1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGObjCRuntime.h" 19 #include "CGDebugInfo.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 llvm::Value *Callee, 28 ReturnValueSlot ReturnValue, 29 llvm::Value *This, 30 llvm::Value *VTT, 31 CallExpr::const_arg_iterator ArgBeg, 32 CallExpr::const_arg_iterator ArgEnd) { 33 assert(MD->isInstance() && 34 "Trying to emit a member call expr on a static method!"); 35 36 CallArgList Args; 37 38 // Push the this ptr. 39 Args.add(RValue::get(This), MD->getThisType(getContext())); 40 41 // If there is a VTT parameter, emit it. 42 if (VTT) { 43 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 44 Args.add(RValue::get(VTT), T); 45 } 46 47 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 48 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 49 50 // And the rest of the call args. 51 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 52 53 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 54 Callee, ReturnValue, Args, MD); 55 } 56 57 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 58 // quite what we want. 59 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 60 while (true) { 61 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 62 E = PE->getSubExpr(); 63 continue; 64 } 65 66 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 67 if (CE->getCastKind() == CK_NoOp) { 68 E = CE->getSubExpr(); 69 continue; 70 } 71 } 72 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 73 if (UO->getOpcode() == UO_Extension) { 74 E = UO->getSubExpr(); 75 continue; 76 } 77 } 78 return E; 79 } 80 } 81 82 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 83 /// expr can be devirtualized. 84 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 85 const Expr *Base, 86 const CXXMethodDecl *MD) { 87 88 // When building with -fapple-kext, all calls must go through the vtable since 89 // the kernel linker can do runtime patching of vtables. 90 if (Context.getLangOpts().AppleKext) 91 return false; 92 93 // If the most derived class is marked final, we know that no subclass can 94 // override this member function and so we can devirtualize it. For example: 95 // 96 // struct A { virtual void f(); } 97 // struct B final : A { }; 98 // 99 // void f(B *b) { 100 // b->f(); 101 // } 102 // 103 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 104 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 105 return true; 106 107 // If the member function is marked 'final', we know that it can't be 108 // overridden and can therefore devirtualize it. 109 if (MD->hasAttr<FinalAttr>()) 110 return true; 111 112 // Similarly, if the class itself is marked 'final' it can't be overridden 113 // and we can therefore devirtualize the member function call. 114 if (MD->getParent()->hasAttr<FinalAttr>()) 115 return true; 116 117 Base = skipNoOpCastsAndParens(Base); 118 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 119 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 120 // This is a record decl. We know the type and can devirtualize it. 121 return VD->getType()->isRecordType(); 122 } 123 124 return false; 125 } 126 127 // We can always devirtualize calls on temporary object expressions. 128 if (isa<CXXConstructExpr>(Base)) 129 return true; 130 131 // And calls on bound temporaries. 132 if (isa<CXXBindTemporaryExpr>(Base)) 133 return true; 134 135 // Check if this is a call expr that returns a record type. 136 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 137 return CE->getCallReturnType()->isRecordType(); 138 139 // We can't devirtualize the call. 140 return false; 141 } 142 143 static CXXRecordDecl *getCXXRecord(const Expr *E) { 144 QualType T = E->getType(); 145 if (const PointerType *PTy = T->getAs<PointerType>()) 146 T = PTy->getPointeeType(); 147 const RecordType *Ty = T->castAs<RecordType>(); 148 return cast<CXXRecordDecl>(Ty->getDecl()); 149 } 150 151 // Note: This function also emit constructor calls to support a MSVC 152 // extensions allowing explicit constructor function call. 153 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 154 ReturnValueSlot ReturnValue) { 155 const Expr *callee = CE->getCallee()->IgnoreParens(); 156 157 if (isa<BinaryOperator>(callee)) 158 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 159 160 const MemberExpr *ME = cast<MemberExpr>(callee); 161 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 162 163 CGDebugInfo *DI = getDebugInfo(); 164 if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo 165 && !isa<CallExpr>(ME->getBase())) { 166 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 167 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 168 DI->getOrCreateRecordType(PTy->getPointeeType(), 169 MD->getParent()->getLocation()); 170 } 171 } 172 173 if (MD->isStatic()) { 174 // The method is static, emit it as we would a regular call. 175 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 176 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 177 ReturnValue, CE->arg_begin(), CE->arg_end()); 178 } 179 180 // Compute the object pointer. 181 const Expr *Base = ME->getBase(); 182 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 183 184 const CXXMethodDecl *DevirtualizedMethod = NULL; 185 if (CanUseVirtualCall && 186 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 187 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 188 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 189 assert(DevirtualizedMethod); 190 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 191 const Expr *Inner = Base->ignoreParenBaseCasts(); 192 if (getCXXRecord(Inner) == DevirtualizedClass) 193 // If the class of the Inner expression is where the dynamic method 194 // is defined, build the this pointer from it. 195 Base = Inner; 196 else if (getCXXRecord(Base) != DevirtualizedClass) { 197 // If the method is defined in a class that is not the best dynamic 198 // one or the one of the full expression, we would have to build 199 // a derived-to-base cast to compute the correct this pointer, but 200 // we don't have support for that yet, so do a virtual call. 201 DevirtualizedMethod = NULL; 202 } 203 // If the return types are not the same, this might be a case where more 204 // code needs to run to compensate for it. For example, the derived 205 // method might return a type that inherits form from the return 206 // type of MD and has a prefix. 207 // For now we just avoid devirtualizing these covariant cases. 208 if (DevirtualizedMethod && 209 DevirtualizedMethod->getResultType().getCanonicalType() != 210 MD->getResultType().getCanonicalType()) 211 DevirtualizedMethod = NULL; 212 } 213 214 llvm::Value *This; 215 if (ME->isArrow()) 216 This = EmitScalarExpr(Base); 217 else 218 This = EmitLValue(Base).getAddress(); 219 220 221 if (MD->isTrivial()) { 222 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 223 if (isa<CXXConstructorDecl>(MD) && 224 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 225 return RValue::get(0); 226 227 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 228 // We don't like to generate the trivial copy/move assignment operator 229 // when it isn't necessary; just produce the proper effect here. 230 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 231 EmitAggregateCopy(This, RHS, CE->getType()); 232 return RValue::get(This); 233 } 234 235 if (isa<CXXConstructorDecl>(MD) && 236 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 237 // Trivial move and copy ctor are the same. 238 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 239 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 240 CE->arg_begin(), CE->arg_end()); 241 return RValue::get(This); 242 } 243 llvm_unreachable("unknown trivial member function"); 244 } 245 246 // Compute the function type we're calling. 