1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGObjCRuntime.h" 19 #include "CGDebugInfo.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 llvm::Value *Callee, 28 ReturnValueSlot ReturnValue, 29 llvm::Value *This, 30 llvm::Value *VTT, 31 CallExpr::const_arg_iterator ArgBeg, 32 CallExpr::const_arg_iterator ArgEnd) { 33 assert(MD->isInstance() && 34 "Trying to emit a member call expr on a static method!"); 35 36 CallArgList Args; 37 38 // Push the this ptr. 39 Args.add(RValue::get(This), MD->getThisType(getContext())); 40 41 // If there is a VTT parameter, emit it. 42 if (VTT) { 43 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 44 Args.add(RValue::get(VTT), T); 45 } 46 47 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 48 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 49 50 // And the rest of the call args. 51 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 52 53 return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args, 54 FPT->getExtInfo(), 55 required), 56 Callee, ReturnValue, Args, MD); 57 } 58 59 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 60 const Expr *E = Base; 61 62 while (true) { 63 E = E->IgnoreParens(); 64 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 65 if (CE->getCastKind() == CK_DerivedToBase || 66 CE->getCastKind() == CK_UncheckedDerivedToBase || 67 CE->getCastKind() == CK_NoOp) { 68 E = CE->getSubExpr(); 69 continue; 70 } 71 } 72 73 break; 74 } 75 76 QualType DerivedType = E->getType(); 77 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 78 DerivedType = PTy->getPointeeType(); 79 80 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 81 } 82 83 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 84 // quite what we want. 85 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 86 while (true) { 87 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 88 E = PE->getSubExpr(); 89 continue; 90 } 91 92 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 93 if (CE->getCastKind() == CK_NoOp) { 94 E = CE->getSubExpr(); 95 continue; 96 } 97 } 98 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 99 if (UO->getOpcode() == UO_Extension) { 100 E = UO->getSubExpr(); 101 continue; 102 } 103 } 104 return E; 105 } 106 } 107 108 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 109 /// expr can be devirtualized. 110 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 111 const Expr *Base, 112 const CXXMethodDecl *MD) { 113 114 // When building with -fapple-kext, all calls must go through the vtable since 115 // the kernel linker can do runtime patching of vtables. 116 if (Context.getLangOpts().AppleKext) 117 return false; 118 119 // If the most derived class is marked final, we know that no subclass can 120 // override this member function and so we can devirtualize it. For example: 121 // 122 // struct A { virtual void f(); } 123 // struct B final : A { }; 124 // 125 // void f(B *b) { 126 // b->f(); 127 // } 128 // 129 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 130 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 131 return true; 132 133 // If the member function is marked 'final', we know that it can't be 134 // overridden and can therefore devirtualize it. 135 if (MD->hasAttr<FinalAttr>()) 136 return true; 137 138 // Similarly, if the class itself is marked 'final' it can't be overridden 139 // and we can therefore devirtualize the member function call. 140 if (MD->getParent()->hasAttr<FinalAttr>()) 141 return true; 142 143 Base = skipNoOpCastsAndParens(Base); 144 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 145 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 146 // This is a record decl. We know the type and can devirtualize it. 147 return VD->getType()->isRecordType(); 148 } 149 150 return false; 151 } 152 153 // We can always devirtualize calls on temporary object expressions. 154 if (isa<CXXConstructExpr>(Base)) 155 return true; 156 157 // And calls on bound temporaries. 158 if (isa<CXXBindTemporaryExpr>(Base)) 159 return true; 160 161 // Check if this is a call expr that returns a record type. 162 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 163 return CE->getCallReturnType()->isRecordType(); 164 165 // We can't devirtualize the call. 166 return false; 167 } 168 169 // Note: This function also emit constructor calls to support a MSVC 170 // extensions allowing explicit constructor function call. 171 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 172 ReturnValueSlot ReturnValue) { 173 const Expr *callee = CE->getCallee()->IgnoreParens(); 174 175 if (isa<BinaryOperator>(callee)) 176 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 177 178 const MemberExpr *ME = cast<MemberExpr>(callee); 179 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 180 181 CGDebugInfo *DI = getDebugInfo(); 182 if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo 183 && !isa<CallExpr>(ME->getBase())) { 184 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 185 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 186 DI->getOrCreateRecordType(PTy->getPointeeType(), 187 MD->getParent()->getLocation()); 188 } 189 } 190 191 if (MD->isStatic()) { 192 // The method is static, emit it as we would a regular call. 193 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 194 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 195 ReturnValue, CE->arg_begin(), CE->arg_end()); 196 } 197 198 // Compute the object pointer. 