1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30   RequiredArgs ReqArgs;
31   // Number of prefix arguments for the call. Ignores the `this` pointer.
32   unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
38                                   llvm::Value *This, llvm::Value *ImplicitParam,
39                                   QualType ImplicitParamTy, const CallExpr *CE,
40                                   CallArgList &Args, CallArgList *RtlArgs) {
41   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42          isa<CXXOperatorCallExpr>(CE));
43   assert(MD->isInstance() &&
44          "Trying to emit a member or operator call expr on a static method!");
45   ASTContext &C = CGF.getContext();
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
50   Args.add(RValue::get(This),
51            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53   // If there is an implicit parameter (e.g. VTT), emit it.
54   if (ImplicitParam) {
55     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56   }
57 
58   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60   unsigned PrefixSize = Args.size() - 1;
61 
62   // And the rest of the call args.
63   if (RtlArgs) {
64     // Special case: if the caller emitted the arguments right-to-left already
65     // (prior to emitting the *this argument), we're done. This happens for
66     // assignment operators.
67     Args.addFrom(*RtlArgs);
68   } else if (CE) {
69     // Special case: skip first argument of CXXOperatorCall (it is "this").
70     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72                      CE->getDirectCallee());
73   } else {
74     assert(
75         FPT->getNumParams() == 0 &&
76         "No CallExpr specified for function with non-zero number of arguments");
77   }
78   return {required, PrefixSize};
79 }
80 
81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
82     const CXXMethodDecl *MD, const CGCallee &Callee,
83     ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92   return EmitCall(FnInfo, Callee, ReturnValue, Args);
93 }
94 
95 RValue CodeGenFunction::EmitCXXDestructorCall(
96     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
97     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
98     StructorType Type) {
99   CallArgList Args;
100   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
101                                     ImplicitParamTy, CE, Args, nullptr);
102   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
103                   Callee, ReturnValueSlot(), Args);
104 }
105 
106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
107                                             const CXXPseudoDestructorExpr *E) {
108   QualType DestroyedType = E->getDestroyedType();
109   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
110     // Automatic Reference Counting:
111     //   If the pseudo-expression names a retainable object with weak or
112     //   strong lifetime, the object shall be released.
113     Expr *BaseExpr = E->getBase();
114     Address BaseValue = Address::invalid();
115     Qualifiers BaseQuals;
116 
117     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
118     if (E->isArrow()) {
119       BaseValue = EmitPointerWithAlignment(BaseExpr);
120       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
121       BaseQuals = PTy->getPointeeType().getQualifiers();
122     } else {
123       LValue BaseLV = EmitLValue(BaseExpr);
124       BaseValue = BaseLV.getAddress();
125       QualType BaseTy = BaseExpr->getType();
126       BaseQuals = BaseTy.getQualifiers();
127     }
128 
129     switch (DestroyedType.getObjCLifetime()) {
130     case Qualifiers::OCL_None:
131     case Qualifiers::OCL_ExplicitNone:
132     case Qualifiers::OCL_Autoreleasing:
133       break;
134 
135     case Qualifiers::OCL_Strong:
136       EmitARCRelease(Builder.CreateLoad(BaseValue,
137                         DestroyedType.isVolatileQualified()),
138                      ARCPreciseLifetime);
139       break;
140 
141     case Qualifiers::OCL_Weak:
142       EmitARCDestroyWeak(BaseValue);
143       break;
144     }
145   } else {
146     // C++ [expr.pseudo]p1:
147     //   The result shall only be used as the operand for the function call
148     //   operator (), and the result of such a call has type void. The only
149     //   effect is the evaluation of the postfix-expression before the dot or
150     //   arrow.
151     EmitIgnoredExpr(E->getBase());
152   }
153 
154   return RValue::get(nullptr);
155 }
156 
157 static CXXRecordDecl *getCXXRecord(const Expr *E) {
158   QualType T = E->getType();
159   if (const PointerType *PTy = T->getAs<PointerType>())
160     T = PTy->getPointeeType();
161   const RecordType *Ty = T->castAs<RecordType>();
162   return cast<CXXRecordDecl>(Ty->getDecl());
163 }
164 
165 // Note: This function also emit constructor calls to support a MSVC
166 // extensions allowing explicit constructor function call.
167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
168                                               ReturnValueSlot ReturnValue) {
169   const Expr *callee = CE->getCallee()->IgnoreParens();
170 
171   if (isa<BinaryOperator>(callee))
172     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
173 
174   const MemberExpr *ME = cast<MemberExpr>(callee);
175   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
176 
177   if (MD->isStatic()) {
178     // The method is static, emit it as we would a regular call.
179     CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
180     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
181                     ReturnValue);
182   }
183 
184   bool HasQualifier = ME->hasQualifier();
185   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
186   bool IsArrow = ME->isArrow();
187   const Expr *Base = ME->getBase();
188 
189   return EmitCXXMemberOrOperatorMemberCallExpr(
190       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
191 }
192 
193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
194     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
195     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
196     const Expr *Base) {
197   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
198 
199   // Compute the object pointer.
200   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
201 
202   const CXXMethodDecl *DevirtualizedMethod = nullptr;
203   if (CanUseVirtualCall &&
204       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
205     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
206     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
207     assert(DevirtualizedMethod);
208     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
209     const Expr *Inner = Base->ignoreParenBaseCasts();
210     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
211         MD->getReturnType().getCanonicalType())
212       // If the return types are not the same, this might be a case where more
213       // code needs to run to compensate for it. For example, the derived
214       // method might return a type that inherits form from the return
215       // type of MD and has a prefix.
216       // For now we just avoid devirtualizing these covariant cases.
217       DevirtualizedMethod = nullptr;
218     else if (getCXXRecord(Inner) == DevirtualizedClass)
219       // If the class of the Inner expression is where the dynamic method
220       // is defined, build the this pointer from it.
221       Base = Inner;
222     else if (getCXXRecord(Base) != DevirtualizedClass) {
223       // If the method is defined in a class that is not the best dynamic
224       // one or the one of the full expression, we would have to build
225       // a derived-to-base cast to compute the correct this pointer, but
226       // we don't have support for that yet, so do a virtual call.
227       DevirtualizedMethod = nullptr;
228     }
229   }
230 
231   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
232   // operator before the LHS.
233   CallArgList RtlArgStorage;
234   CallArgList *RtlArgs = nullptr;
235   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
236     if (OCE->isAssignmentOp()) {
237       RtlArgs = &RtlArgStorage;
238       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
239                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
240                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
241     }
242   }
243 
244   Address This = Address::invalid();
245   if (IsArrow)
246     This = EmitPointerWithAlignment(Base);
247   else
248     This = EmitLValue(Base).getAddress();
249 
250 
251   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
252     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
253     if (isa<CXXConstructorDecl>(MD) &&
254         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
255       return RValue::get(nullptr);
256 
257     if (!MD->getParent()->mayInsertExtraPadding()) {
258       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
259         // We don't like to generate the trivial copy/move assignment operator
260         // when it isn't necessary; just produce the proper effect here.
261         LValue RHS = isa<CXXOperatorCallExpr>(CE)
262                          ? MakeNaturalAlignAddrLValue(
263                                (*RtlArgs)[0].RV.getScalarVal(),
264                                (*(CE->arg_begin() + 1))->getType())
265                          : EmitLValue(*CE->arg_begin());
266         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
267         return RValue::get(This.getPointer());
268       }
269 
270       if (isa<CXXConstructorDecl>(MD) &&
271           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
272         // Trivial move and copy ctor are the same.
273         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
274         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
275         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
276         return RValue::get(This.getPointer());
277       }
278       llvm_unreachable("unknown trivial member function");
279     }
280   }
281 
282   // Compute the function type we're calling.
283   const CXXMethodDecl *CalleeDecl =
284       DevirtualizedMethod ? DevirtualizedMethod : MD;
285   const CGFunctionInfo *FInfo = nullptr;
286   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
287     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
288         Dtor, StructorType::Complete);
289   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
290     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
291         Ctor, StructorType::Complete);
292   else
293     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
294 
295   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
296 
297   // C++11 [class.mfct.non-static]p2:
298   //   If a non-static member function of a class X is called for an object that
299   //   is not of type X, or of a type derived from X, the behavior is undefined.
300   SourceLocation CallLoc;
301   ASTContext &C = getContext();
302   if (CE)
303     CallLoc = CE->getExprLoc();
304 
305   SanitizerSet SkippedChecks;
306   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
307     auto *IOA = CMCE->getImplicitObjectArgument();
308     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
309     if (IsImplicitObjectCXXThis)
310       SkippedChecks.set(SanitizerKind::Alignment, true);
311     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
312       SkippedChecks.set(SanitizerKind::Null, true);
313   }
314   EmitTypeCheck(
315       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
316                                           : CodeGenFunction::TCK_MemberCall,
317       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
318       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
321   // 'CalleeDecl' instead.