247 const CGFunctionInfo *FInfo = 0; 248 if (isa<CXXDestructorDecl>(MD)) 249 FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 250 Dtor_Complete); 251 else if (isa<CXXConstructorDecl>(MD)) 252 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 253 cast<CXXConstructorDecl>(MD), 254 Ctor_Complete); 255 else 256 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 257 258 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 259 260 // C++ [class.virtual]p12: 261 // Explicit qualification with the scope operator (5.1) suppresses the 262 // virtual call mechanism. 263 // 264 // We also don't emit a virtual call if the base expression has a record type 265 // because then we know what the type is. 266 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 267 268 llvm::Value *Callee; 269 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 270 if (UseVirtualCall) { 271 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 272 } else { 273 if (getContext().getLangOpts().AppleKext && 274 MD->isVirtual() && 275 ME->hasQualifier()) 276 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 277 else if (!DevirtualizedMethod) 278 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 279 else { 280 const CXXDestructorDecl *DDtor = 281 cast<CXXDestructorDecl>(DevirtualizedMethod); 282 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 283 } 284 } 285 } else if (const CXXConstructorDecl *Ctor = 286 dyn_cast<CXXConstructorDecl>(MD)) { 287 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 288 } else if (UseVirtualCall) { 289 Callee = BuildVirtualCall(MD, This, Ty); 290 } else { 291 if (getContext().getLangOpts().AppleKext && 292 MD->isVirtual() && 293 ME->hasQualifier()) 294 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 295 else if (!DevirtualizedMethod) 296 Callee = CGM.GetAddrOfFunction(MD, Ty); 297 else { 298 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 299 } 300 } 301 302 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 303 CE->arg_begin(), CE->arg_end()); 304 } 305 306 RValue 307 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 308 ReturnValueSlot ReturnValue) { 309 const BinaryOperator *BO = 310 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 311 const Expr *BaseExpr = BO->getLHS(); 312 const Expr *MemFnExpr = BO->getRHS(); 313 314 const MemberPointerType *MPT = 315 MemFnExpr->getType()->castAs<MemberPointerType>(); 316 317 const FunctionProtoType *FPT = 318 MPT->getPointeeType()->castAs<FunctionProtoType>(); 319 const CXXRecordDecl *RD = 320 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 321 322 // Get the member function pointer. 323 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 324 325 // Emit the 'this' pointer. 326 llvm::Value *This; 327 328 if (BO->getOpcode() == BO_PtrMemI) 329 This = EmitScalarExpr(BaseExpr); 330 else 331 This = EmitLValue(BaseExpr).getAddress(); 332 333 // Ask the ABI to load the callee. Note that This is modified. 334 llvm::Value *Callee = 335 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 336 337 CallArgList Args; 338 339 QualType ThisType = 340 getContext().getPointerType(getContext().getTagDeclType(RD)); 341 342 // Push the this ptr. 343 Args.add(RValue::get(This), ThisType); 344 345 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 346 347 // And the rest of the call args 348 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 349 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 350 ReturnValue, Args); 351 } 352 353 RValue 354 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 355 const CXXMethodDecl *MD, 356 ReturnValueSlot ReturnValue) { 357 assert(MD->isInstance() && 358 "Trying to emit a member call expr on a static method!"); 359 LValue LV = EmitLValue(E->getArg(0)); 360 llvm::Value *This = LV.getAddress(); 361 362 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 363 MD->isTrivial()) { 364 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 365 QualType Ty = E->getType(); 366 EmitAggregateCopy(This, Src, Ty); 367 return RValue::get(This); 368 } 369 370 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 371 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 372 E->arg_begin() + 1, E->arg_end()); 373 } 374 375 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 376 ReturnValueSlot ReturnValue) { 377 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 378 } 379 380 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 381 llvm::Value *DestPtr, 382 const CXXRecordDecl *Base) { 383 if (Base->isEmpty()) 384 return; 385 386 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 387 388 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 389 CharUnits Size = Layout.getNonVirtualSize(); 390 CharUnits Align = Layout.getNonVirtualAlign(); 391 392 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 393 394 // If the type contains a pointer to data member we can't memset it to zero. 395 // Instead, create a null constant and copy it to the destination. 396 // TODO: there are other patterns besides zero that we can usefully memset, 397 // like -1, which happens to be the pattern used by member-pointers. 398 // TODO: isZeroInitializable can be over-conservative in the case where a 399 // virtual base contains a member pointer. 400 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 401 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 402 403 llvm::GlobalVariable *NullVariable = 404 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 405 /*isConstant=*/true, 406 llvm::GlobalVariable::PrivateLinkage, 407 NullConstant, Twine()); 408 NullVariable->setAlignment(Align.getQuantity()); 409 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 410 411 // Get and call the appropriate llvm.memcpy overload. 412 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 413 return; 414 } 415 416 // Otherwise, just memset the whole thing to zero. This is legal 417 // because in LLVM, all default initializers (other than the ones we just 418 // handled above) are guaranteed to have a bit pattern of all zeros. 419 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 420 Align.getQuantity()); 421 } 422 423 void 424 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 425 AggValueSlot Dest) { 426 assert(!Dest.isIgnored() && "Must have a destination!"); 427 const CXXConstructorDecl *CD = E->getConstructor(); 428 429 // If we require zero initialization before (or instead of) calling the 430 // constructor, as can be the case with a non-user-provided default 431 // constructor, emit the zero initialization now, unless destination is 432 // already zeroed. 433 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 434 switch (E->getConstructionKind()) { 435 case CXXConstructExpr::CK_Delegating: 436 case CXXConstructExpr::CK_Complete: 437 EmitNullInitialization(Dest.getAddr(), E->getType()); 438 break; 439 case CXXConstructExpr::CK_VirtualBase: 440 case CXXConstructExpr::CK_NonVirtualBase: 441 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 442 break; 443 } 444 } 445 446 // If this is a call to a trivial default constructor, do nothing. 447 if (CD->isTrivial() && CD->isDefaultConstructor()) 448 return; 449 450 // Elide the constructor if we're constructing from a temporary. 451 // The temporary check is required because Sema sets this on NRVO 452 // returns. 453 if (getContext().getLangOpts().ElideConstructors && E->isElidable()) { 454 assert(getContext().hasSameUnqualifiedType(E->getType(), 455 E->getArg(0)->getType())); 456 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 457 EmitAggExpr(E->getArg(0), Dest); 458 return; 459 } 460 } 461 462 if (const ConstantArrayType *arrayType 463 = getContext().getAsConstantArrayType(E->getType())) { 464 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 465 E->arg_begin(), E->arg_end()); 466 } else { 467 CXXCtorType Type = Ctor_Complete; 468 bool ForVirtualBase = false; 469 470 switch (E->getConstructionKind()) { 471 case CXXConstructExpr::CK_Delegating: 472 // We should be emitting a constructor; GlobalDecl will assert this 473 Type = CurGD.getCtorType(); 474 break; 475 476 case CXXConstructExpr::CK_Complete: 477 Type = Ctor_Complete; 478 break; 479 480 case CXXConstructExpr::CK_VirtualBase: 481 ForVirtualBase = true; 482 // fall-through 483 484 case CXXConstructExpr::CK_NonVirtualBase: 485 Type = Ctor_Base; 486 } 487 488 // Call the constructor. 