43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 44 : CodeGenFunction::TCK_MemberCall, 45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 if (CE) { 60 // Special case: skip first argument of CXXOperatorCall (it is "this"). 61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 62 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 63 CE->getDirectCallee()); 64 } else { 65 assert( 66 FPT->getNumParams() == 0 && 67 "No CallExpr specified for function with non-zero number of arguments"); 68 } 69 return required; 70 } 71 72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 80 Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXStructorCall( 86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 88 const CallExpr *CE, StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 91 ImplicitParam, ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 93 Callee, ReturnValue, Args, MD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 Address This = Address::invalid(); 170 if (IsArrow) 171 This = EmitPointerWithAlignment(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 189 EmitAggregateAssign(This, RHS, CE->getType()); 190 return RValue::get(This.getPointer()); 191 } 192 193 if (isa<CXXConstructorDecl>(MD) && 194 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 195 // Trivial move and copy ctor are the same. 196 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 197 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 198 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 199 return RValue::get(This.getPointer()); 200 } 201 llvm_unreachable("unknown trivial member function"); 202 } 203 } 204 205 // Compute the function type we're calling. 206 const CXXMethodDecl *CalleeDecl = 207 DevirtualizedMethod ? DevirtualizedMethod : MD; 208 const CGFunctionInfo *FInfo = nullptr; 209 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 210 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 211 Dtor, StructorType::Complete); 212 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 213 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 214 Ctor, StructorType::Complete); 215 else 216 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 217 218 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 219 220 // C++ [class.virtual]p12: 221 // Explicit qualification with the scope operator (5.1) suppresses the 222 // virtual call mechanism. 223 // 224 // We also don't emit a virtual call if the base expression has a record type 225 // because then we know what the type is. 226 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 227 llvm::Value *Callee; 228 229 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 230 assert(CE->arg_begin() == CE->arg_end() && 231 "Destructor shouldn't have explicit parameters"); 232 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 233 if (UseVirtualCall) { 234 CGM.getCXXABI().EmitVirtualDestructorCall( 235 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 236 } else { 237 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 238 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 239 else if (!DevirtualizedMethod) 240 Callee = 241 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 242 else { 243 const CXXDestructorDecl *DDtor = 244 cast<CXXDestructorDecl>(DevirtualizedMethod); 245 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 246 } 247 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 248 /*ImplicitParam=*/nullptr, QualType(), CE); 249 } 250 return RValue::get(nullptr); 251 } 252 253 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 254 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 255 } else if (UseVirtualCall) { 256 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 257 CE->getLocStart()); 258 } else { 259 if (SanOpts.has(SanitizerKind::CFINVCall) && 260 MD->getParent()->isDynamicClass()) { 261 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 262 EmitVTablePtrCheckForCall(MD, VTable, CFITCK_NVCall, CE->getLocStart()); 263 } 264 265 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 266 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 267 else if (!DevirtualizedMethod) 268 Callee = CGM.GetAddrOfFunction(MD, Ty); 269 else { 270 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 271 } 272 } 273 274 if (MD->isVirtual()) { 275 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 276 *this, MD, This, UseVirtualCall); 277 } 278 279 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 280 /*ImplicitParam=*/nullptr, QualType(), CE); 281 } 282 283 RValue 284 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 285 ReturnValueSlot ReturnValue) { 286 const BinaryOperator *BO = 287 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 288 const Expr *BaseExpr = BO->getLHS(); 289 const Expr *MemFnExpr = BO->getRHS(); 290 291 const MemberPointerType *MPT = 292 MemFnExpr->getType()->castAs<MemberPointerType>(); 293 294 const FunctionProtoType *FPT = 295 MPT->getPointeeType()->castAs<FunctionProtoType>(); 296 const CXXRecordDecl *RD = 297 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 298 299 // Get the member function pointer. 300 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 301 302 // Emit the 'this' pointer. 303 Address This = Address::invalid(); 304 if (BO->getOpcode() == BO_PtrMemI) 305 This = EmitPointerWithAlignment(BaseExpr); 306 else 307 This = EmitLValue(BaseExpr).getAddress(); 308 309 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 310 QualType(MPT->getClass(), 0)); 311 312 // Ask the ABI to load the callee. Note that This is modified. 313 llvm::Value *ThisPtrForCall = nullptr; 314 llvm::Value *Callee = 315 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 316 ThisPtrForCall, MemFnPtr, MPT); 317 318 CallArgList Args; 319 320 QualType ThisType = 321 getContext().getPointerType(getContext().getTagDeclType(RD)); 322 323 // Push the this ptr. 324 Args.add(RValue::get(ThisPtrForCall), ThisType); 325 326 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 327 328 // And the rest of the call args 329 EmitCallArgs(Args, FPT, E->arguments(), E->getDirectCallee()); 330 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 331 Callee, ReturnValue, Args); 332 } 333 334 RValue 335 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 336 const CXXMethodDecl *MD, 337 ReturnValueSlot ReturnValue) { 338 assert(MD->isInstance() && 339 "Trying to emit a member call expr on a static method!"); 340 return EmitCXXMemberOrOperatorMemberCallExpr( 341 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 342 /*IsArrow=*/false, E->getArg(0)); 343 } 344 345 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 346 ReturnValueSlot ReturnValue) { 347 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 348 } 349 350 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 351 Address DestPtr, 352 const CXXRecordDecl *Base) { 353 if (Base->isEmpty()) 354 return; 355 356 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 357 358 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 359 llvm::Value *SizeVal = CGF.CGM.getSize(Layout.getNonVirtualSize()); 360 361 // If the type contains a pointer to data member we can't memset it to zero. 362 // Instead, create a null constant and copy it to the destination. 363 // TODO: there are other patterns besides zero that we can usefully memset, 364 // like -1, which happens to be the pattern used by member-pointers. 365 // TODO: isZeroInitializable can be over-conservative in the case where a 366 // virtual base contains a member pointer. 367 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 368 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 369 370 llvm::GlobalVariable *NullVariable = 371 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 372 /*isConstant=*/true, 373 llvm::GlobalVariable::PrivateLinkage, 374 NullConstant, Twine()); 375 376 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 377 DestPtr.getAlignment()); 378 NullVariable->setAlignment(Align.getQuantity()); 379 380 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 381 382 // Get and call the appropriate llvm.memcpy overload. 