322 
323   // C++ [class.virtual]p12:
324   //   Explicit qualification with the scope operator (5.1) suppresses the
325   //   virtual call mechanism.
326   //
327   // We also don't emit a virtual call if the base expression has a record type
328   // because then we know what the type is.
329   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
330 
331   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
332     assert(CE->arg_begin() == CE->arg_end() &&
333            "Destructor shouldn't have explicit parameters");
334     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
335     if (UseVirtualCall) {
336       CGM.getCXXABI().EmitVirtualDestructorCall(
337           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
338     } else {
339       CGCallee Callee;
340       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
341         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
342       else if (!DevirtualizedMethod)
343         Callee = CGCallee::forDirect(
344             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
345                                      Dtor);
346       else {
347         const CXXDestructorDecl *DDtor =
348           cast<CXXDestructorDecl>(DevirtualizedMethod);
349         Callee = CGCallee::forDirect(
350                   CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
351                                      DDtor);
352       }
353       EmitCXXMemberOrOperatorCall(
354           CalleeDecl, Callee, ReturnValue, This.getPointer(),
355           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
356     }
357     return RValue::get(nullptr);
358   }
359 
360   CGCallee Callee;
361   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
362     Callee = CGCallee::forDirect(
363                   CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
364                                  Ctor);
365   } else if (UseVirtualCall) {
366     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
367                                                        CE->getLocStart());
368   } else {
369     if (SanOpts.has(SanitizerKind::CFINVCall) &&
370         MD->getParent()->isDynamicClass()) {
371       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
372       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
373                                 CE->getLocStart());
374     }
375 
376     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
377       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
378     else if (!DevirtualizedMethod)
379       Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
380     else {
381       Callee = CGCallee::forDirect(
382                                 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
383                                    DevirtualizedMethod);
384     }
385   }
386 
387   if (MD->isVirtual()) {
388     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
389         *this, CalleeDecl, This, UseVirtualCall);
390   }
391 
392   return EmitCXXMemberOrOperatorCall(
393       CalleeDecl, Callee, ReturnValue, This.getPointer(),
394       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
395 }
396 
397 RValue
398 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
399                                               ReturnValueSlot ReturnValue) {
400   const BinaryOperator *BO =
401       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
402   const Expr *BaseExpr = BO->getLHS();
403   const Expr *MemFnExpr = BO->getRHS();
404 
405   const MemberPointerType *MPT =
406     MemFnExpr->getType()->castAs<MemberPointerType>();
407 
408   const FunctionProtoType *FPT =
409     MPT->getPointeeType()->castAs<FunctionProtoType>();
410   const CXXRecordDecl *RD =
411     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
412 
413   // Emit the 'this' pointer.
414   Address This = Address::invalid();
415   if (BO->getOpcode() == BO_PtrMemI)
416     This = EmitPointerWithAlignment(BaseExpr);
417   else
418     This = EmitLValue(BaseExpr).getAddress();
419 
420   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
421                 QualType(MPT->getClass(), 0));
422 
423   // Get the member function pointer.
424   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
425 
426   // Ask the ABI to load the callee.  Note that This is modified.
427   llvm::Value *ThisPtrForCall = nullptr;
428   CGCallee Callee =
429     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
430                                              ThisPtrForCall, MemFnPtr, MPT);
431 
432   CallArgList Args;
433 
434   QualType ThisType =
435     getContext().getPointerType(getContext().getTagDeclType(RD));
436 
437   // Push the this ptr.
438   Args.add(RValue::get(ThisPtrForCall), ThisType);
439 
440   RequiredArgs required =
441       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
442 
443   // And the rest of the call args
444   EmitCallArgs(Args, FPT, E->arguments());
445   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
446                                                       /*PrefixSize=*/0),
447                   Callee, ReturnValue, Args);
448 }
449 
450 RValue
451 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
452                                                const CXXMethodDecl *MD,
453                                                ReturnValueSlot ReturnValue) {
454   assert(MD->isInstance() &&
455          "Trying to emit a member call expr on a static method!");
456   return EmitCXXMemberOrOperatorMemberCallExpr(
457       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
458       /*IsArrow=*/false, E->getArg(0));
459 }
460 
461 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
462                                                ReturnValueSlot ReturnValue) {
463   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
464 }
465 
466 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
467                                             Address DestPtr,
468                                             const CXXRecordDecl *Base) {
469   if (Base->isEmpty())
470     return;
471 
472   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
473 
474   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
475   CharUnits NVSize = Layout.getNonVirtualSize();
476 
477   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
478   // present, they are initialized by the most derived class before calling the
479   // constructor.
480   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
481   Stores.emplace_back(CharUnits::Zero(), NVSize);
482 
483   // Each store is split by the existence of a vbptr.
484   CharUnits VBPtrWidth = CGF.getPointerSize();
485   std::vector<CharUnits> VBPtrOffsets =
486       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
487   for (CharUnits VBPtrOffset : VBPtrOffsets) {
488     // Stop before we hit any virtual base pointers located in virtual bases.
489     if (VBPtrOffset >= NVSize)
490       break;
491     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
492     CharUnits LastStoreOffset = LastStore.first;
493     CharUnits LastStoreSize = LastStore.second;
494 
495     CharUnits SplitBeforeOffset = LastStoreOffset;
496     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
497     assert(!SplitBeforeSize.isNegative() && "negative store size!");
498     if (!SplitBeforeSize.isZero())
499       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
500 
501     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
502     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
503     assert(!SplitAfterSize.isNegative() && "negative store size!");
504     if (!SplitAfterSize.isZero())
505       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
506   }
507 
508   // If the type contains a pointer to data member we can't memset it to zero.
509   // Instead, create a null constant and copy it to the destination.
510   // TODO: there are other patterns besides zero that we can usefully memset,
511   // like -1, which happens to be the pattern used by member-pointers.
512   // TODO: isZeroInitializable can be over-conservative in the case where a
513   // virtual base contains a member pointer.
514   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
515   if (!NullConstantForBase->isNullValue()) {
516     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
517         CGF.CGM.getModule(), NullConstantForBase->getType(),
518         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
519         NullConstantForBase, Twine());
520 
521     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
522                                DestPtr.getAlignment());
523     NullVariable->setAlignment(Align.getQuantity());
524 
525     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
526 
527     // Get and call the appropriate llvm.memcpy overload.
528     for (std::pair<CharUnits, CharUnits> Store : Stores) {
529       CharUnits StoreOffset = Store.first;
530       CharUnits StoreSize = Store.second;
531       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
532       CGF.Builder.CreateMemCpy(
533           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
534           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
535           StoreSizeVal);
536     }
537 
538   // Otherwise, just memset the whole thing to zero.  This is legal
539   // because in LLVM, all default initializers (other than the ones we just
540   // handled above) are guaranteed to have a bit pattern of all zeros.
541   } else {
542     for (std::pair<CharUnits, CharUnits> Store : Stores) {
543       CharUnits StoreOffset = Store.first;
544       CharUnits StoreSize = Store.second;
545       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
546       CGF.Builder.CreateMemSet(
547           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
548           CGF.Builder.getInt8(0), StoreSizeVal);
549     }
550   }
551 }
552 
553 void
554 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
555                                       AggValueSlot Dest) {
556   assert(!Dest.isIgnored() && "Must have a destination!");
557   const CXXConstructorDecl *CD = E->getConstructor();
558 
559   // If we require zero initialization before (or instead of) calling the
560   // constructor, as can be the case with a non-user-provided default
561   // constructor, emit the zero initialization now, unless destination is
562   // already zeroed.
563   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
564     switch (E->getConstructionKind()) {
565     case CXXConstructExpr::CK_Delegating:
566     case CXXConstructExpr::CK_Complete:
567       EmitNullInitialization(Dest.getAddress(), E->getType());
568       break;
569     case CXXConstructExpr::CK_VirtualBase:
570     case CXXConstructExpr::CK_NonVirtualBase:
571       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
572                                       CD->getParent());
573       break;
574     }
575   }
576 
577   // If this is a call to a trivial default constructor, do nothing.
578   if (CD->isTrivial() && CD->isDefaultConstructor())
579     return;
580 
581   // Elide the constructor if we're constructing from a temporary.
582   // The temporary check is required because Sema sets this on NRVO
583   // returns.