489 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 490 E->arg_begin(), E->arg_end()); 491 } 492 } 493 494 void 495 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 496 llvm::Value *Src, 497 const Expr *Exp) { 498 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 499 Exp = E->getSubExpr(); 500 assert(isa<CXXConstructExpr>(Exp) && 501 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 502 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 503 const CXXConstructorDecl *CD = E->getConstructor(); 504 RunCleanupsScope Scope(*this); 505 506 // If we require zero initialization before (or instead of) calling the 507 // constructor, as can be the case with a non-user-provided default 508 // constructor, emit the zero initialization now. 509 // FIXME. Do I still need this for a copy ctor synthesis? 510 if (E->requiresZeroInitialization()) 511 EmitNullInitialization(Dest, E->getType()); 512 513 assert(!getContext().getAsConstantArrayType(E->getType()) 514 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 515 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 516 E->arg_begin(), E->arg_end()); 517 } 518 519 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 520 const CXXNewExpr *E) { 521 if (!E->isArray()) 522 return CharUnits::Zero(); 523 524 // No cookie is required if the operator new[] being used is the 525 // reserved placement operator new[]. 526 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 527 return CharUnits::Zero(); 528 529 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 530 } 531 532 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 533 const CXXNewExpr *e, 534 unsigned minElements, 535 llvm::Value *&numElements, 536 llvm::Value *&sizeWithoutCookie) { 537 QualType type = e->getAllocatedType(); 538 539 if (!e->isArray()) { 540 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 541 sizeWithoutCookie 542 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 543 return sizeWithoutCookie; 544 } 545 546 // The width of size_t. 547 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 548 549 // Figure out the cookie size. 550 llvm::APInt cookieSize(sizeWidth, 551 CalculateCookiePadding(CGF, e).getQuantity()); 552 553 // Emit the array size expression. 554 // We multiply the size of all dimensions for NumElements. 555 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 556 numElements = CGF.EmitScalarExpr(e->getArraySize()); 557 assert(isa<llvm::IntegerType>(numElements->getType())); 558 559 // The number of elements can be have an arbitrary integer type; 560 // essentially, we need to multiply it by a constant factor, add a 561 // cookie size, and verify that the result is representable as a 562 // size_t. That's just a gloss, though, and it's wrong in one 563 // important way: if the count is negative, it's an error even if 564 // the cookie size would bring the total size >= 0. 565 bool isSigned 566 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 567 llvm::IntegerType *numElementsType 568 = cast<llvm::IntegerType>(numElements->getType()); 569 unsigned numElementsWidth = numElementsType->getBitWidth(); 570 571 // Compute the constant factor. 572 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 573 while (const ConstantArrayType *CAT 574 = CGF.getContext().getAsConstantArrayType(type)) { 575 type = CAT->getElementType(); 576 arraySizeMultiplier *= CAT->getSize(); 577 } 578 579 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 580 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 581 typeSizeMultiplier *= arraySizeMultiplier; 582 583 // This will be a size_t. 584 llvm::Value *size; 585 586 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 587 // Don't bloat the -O0 code. 588 if (llvm::ConstantInt *numElementsC = 589 dyn_cast<llvm::ConstantInt>(numElements)) { 590 const llvm::APInt &count = numElementsC->getValue(); 591 592 bool hasAnyOverflow = false; 593 594 // If 'count' was a negative number, it's an overflow. 595 if (isSigned && count.isNegative()) 596 hasAnyOverflow = true; 597 598 // We want to do all this arithmetic in size_t. If numElements is 599 // wider than that, check whether it's already too big, and if so, 600 // overflow. 601 else if (numElementsWidth > sizeWidth && 602 numElementsWidth - sizeWidth > count.countLeadingZeros()) 603 hasAnyOverflow = true; 604 605 // Okay, compute a count at the right width. 606 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 607 608 // If there is a brace-initializer, we cannot allocate fewer elements than 609 // there are initializers. If we do, that's treated like an overflow. 610 if (adjustedCount.ult(minElements)) 611 hasAnyOverflow = true; 612 613 // Scale numElements by that. This might overflow, but we don't 614 // care because it only overflows if allocationSize does, too, and 615 // if that overflows then we shouldn't use this. 616 numElements = llvm::ConstantInt::get(CGF.SizeTy, 617 adjustedCount * arraySizeMultiplier); 618 619 // Compute the size before cookie, and track whether it overflowed. 620 bool overflow; 621 llvm::APInt allocationSize 622 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 623 hasAnyOverflow |= overflow; 624 625 // Add in the cookie, and check whether it's overflowed. 626 if (cookieSize != 0) { 627 // Save the current size without a cookie. This shouldn't be 628 // used if there was overflow. 629 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 630 631 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 632 hasAnyOverflow |= overflow; 633 } 634 635 // On overflow, produce a -1 so operator new will fail. 636 if (hasAnyOverflow) { 637 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 638 } else { 639 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 640 } 641 642 // Otherwise, we might need to use the overflow intrinsics. 643 } else { 644 // There are up to five conditions we need to test for: 645 // 1) if isSigned, we need to check whether numElements is negative; 646 // 2) if numElementsWidth > sizeWidth, we need to check whether 647 // numElements is larger than something representable in size_t; 648 // 3) if minElements > 0, we need to check whether numElements is smaller 649 // than that. 650 // 4) we need to compute 651 // sizeWithoutCookie := numElements * typeSizeMultiplier 652 // and check whether it overflows; and 653 // 5) if we need a cookie, we need to compute 654 // size := sizeWithoutCookie + cookieSize 655 // and check whether it overflows. 656 657 llvm::Value *hasOverflow = 0; 658 659 // If numElementsWidth > sizeWidth, then one way or another, we're 660 // going to have to do a comparison for (2), and this happens to 661 // take care of (1), too. 662 if (numElementsWidth > sizeWidth) { 663 llvm::APInt threshold(numElementsWidth, 1); 664 threshold <<= sizeWidth; 665 666 llvm::Value *thresholdV 667 = llvm::ConstantInt::get(numElementsType, threshold); 668 669 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 670 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 671 672 // Otherwise, if we're signed, we want to sext up to size_t. 673 } else if (isSigned) { 674 if (numElementsWidth < sizeWidth) 675 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 676 677 // If there's a non-1 type size multiplier, then we can do the 678 // signedness check at the same time as we do the multiply 679 // because a negative number times anything will cause an 680 // unsigned overflow. Otherwise, we have to do it here. But at least 681 // in this case, we can subsume the >= minElements check. 682 if (typeSizeMultiplier == 1) 683 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 684 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 685 686 // Otherwise, zext up to size_t if necessary. 