199 llvm::Value *This; 200 if (ME->isArrow()) 201 This = EmitScalarExpr(ME->getBase()); 202 else 203 This = EmitLValue(ME->getBase()).getAddress(); 204 205 if (MD->isTrivial()) { 206 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 207 if (isa<CXXConstructorDecl>(MD) && 208 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 209 return RValue::get(0); 210 211 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 212 // We don't like to generate the trivial copy/move assignment operator 213 // when it isn't necessary; just produce the proper effect here. 214 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 215 EmitAggregateCopy(This, RHS, CE->getType()); 216 return RValue::get(This); 217 } 218 219 if (isa<CXXConstructorDecl>(MD) && 220 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 221 // Trivial move and copy ctor are the same. 222 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 223 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 224 CE->arg_begin(), CE->arg_end()); 225 return RValue::get(This); 226 } 227 llvm_unreachable("unknown trivial member function"); 228 } 229 230 // Compute the function type we're calling. 231 const CGFunctionInfo *FInfo = 0; 232 if (isa<CXXDestructorDecl>(MD)) 233 FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 234 Dtor_Complete); 235 else if (isa<CXXConstructorDecl>(MD)) 236 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 237 cast<CXXConstructorDecl>(MD), 238 Ctor_Complete); 239 else 240 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 241 242 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 243 244 // C++ [class.virtual]p12: 245 // Explicit qualification with the scope operator (5.1) suppresses the 246 // virtual call mechanism. 247 // 248 // We also don't emit a virtual call if the base expression has a record type 249 // because then we know what the type is. 250 bool UseVirtualCall; 251 UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 252 && !canDevirtualizeMemberFunctionCalls(getContext(), 253 ME->getBase(), MD); 254 llvm::Value *Callee; 255 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 256 if (UseVirtualCall) { 257 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 258 } else { 259 if (getContext().getLangOpts().AppleKext && 260 MD->isVirtual() && 261 ME->hasQualifier()) 262 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 263 else 264 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 265 } 266 } else if (const CXXConstructorDecl *Ctor = 267 dyn_cast<CXXConstructorDecl>(MD)) { 268 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 269 } else if (UseVirtualCall) { 270 Callee = BuildVirtualCall(MD, This, Ty); 271 } else { 272 if (getContext().getLangOpts().AppleKext && 273 MD->isVirtual() && 274 ME->hasQualifier()) 275 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 276 else 277 Callee = CGM.GetAddrOfFunction(MD, Ty); 278 } 279 280 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 281 CE->arg_begin(), CE->arg_end()); 282 } 283 284 RValue 285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 286 ReturnValueSlot ReturnValue) { 287 const BinaryOperator *BO = 288 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 289 const Expr *BaseExpr = BO->getLHS(); 290 const Expr *MemFnExpr = BO->getRHS(); 291 292 const MemberPointerType *MPT = 293 MemFnExpr->getType()->castAs<MemberPointerType>(); 294 295 const FunctionProtoType *FPT = 296 MPT->getPointeeType()->castAs<FunctionProtoType>(); 297 const CXXRecordDecl *RD = 298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 299 300 // Get the member function pointer. 301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 302 303 // Emit the 'this' pointer. 304 llvm::Value *This; 305 306 if (BO->getOpcode() == BO_PtrMemI) 307 This = EmitScalarExpr(BaseExpr); 308 else 309 This = EmitLValue(BaseExpr).getAddress(); 310 311 // Ask the ABI to load the callee. Note that This is modified. 312 llvm::Value *Callee = 313 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 314 315 CallArgList Args; 316 317 QualType ThisType = 318 getContext().getPointerType(getContext().getTagDeclType(RD)); 319 320 // Push the this ptr. 321 Args.add(RValue::get(This), ThisType); 322 323 // And the rest of the call args 324 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 325 return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee, 326 ReturnValue, Args); 327 } 328 329 RValue 330 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 331 const CXXMethodDecl *MD, 332 ReturnValueSlot ReturnValue) { 333 assert(MD->isInstance() && 334 "Trying to emit a member call expr on a static method!"); 335 LValue LV = EmitLValue(E->getArg(0)); 336 llvm::Value *This = LV.getAddress(); 337 338 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 339 MD->isTrivial()) { 340 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 341 QualType Ty = E->getType(); 342 EmitAggregateCopy(This, Src, Ty); 343 return RValue::get(This); 344 } 345 346 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 347 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 348 E->arg_begin() + 1, E->arg_end()); 349 } 350 351 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 352 ReturnValueSlot ReturnValue) { 353 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 354 } 355 356 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 357 llvm::Value *DestPtr, 358 const CXXRecordDecl *Base) { 359 if (Base->isEmpty()) 360 return; 361 362 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 363 364 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 365 CharUnits Size = Layout.getNonVirtualSize(); 366 CharUnits Align = Layout.getNonVirtualAlign(); 367 368 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 369 370 // If the type contains a pointer to data member we can't memset it to zero. 371 // Instead, create a null constant and copy it to the destination. 372 // TODO: there are other patterns besides zero that we can usefully memset, 373 // like -1, which happens to be the pattern used by member-pointers. 374 // TODO: isZeroInitializable can be over-conservative in the case where a 375 // virtual base contains a member pointer. 