584   if (getLangOpts().ElideConstructors && E->isElidable()) {
585     assert(getContext().hasSameUnqualifiedType(E->getType(),
586                                                E->getArg(0)->getType()));
587     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
588       EmitAggExpr(E->getArg(0), Dest);
589       return;
590     }
591   }
592 
593   if (const ArrayType *arrayType
594         = getContext().getAsArrayType(E->getType())) {
595     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
596   } else {
597     CXXCtorType Type = Ctor_Complete;
598     bool ForVirtualBase = false;
599     bool Delegating = false;
600 
601     switch (E->getConstructionKind()) {
602      case CXXConstructExpr::CK_Delegating:
603       // We should be emitting a constructor; GlobalDecl will assert this
604       Type = CurGD.getCtorType();
605       Delegating = true;
606       break;
607 
608      case CXXConstructExpr::CK_Complete:
609       Type = Ctor_Complete;
610       break;
611 
612      case CXXConstructExpr::CK_VirtualBase:
613       ForVirtualBase = true;
614       // fall-through
615 
616      case CXXConstructExpr::CK_NonVirtualBase:
617       Type = Ctor_Base;
618     }
619 
620     // Call the constructor.
621     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
622                            Dest.getAddress(), E);
623   }
624 }
625 
626 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
627                                                  const Expr *Exp) {
628   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
629     Exp = E->getSubExpr();
630   assert(isa<CXXConstructExpr>(Exp) &&
631          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
632   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
633   const CXXConstructorDecl *CD = E->getConstructor();
634   RunCleanupsScope Scope(*this);
635 
636   // If we require zero initialization before (or instead of) calling the
637   // constructor, as can be the case with a non-user-provided default
638   // constructor, emit the zero initialization now.
639   // FIXME. Do I still need this for a copy ctor synthesis?
640   if (E->requiresZeroInitialization())
641     EmitNullInitialization(Dest, E->getType());
642 
643   assert(!getContext().getAsConstantArrayType(E->getType())
644          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
645   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
646 }
647 
648 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
649                                         const CXXNewExpr *E) {
650   if (!E->isArray())
651     return CharUnits::Zero();
652 
653   // No cookie is required if the operator new[] being used is the
654   // reserved placement operator new[].
655   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
656     return CharUnits::Zero();
657 
658   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
659 }
660 
661 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
662                                         const CXXNewExpr *e,
663                                         unsigned minElements,
664                                         llvm::Value *&numElements,
665                                         llvm::Value *&sizeWithoutCookie) {
666   QualType type = e->getAllocatedType();
667 
668   if (!e->isArray()) {
669     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
670     sizeWithoutCookie
671       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
672     return sizeWithoutCookie;
673   }
674 
675   // The width of size_t.
676   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
677 
678   // Figure out the cookie size.
679   llvm::APInt cookieSize(sizeWidth,
680                          CalculateCookiePadding(CGF, e).getQuantity());
681 
682   // Emit the array size expression.
683   // We multiply the size of all dimensions for NumElements.
684   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
685   numElements =
686     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
687   if (!numElements)
688     numElements = CGF.EmitScalarExpr(e->getArraySize());
689   assert(isa<llvm::IntegerType>(numElements->getType()));
690 
691   // The number of elements can be have an arbitrary integer type;
692   // essentially, we need to multiply it by a constant factor, add a
693   // cookie size, and verify that the result is representable as a
694   // size_t.  That's just a gloss, though, and it's wrong in one
695   // important way: if the count is negative, it's an error even if
696   // the cookie size would bring the total size >= 0.
697   bool isSigned
698     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
699   llvm::IntegerType *numElementsType
700     = cast<llvm::IntegerType>(numElements->getType());
701   unsigned numElementsWidth = numElementsType->getBitWidth();
702 
703   // Compute the constant factor.
704   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
705   while (const ConstantArrayType *CAT
706              = CGF.getContext().getAsConstantArrayType(type)) {
707     type = CAT->getElementType();
708     arraySizeMultiplier *= CAT->getSize();
709   }
710 
711   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
712   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
713   typeSizeMultiplier *= arraySizeMultiplier;
714 
715   // This will be a size_t.
716   llvm::Value *size;
717 
718   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
719   // Don't bloat the -O0 code.
720   if (llvm::ConstantInt *numElementsC =
721         dyn_cast<llvm::ConstantInt>(numElements)) {
722     const llvm::APInt &count = numElementsC->getValue();
723 
724     bool hasAnyOverflow = false;
725 
726     // If 'count' was a negative number, it's an overflow.
727     if (isSigned && count.isNegative())
728       hasAnyOverflow = true;
729 
730     // We want to do all this arithmetic in size_t.  If numElements is
731     // wider than that, check whether it's already too big, and if so,
732     // overflow.
733     else if (numElementsWidth > sizeWidth &&
734              numElementsWidth - sizeWidth > count.countLeadingZeros())
735       hasAnyOverflow = true;
736 
737     // Okay, compute a count at the right width.
738     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
739 
740     // If there is a brace-initializer, we cannot allocate fewer elements than
741     // there are initializers. If we do, that's treated like an overflow.
742     if (adjustedCount.ult(minElements))
743       hasAnyOverflow = true;
744 
745     // Scale numElements by that.  This might overflow, but we don't
746     // care because it only overflows if allocationSize does, too, and
747     // if that overflows then we shouldn't use this.
748     numElements = llvm::ConstantInt::get(CGF.SizeTy,
749                                          adjustedCount * arraySizeMultiplier);
750 
751     // Compute the size before cookie, and track whether it overflowed.
752     bool overflow;
753     llvm::APInt allocationSize
754       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
755     hasAnyOverflow |= overflow;
756 
757     // Add in the cookie, and check whether it's overflowed.
758     if (cookieSize != 0) {
759       // Save the current size without a cookie.  This shouldn't be
760       // used if there was overflow.
761       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
762 
763       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
764       hasAnyOverflow |= overflow;
765     }
766 
767     // On overflow, produce a -1 so operator new will fail.
768     if (hasAnyOverflow) {
769       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
770     } else {
771       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
772     }
773 
774   // Otherwise, we might need to use the overflow intrinsics.
775   } else {
776     // There are up to five conditions we need to test for:
777     // 1) if isSigned, we need to check whether numElements is negative;
778     // 2) if numElementsWidth > sizeWidth, we need to check whether
779     //   numElements is larger than something representable in size_t;
780     // 3) if minElements > 0, we need to check whether numElements is smaller
781     //    than that.
782     // 4) we need to compute
783     //      sizeWithoutCookie := numElements * typeSizeMultiplier
784     //    and check whether it overflows; and
785     // 5) if we need a cookie, we need to compute
786     //      size := sizeWithoutCookie + cookieSize
787     //    and check whether it overflows.
788 
789     llvm::Value *hasOverflow = nullptr;
790 
791     // If numElementsWidth > sizeWidth, then one way or another, we're
792     // going to have to do a comparison for (2), and this happens to
793     // take care of (1), too.
794     if (numElementsWidth > sizeWidth) {
795       llvm::APInt threshold(numElementsWidth, 1);
796       threshold <<= sizeWidth;
797 
798       llvm::Value *thresholdV
799         = llvm::ConstantInt::get(numElementsType, threshold);
800 
801       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
802       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
803 
804     // Otherwise, if we're signed, we want to sext up to size_t.
805     } else if (isSigned) {
806       if (numElementsWidth < sizeWidth)
807         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
808 
809       // If there's a non-1 type size multiplier, then we can do the
810       // signedness check at the same time as we do the multiply
811       // because a negative number times anything will cause an
812       // unsigned overflow.  Otherwise, we have to do it here. But at least
813       // in this case, we can subsume the >= minElements check.
814       if (typeSizeMultiplier == 1)
815         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
816                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
817 
818     // Otherwise, zext up to size_t if necessary.
819     } else if (numElementsWidth < sizeWidth) {
820       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
821     }
822 
823     assert(numElements->getType() == CGF.SizeTy);
824 
825     if (minElements) {
826       // Don't allow allocation of fewer elements than we have initializers.
827       if (!hasOverflow) {
828         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
829                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
830       } else if (numElementsWidth > sizeWidth) {
831         // The other existing overflow subsumes this check.
832         // We do an unsigned comparison, since any signed value < -1 is
833         // taken care of either above or below.
834         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
835                           CGF.Builder.CreateICmpULT(numElements,
836                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
837       }
838     }
839 
840     size = numElements;
841 
842     // Multiply by the type size if necessary.  This multiplier
843     // includes all the factors for nested arrays.
844     //
845     // This step also causes numElements to be scaled up by the
846     // nested-array factor if necessary.  Overflow on this computation
847     // can be ignored because the result shouldn't be used if
848     // allocation fails.