383 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal); 384 return; 385 } 386 387 // Otherwise, just memset the whole thing to zero. This is legal 388 // because in LLVM, all default initializers (other than the ones we just 389 // handled above) are guaranteed to have a bit pattern of all zeros. 390 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal); 391 } 392 393 void 394 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 395 AggValueSlot Dest) { 396 assert(!Dest.isIgnored() && "Must have a destination!"); 397 const CXXConstructorDecl *CD = E->getConstructor(); 398 399 // If we require zero initialization before (or instead of) calling the 400 // constructor, as can be the case with a non-user-provided default 401 // constructor, emit the zero initialization now, unless destination is 402 // already zeroed. 403 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 404 switch (E->getConstructionKind()) { 405 case CXXConstructExpr::CK_Delegating: 406 case CXXConstructExpr::CK_Complete: 407 EmitNullInitialization(Dest.getAddress(), E->getType()); 408 break; 409 case CXXConstructExpr::CK_VirtualBase: 410 case CXXConstructExpr::CK_NonVirtualBase: 411 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 412 CD->getParent()); 413 break; 414 } 415 } 416 417 // If this is a call to a trivial default constructor, do nothing. 418 if (CD->isTrivial() && CD->isDefaultConstructor()) 419 return; 420 421 // Elide the constructor if we're constructing from a temporary. 422 // The temporary check is required because Sema sets this on NRVO 423 // returns. 424 if (getLangOpts().ElideConstructors && E->isElidable()) { 425 assert(getContext().hasSameUnqualifiedType(E->getType(), 426 E->getArg(0)->getType())); 427 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 428 EmitAggExpr(E->getArg(0), Dest); 429 return; 430 } 431 } 432 433 if (const ConstantArrayType *arrayType 434 = getContext().getAsConstantArrayType(E->getType())) { 435 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 436 } else { 437 CXXCtorType Type = Ctor_Complete; 438 bool ForVirtualBase = false; 439 bool Delegating = false; 440 441 switch (E->getConstructionKind()) { 442 case CXXConstructExpr::CK_Delegating: 443 // We should be emitting a constructor; GlobalDecl will assert this 444 Type = CurGD.getCtorType(); 445 Delegating = true; 446 break; 447 448 case CXXConstructExpr::CK_Complete: 449 Type = Ctor_Complete; 450 break; 451 452 case CXXConstructExpr::CK_VirtualBase: 453 ForVirtualBase = true; 454 // fall-through 455 456 case CXXConstructExpr::CK_NonVirtualBase: 457 Type = Ctor_Base; 458 } 459 460 // Call the constructor. 461 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 462 Dest.getAddress(), E); 463 } 464 } 465 466 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 467 const Expr *Exp) { 468 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 469 Exp = E->getSubExpr(); 470 assert(isa<CXXConstructExpr>(Exp) && 471 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 472 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 473 const CXXConstructorDecl *CD = E->getConstructor(); 474 RunCleanupsScope Scope(*this); 475 476 // If we require zero initialization before (or instead of) calling the 477 // constructor, as can be the case with a non-user-provided default 478 // constructor, emit the zero initialization now. 479 // FIXME. Do I still need this for a copy ctor synthesis? 480 if (E->requiresZeroInitialization()) 481 EmitNullInitialization(Dest, E->getType()); 482 483 assert(!getContext().getAsConstantArrayType(E->getType()) 484 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 485 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 486 } 487 488 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 489 const CXXNewExpr *E) { 490 if (!E->isArray()) 491 return CharUnits::Zero(); 492 493 // No cookie is required if the operator new[] being used is the 494 // reserved placement operator new[]. 495 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 496 return CharUnits::Zero(); 497 498 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 499 } 500 501 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 502 const CXXNewExpr *e, 503 unsigned minElements, 504 llvm::Value *&numElements, 505 llvm::Value *&sizeWithoutCookie) { 506 QualType type = e->getAllocatedType(); 507 508 if (!e->isArray()) { 509 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 510 sizeWithoutCookie 511 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 512 return sizeWithoutCookie; 513 } 514 515 // The width of size_t. 516 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 517 518 // Figure out the cookie size. 519 llvm::APInt cookieSize(sizeWidth, 520 CalculateCookiePadding(CGF, e).getQuantity()); 521 522 // Emit the array size expression. 523 // We multiply the size of all dimensions for NumElements. 524 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 525 numElements = CGF.EmitScalarExpr(e->getArraySize()); 526 assert(isa<llvm::IntegerType>(numElements->getType())); 527 528 // The number of elements can be have an arbitrary integer type; 529 // essentially, we need to multiply it by a constant factor, add a 530 // cookie size, and verify that the result is representable as a 531 // size_t. That's just a gloss, though, and it's wrong in one 532 // important way: if the count is negative, it's an error even if 533 // the cookie size would bring the total size >= 0. 534 bool isSigned 535 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 536 llvm::IntegerType *numElementsType 537 = cast<llvm::IntegerType>(numElements->getType()); 538 unsigned numElementsWidth = numElementsType->getBitWidth(); 539 540 // Compute the constant factor. 541 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 542 while (const ConstantArrayType *CAT 543 = CGF.getContext().getAsConstantArrayType(type)) { 544 type = CAT->getElementType(); 545 arraySizeMultiplier *= CAT->getSize(); 546 } 547 548 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 549 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 550 typeSizeMultiplier *= arraySizeMultiplier; 551 552 // This will be a size_t. 553 llvm::Value *size; 554 555 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 556 // Don't bloat the -O0 code. 557 if (llvm::ConstantInt *numElementsC = 558 dyn_cast<llvm::ConstantInt>(numElements)) { 559 const llvm::APInt &count = numElementsC->getValue(); 560 561 bool hasAnyOverflow = false; 562 563 // If 'count' was a negative number, it's an overflow. 564 if (isSigned && count.isNegative()) 565 hasAnyOverflow = true; 566 567 // We want to do all this arithmetic in size_t. If numElements is 568 // wider than that, check whether it's already too big, and if so, 569 // overflow. 570 else if (numElementsWidth > sizeWidth && 571 numElementsWidth - sizeWidth > count.countLeadingZeros()) 572 hasAnyOverflow = true; 573 574 // Okay, compute a count at the right width. 575 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 576 577 // If there is a brace-initializer, we cannot allocate fewer elements than 578 // there are initializers. If we do, that's treated like an overflow. 579 if (adjustedCount.ult(minElements)) 580 hasAnyOverflow = true; 581 582 // Scale numElements by that. This might overflow, but we don't 583 // care because it only overflows if allocationSize does, too, and 584 // if that overflows then we shouldn't use this. 585 numElements = llvm::ConstantInt::get(CGF.SizeTy, 586 adjustedCount * arraySizeMultiplier); 587 588 // Compute the size before cookie, and track whether it overflowed. 