376 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 377 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 378 379 llvm::GlobalVariable *NullVariable = 380 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 381 /*isConstant=*/true, 382 llvm::GlobalVariable::PrivateLinkage, 383 NullConstant, Twine()); 384 NullVariable->setAlignment(Align.getQuantity()); 385 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 386 387 // Get and call the appropriate llvm.memcpy overload. 388 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 389 return; 390 } 391 392 // Otherwise, just memset the whole thing to zero. This is legal 393 // because in LLVM, all default initializers (other than the ones we just 394 // handled above) are guaranteed to have a bit pattern of all zeros. 395 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 396 Align.getQuantity()); 397 } 398 399 void 400 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 401 AggValueSlot Dest) { 402 assert(!Dest.isIgnored() && "Must have a destination!"); 403 const CXXConstructorDecl *CD = E->getConstructor(); 404 405 // If we require zero initialization before (or instead of) calling the 406 // constructor, as can be the case with a non-user-provided default 407 // constructor, emit the zero initialization now, unless destination is 408 // already zeroed. 409 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 410 switch (E->getConstructionKind()) { 411 case CXXConstructExpr::CK_Delegating: 412 case CXXConstructExpr::CK_Complete: 413 EmitNullInitialization(Dest.getAddr(), E->getType()); 414 break; 415 case CXXConstructExpr::CK_VirtualBase: 416 case CXXConstructExpr::CK_NonVirtualBase: 417 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 418 break; 419 } 420 } 421 422 // If this is a call to a trivial default constructor, do nothing. 423 if (CD->isTrivial() && CD->isDefaultConstructor()) 424 return; 425 426 // Elide the constructor if we're constructing from a temporary. 427 // The temporary check is required because Sema sets this on NRVO 428 // returns. 429 if (getContext().getLangOpts().ElideConstructors && E->isElidable()) { 430 assert(getContext().hasSameUnqualifiedType(E->getType(), 431 E->getArg(0)->getType())); 432 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 433 EmitAggExpr(E->getArg(0), Dest); 434 return; 435 } 436 } 437 438 if (const ConstantArrayType *arrayType 439 = getContext().getAsConstantArrayType(E->getType())) { 440 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 441 E->arg_begin(), E->arg_end()); 442 } else { 443 CXXCtorType Type = Ctor_Complete; 444 bool ForVirtualBase = false; 445 446 switch (E->getConstructionKind()) { 447 case CXXConstructExpr::CK_Delegating: 448 // We should be emitting a constructor; GlobalDecl will assert this 449 Type = CurGD.getCtorType(); 450 break; 451 452 case CXXConstructExpr::CK_Complete: 453 Type = Ctor_Complete; 454 break; 455 456 case CXXConstructExpr::CK_VirtualBase: 457 ForVirtualBase = true; 458 // fall-through 459 460 case CXXConstructExpr::CK_NonVirtualBase: 461 Type = Ctor_Base; 462 } 463 464 // Call the constructor. 465 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 466 E->arg_begin(), E->arg_end()); 467 } 468 } 469 470 void 471 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 472 llvm::Value *Src, 473 const Expr *Exp) { 474 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 475 Exp = E->getSubExpr(); 476 assert(isa<CXXConstructExpr>(Exp) && 477 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 478 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 479 const CXXConstructorDecl *CD = E->getConstructor(); 480 RunCleanupsScope Scope(*this); 481 482 // If we require zero initialization before (or instead of) calling the 483 // constructor, as can be the case with a non-user-provided default 484 // constructor, emit the zero initialization now. 485 // FIXME. Do I still need this for a copy ctor synthesis? 486 if (E->requiresZeroInitialization()) 487 EmitNullInitialization(Dest, E->getType()); 488 489 assert(!getContext().getAsConstantArrayType(E->getType()) 490 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 491 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 492 E->arg_begin(), E->arg_end()); 493 } 494 495 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 496 const CXXNewExpr *E) { 497 if (!E->isArray()) 498 return CharUnits::Zero(); 499 500 // No cookie is required if the operator new[] being used is the 501 // reserved placement operator new[]. 502 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 503 return CharUnits::Zero(); 504 505 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 506 } 507 508 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 509 const CXXNewExpr *e, 510 unsigned minElements, 511 llvm::Value *&numElements, 512 llvm::Value *&sizeWithoutCookie) { 513 QualType type = e->getAllocatedType(); 514 515 if (!e->isArray()) { 516 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 517 sizeWithoutCookie 518 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 519 return sizeWithoutCookie; 520 } 521 522 // The width of size_t. 523 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 524 525 // Figure out the cookie size. 526 llvm::APInt cookieSize(sizeWidth, 527 CalculateCookiePadding(CGF, e).getQuantity()); 528 529 // Emit the array size expression. 530 // We multiply the size of all dimensions for NumElements. 531 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 532 numElements = CGF.EmitScalarExpr(e->getArraySize()); 533 assert(isa<llvm::IntegerType>(numElements->getType())); 534 535 // The number of elements can be have an arbitrary integer type; 536 // essentially, we need to multiply it by a constant factor, add a 537 // cookie size, and verify that the result is representable as a 538 // size_t. That's just a gloss, though, and it's wrong in one 539 // important way: if the count is negative, it's an error even if 540 // the cookie size would bring the total size >= 0. 