849     if (typeSizeMultiplier != 1) {
850       llvm::Value *umul_with_overflow
851         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
852 
853       llvm::Value *tsmV =
854         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
855       llvm::Value *result =
856           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
857 
858       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
859       if (hasOverflow)
860         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
861       else
862         hasOverflow = overflowed;
863 
864       size = CGF.Builder.CreateExtractValue(result, 0);
865 
866       // Also scale up numElements by the array size multiplier.
867       if (arraySizeMultiplier != 1) {
868         // If the base element type size is 1, then we can re-use the
869         // multiply we just did.
870         if (typeSize.isOne()) {
871           assert(arraySizeMultiplier == typeSizeMultiplier);
872           numElements = size;
873 
874         // Otherwise we need a separate multiply.
875         } else {
876           llvm::Value *asmV =
877             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
878           numElements = CGF.Builder.CreateMul(numElements, asmV);
879         }
880       }
881     } else {
882       // numElements doesn't need to be scaled.
883       assert(arraySizeMultiplier == 1);
884     }
885 
886     // Add in the cookie size if necessary.
887     if (cookieSize != 0) {
888       sizeWithoutCookie = size;
889 
890       llvm::Value *uadd_with_overflow
891         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
892 
893       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
894       llvm::Value *result =
895           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
896 
897       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
898       if (hasOverflow)
899         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
900       else
901         hasOverflow = overflowed;
902 
903       size = CGF.Builder.CreateExtractValue(result, 0);
904     }
905 
906     // If we had any possibility of dynamic overflow, make a select to
907     // overwrite 'size' with an all-ones value, which should cause
908     // operator new to throw.
909     if (hasOverflow)
910       size = CGF.Builder.CreateSelect(hasOverflow,
911                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
912                                       size);
913   }
914 
915   if (cookieSize == 0)
916     sizeWithoutCookie = size;
917   else
918     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
919 
920   return size;
921 }
922 
923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
924                                     QualType AllocType, Address NewPtr) {
925   // FIXME: Refactor with EmitExprAsInit.
926   switch (CGF.getEvaluationKind(AllocType)) {
927   case TEK_Scalar:
928     CGF.EmitScalarInit(Init, nullptr,
929                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
930     return;
931   case TEK_Complex:
932     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
933                                   /*isInit*/ true);
934     return;
935   case TEK_Aggregate: {
936     AggValueSlot Slot
937       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
938                               AggValueSlot::IsDestructed,
939                               AggValueSlot::DoesNotNeedGCBarriers,
940                               AggValueSlot::IsNotAliased);
941     CGF.EmitAggExpr(Init, Slot);
942     return;
943   }
944   }
945   llvm_unreachable("bad evaluation kind");
946 }
947 
948 void CodeGenFunction::EmitNewArrayInitializer(
949     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
950     Address BeginPtr, llvm::Value *NumElements,
951     llvm::Value *AllocSizeWithoutCookie) {
952   // If we have a type with trivial initialization and no initializer,
953   // there's nothing to do.
954   if (!E->hasInitializer())
955     return;
956 
957   Address CurPtr = BeginPtr;
958 
959   unsigned InitListElements = 0;
960 
961   const Expr *Init = E->getInitializer();
962   Address EndOfInit = Address::invalid();
963   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
964   EHScopeStack::stable_iterator Cleanup;
965   llvm::Instruction *CleanupDominator = nullptr;
966 
967   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
968   CharUnits ElementAlign =
969     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
970 
971   // Attempt to perform zero-initialization using memset.
972   auto TryMemsetInitialization = [&]() -> bool {
973     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
974     // we can initialize with a memset to -1.
975     if (!CGM.getTypes().isZeroInitializable(ElementType))
976       return false;
977 
978     // Optimization: since zero initialization will just set the memory
979     // to all zeroes, generate a single memset to do it in one shot.
980 
981     // Subtract out the size of any elements we've already initialized.
982     auto *RemainingSize = AllocSizeWithoutCookie;
983     if (InitListElements) {
984       // We know this can't overflow; we check this when doing the allocation.
985       auto *InitializedSize = llvm::ConstantInt::get(
986           RemainingSize->getType(),
987           getContext().getTypeSizeInChars(ElementType).getQuantity() *
988               InitListElements);
989       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
990     }
991 
992     // Create the memset.
993     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
994     return true;
995   };
996 
997   // If the initializer is an initializer list, first do the explicit elements.
998   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
999     // Initializing from a (braced) string literal is a special case; the init
1000     // list element does not initialize a (single) array element.
1001     if (ILE->isStringLiteralInit()) {
1002       // Initialize the initial portion of length equal to that of the string
1003       // literal. The allocation must be for at least this much; we emitted a
1004       // check for that earlier.
1005       AggValueSlot Slot =
1006           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1007                                 AggValueSlot::IsDestructed,
1008                                 AggValueSlot::DoesNotNeedGCBarriers,
1009                                 AggValueSlot::IsNotAliased);
1010       EmitAggExpr(ILE->getInit(0), Slot);
1011 
1012       // Move past these elements.
1013       InitListElements =
1014           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1015               ->getSize().getZExtValue();
1016       CurPtr =
1017           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1018                                             Builder.getSize(InitListElements),
1019                                             "string.init.end"),
1020                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1021                                                           ElementSize));
1022 
1023       // Zero out the rest, if any remain.
1024       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1025       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1026         bool OK = TryMemsetInitialization();
1027         (void)OK;
1028         assert(OK && "couldn't memset character type?");
1029       }
1030       return;
1031     }
1032 
1033     InitListElements = ILE->getNumInits();
1034 
1035     // If this is a multi-dimensional array new, we will initialize multiple
1036     // elements with each init list element.
1037     QualType AllocType = E->getAllocatedType();
1038     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1039             AllocType->getAsArrayTypeUnsafe())) {
1040       ElementTy = ConvertTypeForMem(AllocType);
1041       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1042       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1043     }
1044 
1045     // Enter a partial-destruction Cleanup if necessary.
1046     if (needsEHCleanup(DtorKind)) {
1047       // In principle we could tell the Cleanup where we are more
1048       // directly, but the control flow can get so varied here that it
1049       // would actually be quite complex.  Therefore we go through an
1050       // alloca.
1051       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1052                                    "array.init.end");
1053       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1054       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1055                                        ElementType, ElementAlign,
1056                                        getDestroyer(DtorKind));
1057       Cleanup = EHStack.stable_begin();
1058     }
1059 
1060     CharUnits StartAlign = CurPtr.getAlignment();
1061     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1062       // Tell the cleanup that it needs to destroy up to this
1063       // element.  TODO: some of these stores can be trivially
1064       // observed to be unnecessary.
1065       if (EndOfInit.isValid()) {
1066         auto FinishedPtr =
1067           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1068         Builder.CreateStore(FinishedPtr, EndOfInit);
1069       }
1070       // FIXME: If the last initializer is an incomplete initializer list for
1071       // an array, and we have an array filler, we can fold together the two
1072       // initialization loops.
1073       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1074                               ILE->getInit(i)->getType(), CurPtr);
1075       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1076                                                  Builder.getSize(1),
1077                                                  "array.exp.next"),
1078                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1079     }
1080 
1081     // The remaining elements are filled with the array filler expression.
1082     Init = ILE->getArrayFiller();
1083 
1084     // Extract the initializer for the individual array elements by pulling
1085     // out the array filler from all the nested initializer lists. This avoids
1086     // generating a nested loop for the initialization.
1087     while (Init && Init->getType()->isConstantArrayType()) {
1088       auto *SubILE = dyn_cast<InitListExpr>(Init);
1089       if (!SubILE)
1090         break;
1091       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1092       Init = SubILE->getArrayFiller();
1093     }
1094 
1095     // Switch back to initializing one base element at a time.
1096     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1097   }
1098 
1099   // If all elements have already been initialized, skip any further
1100   // initialization.
1101   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1102   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1103     // If there was a Cleanup, deactivate it.
1104     if (CleanupDominator)
1105       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1106     return;
1107   }
1108 
1109   assert(Init && "have trailing elements to initialize but no initializer");
1110 
1111   // If this is a constructor call, try to optimize it out, and failing that
1112   // emit a single loop to initialize all remaining elements.
1113   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1114     CXXConstructorDecl *Ctor = CCE->getConstructor();
1115     if (Ctor->isTrivial()) {
1116       // If new expression did not specify value-initialization, then there
1117       // is no initialization.
1118       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1119         return;
1120 
1121       if (TryMemsetInitialization())
1122         return;
1123     }
1124 
1125     // Store the new Cleanup position for irregular Cleanups.