589 bool overflow; 590 llvm::APInt allocationSize 591 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 592 hasAnyOverflow |= overflow; 593 594 // Add in the cookie, and check whether it's overflowed. 595 if (cookieSize != 0) { 596 // Save the current size without a cookie. This shouldn't be 597 // used if there was overflow. 598 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 599 600 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 601 hasAnyOverflow |= overflow; 602 } 603 604 // On overflow, produce a -1 so operator new will fail. 605 if (hasAnyOverflow) { 606 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 607 } else { 608 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 609 } 610 611 // Otherwise, we might need to use the overflow intrinsics. 612 } else { 613 // There are up to five conditions we need to test for: 614 // 1) if isSigned, we need to check whether numElements is negative; 615 // 2) if numElementsWidth > sizeWidth, we need to check whether 616 // numElements is larger than something representable in size_t; 617 // 3) if minElements > 0, we need to check whether numElements is smaller 618 // than that. 619 // 4) we need to compute 620 // sizeWithoutCookie := numElements * typeSizeMultiplier 621 // and check whether it overflows; and 622 // 5) if we need a cookie, we need to compute 623 // size := sizeWithoutCookie + cookieSize 624 // and check whether it overflows. 625 626 llvm::Value *hasOverflow = nullptr; 627 628 // If numElementsWidth > sizeWidth, then one way or another, we're 629 // going to have to do a comparison for (2), and this happens to 630 // take care of (1), too. 631 if (numElementsWidth > sizeWidth) { 632 llvm::APInt threshold(numElementsWidth, 1); 633 threshold <<= sizeWidth; 634 635 llvm::Value *thresholdV 636 = llvm::ConstantInt::get(numElementsType, threshold); 637 638 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 639 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 640 641 // Otherwise, if we're signed, we want to sext up to size_t. 642 } else if (isSigned) { 643 if (numElementsWidth < sizeWidth) 644 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 645 646 // If there's a non-1 type size multiplier, then we can do the 647 // signedness check at the same time as we do the multiply 648 // because a negative number times anything will cause an 649 // unsigned overflow. Otherwise, we have to do it here. But at least 650 // in this case, we can subsume the >= minElements check. 651 if (typeSizeMultiplier == 1) 652 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 653 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 654 655 // Otherwise, zext up to size_t if necessary. 656 } else if (numElementsWidth < sizeWidth) { 657 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 658 } 659 660 assert(numElements->getType() == CGF.SizeTy); 661 662 if (minElements) { 663 // Don't allow allocation of fewer elements than we have initializers. 664 if (!hasOverflow) { 665 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 666 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 667 } else if (numElementsWidth > sizeWidth) { 668 // The other existing overflow subsumes this check. 669 // We do an unsigned comparison, since any signed value < -1 is 670 // taken care of either above or below. 671 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 672 CGF.Builder.CreateICmpULT(numElements, 673 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 674 } 675 } 676 677 size = numElements; 678 679 // Multiply by the type size if necessary. This multiplier 680 // includes all the factors for nested arrays. 681 // 682 // This step also causes numElements to be scaled up by the 683 // nested-array factor if necessary. Overflow on this computation 684 // can be ignored because the result shouldn't be used if 685 // allocation fails. 686 if (typeSizeMultiplier != 1) { 687 llvm::Value *umul_with_overflow 688 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 689 690 llvm::Value *tsmV = 691 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 692 llvm::Value *result = 693 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 694 695 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 696 if (hasOverflow) 697 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 698 else 699 hasOverflow = overflowed; 700 701 size = CGF.Builder.CreateExtractValue(result, 0); 702 703 // Also scale up numElements by the array size multiplier. 704 if (arraySizeMultiplier != 1) { 705 // If the base element type size is 1, then we can re-use the 706 // multiply we just did. 707 if (typeSize.isOne()) { 708 assert(arraySizeMultiplier == typeSizeMultiplier); 709 numElements = size; 710 711 // Otherwise we need a separate multiply. 712 } else { 713 llvm::Value *asmV = 714 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 715 numElements = CGF.Builder.CreateMul(numElements, asmV); 716 } 717 } 718 } else { 719 // numElements doesn't need to be scaled. 720 assert(arraySizeMultiplier == 1); 721 } 722 723 // Add in the cookie size if necessary. 724 if (cookieSize != 0) { 725 sizeWithoutCookie = size; 726 727 llvm::Value *uadd_with_overflow 728 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 729 730 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 731 llvm::Value *result = 732 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 733 734 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 735 if (hasOverflow) 736 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 737 else 738 hasOverflow = overflowed; 739 740 size = CGF.Builder.CreateExtractValue(result, 0); 741 } 742 743 // If we had any possibility of dynamic overflow, make a select to 744 // overwrite 'size' with an all-ones value, which should cause 745 // operator new to throw. 746 if (hasOverflow) 747 size = CGF.Builder.CreateSelect(hasOverflow, 748 llvm::Constant::getAllOnesValue(CGF.SizeTy), 749 size); 750 } 751 752 if (cookieSize == 0) 753 sizeWithoutCookie = size; 754 else 755 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 756 757 return size; 758 } 759 760 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 761 QualType AllocType, Address NewPtr) { 762 // FIXME: Refactor with EmitExprAsInit. 763 switch (CGF.getEvaluationKind(AllocType)) { 764 case TEK_Scalar: 765 CGF.EmitScalarInit(Init, nullptr, 766 CGF.MakeAddrLValue(NewPtr, AllocType), false); 767 return; 768 case TEK_Complex: 769 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 770 /*isInit*/ true); 771 return; 772 case TEK_Aggregate: { 773 AggValueSlot Slot 774 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 775 AggValueSlot::IsDestructed, 776 AggValueSlot::DoesNotNeedGCBarriers, 777 AggValueSlot::IsNotAliased); 778 CGF.EmitAggExpr(Init, Slot); 779 return; 780 } 781 } 782 llvm_unreachable("bad evaluation kind"); 783 } 784 785 void CodeGenFunction::EmitNewArrayInitializer( 786 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 787 Address BeginPtr, llvm::Value *NumElements, 788 llvm::Value *AllocSizeWithoutCookie) { 789 // If we have a type with trivial initialization and no initializer, 790 // there's nothing to do. 791 if (!E->hasInitializer()) 792 return; 793 794 Address CurPtr = BeginPtr; 795 796 unsigned InitListElements = 0; 797 798 const Expr *Init = E->getInitializer(); 799 Address EndOfInit = Address::invalid(); 800 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 801 EHScopeStack::stable_iterator Cleanup; 802 llvm::Instruction *CleanupDominator = nullptr; 803 804 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 805 CharUnits ElementAlign = 806 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 807 808 // If the initializer is an initializer list, first do the explicit elements. 809 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 810 InitListElements = ILE->getNumInits(); 811 812 // If this is a multi-dimensional array new, we will initialize multiple 813 // elements with each init list element. 