541 bool isSigned 542 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 543 llvm::IntegerType *numElementsType 544 = cast<llvm::IntegerType>(numElements->getType()); 545 unsigned numElementsWidth = numElementsType->getBitWidth(); 546 547 // Compute the constant factor. 548 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 549 while (const ConstantArrayType *CAT 550 = CGF.getContext().getAsConstantArrayType(type)) { 551 type = CAT->getElementType(); 552 arraySizeMultiplier *= CAT->getSize(); 553 } 554 555 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 556 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 557 typeSizeMultiplier *= arraySizeMultiplier; 558 559 // This will be a size_t. 560 llvm::Value *size; 561 562 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 563 // Don't bloat the -O0 code. 564 if (llvm::ConstantInt *numElementsC = 565 dyn_cast<llvm::ConstantInt>(numElements)) { 566 const llvm::APInt &count = numElementsC->getValue(); 567 568 bool hasAnyOverflow = false; 569 570 // If 'count' was a negative number, it's an overflow. 571 if (isSigned && count.isNegative()) 572 hasAnyOverflow = true; 573 574 // We want to do all this arithmetic in size_t. If numElements is 575 // wider than that, check whether it's already too big, and if so, 576 // overflow. 577 else if (numElementsWidth > sizeWidth && 578 numElementsWidth - sizeWidth > count.countLeadingZeros()) 579 hasAnyOverflow = true; 580 581 // Okay, compute a count at the right width. 582 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 583 584 // If there is a brace-initializer, we cannot allocate fewer elements than 585 // there are initializers. If we do, that's treated like an overflow. 586 if (adjustedCount.ult(minElements)) 587 hasAnyOverflow = true; 588 589 // Scale numElements by that. This might overflow, but we don't 590 // care because it only overflows if allocationSize does, too, and 591 // if that overflows then we shouldn't use this. 592 numElements = llvm::ConstantInt::get(CGF.SizeTy, 593 adjustedCount * arraySizeMultiplier); 594 595 // Compute the size before cookie, and track whether it overflowed. 596 bool overflow; 597 llvm::APInt allocationSize 598 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 599 hasAnyOverflow |= overflow; 600 601 // Add in the cookie, and check whether it's overflowed. 602 if (cookieSize != 0) { 603 // Save the current size without a cookie. This shouldn't be 604 // used if there was overflow. 605 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 606 607 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 608 hasAnyOverflow |= overflow; 609 } 610 611 // On overflow, produce a -1 so operator new will fail. 612 if (hasAnyOverflow) { 613 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 614 } else { 615 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 616 } 617 618 // Otherwise, we might need to use the overflow intrinsics. 619 } else { 620 // There are up to five conditions we need to test for: 621 // 1) if isSigned, we need to check whether numElements is negative; 622 // 2) if numElementsWidth > sizeWidth, we need to check whether 623 // numElements is larger than something representable in size_t; 624 // 3) if minElements > 0, we need to check whether numElements is smaller 625 // than that. 626 // 4) we need to compute 627 // sizeWithoutCookie := numElements * typeSizeMultiplier 628 // and check whether it overflows; and 629 // 5) if we need a cookie, we need to compute 630 // size := sizeWithoutCookie + cookieSize 631 // and check whether it overflows. 632 633 llvm::Value *hasOverflow = 0; 634 635 // If numElementsWidth > sizeWidth, then one way or another, we're 636 // going to have to do a comparison for (2), and this happens to 637 // take care of (1), too. 638 if (numElementsWidth > sizeWidth) { 639 llvm::APInt threshold(numElementsWidth, 1); 640 threshold <<= sizeWidth; 641 642 llvm::Value *thresholdV 643 = llvm::ConstantInt::get(numElementsType, threshold); 644 645 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 646 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 647 648 // Otherwise, if we're signed, we want to sext up to size_t. 649 } else if (isSigned) { 650 if (numElementsWidth < sizeWidth) 651 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 652 653 // If there's a non-1 type size multiplier, then we can do the 654 // signedness check at the same time as we do the multiply 655 // because a negative number times anything will cause an 656 // unsigned overflow. Otherwise, we have to do it here. But at least 657 // in this case, we can subsume the >= minElements check. 658 if (typeSizeMultiplier == 1) 659 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 660 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 661 662 // Otherwise, zext up to size_t if necessary. 663 } else if (numElementsWidth < sizeWidth) { 664 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 665 } 666 667 assert(numElements->getType() == CGF.SizeTy); 668 669 if (minElements) { 670 // Don't allow allocation of fewer elements than we have initializers. 671 if (!hasOverflow) { 672 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 673 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 674 } else if (numElementsWidth > sizeWidth) { 675 // The other existing overflow subsumes this check. 676 // We do an unsigned comparison, since any signed value < -1 is 677 // taken care of either above or below. 