1126     //
1127     // FIXME: Share this cleanup with the constructor call emission rather than
1128     // having it create a cleanup of its own.
1129     if (EndOfInit.isValid())
1130       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1131 
1132     // Emit a constructor call loop to initialize the remaining elements.
1133     if (InitListElements)
1134       NumElements = Builder.CreateSub(
1135           NumElements,
1136           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1137     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1138                                CCE->requiresZeroInitialization());
1139     return;
1140   }
1141 
1142   // If this is value-initialization, we can usually use memset.
1143   ImplicitValueInitExpr IVIE(ElementType);
1144   if (isa<ImplicitValueInitExpr>(Init)) {
1145     if (TryMemsetInitialization())
1146       return;
1147 
1148     // Switch to an ImplicitValueInitExpr for the element type. This handles
1149     // only one case: multidimensional array new of pointers to members. In
1150     // all other cases, we already have an initializer for the array element.
1151     Init = &IVIE;
1152   }
1153 
1154   // At this point we should have found an initializer for the individual
1155   // elements of the array.
1156   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1157          "got wrong type of element to initialize");
1158 
1159   // If we have an empty initializer list, we can usually use memset.
1160   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1161     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1162       return;
1163 
1164   // If we have a struct whose every field is value-initialized, we can
1165   // usually use memset.
1166   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1167     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1168       if (RType->getDecl()->isStruct()) {
1169         unsigned NumElements = 0;
1170         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1171           NumElements = CXXRD->getNumBases();
1172         for (auto *Field : RType->getDecl()->fields())
1173           if (!Field->isUnnamedBitfield())
1174             ++NumElements;
1175         // FIXME: Recurse into nested InitListExprs.
1176         if (ILE->getNumInits() == NumElements)
1177           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1178             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1179               --NumElements;
1180         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1181           return;
1182       }
1183     }
1184   }
1185 
1186   // Create the loop blocks.
1187   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1188   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1189   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1190 
1191   // Find the end of the array, hoisted out of the loop.
1192   llvm::Value *EndPtr =
1193     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1194 
1195   // If the number of elements isn't constant, we have to now check if there is
1196   // anything left to initialize.
1197   if (!ConstNum) {
1198     llvm::Value *IsEmpty =
1199       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1200     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1201   }
1202 
1203   // Enter the loop.
1204   EmitBlock(LoopBB);
1205 
1206   // Set up the current-element phi.
1207   llvm::PHINode *CurPtrPhi =
1208     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1209   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1210 
1211   CurPtr = Address(CurPtrPhi, ElementAlign);
1212 
1213   // Store the new Cleanup position for irregular Cleanups.
1214   if (EndOfInit.isValid())
1215     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1216 
1217   // Enter a partial-destruction Cleanup if necessary.
1218   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1219     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1220                                    ElementType, ElementAlign,
1221                                    getDestroyer(DtorKind));
1222     Cleanup = EHStack.stable_begin();
1223     CleanupDominator = Builder.CreateUnreachable();
1224   }
1225 
1226   // Emit the initializer into this element.
1227   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1228 
1229   // Leave the Cleanup if we entered one.
1230   if (CleanupDominator) {
1231     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1232     CleanupDominator->eraseFromParent();
1233   }
1234 
1235   // Advance to the next element by adjusting the pointer type as necessary.
1236   llvm::Value *NextPtr =
1237     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1238                                        "array.next");
1239 
1240   // Check whether we've gotten to the end of the array and, if so,
1241   // exit the loop.
1242   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1243   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1244   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1245 
1246   EmitBlock(ContBB);
1247 }
1248 
1249 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1250                                QualType ElementType, llvm::Type *ElementTy,
1251                                Address NewPtr, llvm::Value *NumElements,
1252                                llvm::Value *AllocSizeWithoutCookie) {
1253   ApplyDebugLocation DL(CGF, E);
1254   if (E->isArray())
1255     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1256                                 AllocSizeWithoutCookie);
1257   else if (const Expr *Init = E->getInitializer())
1258     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1259 }
1260 
1261 /// Emit a call to an operator new or operator delete function, as implicitly
1262 /// created by new-expressions and delete-expressions.
1263 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1264                                 const FunctionDecl *CalleeDecl,
1265                                 const FunctionProtoType *CalleeType,
1266                                 const CallArgList &Args) {
1267   llvm::Instruction *CallOrInvoke;
1268   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1269   CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1270   RValue RV =
1271       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1272                        Args, CalleeType, /*chainCall=*/false),
1273                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1274 
1275   /// C++1y [expr.new]p10:
1276   ///   [In a new-expression,] an implementation is allowed to omit a call
1277   ///   to a replaceable global allocation function.
1278   ///
1279   /// We model such elidable calls with the 'builtin' attribute.
1280   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1281   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1282       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1283     // FIXME: Add addAttribute to CallSite.
1284     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1285       CI->addAttribute(llvm::AttributeList::FunctionIndex,
1286                        llvm::Attribute::Builtin);
1287     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1288       II->addAttribute(llvm::AttributeList::FunctionIndex,
1289                        llvm::Attribute::Builtin);
1290     else
1291       llvm_unreachable("unexpected kind of call instruction");
1292   }
1293 
1294   return RV;
1295 }
1296 
1297 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1298                                                  const Expr *Arg,
1299                                                  bool IsDelete) {
1300   CallArgList Args;
1301   const Stmt *ArgS = Arg;
1302   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1303   // Find the allocation or deallocation function that we're calling.
1304   ASTContext &Ctx = getContext();
1305   DeclarationName Name = Ctx.DeclarationNames
1306       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1307   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1308     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1309       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1310         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1311   llvm_unreachable("predeclared global operator new/delete is missing");
1312 }
1313 
1314 namespace {
1315 /// The parameters to pass to a usual operator delete.
1316 struct UsualDeleteParams {
1317   bool DestroyingDelete = false;
1318   bool Size = false;
1319   bool Alignment = false;
1320 };
1321 }
1322 
1323 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1324   UsualDeleteParams Params;
1325 
1326   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1327   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1328 
1329   // The first argument is always a void*.
1330   ++AI;
1331 
1332   // The next parameter may be a std::destroying_delete_t.
1333   if (FD->isDestroyingOperatorDelete()) {
1334     Params.DestroyingDelete = true;
1335     assert(AI != AE);
1336     ++AI;
1337   }
1338 
1339   // Figure out what other parameters we should be implicitly passing.
1340   if (AI != AE && (*AI)->isIntegerType()) {
1341     Params.Size = true;
1342     ++AI;
1343   }
1344 
1345   if (AI != AE && (*AI)->isAlignValT()) {
1346     Params.Alignment = true;
1347     ++AI;
1348   }
1349 
1350   assert(AI == AE && "unexpected usual deallocation function parameter");
1351   return Params;
1352 }
1353 
1354 namespace {
1355   /// A cleanup to call the given 'operator delete' function upon abnormal
1356   /// exit from a new expression. Templated on a traits type that deals with
1357   /// ensuring that the arguments dominate the cleanup if necessary.
1358   template<typename Traits>
1359   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1360     /// Type used to hold llvm::Value*s.
1361     typedef typename Traits::ValueTy ValueTy;
1362     /// Type used to hold RValues.
1363     typedef typename Traits::RValueTy RValueTy;
1364     struct PlacementArg {
1365       RValueTy ArgValue;
1366       QualType ArgType;
1367     };
1368 
1369     unsigned NumPlacementArgs : 31;
1370     unsigned PassAlignmentToPlacementDelete : 1;
1371     const FunctionDecl *OperatorDelete;
1372     ValueTy Ptr;
1373     ValueTy AllocSize;
1374     CharUnits AllocAlign;
1375 
1376     PlacementArg *getPlacementArgs() {
1377       return reinterpret_cast<PlacementArg *>(this + 1);
1378     }
1379 
1380   public:
1381     static size_t getExtraSize(size_t NumPlacementArgs) {
1382       return NumPlacementArgs * sizeof(PlacementArg);
1383     }
1384 
1385     CallDeleteDuringNew(size_t NumPlacementArgs,
1386                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1387                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1388                         CharUnits AllocAlign)
1389       : NumPlacementArgs(NumPlacementArgs),
1390         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1391         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1392         AllocAlign(AllocAlign) {}
1393 
1394     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1395       assert(I < NumPlacementArgs && "index out of range");
1396       getPlacementArgs()[I] = {Arg, Type};
1397     }
1398 
1399     void Emit(CodeGenFunction &CGF, Flags flags) override {
1400       const FunctionProtoType *FPT =
1401           OperatorDelete->getType()->getAs<FunctionProtoType>();
1402       CallArgList DeleteArgs;
1403 
1404       // The first argument is always a void* (or C* for a destroying operator
1405       // delete for class type C).