814 QualType AllocType = E->getAllocatedType(); 815 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 816 AllocType->getAsArrayTypeUnsafe())) { 817 ElementTy = ConvertTypeForMem(AllocType); 818 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 819 InitListElements *= getContext().getConstantArrayElementCount(CAT); 820 } 821 822 // Enter a partial-destruction Cleanup if necessary. 823 if (needsEHCleanup(DtorKind)) { 824 // In principle we could tell the Cleanup where we are more 825 // directly, but the control flow can get so varied here that it 826 // would actually be quite complex. Therefore we go through an 827 // alloca. 828 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 829 "array.init.end"); 830 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 831 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 832 ElementType, ElementAlign, 833 getDestroyer(DtorKind)); 834 Cleanup = EHStack.stable_begin(); 835 } 836 837 CharUnits StartAlign = CurPtr.getAlignment(); 838 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 839 // Tell the cleanup that it needs to destroy up to this 840 // element. TODO: some of these stores can be trivially 841 // observed to be unnecessary. 842 if (EndOfInit.isValid()) { 843 auto FinishedPtr = 844 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 845 Builder.CreateStore(FinishedPtr, EndOfInit); 846 } 847 // FIXME: If the last initializer is an incomplete initializer list for 848 // an array, and we have an array filler, we can fold together the two 849 // initialization loops. 850 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 851 ILE->getInit(i)->getType(), CurPtr); 852 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 853 Builder.getSize(1), 854 "array.exp.next"), 855 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 856 } 857 858 // The remaining elements are filled with the array filler expression. 859 Init = ILE->getArrayFiller(); 860 861 // Extract the initializer for the individual array elements by pulling 862 // out the array filler from all the nested initializer lists. This avoids 863 // generating a nested loop for the initialization. 864 while (Init && Init->getType()->isConstantArrayType()) { 865 auto *SubILE = dyn_cast<InitListExpr>(Init); 866 if (!SubILE) 867 break; 868 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 869 Init = SubILE->getArrayFiller(); 870 } 871 872 // Switch back to initializing one base element at a time. 873 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 874 } 875 876 // Attempt to perform zero-initialization using memset. 877 auto TryMemsetInitialization = [&]() -> bool { 878 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 879 // we can initialize with a memset to -1. 880 if (!CGM.getTypes().isZeroInitializable(ElementType)) 881 return false; 882 883 // Optimization: since zero initialization will just set the memory 884 // to all zeroes, generate a single memset to do it in one shot. 885 886 // Subtract out the size of any elements we've already initialized. 887 auto *RemainingSize = AllocSizeWithoutCookie; 888 if (InitListElements) { 889 // We know this can't overflow; we check this when doing the allocation. 890 auto *InitializedSize = llvm::ConstantInt::get( 891 RemainingSize->getType(), 892 getContext().getTypeSizeInChars(ElementType).getQuantity() * 893 InitListElements); 894 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 895 } 896 897 // Create the memset. 898 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 899 return true; 900 }; 901 902 // If all elements have already been initialized, skip any further 903 // initialization. 904 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 905 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 906 // If there was a Cleanup, deactivate it. 907 if (CleanupDominator) 908 DeactivateCleanupBlock(Cleanup, CleanupDominator); 909 return; 910 } 911 912 assert(Init && "have trailing elements to initialize but no initializer"); 913 914 // If this is a constructor call, try to optimize it out, and failing that 915 // emit a single loop to initialize all remaining elements. 916 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 917 CXXConstructorDecl *Ctor = CCE->getConstructor(); 918 if (Ctor->isTrivial()) { 919 // If new expression did not specify value-initialization, then there 920 // is no initialization. 921 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 922 return; 923 924 if (TryMemsetInitialization()) 925 return; 926 } 927 928 // Store the new Cleanup position for irregular Cleanups. 929 // 930 // FIXME: Share this cleanup with the constructor call emission rather than 931 // having it create a cleanup of its own. 932 if (EndOfInit.isValid()) 933 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 934 935 // Emit a constructor call loop to initialize the remaining elements. 936 if (InitListElements) 937 NumElements = Builder.CreateSub( 938 NumElements, 939 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 940 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 941 CCE->requiresZeroInitialization()); 942 return; 943 } 944 945 // If this is value-initialization, we can usually use memset. 946 ImplicitValueInitExpr IVIE(ElementType); 947 if (isa<ImplicitValueInitExpr>(Init)) { 948 if (TryMemsetInitialization()) 949 return; 950 951 // Switch to an ImplicitValueInitExpr for the element type. This handles 952 // only one case: multidimensional array new of pointers to members. In 953 // all other cases, we already have an initializer for the array element. 954 Init = &IVIE; 955 } 956 957 // At this point we should have found an initializer for the individual 958 // elements of the array. 959 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 960 "got wrong type of element to initialize"); 961 962 // If we have an empty initializer list, we can usually use memset. 963 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 964 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 965 return; 966 967 // If we have a struct whose every field is value-initialized, we can 968 // usually use memset. 969 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 970 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 971 if (RType->getDecl()->isStruct()) { 972 unsigned NumFields = 0; 973 for (auto *Field : RType->getDecl()->fields()) 974 if (!Field->isUnnamedBitfield()) 975 ++NumFields; 976 if (ILE->getNumInits() == NumFields) 977 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 978 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 979 --NumFields; 980 if (ILE->getNumInits() == NumFields && TryMemsetInitialization()) 981 return; 982 } 983 } 984 } 985 986 // Create the loop blocks. 987 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 988 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 989 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 990 991 // Find the end of the array, hoisted out of the loop. 992 llvm::Value *EndPtr = 993 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 994 995 // If the number of elements isn't constant, we have to now check if there is 996 // anything left to initialize. 997 if (!ConstNum) { 998 llvm::Value *IsEmpty = 999 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1000 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1001 } 1002 1003 // Enter the loop. 1004 EmitBlock(LoopBB); 1005 1006 // Set up the current-element phi. 1007 llvm::PHINode *CurPtrPhi = 1008 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1009 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1010 1011 CurPtr = Address(CurPtrPhi, ElementAlign); 1012 1013 // Store the new Cleanup position for irregular Cleanups. 1014 if (EndOfInit.isValid()) 1015 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1016 1017 // Enter a partial-destruction Cleanup if necessary. 