678 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 679 CGF.Builder.CreateICmpULT(numElements, 680 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 681 } 682 } 683 684 size = numElements; 685 686 // Multiply by the type size if necessary. This multiplier 687 // includes all the factors for nested arrays. 688 // 689 // This step also causes numElements to be scaled up by the 690 // nested-array factor if necessary. Overflow on this computation 691 // can be ignored because the result shouldn't be used if 692 // allocation fails. 693 if (typeSizeMultiplier != 1) { 694 llvm::Value *umul_with_overflow 695 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 696 697 llvm::Value *tsmV = 698 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 699 llvm::Value *result = 700 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 701 702 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 703 if (hasOverflow) 704 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 705 else 706 hasOverflow = overflowed; 707 708 size = CGF.Builder.CreateExtractValue(result, 0); 709 710 // Also scale up numElements by the array size multiplier. 711 if (arraySizeMultiplier != 1) { 712 // If the base element type size is 1, then we can re-use the 713 // multiply we just did. 714 if (typeSize.isOne()) { 715 assert(arraySizeMultiplier == typeSizeMultiplier); 716 numElements = size; 717 718 // Otherwise we need a separate multiply. 719 } else { 720 llvm::Value *asmV = 721 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 722 numElements = CGF.Builder.CreateMul(numElements, asmV); 723 } 724 } 725 } else { 726 // numElements doesn't need to be scaled. 727 assert(arraySizeMultiplier == 1); 728 } 729 730 // Add in the cookie size if necessary. 731 if (cookieSize != 0) { 732 sizeWithoutCookie = size; 733 734 llvm::Value *uadd_with_overflow 735 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 736 737 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 738 llvm::Value *result = 739 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 740 741 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 742 if (hasOverflow) 743 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 744 else 745 hasOverflow = overflowed; 746 747 size = CGF.Builder.CreateExtractValue(result, 0); 748 } 749 750 // If we had any possibility of dynamic overflow, make a select to 751 // overwrite 'size' with an all-ones value, which should cause 752 // operator new to throw. 753 if (hasOverflow) 754 size = CGF.Builder.CreateSelect(hasOverflow, 755 llvm::Constant::getAllOnesValue(CGF.SizeTy), 756 size); 757 } 758 759 if (cookieSize == 0) 760 sizeWithoutCookie = size; 761 else 762 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 763 764 return size; 765 } 766 767 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 768 QualType AllocType, llvm::Value *NewPtr) { 769 770 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 771 if (!CGF.hasAggregateLLVMType(AllocType)) 772 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 773 Alignment), 774 false); 775 else if (AllocType->isAnyComplexType()) 776 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 777 AllocType.isVolatileQualified()); 778 else { 779 AggValueSlot Slot 780 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 781 AggValueSlot::IsDestructed, 782 AggValueSlot::DoesNotNeedGCBarriers, 783 AggValueSlot::IsNotAliased); 784 CGF.EmitAggExpr(Init, Slot); 785 786 CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 787 } 788 } 789 790 void 791 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 792 QualType elementType, 793 llvm::Value *beginPtr, 794 llvm::Value *numElements) { 795 if (!E->hasInitializer()) 796 return; // We have a POD type. 797 798 llvm::Value *explicitPtr = beginPtr; 799 // Find the end of the array, hoisted out of the loop. 800 llvm::Value *endPtr = 801 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 802 803 unsigned initializerElements = 0; 804 805 const Expr *Init = E->getInitializer(); 806 llvm::AllocaInst *endOfInit = 0; 807 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 808 EHScopeStack::stable_iterator cleanup; 809 llvm::Instruction *cleanupDominator = 0; 810 // If the initializer is an initializer list, first do the explicit elements. 811 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 812 initializerElements = ILE->getNumInits(); 813 814 // Enter a partial-destruction cleanup if necessary. 815 if (needsEHCleanup(dtorKind)) { 816 // In principle we could tell the cleanup where we are more 817 // directly, but the control flow can get so varied here that it 818 // would actually be quite complex. Therefore we go through an 819 // alloca. 820 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 821 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 822 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 823 getDestroyer(dtorKind)); 824 cleanup = EHStack.stable_begin(); 825 } 826 827 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 828 // Tell the cleanup that it needs to destroy up to this 829 // element. TODO: some of these stores can be trivially 830 // observed to be unnecessary. 831 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 832 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 833 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 834 } 835 836 // The remaining elements are filled with the array filler expression. 837 Init = ILE->getArrayFiller(); 838 } 839 840 // Create the continuation block. 841 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 842 843 // If the number of elements isn't constant, we have to now check if there is 844 // anything left to initialize. 