687 } else if (numElementsWidth < sizeWidth) { 688 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 689 } 690 691 assert(numElements->getType() == CGF.SizeTy); 692 693 if (minElements) { 694 // Don't allow allocation of fewer elements than we have initializers. 695 if (!hasOverflow) { 696 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 697 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 698 } else if (numElementsWidth > sizeWidth) { 699 // The other existing overflow subsumes this check. 700 // We do an unsigned comparison, since any signed value < -1 is 701 // taken care of either above or below. 702 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 703 CGF.Builder.CreateICmpULT(numElements, 704 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 705 } 706 } 707 708 size = numElements; 709 710 // Multiply by the type size if necessary. This multiplier 711 // includes all the factors for nested arrays. 712 // 713 // This step also causes numElements to be scaled up by the 714 // nested-array factor if necessary. Overflow on this computation 715 // can be ignored because the result shouldn't be used if 716 // allocation fails. 717 if (typeSizeMultiplier != 1) { 718 llvm::Value *umul_with_overflow 719 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 720 721 llvm::Value *tsmV = 722 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 723 llvm::Value *result = 724 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 725 726 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 727 if (hasOverflow) 728 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 729 else 730 hasOverflow = overflowed; 731 732 size = CGF.Builder.CreateExtractValue(result, 0); 733 734 // Also scale up numElements by the array size multiplier. 735 if (arraySizeMultiplier != 1) { 736 // If the base element type size is 1, then we can re-use the 737 // multiply we just did. 738 if (typeSize.isOne()) { 739 assert(arraySizeMultiplier == typeSizeMultiplier); 740 numElements = size; 741 742 // Otherwise we need a separate multiply. 743 } else { 744 llvm::Value *asmV = 745 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 746 numElements = CGF.Builder.CreateMul(numElements, asmV); 747 } 748 } 749 } else { 750 // numElements doesn't need to be scaled. 751 assert(arraySizeMultiplier == 1); 752 } 753 754 // Add in the cookie size if necessary. 755 if (cookieSize != 0) { 756 sizeWithoutCookie = size; 757 758 llvm::Value *uadd_with_overflow 759 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 760 761 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 762 llvm::Value *result = 763 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 764 765 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 766 if (hasOverflow) 767 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 768 else 769 hasOverflow = overflowed; 770 771 size = CGF.Builder.CreateExtractValue(result, 0); 772 } 773 774 // If we had any possibility of dynamic overflow, make a select to 775 // overwrite 'size' with an all-ones value, which should cause 776 // operator new to throw. 777 if (hasOverflow) 778 size = CGF.Builder.CreateSelect(hasOverflow, 779 llvm::Constant::getAllOnesValue(CGF.SizeTy), 780 size); 781 } 782 783 if (cookieSize == 0) 784 sizeWithoutCookie = size; 785 else 786 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 787 788 return size; 789 } 790 791 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 792 QualType AllocType, llvm::Value *NewPtr) { 793 794 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 795 if (!CGF.hasAggregateLLVMType(AllocType)) 796 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 797 Alignment), 798 false); 799 else if (AllocType->isAnyComplexType()) 800 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 801 AllocType.isVolatileQualified()); 802 else { 803 AggValueSlot Slot 804 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 805 AggValueSlot::IsDestructed, 806 AggValueSlot::DoesNotNeedGCBarriers, 807 AggValueSlot::IsNotAliased); 808 CGF.EmitAggExpr(Init, Slot); 809 810 CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 811 } 812 } 813 814 void 815 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 816 QualType elementType, 817 llvm::Value *beginPtr, 818 llvm::Value *numElements) { 819 if (!E->hasInitializer()) 820 return; // We have a POD type. 821 822 llvm::Value *explicitPtr = beginPtr; 823 // Find the end of the array, hoisted out of the loop. 824 llvm::Value *endPtr = 825 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 826 827 unsigned initializerElements = 0; 828 829 const Expr *Init = E->getInitializer(); 830 llvm::AllocaInst *endOfInit = 0; 831 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 832 EHScopeStack::stable_iterator cleanup; 833 llvm::Instruction *cleanupDominator = 0; 834 // If the initializer is an initializer list, first do the explicit elements. 835 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 836 initializerElements = ILE->getNumInits(); 837 838 // Enter a partial-destruction cleanup if necessary. 839 if (needsEHCleanup(dtorKind)) { 840 // In principle we could tell the cleanup where we are more 841 // directly, but the control flow can get so varied here that it 842 // would actually be quite complex. Therefore we go through an 843 // alloca. 844 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 845 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 846 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 847 getDestroyer(dtorKind)); 848 cleanup = EHStack.stable_begin(); 849 } 850 851 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 852 // Tell the cleanup that it needs to destroy up to this 853 // element. TODO: some of these stores can be trivially 854 // observed to be unnecessary. 855 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 856 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 857 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 858 } 859 860 // The remaining elements are filled with the array filler expression. 861 Init = ILE->getArrayFiller(); 862 } 863 864 // Create the continuation block. 865 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 866 867 // If the number of elements isn't constant, we have to now check if there is 868 // anything left to initialize. 869 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 870 // If all elements have already been initialized, skip the whole loop. 871 if (constNum->getZExtValue() <= initializerElements) { 872 // If there was a cleanup, deactivate it. 873 if (cleanupDominator) 874 DeactivateCleanupBlock(cleanup, cleanupDominator);; 875 return; 876 } 877 } else { 878 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 879 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 880 "array.isempty"); 881 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 882 EmitBlock(nonEmptyBB); 883 } 884 885 // Enter the loop. 886 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 887 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 888 889 EmitBlock(loopBB); 890 891 // Set up the current-element phi. 892 llvm::PHINode *curPtr = 893 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 894 curPtr->addIncoming(explicitPtr, entryBB); 895 896 // Store the new cleanup position for irregular cleanups. 897 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 898 899 // Enter a partial-destruction cleanup if necessary. 900 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 901 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 902 getDestroyer(dtorKind)); 903 cleanup = EHStack.stable_begin(); 904 cleanupDominator = Builder.CreateUnreachable(); 905 } 906 907 // Emit the initializer into this element. 908 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 909 910 // Leave the cleanup if we entered one. 911 if (cleanupDominator) { 912 DeactivateCleanupBlock(cleanup, cleanupDominator); 913 cleanupDominator->eraseFromParent(); 914 } 915 916 // Advance to the next element. 