1406       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1407 
1408       // Figure out what other parameters we should be implicitly passing.
1409       UsualDeleteParams Params;
1410       if (NumPlacementArgs) {
1411         // A placement deallocation function is implicitly passed an alignment
1412         // if the placement allocation function was, but is never passed a size.
1413         Params.Alignment = PassAlignmentToPlacementDelete;
1414       } else {
1415         // For a non-placement new-expression, 'operator delete' can take a
1416         // size and/or an alignment if it has the right parameters.
1417         Params = getUsualDeleteParams(OperatorDelete);
1418       }
1419 
1420       assert(!Params.DestroyingDelete &&
1421              "should not call destroying delete in a new-expression");
1422 
1423       // The second argument can be a std::size_t (for non-placement delete).
1424       if (Params.Size)
1425         DeleteArgs.add(Traits::get(CGF, AllocSize),
1426                        CGF.getContext().getSizeType());
1427 
1428       // The next (second or third) argument can be a std::align_val_t, which
1429       // is an enum whose underlying type is std::size_t.
1430       // FIXME: Use the right type as the parameter type. Note that in a call
1431       // to operator delete(size_t, ...), we may not have it available.
1432       if (Params.Alignment)
1433         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1434                            CGF.SizeTy, AllocAlign.getQuantity())),
1435                        CGF.getContext().getSizeType());
1436 
1437       // Pass the rest of the arguments, which must match exactly.
1438       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1439         auto Arg = getPlacementArgs()[I];
1440         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1441       }
1442 
1443       // Call 'operator delete'.
1444       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1445     }
1446   };
1447 }
1448 
1449 /// Enter a cleanup to call 'operator delete' if the initializer in a
1450 /// new-expression throws.
1451 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1452                                   const CXXNewExpr *E,
1453                                   Address NewPtr,
1454                                   llvm::Value *AllocSize,
1455                                   CharUnits AllocAlign,
1456                                   const CallArgList &NewArgs) {
1457   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1458 
1459   // If we're not inside a conditional branch, then the cleanup will
1460   // dominate and we can do the easier (and more efficient) thing.
1461   if (!CGF.isInConditionalBranch()) {
1462     struct DirectCleanupTraits {
1463       typedef llvm::Value *ValueTy;
1464       typedef RValue RValueTy;
1465       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1466       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1467     };
1468 
1469     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1470 
1471     DirectCleanup *Cleanup = CGF.EHStack
1472       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1473                                            E->getNumPlacementArgs(),
1474                                            E->getOperatorDelete(),
1475                                            NewPtr.getPointer(),
1476                                            AllocSize,
1477                                            E->passAlignment(),
1478                                            AllocAlign);
1479     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1480       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1481       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1482     }
1483 
1484     return;
1485   }
1486 
1487   // Otherwise, we need to save all this stuff.
1488   DominatingValue<RValue>::saved_type SavedNewPtr =
1489     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1490   DominatingValue<RValue>::saved_type SavedAllocSize =
1491     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1492 
1493   struct ConditionalCleanupTraits {
1494     typedef DominatingValue<RValue>::saved_type ValueTy;
1495     typedef DominatingValue<RValue>::saved_type RValueTy;
1496     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1497       return V.restore(CGF);
1498     }
1499   };
1500   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1501 
1502   ConditionalCleanup *Cleanup = CGF.EHStack
1503     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1504                                               E->getNumPlacementArgs(),
1505                                               E->getOperatorDelete(),
1506                                               SavedNewPtr,
1507                                               SavedAllocSize,
1508                                               E->passAlignment(),
1509                                               AllocAlign);
1510   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1511     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1512     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1513                              Arg.Ty);
1514   }
1515 
1516   CGF.initFullExprCleanup();
1517 }
1518 
1519 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1520   // The element type being allocated.
1521   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1522 
1523   // 1. Build a call to the allocation function.
1524   FunctionDecl *allocator = E->getOperatorNew();
1525 
1526   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1527   unsigned minElements = 0;
1528   if (E->isArray() && E->hasInitializer()) {
1529     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1530     if (ILE && ILE->isStringLiteralInit())
1531       minElements =
1532           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1533               ->getSize().getZExtValue();
1534     else if (ILE)
1535       minElements = ILE->getNumInits();
1536   }
1537 
1538   llvm::Value *numElements = nullptr;
1539   llvm::Value *allocSizeWithoutCookie = nullptr;
1540   llvm::Value *allocSize =
1541     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1542                         allocSizeWithoutCookie);
1543   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1544 
1545   // Emit the allocation call.  If the allocator is a global placement
1546   // operator, just "inline" it directly.
1547   Address allocation = Address::invalid();
1548   CallArgList allocatorArgs;
1549   if (allocator->isReservedGlobalPlacementOperator()) {
1550     assert(E->getNumPlacementArgs() == 1);
1551     const Expr *arg = *E->placement_arguments().begin();
1552 
1553     LValueBaseInfo BaseInfo;
1554     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1555 
1556     // The pointer expression will, in many cases, be an opaque void*.
1557     // In these cases, discard the computed alignment and use the
1558     // formal alignment of the allocated type.
1559     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1560       allocation = Address(allocation.getPointer(), allocAlign);
1561 
1562     // Set up allocatorArgs for the call to operator delete if it's not
1563     // the reserved global operator.
1564     if (E->getOperatorDelete() &&
1565         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1566       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1567       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1568     }
1569 
1570   } else {
1571     const FunctionProtoType *allocatorType =
1572       allocator->getType()->castAs<FunctionProtoType>();
1573     unsigned ParamsToSkip = 0;
1574 
1575     // The allocation size is the first argument.
1576     QualType sizeType = getContext().getSizeType();
1577     allocatorArgs.add(RValue::get(allocSize), sizeType);
1578     ++ParamsToSkip;
1579 
1580     if (allocSize != allocSizeWithoutCookie) {
1581       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1582       allocAlign = std::max(allocAlign, cookieAlign);
1583     }
1584 
1585     // The allocation alignment may be passed as the second argument.
1586     if (E->passAlignment()) {
1587       QualType AlignValT = sizeType;
1588       if (allocatorType->getNumParams() > 1) {
1589         AlignValT = allocatorType->getParamType(1);
1590         assert(getContext().hasSameUnqualifiedType(
1591                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1592                    sizeType) &&
1593                "wrong type for alignment parameter");
1594         ++ParamsToSkip;
1595       } else {
1596         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1597         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1598       }
1599       allocatorArgs.add(
1600           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1601           AlignValT);
1602     }
1603 
1604     // FIXME: Why do we not pass a CalleeDecl here?
1605     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1606                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1607 
1608     RValue RV =
1609       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1610 
1611     // If this was a call to a global replaceable allocation function that does
1612     // not take an alignment argument, the allocator is known to produce
1613     // storage that's suitably aligned for any object that fits, up to a known
1614     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1615     CharUnits allocationAlign = allocAlign;
1616     if (!E->passAlignment() &&
1617         allocator->isReplaceableGlobalAllocationFunction()) {
1618       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1619           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1620       allocationAlign = std::max(
1621           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1622     }
1623 
1624     allocation = Address(RV.getScalarVal(), allocationAlign);
1625   }
1626 
1627   // Emit a null check on the allocation result if the allocation
1628   // function is allowed to return null (because it has a non-throwing
1629   // exception spec or is the reserved placement new) and we have an
1630   // interesting initializer.
1631   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1632     (!allocType.isPODType(getContext()) || E->hasInitializer());
1633 
1634   llvm::BasicBlock *nullCheckBB = nullptr;
1635   llvm::BasicBlock *contBB = nullptr;
1636 
1637   // The null-check means that the initializer is conditionally
1638   // evaluated.
1639   ConditionalEvaluation conditional(*this);
1640 
1641   if (nullCheck) {
1642     conditional.begin(*this);
1643 
1644     nullCheckBB = Builder.GetInsertBlock();
1645     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1646     contBB = createBasicBlock("new.cont");
1647 
1648     llvm::Value *isNull =
1649       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1650     Builder.CreateCondBr(isNull, contBB, notNullBB);
1651     EmitBlock(notNullBB);
1652   }
1653 
1654   // If there's an operator delete, enter a cleanup to call it if an
1655   // exception is thrown.