845 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 846 // If all elements have already been initialized, skip the whole loop. 847 if (constNum->getZExtValue() <= initializerElements) { 848 // If there was a cleanup, deactivate it. 849 if (cleanupDominator) 850 DeactivateCleanupBlock(cleanup, cleanupDominator);; 851 return; 852 } 853 } else { 854 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 855 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 856 "array.isempty"); 857 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 858 EmitBlock(nonEmptyBB); 859 } 860 861 // Enter the loop. 862 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 863 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 864 865 EmitBlock(loopBB); 866 867 // Set up the current-element phi. 868 llvm::PHINode *curPtr = 869 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 870 curPtr->addIncoming(explicitPtr, entryBB); 871 872 // Store the new cleanup position for irregular cleanups. 873 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 874 875 // Enter a partial-destruction cleanup if necessary. 876 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 877 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 878 getDestroyer(dtorKind)); 879 cleanup = EHStack.stable_begin(); 880 cleanupDominator = Builder.CreateUnreachable(); 881 } 882 883 // Emit the initializer into this element. 884 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 885 886 // Leave the cleanup if we entered one. 887 if (cleanupDominator) { 888 DeactivateCleanupBlock(cleanup, cleanupDominator); 889 cleanupDominator->eraseFromParent(); 890 } 891 892 // Advance to the next element. 893 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 894 895 // Check whether we've gotten to the end of the array and, if so, 896 // exit the loop. 897 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 898 Builder.CreateCondBr(isEnd, contBB, loopBB); 899 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 900 901 EmitBlock(contBB); 902 } 903 904 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 905 llvm::Value *NewPtr, llvm::Value *Size) { 906 CGF.EmitCastToVoidPtr(NewPtr); 907 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 908 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 909 Alignment.getQuantity(), false); 910 } 911 912 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 913 QualType ElementType, 914 llvm::Value *NewPtr, 915 llvm::Value *NumElements, 916 llvm::Value *AllocSizeWithoutCookie) { 917 const Expr *Init = E->getInitializer(); 918 if (E->isArray()) { 919 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 920 CXXConstructorDecl *Ctor = CCE->getConstructor(); 921 bool RequiresZeroInitialization = false; 922 if (Ctor->isTrivial()) { 923 // If new expression did not specify value-initialization, then there 924 // is no initialization. 925 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 926 return; 927 928 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 929 // Optimization: since zero initialization will just set the memory 930 // to all zeroes, generate a single memset to do it in one shot. 931 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 932 return; 933 } 934 935 RequiresZeroInitialization = true; 936 } 937 938 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 939 CCE->arg_begin(), CCE->arg_end(), 940 RequiresZeroInitialization); 941 return; 942 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 943 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 944 // Optimization: since zero initialization will just set the memory 945 // to all zeroes, generate a single memset to do it in one shot. 946 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 947 return; 948 } 949 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 950 return; 951 } 952 953 if (!Init) 954 return; 955 956 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 957 } 958 959 namespace { 960 /// A cleanup to call the given 'operator delete' function upon 961 /// abnormal exit from a new expression. 962 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 963 size_t NumPlacementArgs; 964 const FunctionDecl *OperatorDelete; 965 llvm::Value *Ptr; 966 llvm::Value *AllocSize; 967 968 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 969 970 public: 971 static size_t getExtraSize(size_t NumPlacementArgs) { 972 return NumPlacementArgs * sizeof(RValue); 973 } 974 975 CallDeleteDuringNew(size_t NumPlacementArgs, 976 const FunctionDecl *OperatorDelete, 977 llvm::Value *Ptr, 978 llvm::Value *AllocSize) 979 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 980 Ptr(Ptr), AllocSize(AllocSize) {} 981 982 void setPlacementArg(unsigned I, RValue Arg) { 983 assert(I < NumPlacementArgs && "index out of range"); 984 getPlacementArgs()[I] = Arg; 985 } 986 987 void Emit(CodeGenFunction &CGF, Flags flags) { 988 const FunctionProtoType *FPT 989 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 990 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 991 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 992 993 CallArgList DeleteArgs; 994 995 // The first argument is always a void*. 996 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 997 DeleteArgs.add(RValue::get(Ptr), *AI++); 998 999 // A member 'operator delete' can take an extra 'size_t' argument. 1000 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1001 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1002 1003 // Pass the rest of the arguments, which must match exactly. 1004 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1005 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1006 1007 // Call 'operator delete'. 1008 CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT), 1009 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1010 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1011 } 1012 }; 1013 1014 /// A cleanup to call the given 'operator delete' function upon 1015 /// abnormal exit from a new expression when the new expression is 1016 /// conditional. 