917 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 918 919 // Check whether we've gotten to the end of the array and, if so, 920 // exit the loop. 921 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 922 Builder.CreateCondBr(isEnd, contBB, loopBB); 923 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 924 925 EmitBlock(contBB); 926 } 927 928 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 929 llvm::Value *NewPtr, llvm::Value *Size) { 930 CGF.EmitCastToVoidPtr(NewPtr); 931 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 932 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 933 Alignment.getQuantity(), false); 934 } 935 936 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 937 QualType ElementType, 938 llvm::Value *NewPtr, 939 llvm::Value *NumElements, 940 llvm::Value *AllocSizeWithoutCookie) { 941 const Expr *Init = E->getInitializer(); 942 if (E->isArray()) { 943 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 944 CXXConstructorDecl *Ctor = CCE->getConstructor(); 945 bool RequiresZeroInitialization = false; 946 if (Ctor->isTrivial()) { 947 // If new expression did not specify value-initialization, then there 948 // is no initialization. 949 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 950 return; 951 952 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 953 // Optimization: since zero initialization will just set the memory 954 // to all zeroes, generate a single memset to do it in one shot. 955 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 956 return; 957 } 958 959 RequiresZeroInitialization = true; 960 } 961 962 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 963 CCE->arg_begin(), CCE->arg_end(), 964 RequiresZeroInitialization); 965 return; 966 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 967 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 968 // Optimization: since zero initialization will just set the memory 969 // to all zeroes, generate a single memset to do it in one shot. 970 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 971 return; 972 } 973 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 974 return; 975 } 976 977 if (!Init) 978 return; 979 980 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 981 } 982 983 namespace { 984 /// A cleanup to call the given 'operator delete' function upon 985 /// abnormal exit from a new expression. 986 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 987 size_t NumPlacementArgs; 988 const FunctionDecl *OperatorDelete; 989 llvm::Value *Ptr; 990 llvm::Value *AllocSize; 991 992 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 993 994 public: 995 static size_t getExtraSize(size_t NumPlacementArgs) { 996 return NumPlacementArgs * sizeof(RValue); 997 } 998 999 CallDeleteDuringNew(size_t NumPlacementArgs, 1000 const FunctionDecl *OperatorDelete, 1001 llvm::Value *Ptr, 1002 llvm::Value *AllocSize) 1003 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1004 Ptr(Ptr), AllocSize(AllocSize) {} 1005 1006 void setPlacementArg(unsigned I, RValue Arg) { 1007 assert(I < NumPlacementArgs && "index out of range"); 1008 getPlacementArgs()[I] = Arg; 1009 } 1010 1011 void Emit(CodeGenFunction &CGF, Flags flags) { 1012 const FunctionProtoType *FPT 1013 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1014 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1015 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1016 1017 CallArgList DeleteArgs; 1018 1019 // The first argument is always a void*. 1020 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1021 DeleteArgs.add(RValue::get(Ptr), *AI++); 1022 1023 // A member 'operator delete' can take an extra 'size_t' argument. 1024 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1025 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1026 1027 // Pass the rest of the arguments, which must match exactly. 1028 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1029 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1030 1031 // Call 'operator delete'. 1032 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1033 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1034 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1035 } 1036 }; 1037 1038 /// A cleanup to call the given 'operator delete' function upon 1039 /// abnormal exit from a new expression when the new expression is 1040 /// conditional. 1041 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1042 size_t NumPlacementArgs; 1043 const FunctionDecl *OperatorDelete; 1044 DominatingValue<RValue>::saved_type Ptr; 1045 DominatingValue<RValue>::saved_type AllocSize; 1046 1047 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1048 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1049 } 1050 1051 public: 1052 static size_t getExtraSize(size_t NumPlacementArgs) { 1053 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1054 } 1055 1056 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1057 const FunctionDecl *OperatorDelete, 1058 DominatingValue<RValue>::saved_type Ptr, 1059 DominatingValue<RValue>::saved_type AllocSize) 1060 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1061 Ptr(Ptr), AllocSize(AllocSize) {} 1062 1063 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1064 assert(I < NumPlacementArgs && "index out of range"); 1065 getPlacementArgs()[I] = Arg; 1066 } 1067 1068 void Emit(CodeGenFunction &CGF, Flags flags) { 1069 const FunctionProtoType *FPT 1070 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1071 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1072 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1073 1074 CallArgList DeleteArgs; 1075 1076 // The first argument is always a void*. 1077 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1078 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1079 1080 // A member 'operator delete' can take an extra 'size_t' argument. 1081 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1082 RValue RV = AllocSize.restore(CGF); 1083 DeleteArgs.add(RV, *AI++); 1084 } 1085 1086 // Pass the rest of the arguments, which must match exactly. 1087 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1088 RValue RV = getPlacementArgs()[I].restore(CGF); 1089 DeleteArgs.add(RV, *AI++); 1090 } 1091 1092 // Call 'operator delete'. 1093 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1094 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1095 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1096 } 1097 }; 1098 } 1099 1100 /// Enter a cleanup to call 'operator delete' if the initializer in a 1101 /// new-expression throws. 1102 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1103 const CXXNewExpr *E, 1104 llvm::Value *NewPtr, 1105 llvm::Value *AllocSize, 1106 const CallArgList &NewArgs) { 1107 // If we're not inside a conditional branch, then the cleanup will 1108 // dominate and we can do the easier (and more efficient) thing. 1109 if (!CGF.isInConditionalBranch()) { 1110 CallDeleteDuringNew *Cleanup = CGF.EHStack 1111 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1112 E->getNumPlacementArgs(), 1113 E->getOperatorDelete(), 1114 NewPtr, AllocSize); 1115 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1116 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1117 1118 return; 1119 } 1120 1121 // Otherwise, we need to save all this stuff. 1122 DominatingValue<RValue>::saved_type SavedNewPtr = 1123 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1124 DominatingValue<RValue>::saved_type SavedAllocSize = 1125 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1126 1127 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1128 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1129 E->getNumPlacementArgs(), 1130 E->getOperatorDelete(), 1131 SavedNewPtr, 1132 SavedAllocSize); 1133 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1134 Cleanup->setPlacementArg(I, 1135 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1136 1137 CGF.initFullExprCleanup(); 1138 } 1139 1140 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1141 // The element type being allocated. 