1018 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1019 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1020 ElementType, ElementAlign, 1021 getDestroyer(DtorKind)); 1022 Cleanup = EHStack.stable_begin(); 1023 CleanupDominator = Builder.CreateUnreachable(); 1024 } 1025 1026 // Emit the initializer into this element. 1027 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1028 1029 // Leave the Cleanup if we entered one. 1030 if (CleanupDominator) { 1031 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1032 CleanupDominator->eraseFromParent(); 1033 } 1034 1035 // Advance to the next element by adjusting the pointer type as necessary. 1036 llvm::Value *NextPtr = 1037 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1038 "array.next"); 1039 1040 // Check whether we've gotten to the end of the array and, if so, 1041 // exit the loop. 1042 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1043 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1044 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1045 1046 EmitBlock(ContBB); 1047 } 1048 1049 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1050 QualType ElementType, llvm::Type *ElementTy, 1051 Address NewPtr, llvm::Value *NumElements, 1052 llvm::Value *AllocSizeWithoutCookie) { 1053 ApplyDebugLocation DL(CGF, E); 1054 if (E->isArray()) 1055 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1056 AllocSizeWithoutCookie); 1057 else if (const Expr *Init = E->getInitializer()) 1058 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1059 } 1060 1061 /// Emit a call to an operator new or operator delete function, as implicitly 1062 /// created by new-expressions and delete-expressions. 1063 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1064 const FunctionDecl *Callee, 1065 const FunctionProtoType *CalleeType, 1066 const CallArgList &Args) { 1067 llvm::Instruction *CallOrInvoke; 1068 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1069 RValue RV = 1070 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1071 Args, CalleeType, /*chainCall=*/false), 1072 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1073 1074 /// C++1y [expr.new]p10: 1075 /// [In a new-expression,] an implementation is allowed to omit a call 1076 /// to a replaceable global allocation function. 1077 /// 1078 /// We model such elidable calls with the 'builtin' attribute. 1079 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1080 if (Callee->isReplaceableGlobalAllocationFunction() && 1081 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1082 // FIXME: Add addAttribute to CallSite. 1083 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1084 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1085 llvm::Attribute::Builtin); 1086 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1087 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1088 llvm::Attribute::Builtin); 1089 else 1090 llvm_unreachable("unexpected kind of call instruction"); 1091 } 1092 1093 return RV; 1094 } 1095 1096 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1097 const Expr *Arg, 1098 bool IsDelete) { 1099 CallArgList Args; 1100 const Stmt *ArgS = Arg; 1101 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1102 // Find the allocation or deallocation function that we're calling. 1103 ASTContext &Ctx = getContext(); 1104 DeclarationName Name = Ctx.DeclarationNames 1105 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1106 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1107 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1108 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1109 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1110 llvm_unreachable("predeclared global operator new/delete is missing"); 1111 } 1112 1113 namespace { 1114 /// A cleanup to call the given 'operator delete' function upon 1115 /// abnormal exit from a new expression. 1116 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1117 size_t NumPlacementArgs; 1118 const FunctionDecl *OperatorDelete; 1119 llvm::Value *Ptr; 1120 llvm::Value *AllocSize; 1121 1122 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1123 1124 public: 1125 static size_t getExtraSize(size_t NumPlacementArgs) { 1126 return NumPlacementArgs * sizeof(RValue); 1127 } 1128 1129 CallDeleteDuringNew(size_t NumPlacementArgs, 1130 const FunctionDecl *OperatorDelete, 1131 llvm::Value *Ptr, 1132 llvm::Value *AllocSize) 1133 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1134 Ptr(Ptr), AllocSize(AllocSize) {} 1135 1136 void setPlacementArg(unsigned I, RValue Arg) { 1137 assert(I < NumPlacementArgs && "index out of range"); 1138 getPlacementArgs()[I] = Arg; 1139 } 1140 1141 void Emit(CodeGenFunction &CGF, Flags flags) override { 1142 const FunctionProtoType *FPT 1143 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1144 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1145 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1146 1147 CallArgList DeleteArgs; 1148 1149 // The first argument is always a void*. 1150 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1151 DeleteArgs.add(RValue::get(Ptr), *AI++); 1152 1153 // A member 'operator delete' can take an extra 'size_t' argument. 1154 if (FPT->getNumParams() == NumPlacementArgs + 2) 1155 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1156 1157 // Pass the rest of the arguments, which must match exactly. 1158 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1159 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1160 1161 // Call 'operator delete'. 1162 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1163 } 1164 }; 1165 1166 /// A cleanup to call the given 'operator delete' function upon 1167 /// abnormal exit from a new expression when the new expression is 1168 /// conditional. 1169 class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup { 1170 size_t NumPlacementArgs; 1171 const FunctionDecl *OperatorDelete; 1172 DominatingValue<RValue>::saved_type Ptr; 1173 DominatingValue<RValue>::saved_type AllocSize; 1174 1175 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1176 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1177 } 1178 1179 public: 1180 static size_t getExtraSize(size_t NumPlacementArgs) { 1181 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1182 } 1183 1184 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1185 const FunctionDecl *OperatorDelete, 1186 DominatingValue<RValue>::saved_type Ptr, 1187 DominatingValue<RValue>::saved_type AllocSize) 1188 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1189 Ptr(Ptr), AllocSize(AllocSize) {} 1190 1191 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1192 assert(I < NumPlacementArgs && "index out of range"); 1193 getPlacementArgs()[I] = Arg; 1194 } 1195 1196 void Emit(CodeGenFunction &CGF, Flags flags) override { 1197 const FunctionProtoType *FPT 1198 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1199 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1200 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1201 1202 CallArgList DeleteArgs; 1203 1204 // The first argument is always a void*. 1205 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1206 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1207 1208 // A member 'operator delete' can take an extra 'size_t' argument. 1209 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1210 RValue RV = AllocSize.restore(CGF); 1211 DeleteArgs.add(RV, *AI++); 1212 } 1213 1214 // Pass the rest of the arguments, which must match exactly. 1215 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1216 RValue RV = getPlacementArgs()[I].restore(CGF); 1217 DeleteArgs.add(RV, *AI++); 1218 } 1219 1220 // Call 'operator delete'. 1221 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1222 } 1223 }; 1224 } 1225 1226 /// Enter a cleanup to call 'operator delete' if the initializer in a 1227 /// new-expression throws. 