1017 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1018 size_t NumPlacementArgs; 1019 const FunctionDecl *OperatorDelete; 1020 DominatingValue<RValue>::saved_type Ptr; 1021 DominatingValue<RValue>::saved_type AllocSize; 1022 1023 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1024 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1025 } 1026 1027 public: 1028 static size_t getExtraSize(size_t NumPlacementArgs) { 1029 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1030 } 1031 1032 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1033 const FunctionDecl *OperatorDelete, 1034 DominatingValue<RValue>::saved_type Ptr, 1035 DominatingValue<RValue>::saved_type AllocSize) 1036 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1037 Ptr(Ptr), AllocSize(AllocSize) {} 1038 1039 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1040 assert(I < NumPlacementArgs && "index out of range"); 1041 getPlacementArgs()[I] = Arg; 1042 } 1043 1044 void Emit(CodeGenFunction &CGF, Flags flags) { 1045 const FunctionProtoType *FPT 1046 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1047 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1048 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1049 1050 CallArgList DeleteArgs; 1051 1052 // The first argument is always a void*. 1053 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1054 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1055 1056 // A member 'operator delete' can take an extra 'size_t' argument. 1057 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1058 RValue RV = AllocSize.restore(CGF); 1059 DeleteArgs.add(RV, *AI++); 1060 } 1061 1062 // Pass the rest of the arguments, which must match exactly. 1063 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1064 RValue RV = getPlacementArgs()[I].restore(CGF); 1065 DeleteArgs.add(RV, *AI++); 1066 } 1067 1068 // Call 'operator delete'. 1069 CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT), 1070 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1071 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1072 } 1073 }; 1074 } 1075 1076 /// Enter a cleanup to call 'operator delete' if the initializer in a 1077 /// new-expression throws. 1078 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1079 const CXXNewExpr *E, 1080 llvm::Value *NewPtr, 1081 llvm::Value *AllocSize, 1082 const CallArgList &NewArgs) { 1083 // If we're not inside a conditional branch, then the cleanup will 1084 // dominate and we can do the easier (and more efficient) thing. 1085 if (!CGF.isInConditionalBranch()) { 1086 CallDeleteDuringNew *Cleanup = CGF.EHStack 1087 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1088 E->getNumPlacementArgs(), 1089 E->getOperatorDelete(), 1090 NewPtr, AllocSize); 1091 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1092 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1093 1094 return; 1095 } 1096 1097 // Otherwise, we need to save all this stuff. 1098 DominatingValue<RValue>::saved_type SavedNewPtr = 1099 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1100 DominatingValue<RValue>::saved_type SavedAllocSize = 1101 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1102 1103 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1104 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1105 E->getNumPlacementArgs(), 1106 E->getOperatorDelete(), 1107 SavedNewPtr, 1108 SavedAllocSize); 1109 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1110 Cleanup->setPlacementArg(I, 1111 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1112 1113 CGF.initFullExprCleanup(); 1114 } 1115 1116 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1117 // The element type being allocated. 1118 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1119 1120 // 1. Build a call to the allocation function. 1121 FunctionDecl *allocator = E->getOperatorNew(); 1122 const FunctionProtoType *allocatorType = 1123 allocator->getType()->castAs<FunctionProtoType>(); 1124 1125 CallArgList allocatorArgs; 1126 1127 // The allocation size is the first argument. 1128 QualType sizeType = getContext().getSizeType(); 1129 1130 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1131 unsigned minElements = 0; 1132 if (E->isArray() && E->hasInitializer()) { 1133 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1134 minElements = ILE->getNumInits(); 1135 } 1136 1137 llvm::Value *numElements = 0; 1138 llvm::Value *allocSizeWithoutCookie = 0; 1139 llvm::Value *allocSize = 1140 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1141 allocSizeWithoutCookie); 1142 1143 allocatorArgs.add(RValue::get(allocSize), sizeType); 1144 1145 // Emit the rest of the arguments. 1146 // FIXME: Ideally, this should just use EmitCallArgs. 1147 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1148 1149 // First, use the types from the function type. 1150 // We start at 1 here because the first argument (the allocation size) 1151 // has already been emitted. 1152 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1153 ++i, ++placementArg) { 1154 QualType argType = allocatorType->getArgType(i); 1155 1156 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1157 placementArg->getType()) && 1158 "type mismatch in call argument!"); 1159 1160 EmitCallArg(allocatorArgs, *placementArg, argType); 1161 } 1162 1163 // Either we've emitted all the call args, or we have a call to a 1164 // variadic function. 1165 assert((placementArg == E->placement_arg_end() || 1166 allocatorType->isVariadic()) && 1167 "Extra arguments to non-variadic function!"); 1168 1169 // If we still have any arguments, emit them using the type of the argument. 