1142 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1143 1144 // 1. Build a call to the allocation function. 1145 FunctionDecl *allocator = E->getOperatorNew(); 1146 const FunctionProtoType *allocatorType = 1147 allocator->getType()->castAs<FunctionProtoType>(); 1148 1149 CallArgList allocatorArgs; 1150 1151 // The allocation size is the first argument. 1152 QualType sizeType = getContext().getSizeType(); 1153 1154 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1155 unsigned minElements = 0; 1156 if (E->isArray() && E->hasInitializer()) { 1157 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1158 minElements = ILE->getNumInits(); 1159 } 1160 1161 llvm::Value *numElements = 0; 1162 llvm::Value *allocSizeWithoutCookie = 0; 1163 llvm::Value *allocSize = 1164 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1165 allocSizeWithoutCookie); 1166 1167 allocatorArgs.add(RValue::get(allocSize), sizeType); 1168 1169 // Emit the rest of the arguments. 1170 // FIXME: Ideally, this should just use EmitCallArgs. 1171 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1172 1173 // First, use the types from the function type. 1174 // We start at 1 here because the first argument (the allocation size) 1175 // has already been emitted. 1176 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1177 ++i, ++placementArg) { 1178 QualType argType = allocatorType->getArgType(i); 1179 1180 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1181 placementArg->getType()) && 1182 "type mismatch in call argument!"); 1183 1184 EmitCallArg(allocatorArgs, *placementArg, argType); 1185 } 1186 1187 // Either we've emitted all the call args, or we have a call to a 1188 // variadic function. 1189 assert((placementArg == E->placement_arg_end() || 1190 allocatorType->isVariadic()) && 1191 "Extra arguments to non-variadic function!"); 1192 1193 // If we still have any arguments, emit them using the type of the argument. 1194 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1195 placementArg != placementArgsEnd; ++placementArg) { 1196 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1197 } 1198 1199 // Emit the allocation call. If the allocator is a global placement 1200 // operator, just "inline" it directly. 1201 RValue RV; 1202 if (allocator->isReservedGlobalPlacementOperator()) { 1203 assert(allocatorArgs.size() == 2); 1204 RV = allocatorArgs[1].RV; 1205 // TODO: kill any unnecessary computations done for the size 1206 // argument. 1207 } else { 1208 RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1209 allocatorType), 1210 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1211 allocatorArgs, allocator); 1212 } 1213 1214 // Emit a null check on the allocation result if the allocation 1215 // function is allowed to return null (because it has a non-throwing 1216 // exception spec; for this part, we inline 1217 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1218 // interesting initializer. 1219 bool nullCheck = allocatorType->isNothrow(getContext()) && 1220 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1221 1222 llvm::BasicBlock *nullCheckBB = 0; 1223 llvm::BasicBlock *contBB = 0; 1224 1225 llvm::Value *allocation = RV.getScalarVal(); 1226 unsigned AS = 1227 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1228 1229 // The null-check means that the initializer is conditionally 1230 // evaluated. 1231 ConditionalEvaluation conditional(*this); 1232 1233 if (nullCheck) { 1234 conditional.begin(*this); 1235 1236 nullCheckBB = Builder.GetInsertBlock(); 1237 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1238 contBB = createBasicBlock("new.cont"); 1239 1240 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1241 Builder.CreateCondBr(isNull, contBB, notNullBB); 1242 EmitBlock(notNullBB); 1243 } 1244 1245 // If there's an operator delete, enter a cleanup to call it if an 1246 // exception is thrown. 1247 EHScopeStack::stable_iterator operatorDeleteCleanup; 1248 llvm::Instruction *cleanupDominator = 0; 1249 if (E->getOperatorDelete() && 1250 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1251 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1252 operatorDeleteCleanup = EHStack.stable_begin(); 1253 cleanupDominator = Builder.CreateUnreachable(); 1254 } 1255 1256 assert((allocSize == allocSizeWithoutCookie) == 1257 CalculateCookiePadding(*this, E).isZero()); 1258 if (allocSize != allocSizeWithoutCookie) { 1259 assert(E->isArray()); 1260 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1261 numElements, 1262 E, allocType); 1263 } 1264 1265 llvm::Type *elementPtrTy 1266 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1267 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1268 1269 EmitNewInitializer(*this, E, allocType, result, numElements, 1270 allocSizeWithoutCookie); 1271 if (E->isArray()) { 1272 // NewPtr is a pointer to the base element type. If we're 1273 // allocating an array of arrays, we'll need to cast back to the 1274 // array pointer type. 1275 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1276 if (result->getType() != resultType) 1277 result = Builder.CreateBitCast(result, resultType); 1278 } 1279 1280 // Deactivate the 'operator delete' cleanup if we finished 1281 // initialization. 1282 if (operatorDeleteCleanup.isValid()) { 1283 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1284 cleanupDominator->eraseFromParent(); 1285 } 1286 1287 if (nullCheck) { 1288 conditional.end(*this); 1289 1290 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1291 EmitBlock(contBB); 1292 1293 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1294 PHI->addIncoming(result, notNullBB); 1295 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1296 nullCheckBB); 1297 1298 result = PHI; 1299 } 1300 1301 return result; 1302 } 1303 1304 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1305 llvm::Value *Ptr, 1306 QualType DeleteTy) { 1307 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1308 1309 const FunctionProtoType *DeleteFTy = 1310 DeleteFD->getType()->getAs<FunctionProtoType>(); 1311 1312 CallArgList DeleteArgs; 1313 1314 // Check if we need to pass the size to the delete operator. 1315 llvm::Value *Size = 0; 1316 QualType SizeTy; 1317 if (DeleteFTy->getNumArgs() == 2) { 1318 SizeTy = DeleteFTy->getArgType(1); 1319 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1320 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1321 DeleteTypeSize.getQuantity()); 1322 } 1323 1324 QualType ArgTy = DeleteFTy->getArgType(0); 1325 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1326 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1327 1328 if (Size) 1329 DeleteArgs.add(RValue::get(Size), SizeTy); 1330 1331 // Emit the call to delete. 1332 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 1333 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1334 DeleteArgs, DeleteFD); 1335 } 1336 1337 namespace { 1338 /// Calls the given 'operator delete' on a single object. 1339 struct CallObjectDelete : EHScopeStack::Cleanup { 1340 llvm::Value *Ptr; 1341 const FunctionDecl *OperatorDelete; 1342 QualType ElementType; 1343 1344 CallObjectDelete(llvm::Value *Ptr, 1345 const FunctionDecl *OperatorDelete, 1346 QualType ElementType) 1347 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1348 1349 void Emit(CodeGenFunction &CGF, Flags flags) { 1350 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1351 } 1352 }; 1353 } 1354 1355 /// Emit the code for deleting a single object. 1356 static void EmitObjectDelete(CodeGenFunction &CGF, 1357 const FunctionDecl *OperatorDelete, 1358 llvm::Value *Ptr, 1359 QualType ElementType, 1360 bool UseGlobalDelete) { 1361 // Find the destructor for the type, if applicable. If the 1362 // destructor is virtual, we'll just emit the vcall and return. 