1656   EHScopeStack::stable_iterator operatorDeleteCleanup;
1657   llvm::Instruction *cleanupDominator = nullptr;
1658   if (E->getOperatorDelete() &&
1659       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1660     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1661                           allocatorArgs);
1662     operatorDeleteCleanup = EHStack.stable_begin();
1663     cleanupDominator = Builder.CreateUnreachable();
1664   }
1665 
1666   assert((allocSize == allocSizeWithoutCookie) ==
1667          CalculateCookiePadding(*this, E).isZero());
1668   if (allocSize != allocSizeWithoutCookie) {
1669     assert(E->isArray());
1670     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1671                                                        numElements,
1672                                                        E, allocType);
1673   }
1674 
1675   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1676   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1677 
1678   // Passing pointer through invariant.group.barrier to avoid propagation of
1679   // vptrs information which may be included in previous type.
1680   // To not break LTO with different optimizations levels, we do it regardless
1681   // of optimization level.
1682   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1683       allocator->isReservedGlobalPlacementOperator())
1684     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1685                      result.getAlignment());
1686 
1687   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1688                      allocSizeWithoutCookie);
1689   if (E->isArray()) {
1690     // NewPtr is a pointer to the base element type.  If we're
1691     // allocating an array of arrays, we'll need to cast back to the
1692     // array pointer type.
1693     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1694     if (result.getType() != resultType)
1695       result = Builder.CreateBitCast(result, resultType);
1696   }
1697 
1698   // Deactivate the 'operator delete' cleanup if we finished
1699   // initialization.
1700   if (operatorDeleteCleanup.isValid()) {
1701     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1702     cleanupDominator->eraseFromParent();
1703   }
1704 
1705   llvm::Value *resultPtr = result.getPointer();
1706   if (nullCheck) {
1707     conditional.end(*this);
1708 
1709     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1710     EmitBlock(contBB);
1711 
1712     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1713     PHI->addIncoming(resultPtr, notNullBB);
1714     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1715                      nullCheckBB);
1716 
1717     resultPtr = PHI;
1718   }
1719 
1720   return resultPtr;
1721 }
1722 
1723 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1724                                      llvm::Value *Ptr, QualType DeleteTy,
1725                                      llvm::Value *NumElements,
1726                                      CharUnits CookieSize) {
1727   assert((!NumElements && CookieSize.isZero()) ||
1728          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1729 
1730   const FunctionProtoType *DeleteFTy =
1731     DeleteFD->getType()->getAs<FunctionProtoType>();
1732 
1733   CallArgList DeleteArgs;
1734 
1735   auto Params = getUsualDeleteParams(DeleteFD);
1736   auto ParamTypeIt = DeleteFTy->param_type_begin();
1737 
1738   // Pass the pointer itself.
1739   QualType ArgTy = *ParamTypeIt++;
1740   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1741   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1742 
1743   // Pass the std::destroying_delete tag if present.
1744   if (Params.DestroyingDelete) {
1745     QualType DDTag = *ParamTypeIt++;
1746     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1747     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1748     DeleteArgs.add(RValue::get(V), DDTag);
1749   }
1750 
1751   // Pass the size if the delete function has a size_t parameter.
1752   if (Params.Size) {
1753     QualType SizeType = *ParamTypeIt++;
1754     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1755     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1756                                                DeleteTypeSize.getQuantity());
1757 
1758     // For array new, multiply by the number of elements.
1759     if (NumElements)
1760       Size = Builder.CreateMul(Size, NumElements);
1761 
1762     // If there is a cookie, add the cookie size.
1763     if (!CookieSize.isZero())
1764       Size = Builder.CreateAdd(
1765           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1766 
1767     DeleteArgs.add(RValue::get(Size), SizeType);
1768   }
1769 
1770   // Pass the alignment if the delete function has an align_val_t parameter.
1771   if (Params.Alignment) {
1772     QualType AlignValType = *ParamTypeIt++;
1773     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1774         getContext().getTypeAlignIfKnown(DeleteTy));
1775     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1776                                                 DeleteTypeAlign.getQuantity());
1777     DeleteArgs.add(RValue::get(Align), AlignValType);
1778   }
1779 
1780   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1781          "unknown parameter to usual delete function");
1782 
1783   // Emit the call to delete.
1784   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1785 }
1786 
1787 namespace {
1788   /// Calls the given 'operator delete' on a single object.
1789   struct CallObjectDelete final : EHScopeStack::Cleanup {
1790     llvm::Value *Ptr;
1791     const FunctionDecl *OperatorDelete;
1792     QualType ElementType;
1793 
1794     CallObjectDelete(llvm::Value *Ptr,
1795                      const FunctionDecl *OperatorDelete,
1796                      QualType ElementType)
1797       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1798 
1799     void Emit(CodeGenFunction &CGF, Flags flags) override {
1800       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1801     }
1802   };
1803 }
1804 
1805 void
1806 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1807                                              llvm::Value *CompletePtr,
1808                                              QualType ElementType) {
1809   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1810                                         OperatorDelete, ElementType);
1811 }
1812 
1813 /// Emit the code for deleting a single object with a destroying operator
1814 /// delete. If the element type has a non-virtual destructor, Ptr has already
1815 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1816 /// Ptr points to an object of the static type.
1817 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1818                                        const CXXDeleteExpr *DE, Address Ptr,
1819                                        QualType ElementType) {
1820   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1821   if (Dtor && Dtor->isVirtual())
1822     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1823                                                 Dtor);
1824   else
1825     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1826 }
1827 
1828 /// Emit the code for deleting a single object.
1829 static void EmitObjectDelete(CodeGenFunction &CGF,
1830                              const CXXDeleteExpr *DE,
1831                              Address Ptr,
1832                              QualType ElementType) {
1833   // C++11 [expr.delete]p3:
1834   //   If the static type of the object to be deleted is different from its
1835   //   dynamic type, the static type shall be a base class of the dynamic type
1836   //   of the object to be deleted and the static type shall have a virtual
1837   //   destructor or the behavior is undefined.
1838   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1839                     DE->getExprLoc(), Ptr.getPointer(),
1840                     ElementType);
1841 
1842   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1843   assert(!OperatorDelete->isDestroyingOperatorDelete());
1844 
1845   // Find the destructor for the type, if applicable.  If the
1846   // destructor is virtual, we'll just emit the vcall and return.
1847   const CXXDestructorDecl *Dtor = nullptr;
1848   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1849     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1850     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1851       Dtor = RD->getDestructor();
1852 
1853       if (Dtor->isVirtual()) {
1854         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1855                                                     Dtor);
1856         return;
1857       }
1858     }
1859   }
1860 
1861   // Make sure that we call delete even if the dtor throws.
1862   // This doesn't have to a conditional cleanup because we're going
1863   // to pop it off in a second.
1864   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1865                                             Ptr.getPointer(),
1866                                             OperatorDelete, ElementType);
1867 
1868   if (Dtor)
1869     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1870                               /*ForVirtualBase=*/false,
1871                               /*Delegating=*/false,
1872                               Ptr);
1873   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1874     switch (Lifetime) {
1875     case Qualifiers::OCL_None:
1876     case Qualifiers::OCL_ExplicitNone:
1877     case Qualifiers::OCL_Autoreleasing:
1878       break;
1879 
1880     case Qualifiers::OCL_Strong:
1881       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1882       break;
1883 
1884     case Qualifiers::OCL_Weak:
1885       CGF.EmitARCDestroyWeak(Ptr);
1886       break;
1887     }
1888   }
1889 
1890   CGF.PopCleanupBlock();
1891 }
1892 
1893 namespace {
1894   /// Calls the given 'operator delete' on an array of objects.
1895   struct CallArrayDelete final : EHScopeStack::Cleanup {
1896     llvm::Value *Ptr;
1897     const FunctionDecl *OperatorDelete;
1898     llvm::Value *NumElements;
1899     QualType ElementType;
1900     CharUnits CookieSize;
1901 
1902     CallArrayDelete(llvm::Value *Ptr,
1903                     const FunctionDecl *OperatorDelete,
1904                     llvm::Value *NumElements,
1905                     QualType ElementType,
1906                     CharUnits CookieSize)
1907       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1908         ElementType(ElementType), CookieSize(CookieSize) {}
1909 
1910     void Emit(CodeGenFunction &CGF, Flags flags) override {
1911       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1912                          CookieSize);
1913     }
1914   };
1915 }
1916 
1917 /// Emit the code for deleting an array of objects.
1918 static void EmitArrayDelete(CodeGenFunction &CGF,
1919                             const CXXDeleteExpr *E,
1920                             Address deletedPtr,
1921                             QualType elementType) {
1922   llvm::Value *numElements = nullptr;
1923   llvm::Value *allocatedPtr = nullptr;
1924   CharUnits cookieSize;
1925   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1926                                       numElements, allocatedPtr, cookieSize);
1927 
1928   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1929 
1930   // Make sure that we call delete even if one of the dtors throws.