1228 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1229 const CXXNewExpr *E, 1230 Address NewPtr, 1231 llvm::Value *AllocSize, 1232 const CallArgList &NewArgs) { 1233 // If we're not inside a conditional branch, then the cleanup will 1234 // dominate and we can do the easier (and more efficient) thing. 1235 if (!CGF.isInConditionalBranch()) { 1236 CallDeleteDuringNew *Cleanup = CGF.EHStack 1237 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1238 E->getNumPlacementArgs(), 1239 E->getOperatorDelete(), 1240 NewPtr.getPointer(), 1241 AllocSize); 1242 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1243 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1244 1245 return; 1246 } 1247 1248 // Otherwise, we need to save all this stuff. 1249 DominatingValue<RValue>::saved_type SavedNewPtr = 1250 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1251 DominatingValue<RValue>::saved_type SavedAllocSize = 1252 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1253 1254 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1255 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1256 E->getNumPlacementArgs(), 1257 E->getOperatorDelete(), 1258 SavedNewPtr, 1259 SavedAllocSize); 1260 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1261 Cleanup->setPlacementArg(I, 1262 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1263 1264 CGF.initFullExprCleanup(); 1265 } 1266 1267 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1268 // The element type being allocated. 1269 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1270 1271 // 1. Build a call to the allocation function. 1272 FunctionDecl *allocator = E->getOperatorNew(); 1273 1274 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1275 unsigned minElements = 0; 1276 if (E->isArray() && E->hasInitializer()) { 1277 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1278 minElements = ILE->getNumInits(); 1279 } 1280 1281 llvm::Value *numElements = nullptr; 1282 llvm::Value *allocSizeWithoutCookie = nullptr; 1283 llvm::Value *allocSize = 1284 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1285 allocSizeWithoutCookie); 1286 1287 // Emit the allocation call. If the allocator is a global placement 1288 // operator, just "inline" it directly. 1289 Address allocation = Address::invalid(); 1290 CallArgList allocatorArgs; 1291 if (allocator->isReservedGlobalPlacementOperator()) { 1292 assert(E->getNumPlacementArgs() == 1); 1293 const Expr *arg = *E->placement_arguments().begin(); 1294 1295 AlignmentSource alignSource; 1296 allocation = EmitPointerWithAlignment(arg, &alignSource); 1297 1298 // The pointer expression will, in many cases, be an opaque void*. 1299 // In these cases, discard the computed alignment and use the 1300 // formal alignment of the allocated type. 1301 if (alignSource != AlignmentSource::Decl) { 1302 allocation = Address(allocation.getPointer(), 1303 getContext().getTypeAlignInChars(allocType)); 1304 } 1305 1306 // Set up allocatorArgs for the call to operator delete if it's not 1307 // the reserved global operator. 1308 if (E->getOperatorDelete() && 1309 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1310 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1311 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1312 } 1313 1314 } else { 1315 const FunctionProtoType *allocatorType = 1316 allocator->getType()->castAs<FunctionProtoType>(); 1317 1318 // The allocation size is the first argument. 1319 QualType sizeType = getContext().getSizeType(); 1320 allocatorArgs.add(RValue::get(allocSize), sizeType); 1321 1322 // We start at 1 here because the first argument (the allocation size) 1323 // has already been emitted. 1324 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1325 /* CalleeDecl */ nullptr, 1326 /*ParamsToSkip*/ 1); 1327 1328 RValue RV = 1329 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1330 1331 // For now, only assume that the allocation function returns 1332 // something satisfactorily aligned for the element type, plus 1333 // the cookie if we have one. 1334 CharUnits allocationAlign = 1335 getContext().getTypeAlignInChars(allocType); 1336 if (allocSize != allocSizeWithoutCookie) { 1337 CharUnits cookieAlign = getSizeAlign(); // FIXME? 1338 allocationAlign = std::max(allocationAlign, cookieAlign); 1339 } 1340 1341 allocation = Address(RV.getScalarVal(), allocationAlign); 1342 } 1343 1344 // Emit a null check on the allocation result if the allocation 1345 // function is allowed to return null (because it has a non-throwing 1346 // exception spec or is the reserved placement new) and we have an 1347 // interesting initializer. 1348 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1349 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1350 1351 llvm::BasicBlock *nullCheckBB = nullptr; 1352 llvm::BasicBlock *contBB = nullptr; 1353 1354 // The null-check means that the initializer is conditionally 1355 // evaluated. 1356 ConditionalEvaluation conditional(*this); 1357 1358 if (nullCheck) { 1359 conditional.begin(*this); 1360 1361 nullCheckBB = Builder.GetInsertBlock(); 1362 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1363 contBB = createBasicBlock("new.cont"); 1364 1365 llvm::Value *isNull = 1366 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1367 Builder.CreateCondBr(isNull, contBB, notNullBB); 1368 EmitBlock(notNullBB); 1369 } 1370 1371 // If there's an operator delete, enter a cleanup to call it if an 1372 // exception is thrown. 1373 EHScopeStack::stable_iterator operatorDeleteCleanup; 1374 llvm::Instruction *cleanupDominator = nullptr; 1375 if (E->getOperatorDelete() && 1376 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1377 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1378 operatorDeleteCleanup = EHStack.stable_begin(); 1379 cleanupDominator = Builder.CreateUnreachable(); 1380 } 1381 1382 assert((allocSize == allocSizeWithoutCookie) == 1383 CalculateCookiePadding(*this, E).isZero()); 1384 if (allocSize != allocSizeWithoutCookie) { 1385 assert(E->isArray()); 1386 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1387 numElements, 1388 E, allocType); 1389 } 1390 1391 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1392 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1393 1394 // Passing pointer through invariant.group.barrier to avoid propagation of 1395 // vptrs information which may be included in previous type. 1396 if (CGM.getCodeGenOpts().StrictVTablePointers && 1397 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1398 allocator->isReservedGlobalPlacementOperator()) 1399 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1400 result.getAlignment()); 1401 1402 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1403 allocSizeWithoutCookie); 1404 if (E->isArray()) { 1405 // NewPtr is a pointer to the base element type. If we're 1406 // allocating an array of arrays, we'll need to cast back to the 1407 // array pointer type. 1408 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1409 if (result.getType() != resultType) 1410 result = Builder.CreateBitCast(result, resultType); 1411 } 1412 1413 // Deactivate the 'operator delete' cleanup if we finished 1414 // initialization. 1415 if (operatorDeleteCleanup.isValid()) { 1416 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1417 cleanupDominator->eraseFromParent(); 1418 } 1419 1420 llvm::Value *resultPtr = result.getPointer(); 1421 if (nullCheck) { 1422 conditional.end(*this); 1423 1424 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1425 EmitBlock(contBB); 1426 1427 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1428 PHI->addIncoming(resultPtr, notNullBB); 1429 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1430 nullCheckBB); 1431 1432 resultPtr = PHI; 1433 } 1434 1435 return resultPtr; 1436 } 1437 1438 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1439 llvm::Value *Ptr, 1440 QualType DeleteTy) { 1441 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1442 1443 const FunctionProtoType *DeleteFTy = 1444 DeleteFD->getType()->getAs<FunctionProtoType>(); 1445 1446 CallArgList DeleteArgs; 1447 1448 // Check if we need to pass the size to the delete operator. 