1363 const CXXDestructorDecl *Dtor = 0; 1364 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1365 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1366 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1367 Dtor = RD->getDestructor(); 1368 1369 if (Dtor->isVirtual()) { 1370 if (UseGlobalDelete) { 1371 // If we're supposed to call the global delete, make sure we do so 1372 // even if the destructor throws. 1373 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1374 Ptr, OperatorDelete, 1375 ElementType); 1376 } 1377 1378 llvm::Type *Ty = 1379 CGF.getTypes().GetFunctionType( 1380 CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 1381 1382 llvm::Value *Callee 1383 = CGF.BuildVirtualCall(Dtor, 1384 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1385 Ptr, Ty); 1386 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1387 0, 0); 1388 1389 if (UseGlobalDelete) { 1390 CGF.PopCleanupBlock(); 1391 } 1392 1393 return; 1394 } 1395 } 1396 } 1397 1398 // Make sure that we call delete even if the dtor throws. 1399 // This doesn't have to a conditional cleanup because we're going 1400 // to pop it off in a second. 1401 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1402 Ptr, OperatorDelete, ElementType); 1403 1404 if (Dtor) 1405 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1406 /*ForVirtualBase=*/false, Ptr); 1407 else if (CGF.getLangOpts().ObjCAutoRefCount && 1408 ElementType->isObjCLifetimeType()) { 1409 switch (ElementType.getObjCLifetime()) { 1410 case Qualifiers::OCL_None: 1411 case Qualifiers::OCL_ExplicitNone: 1412 case Qualifiers::OCL_Autoreleasing: 1413 break; 1414 1415 case Qualifiers::OCL_Strong: { 1416 // Load the pointer value. 1417 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1418 ElementType.isVolatileQualified()); 1419 1420 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1421 break; 1422 } 1423 1424 case Qualifiers::OCL_Weak: 1425 CGF.EmitARCDestroyWeak(Ptr); 1426 break; 1427 } 1428 } 1429 1430 CGF.PopCleanupBlock(); 1431 } 1432 1433 namespace { 1434 /// Calls the given 'operator delete' on an array of objects. 1435 struct CallArrayDelete : EHScopeStack::Cleanup { 1436 llvm::Value *Ptr; 1437 const FunctionDecl *OperatorDelete; 1438 llvm::Value *NumElements; 1439 QualType ElementType; 1440 CharUnits CookieSize; 1441 1442 CallArrayDelete(llvm::Value *Ptr, 1443 const FunctionDecl *OperatorDelete, 1444 llvm::Value *NumElements, 1445 QualType ElementType, 1446 CharUnits CookieSize) 1447 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1448 ElementType(ElementType), CookieSize(CookieSize) {} 1449 1450 void Emit(CodeGenFunction &CGF, Flags flags) { 1451 const FunctionProtoType *DeleteFTy = 1452 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1453 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1454 1455 CallArgList Args; 1456 1457 // Pass the pointer as the first argument. 1458 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1459 llvm::Value *DeletePtr 1460 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1461 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1462 1463 // Pass the original requested size as the second argument. 1464 if (DeleteFTy->getNumArgs() == 2) { 1465 QualType size_t = DeleteFTy->getArgType(1); 1466 llvm::IntegerType *SizeTy 1467 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1468 1469 CharUnits ElementTypeSize = 1470 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1471 1472 // The size of an element, multiplied by the number of elements. 1473 llvm::Value *Size 1474 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1475 Size = CGF.Builder.CreateMul(Size, NumElements); 1476 1477 // Plus the size of the cookie if applicable. 1478 if (!CookieSize.isZero()) { 1479 llvm::Value *CookieSizeV 1480 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1481 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1482 } 1483 1484 Args.add(RValue::get(Size), size_t); 1485 } 1486 1487 // Emit the call to delete. 1488 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 1489 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1490 ReturnValueSlot(), Args, OperatorDelete); 1491 } 1492 }; 1493 } 1494 1495 /// Emit the code for deleting an array of objects. 1496 static void EmitArrayDelete(CodeGenFunction &CGF, 1497 const CXXDeleteExpr *E, 1498 llvm::Value *deletedPtr, 1499 QualType elementType) { 1500 llvm::Value *numElements = 0; 1501 llvm::Value *allocatedPtr = 0; 1502 CharUnits cookieSize; 1503 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1504 numElements, allocatedPtr, cookieSize); 1505 1506 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1507 1508 // Make sure that we call delete even if one of the dtors throws. 1509 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1510 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1511 allocatedPtr, operatorDelete, 1512 numElements, elementType, 1513 cookieSize); 1514 1515 // Destroy the elements. 1516 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1517 assert(numElements && "no element count for a type with a destructor!"); 1518 1519 llvm::Value *arrayEnd = 1520 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1521 1522 // Note that it is legal to allocate a zero-length array, and we 1523 // can never fold the check away because the length should always 1524 // come from a cookie. 1525 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1526 CGF.getDestroyer(dtorKind), 1527 /*checkZeroLength*/ true, 1528 CGF.needsEHCleanup(dtorKind)); 1529 } 1530 1531 // Pop the cleanup block. 1532 CGF.PopCleanupBlock(); 1533 } 1534 1535 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1536 const Expr *Arg = E->getArgument(); 1537 llvm::Value *Ptr = EmitScalarExpr(Arg); 1538 1539 // Null check the pointer. 1540 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1541 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1542 1543 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1544 1545 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1546 EmitBlock(DeleteNotNull); 1547 1548 // We might be deleting a pointer to array. If so, GEP down to the 1549 // first non-array element. 1550 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1551 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1552 if (DeleteTy->isConstantArrayType()) { 1553 llvm::Value *Zero = Builder.getInt32(0); 1554 SmallVector<llvm::Value*,8> GEP; 1555 1556 GEP.push_back(Zero); // point at the outermost array 1557 1558 // For each layer of array type we're pointing at: 1559 while (const ConstantArrayType *Arr 1560 = getContext().getAsConstantArrayType(DeleteTy)) { 1561 // 1. Unpeel the array type. 1562 DeleteTy = Arr->getElementType(); 1563 1564 // 2. GEP to the first element of the array. 1565 GEP.push_back(Zero); 1566 } 1567 1568 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1569 } 1570 1571 assert(ConvertTypeForMem(DeleteTy) == 1572 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1573 1574 if (E->isArrayForm()) { 1575 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1576 } else { 1577 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1578 E->isGlobalDelete()); 1579 } 1580 1581 EmitBlock(DeleteEnd); 1582 } 1583 1584 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1585 // void __cxa_bad_typeid(); 1586 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1587 1588 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1589 } 1590 1591 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1592 llvm::Value *Fn = getBadTypeidFn(CGF); 1593 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1594 CGF.Builder.CreateUnreachable(); 1595 } 1596 1597 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1598 const Expr *E, 1599 llvm::Type *StdTypeInfoPtrTy) { 1600 // Get the vtable pointer. 1601 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1602 1603 // C++ [expr.typeid]p2: 1604 // If the glvalue expression is obtained by applying the unary * operator to 1605 // a pointer and the pointer is a null pointer value, the typeid expression 1606 // throws the std::bad_typeid exception. 