1931   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1932   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1933                                            allocatedPtr, operatorDelete,
1934                                            numElements, elementType,
1935                                            cookieSize);
1936 
1937   // Destroy the elements.
1938   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1939     assert(numElements && "no element count for a type with a destructor!");
1940 
1941     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1942     CharUnits elementAlign =
1943       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1944 
1945     llvm::Value *arrayBegin = deletedPtr.getPointer();
1946     llvm::Value *arrayEnd =
1947       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1948 
1949     // Note that it is legal to allocate a zero-length array, and we
1950     // can never fold the check away because the length should always
1951     // come from a cookie.
1952     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1953                          CGF.getDestroyer(dtorKind),
1954                          /*checkZeroLength*/ true,
1955                          CGF.needsEHCleanup(dtorKind));
1956   }
1957 
1958   // Pop the cleanup block.
1959   CGF.PopCleanupBlock();
1960 }
1961 
1962 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1963   const Expr *Arg = E->getArgument();
1964   Address Ptr = EmitPointerWithAlignment(Arg);
1965 
1966   // Null check the pointer.
1967   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1968   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1969 
1970   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1971 
1972   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1973   EmitBlock(DeleteNotNull);
1974 
1975   QualType DeleteTy = E->getDestroyedType();
1976 
1977   // A destroying operator delete overrides the entire operation of the
1978   // delete expression.
1979   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1980     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1981     EmitBlock(DeleteEnd);
1982     return;
1983   }
1984 
1985   // We might be deleting a pointer to array.  If so, GEP down to the
1986   // first non-array element.
1987   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1988   if (DeleteTy->isConstantArrayType()) {
1989     llvm::Value *Zero = Builder.getInt32(0);
1990     SmallVector<llvm::Value*,8> GEP;
1991 
1992     GEP.push_back(Zero); // point at the outermost array
1993 
1994     // For each layer of array type we're pointing at:
1995     while (const ConstantArrayType *Arr
1996              = getContext().getAsConstantArrayType(DeleteTy)) {
1997       // 1. Unpeel the array type.
1998       DeleteTy = Arr->getElementType();
1999 
2000       // 2. GEP to the first element of the array.
2001       GEP.push_back(Zero);
2002     }
2003 
2004     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2005                   Ptr.getAlignment());
2006   }
2007 
2008   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2009 
2010   if (E->isArrayForm()) {
2011     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2012   } else {
2013     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2014   }
2015 
2016   EmitBlock(DeleteEnd);
2017 }
2018 
2019 static bool isGLValueFromPointerDeref(const Expr *E) {
2020   E = E->IgnoreParens();
2021 
2022   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2023     if (!CE->getSubExpr()->isGLValue())
2024       return false;
2025     return isGLValueFromPointerDeref(CE->getSubExpr());
2026   }
2027 
2028   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2029     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2030 
2031   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2032     if (BO->getOpcode() == BO_Comma)
2033       return isGLValueFromPointerDeref(BO->getRHS());
2034 
2035   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2036     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2037            isGLValueFromPointerDeref(ACO->getFalseExpr());
2038 
2039   // C++11 [expr.sub]p1:
2040   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2041   if (isa<ArraySubscriptExpr>(E))
2042     return true;
2043 
2044   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2045     if (UO->getOpcode() == UO_Deref)
2046       return true;
2047 
2048   return false;
2049 }
2050 
2051 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2052                                          llvm::Type *StdTypeInfoPtrTy) {
2053   // Get the vtable pointer.
2054   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2055 
2056   // C++ [expr.typeid]p2:
2057   //   If the glvalue expression is obtained by applying the unary * operator to
2058   //   a pointer and the pointer is a null pointer value, the typeid expression
2059   //   throws the std::bad_typeid exception.
2060   //
2061   // However, this paragraph's intent is not clear.  We choose a very generous
2062   // interpretation which implores us to consider comma operators, conditional
2063   // operators, parentheses and other such constructs.
2064   QualType SrcRecordTy = E->getType();
2065   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2066           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2067     llvm::BasicBlock *BadTypeidBlock =
2068         CGF.createBasicBlock("typeid.bad_typeid");
2069     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2070 
2071     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2072     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2073 
2074     CGF.EmitBlock(BadTypeidBlock);
2075     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2076     CGF.EmitBlock(EndBlock);
2077   }
2078 
2079   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2080                                         StdTypeInfoPtrTy);
2081 }
2082 
2083 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2084   llvm::Type *StdTypeInfoPtrTy =
2085     ConvertType(E->getType())->getPointerTo();
2086 
2087   if (E->isTypeOperand()) {
2088     llvm::Constant *TypeInfo =
2089         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2090     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2091   }
2092 
2093   // C++ [expr.typeid]p2:
2094   //   When typeid is applied to a glvalue expression whose type is a
2095   //   polymorphic class type, the result refers to a std::type_info object
2096   //   representing the type of the most derived object (that is, the dynamic
2097   //   type) to which the glvalue refers.
2098   if (E->isPotentiallyEvaluated())
2099     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2100                                 StdTypeInfoPtrTy);
2101 
2102   QualType OperandTy = E->getExprOperand()->getType();
2103   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2104                                StdTypeInfoPtrTy);
2105 }
2106 
2107 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2108                                           QualType DestTy) {
2109   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2110   if (DestTy->isPointerType())
2111     return llvm::Constant::getNullValue(DestLTy);
2112 
2113   /// C++ [expr.dynamic.cast]p9:
2114   ///   A failed cast to reference type throws std::bad_cast
2115   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2116     return nullptr;
2117 
2118   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2119   return llvm::UndefValue::get(DestLTy);
2120 }
2121 
2122 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2123                                               const CXXDynamicCastExpr *DCE) {
2124   CGM.EmitExplicitCastExprType(DCE, this);
2125   QualType DestTy = DCE->getTypeAsWritten();
2126 
2127   if (DCE->isAlwaysNull())
2128     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2129       return T;
2130 
2131   QualType SrcTy = DCE->getSubExpr()->getType();
2132 
2133   // C++ [expr.dynamic.cast]p7:
2134   //   If T is "pointer to cv void," then the result is a pointer to the most
2135   //   derived object pointed to by v.
2136   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2137 
2138   bool isDynamicCastToVoid;
2139   QualType SrcRecordTy;
2140   QualType DestRecordTy;
2141   if (DestPTy) {
2142     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2143     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2144     DestRecordTy = DestPTy->getPointeeType();
2145   } else {
2146     isDynamicCastToVoid = false;
2147     SrcRecordTy = SrcTy;
2148     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2149   }
2150 
2151   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2152 
2153   // C++ [expr.dynamic.cast]p4:
2154   //   If the value of v is a null pointer value in the pointer case, the result
2155   //   is the null pointer value of type T.
2156   bool ShouldNullCheckSrcValue =
2157       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2158                                                          SrcRecordTy);
2159 
2160   llvm::BasicBlock *CastNull = nullptr;
2161   llvm::BasicBlock *CastNotNull = nullptr;
2162   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2163 
2164   if (ShouldNullCheckSrcValue) {
2165     CastNull = createBasicBlock("dynamic_cast.null");
2166     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2167 
2168     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2169     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2170     EmitBlock(CastNotNull);
2171   }
2172 
2173   llvm::Value *Value;
2174   if (isDynamicCastToVoid) {
2175     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2176                                                   DestTy);
2177   } else {
2178     assert(DestRecordTy->isRecordType() &&
2179            "destination type must be a record type!");
2180     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2181                                                 DestTy, DestRecordTy, CastEnd);
2182     CastNotNull = Builder.GetInsertBlock();
2183   }
2184 
2185   if (ShouldNullCheckSrcValue) {
2186     EmitBranch(CastEnd);
2187 
2188     EmitBlock(CastNull);
2189     EmitBranch(CastEnd);
2190   }
2191 
2192   EmitBlock(CastEnd);
2193 
2194   if (ShouldNullCheckSrcValue) {
2195     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2196     PHI->addIncoming(Value, CastNotNull);
2197     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2198 
2199     Value = PHI;
2200   }
2201 
2202   return Value;
2203 }
2204 
2205 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2206   RunCleanupsScope Scope(*this);
2207   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2208 
2209   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2210   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2211                                                e = E->capture_init_end();
2212        i != e; ++i, ++CurField) {
2213     // Emit initialization
2214     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2215     if (CurField->hasCapturedVLAType()) {
2216       auto VAT = CurField->getCapturedVLAType();
2217       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2218     } else {
2219       EmitInitializerForField(*CurField, LV, *i);
2220     }
2221   }
2222 }
2223