1449 llvm::Value *Size = nullptr; 1450 QualType SizeTy; 1451 if (DeleteFTy->getNumParams() == 2) { 1452 SizeTy = DeleteFTy->getParamType(1); 1453 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1454 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1455 DeleteTypeSize.getQuantity()); 1456 } 1457 1458 QualType ArgTy = DeleteFTy->getParamType(0); 1459 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1460 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1461 1462 if (Size) 1463 DeleteArgs.add(RValue::get(Size), SizeTy); 1464 1465 // Emit the call to delete. 1466 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1467 } 1468 1469 namespace { 1470 /// Calls the given 'operator delete' on a single object. 1471 struct CallObjectDelete final : EHScopeStack::Cleanup { 1472 llvm::Value *Ptr; 1473 const FunctionDecl *OperatorDelete; 1474 QualType ElementType; 1475 1476 CallObjectDelete(llvm::Value *Ptr, 1477 const FunctionDecl *OperatorDelete, 1478 QualType ElementType) 1479 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1480 1481 void Emit(CodeGenFunction &CGF, Flags flags) override { 1482 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1483 } 1484 }; 1485 } 1486 1487 void 1488 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1489 llvm::Value *CompletePtr, 1490 QualType ElementType) { 1491 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1492 OperatorDelete, ElementType); 1493 } 1494 1495 /// Emit the code for deleting a single object. 1496 static void EmitObjectDelete(CodeGenFunction &CGF, 1497 const CXXDeleteExpr *DE, 1498 Address Ptr, 1499 QualType ElementType) { 1500 // Find the destructor for the type, if applicable. If the 1501 // destructor is virtual, we'll just emit the vcall and return. 1502 const CXXDestructorDecl *Dtor = nullptr; 1503 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1504 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1505 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1506 Dtor = RD->getDestructor(); 1507 1508 if (Dtor->isVirtual()) { 1509 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1510 Dtor); 1511 return; 1512 } 1513 } 1514 } 1515 1516 // Make sure that we call delete even if the dtor throws. 1517 // This doesn't have to a conditional cleanup because we're going 1518 // to pop it off in a second. 1519 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1520 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1521 Ptr.getPointer(), 1522 OperatorDelete, ElementType); 1523 1524 if (Dtor) 1525 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1526 /*ForVirtualBase=*/false, 1527 /*Delegating=*/false, 1528 Ptr); 1529 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1530 switch (Lifetime) { 1531 case Qualifiers::OCL_None: 1532 case Qualifiers::OCL_ExplicitNone: 1533 case Qualifiers::OCL_Autoreleasing: 1534 break; 1535 1536 case Qualifiers::OCL_Strong: 1537 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1538 break; 1539 1540 case Qualifiers::OCL_Weak: 1541 CGF.EmitARCDestroyWeak(Ptr); 1542 break; 1543 } 1544 } 1545 1546 CGF.PopCleanupBlock(); 1547 } 1548 1549 namespace { 1550 /// Calls the given 'operator delete' on an array of objects. 1551 struct CallArrayDelete final : EHScopeStack::Cleanup { 1552 llvm::Value *Ptr; 1553 const FunctionDecl *OperatorDelete; 1554 llvm::Value *NumElements; 1555 QualType ElementType; 1556 CharUnits CookieSize; 1557 1558 CallArrayDelete(llvm::Value *Ptr, 1559 const FunctionDecl *OperatorDelete, 1560 llvm::Value *NumElements, 1561 QualType ElementType, 1562 CharUnits CookieSize) 1563 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1564 ElementType(ElementType), CookieSize(CookieSize) {} 1565 1566 void Emit(CodeGenFunction &CGF, Flags flags) override { 1567 const FunctionProtoType *DeleteFTy = 1568 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1569 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1570 1571 CallArgList Args; 1572 1573 // Pass the pointer as the first argument. 1574 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1575 llvm::Value *DeletePtr 1576 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1577 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1578 1579 // Pass the original requested size as the second argument. 1580 if (DeleteFTy->getNumParams() == 2) { 1581 QualType size_t = DeleteFTy->getParamType(1); 1582 llvm::IntegerType *SizeTy 1583 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1584 1585 CharUnits ElementTypeSize = 1586 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1587 1588 // The size of an element, multiplied by the number of elements. 1589 llvm::Value *Size 1590 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1591 if (NumElements) 1592 Size = CGF.Builder.CreateMul(Size, NumElements); 1593 1594 // Plus the size of the cookie if applicable. 1595 if (!CookieSize.isZero()) { 1596 llvm::Value *CookieSizeV 1597 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1598 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1599 } 1600 1601 Args.add(RValue::get(Size), size_t); 1602 } 1603 1604 // Emit the call to delete. 1605 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1606 } 1607 }; 1608 } 1609 1610 /// Emit the code for deleting an array of objects. 1611 static void EmitArrayDelete(CodeGenFunction &CGF, 1612 const CXXDeleteExpr *E, 1613 Address deletedPtr, 1614 QualType elementType) { 1615 llvm::Value *numElements = nullptr; 1616 llvm::Value *allocatedPtr = nullptr; 1617 CharUnits cookieSize; 1618 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1619 numElements, allocatedPtr, cookieSize); 1620 1621 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1622 1623 // Make sure that we call delete even if one of the dtors throws. 1624 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1625 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1626 allocatedPtr, operatorDelete, 1627 numElements, elementType, 1628 cookieSize); 1629 1630 // Destroy the elements. 1631 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1632 assert(numElements && "no element count for a type with a destructor!"); 1633 1634 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1635 CharUnits elementAlign = 1636 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1637 1638 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1639 llvm::Value *arrayEnd = 1640 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1641 1642 // Note that it is legal to allocate a zero-length array, and we 1643 // can never fold the check away because the length should always 1644 // come from a cookie. 1645 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1646 CGF.getDestroyer(dtorKind), 1647 /*checkZeroLength*/ true, 1648 CGF.needsEHCleanup(dtorKind)); 1649 } 1650 1651 // Pop the cleanup block. 1652 CGF.PopCleanupBlock(); 1653 } 1654 1655 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1656 const Expr *Arg = E->getArgument(); 1657 Address Ptr = EmitPointerWithAlignment(Arg); 1658 1659 // Null check the pointer. 1660 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1661 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1662 1663 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1664 1665 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1666 EmitBlock(DeleteNotNull); 1667 1668 // We might be deleting a pointer to array. If so, GEP down to the 1669 // first non-array element. 