1607 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1608 if (UO->getOpcode() == UO_Deref) { 1609 llvm::BasicBlock *BadTypeidBlock = 1610 CGF.createBasicBlock("typeid.bad_typeid"); 1611 llvm::BasicBlock *EndBlock = 1612 CGF.createBasicBlock("typeid.end"); 1613 1614 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1615 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1616 1617 CGF.EmitBlock(BadTypeidBlock); 1618 EmitBadTypeidCall(CGF); 1619 CGF.EmitBlock(EndBlock); 1620 } 1621 } 1622 1623 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1624 StdTypeInfoPtrTy->getPointerTo()); 1625 1626 // Load the type info. 1627 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1628 return CGF.Builder.CreateLoad(Value); 1629 } 1630 1631 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1632 llvm::Type *StdTypeInfoPtrTy = 1633 ConvertType(E->getType())->getPointerTo(); 1634 1635 if (E->isTypeOperand()) { 1636 llvm::Constant *TypeInfo = 1637 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1638 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1639 } 1640 1641 // C++ [expr.typeid]p2: 1642 // When typeid is applied to a glvalue expression whose type is a 1643 // polymorphic class type, the result refers to a std::type_info object 1644 // representing the type of the most derived object (that is, the dynamic 1645 // type) to which the glvalue refers. 1646 if (E->getExprOperand()->isGLValue()) { 1647 if (const RecordType *RT = 1648 E->getExprOperand()->getType()->getAs<RecordType>()) { 1649 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1650 if (RD->isPolymorphic()) 1651 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1652 StdTypeInfoPtrTy); 1653 } 1654 } 1655 1656 QualType OperandTy = E->getExprOperand()->getType(); 1657 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1658 StdTypeInfoPtrTy); 1659 } 1660 1661 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1662 // void *__dynamic_cast(const void *sub, 1663 // const abi::__class_type_info *src, 1664 // const abi::__class_type_info *dst, 1665 // std::ptrdiff_t src2dst_offset); 1666 1667 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1668 llvm::Type *PtrDiffTy = 1669 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1670 1671 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1672 1673 llvm::FunctionType *FTy = 1674 llvm::FunctionType::get(Int8PtrTy, Args, false); 1675 1676 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1677 } 1678 1679 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1680 // void __cxa_bad_cast(); 1681 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1682 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1683 } 1684 1685 static void EmitBadCastCall(CodeGenFunction &CGF) { 1686 llvm::Value *Fn = getBadCastFn(CGF); 1687 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1688 CGF.Builder.CreateUnreachable(); 1689 } 1690 1691 static llvm::Value * 1692 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1693 QualType SrcTy, QualType DestTy, 1694 llvm::BasicBlock *CastEnd) { 1695 llvm::Type *PtrDiffLTy = 1696 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1697 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1698 1699 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1700 if (PTy->getPointeeType()->isVoidType()) { 1701 // C++ [expr.dynamic.cast]p7: 1702 // If T is "pointer to cv void," then the result is a pointer to the 1703 // most derived object pointed to by v. 1704 1705 // Get the vtable pointer. 1706 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1707 1708 // Get the offset-to-top from the vtable. 1709 llvm::Value *OffsetToTop = 1710 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1711 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1712 1713 // Finally, add the offset to the pointer. 1714 Value = CGF.EmitCastToVoidPtr(Value); 1715 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1716 1717 return CGF.Builder.CreateBitCast(Value, DestLTy); 1718 } 1719 } 1720 1721 QualType SrcRecordTy; 1722 QualType DestRecordTy; 1723 1724 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1725 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1726 DestRecordTy = DestPTy->getPointeeType(); 1727 } else { 1728 SrcRecordTy = SrcTy; 1729 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1730 } 1731 1732 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1733 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1734 1735 llvm::Value *SrcRTTI = 1736 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1737 llvm::Value *DestRTTI = 1738 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1739 1740 // FIXME: Actually compute a hint here. 1741 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1742 1743 // Emit the call to __dynamic_cast. 1744 Value = CGF.EmitCastToVoidPtr(Value); 1745 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1746 SrcRTTI, DestRTTI, OffsetHint); 1747 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1748 1749 /// C++ [expr.dynamic.cast]p9: 1750 /// A failed cast to reference type throws std::bad_cast 1751 if (DestTy->isReferenceType()) { 1752 llvm::BasicBlock *BadCastBlock = 1753 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1754 1755 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1756 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1757 1758 CGF.EmitBlock(BadCastBlock); 1759 EmitBadCastCall(CGF); 1760 } 1761 1762 return Value; 1763 } 1764 1765 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1766 QualType DestTy) { 1767 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1768 if (DestTy->isPointerType()) 1769 return llvm::Constant::getNullValue(DestLTy); 1770 1771 /// C++ [expr.dynamic.cast]p9: 1772 /// A failed cast to reference type throws std::bad_cast 1773 EmitBadCastCall(CGF); 1774 1775 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1776 return llvm::UndefValue::get(DestLTy); 1777 } 1778 1779 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1780 const CXXDynamicCastExpr *DCE) { 1781 QualType DestTy = DCE->getTypeAsWritten(); 1782 1783 if (DCE->isAlwaysNull()) 1784 return EmitDynamicCastToNull(*this, DestTy); 1785 1786 QualType SrcTy = DCE->getSubExpr()->getType(); 1787 1788 // C++ [expr.dynamic.cast]p4: 1789 // If the value of v is a null pointer value in the pointer case, the result 1790 // is the null pointer value of type T. 1791 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1792 1793 llvm::BasicBlock *CastNull = 0; 1794 llvm::BasicBlock *CastNotNull = 0; 1795 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1796 1797 if (ShouldNullCheckSrcValue) { 1798 CastNull = createBasicBlock("dynamic_cast.null"); 1799 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1800 1801 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1802 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1803 EmitBlock(CastNotNull); 1804 } 1805 1806 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1807 1808 if (ShouldNullCheckSrcValue) { 1809 EmitBranch(CastEnd); 1810 1811 EmitBlock(CastNull); 1812 EmitBranch(CastEnd); 1813 } 1814 1815 EmitBlock(CastEnd); 1816 1817 if (ShouldNullCheckSrcValue) { 1818 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1819 PHI->addIncoming(Value, CastNotNull); 1820 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1821 1822 Value = PHI; 1823 } 1824 1825 return Value; 1826 } 1827 1828 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1829 RunCleanupsScope Scope(*this); 1830 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1831 Slot.getAlignment()); 1832 1833 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1834 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1835 e = E->capture_init_end(); 1836 i != e; ++i, ++CurField) { 1837 // Emit initialization 1838 1839 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1840 ArrayRef<VarDecl *> ArrayIndexes; 1841 if (CurField->getType()->isArrayType()) 1842 ArrayIndexes = E->getCaptureInitIndexVars(i); 1843 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1844 } 1845 } 1846