1670 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1671 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1672 if (DeleteTy->isConstantArrayType()) { 1673 llvm::Value *Zero = Builder.getInt32(0); 1674 SmallVector<llvm::Value*,8> GEP; 1675 1676 GEP.push_back(Zero); // point at the outermost array 1677 1678 // For each layer of array type we're pointing at: 1679 while (const ConstantArrayType *Arr 1680 = getContext().getAsConstantArrayType(DeleteTy)) { 1681 // 1. Unpeel the array type. 1682 DeleteTy = Arr->getElementType(); 1683 1684 // 2. GEP to the first element of the array. 1685 GEP.push_back(Zero); 1686 } 1687 1688 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1689 Ptr.getAlignment()); 1690 } 1691 1692 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1693 1694 if (E->isArrayForm()) { 1695 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1696 } else { 1697 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1698 } 1699 1700 EmitBlock(DeleteEnd); 1701 } 1702 1703 static bool isGLValueFromPointerDeref(const Expr *E) { 1704 E = E->IgnoreParens(); 1705 1706 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1707 if (!CE->getSubExpr()->isGLValue()) 1708 return false; 1709 return isGLValueFromPointerDeref(CE->getSubExpr()); 1710 } 1711 1712 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1713 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1714 1715 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1716 if (BO->getOpcode() == BO_Comma) 1717 return isGLValueFromPointerDeref(BO->getRHS()); 1718 1719 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1720 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1721 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1722 1723 // C++11 [expr.sub]p1: 1724 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1725 if (isa<ArraySubscriptExpr>(E)) 1726 return true; 1727 1728 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1729 if (UO->getOpcode() == UO_Deref) 1730 return true; 1731 1732 return false; 1733 } 1734 1735 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1736 llvm::Type *StdTypeInfoPtrTy) { 1737 // Get the vtable pointer. 1738 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1739 1740 // C++ [expr.typeid]p2: 1741 // If the glvalue expression is obtained by applying the unary * operator to 1742 // a pointer and the pointer is a null pointer value, the typeid expression 1743 // throws the std::bad_typeid exception. 1744 // 1745 // However, this paragraph's intent is not clear. We choose a very generous 1746 // interpretation which implores us to consider comma operators, conditional 1747 // operators, parentheses and other such constructs. 1748 QualType SrcRecordTy = E->getType(); 1749 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1750 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1751 llvm::BasicBlock *BadTypeidBlock = 1752 CGF.createBasicBlock("typeid.bad_typeid"); 1753 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1754 1755 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1756 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1757 1758 CGF.EmitBlock(BadTypeidBlock); 1759 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1760 CGF.EmitBlock(EndBlock); 1761 } 1762 1763 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1764 StdTypeInfoPtrTy); 1765 } 1766 1767 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1768 llvm::Type *StdTypeInfoPtrTy = 1769 ConvertType(E->getType())->getPointerTo(); 1770 1771 if (E->isTypeOperand()) { 1772 llvm::Constant *TypeInfo = 1773 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1774 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1775 } 1776 1777 // C++ [expr.typeid]p2: 1778 // When typeid is applied to a glvalue expression whose type is a 1779 // polymorphic class type, the result refers to a std::type_info object 1780 // representing the type of the most derived object (that is, the dynamic 1781 // type) to which the glvalue refers. 1782 if (E->isPotentiallyEvaluated()) 1783 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1784 StdTypeInfoPtrTy); 1785 1786 QualType OperandTy = E->getExprOperand()->getType(); 1787 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1788 StdTypeInfoPtrTy); 1789 } 1790 1791 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1792 QualType DestTy) { 1793 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1794 if (DestTy->isPointerType()) 1795 return llvm::Constant::getNullValue(DestLTy); 1796 1797 /// C++ [expr.dynamic.cast]p9: 1798 /// A failed cast to reference type throws std::bad_cast 1799 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1800 return nullptr; 1801 1802 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1803 return llvm::UndefValue::get(DestLTy); 1804 } 1805 1806 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1807 const CXXDynamicCastExpr *DCE) { 1808 CGM.EmitExplicitCastExprType(DCE, this); 1809 QualType DestTy = DCE->getTypeAsWritten(); 1810 1811 if (DCE->isAlwaysNull()) 1812 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1813 return T; 1814 1815 QualType SrcTy = DCE->getSubExpr()->getType(); 1816 1817 // C++ [expr.dynamic.cast]p7: 1818 // If T is "pointer to cv void," then the result is a pointer to the most 1819 // derived object pointed to by v. 1820 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1821 1822 bool isDynamicCastToVoid; 1823 QualType SrcRecordTy; 1824 QualType DestRecordTy; 1825 if (DestPTy) { 1826 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1827 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1828 DestRecordTy = DestPTy->getPointeeType(); 1829 } else { 1830 isDynamicCastToVoid = false; 1831 SrcRecordTy = SrcTy; 1832 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1833 } 1834 1835 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1836 1837 // C++ [expr.dynamic.cast]p4: 1838 // If the value of v is a null pointer value in the pointer case, the result 1839 // is the null pointer value of type T. 1840 bool ShouldNullCheckSrcValue = 1841 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1842 SrcRecordTy); 1843 1844 llvm::BasicBlock *CastNull = nullptr; 1845 llvm::BasicBlock *CastNotNull = nullptr; 1846 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1847 1848 if (ShouldNullCheckSrcValue) { 1849 CastNull = createBasicBlock("dynamic_cast.null"); 1850 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1851 1852 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 1853 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1854 EmitBlock(CastNotNull); 1855 } 1856 1857 llvm::Value *Value; 1858 if (isDynamicCastToVoid) { 1859 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 1860 DestTy); 1861 } else { 1862 assert(DestRecordTy->isRecordType() && 1863 "destination type must be a record type!"); 1864 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 1865 DestTy, DestRecordTy, CastEnd); 1866 } 1867 1868 if (ShouldNullCheckSrcValue) { 1869 EmitBranch(CastEnd); 1870 1871 EmitBlock(CastNull); 1872 EmitBranch(CastEnd); 1873 } 1874 1875 EmitBlock(CastEnd); 1876 1877 if (ShouldNullCheckSrcValue) { 1878 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1879 PHI->addIncoming(Value, CastNotNull); 1880 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1881 1882 Value = PHI; 1883 } 1884 1885 return Value; 1886 } 1887 1888 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1889 RunCleanupsScope Scope(*this); 1890 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 1891 1892 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1893 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1894 e = E->capture_init_end(); 1895 i != e; ++i, ++CurField) { 1896 // Emit initialization 1897 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1898 if (CurField->hasCapturedVLAType()) { 1899 auto VAT = CurField->getCapturedVLAType(); 1900 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1901 } else { 1902 ArrayRef<VarDecl *> ArrayIndexes; 1903 if (CurField->getType()->isArrayType()) 1904 ArrayIndexes = E->getCaptureInitIndexVars(i); 1905 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1906 } 1907 } 1908 } 1909