1170 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1171 placementArg != placementArgsEnd; ++placementArg) { 1172 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1173 } 1174 1175 // Emit the allocation call. If the allocator is a global placement 1176 // operator, just "inline" it directly. 1177 RValue RV; 1178 if (allocator->isReservedGlobalPlacementOperator()) { 1179 assert(allocatorArgs.size() == 2); 1180 RV = allocatorArgs[1].RV; 1181 // TODO: kill any unnecessary computations done for the size 1182 // argument. 1183 } else { 1184 RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs, 1185 allocatorType), 1186 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1187 allocatorArgs, allocator); 1188 } 1189 1190 // Emit a null check on the allocation result if the allocation 1191 // function is allowed to return null (because it has a non-throwing 1192 // exception spec; for this part, we inline 1193 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1194 // interesting initializer. 1195 bool nullCheck = allocatorType->isNothrow(getContext()) && 1196 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1197 1198 llvm::BasicBlock *nullCheckBB = 0; 1199 llvm::BasicBlock *contBB = 0; 1200 1201 llvm::Value *allocation = RV.getScalarVal(); 1202 unsigned AS = 1203 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1204 1205 // The null-check means that the initializer is conditionally 1206 // evaluated. 1207 ConditionalEvaluation conditional(*this); 1208 1209 if (nullCheck) { 1210 conditional.begin(*this); 1211 1212 nullCheckBB = Builder.GetInsertBlock(); 1213 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1214 contBB = createBasicBlock("new.cont"); 1215 1216 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1217 Builder.CreateCondBr(isNull, contBB, notNullBB); 1218 EmitBlock(notNullBB); 1219 } 1220 1221 // If there's an operator delete, enter a cleanup to call it if an 1222 // exception is thrown. 1223 EHScopeStack::stable_iterator operatorDeleteCleanup; 1224 llvm::Instruction *cleanupDominator = 0; 1225 if (E->getOperatorDelete() && 1226 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1227 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1228 operatorDeleteCleanup = EHStack.stable_begin(); 1229 cleanupDominator = Builder.CreateUnreachable(); 1230 } 1231 1232 assert((allocSize == allocSizeWithoutCookie) == 1233 CalculateCookiePadding(*this, E).isZero()); 1234 if (allocSize != allocSizeWithoutCookie) { 1235 assert(E->isArray()); 1236 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1237 numElements, 1238 E, allocType); 1239 } 1240 1241 llvm::Type *elementPtrTy 1242 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1243 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1244 1245 EmitNewInitializer(*this, E, allocType, result, numElements, 1246 allocSizeWithoutCookie); 1247 if (E->isArray()) { 1248 // NewPtr is a pointer to the base element type. If we're 1249 // allocating an array of arrays, we'll need to cast back to the 1250 // array pointer type. 1251 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1252 if (result->getType() != resultType) 1253 result = Builder.CreateBitCast(result, resultType); 1254 } 1255 1256 // Deactivate the 'operator delete' cleanup if we finished 1257 // initialization. 1258 if (operatorDeleteCleanup.isValid()) { 1259 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1260 cleanupDominator->eraseFromParent(); 1261 } 1262 1263 if (nullCheck) { 1264 conditional.end(*this); 1265 1266 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1267 EmitBlock(contBB); 1268 1269 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1270 PHI->addIncoming(result, notNullBB); 1271 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1272 nullCheckBB); 1273 1274 result = PHI; 1275 } 1276 1277 return result; 1278 } 1279 1280 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1281 llvm::Value *Ptr, 1282 QualType DeleteTy) { 1283 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1284 1285 const FunctionProtoType *DeleteFTy = 1286 DeleteFD->getType()->getAs<FunctionProtoType>(); 1287 1288 CallArgList DeleteArgs; 1289 1290 // Check if we need to pass the size to the delete operator. 1291 llvm::Value *Size = 0; 1292 QualType SizeTy; 1293 if (DeleteFTy->getNumArgs() == 2) { 1294 SizeTy = DeleteFTy->getArgType(1); 1295 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1296 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1297 DeleteTypeSize.getQuantity()); 1298 } 1299 1300 QualType ArgTy = DeleteFTy->getArgType(0); 1301 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1302 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1303 1304 if (Size) 1305 DeleteArgs.add(RValue::get(Size), SizeTy); 1306 1307 // Emit the call to delete. 1308 EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy), 1309 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1310 DeleteArgs, DeleteFD); 1311 } 1312 1313 namespace { 1314 /// Calls the given 'operator delete' on a single object. 1315 struct CallObjectDelete : EHScopeStack::Cleanup { 1316 llvm::Value *Ptr; 1317 const FunctionDecl *OperatorDelete; 1318 QualType ElementType; 1319 1320 CallObjectDelete(llvm::Value *Ptr, 1321 const FunctionDecl *OperatorDelete, 1322 QualType ElementType) 1323 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1324 1325 void Emit(CodeGenFunction &CGF, Flags flags) { 1326 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1327 } 1328 }; 1329 } 1330 1331 /// Emit the code for deleting a single object. 1332 static void EmitObjectDelete(CodeGenFunction &CGF, 1333 const FunctionDecl *OperatorDelete, 1334 llvm::Value *Ptr, 1335 QualType ElementType, 1336 bool UseGlobalDelete) { 1337 // Find the destructor for the type, if applicable. If the 1338 // destructor is virtual, we'll just emit the vcall and return. 1339 const CXXDestructorDecl *Dtor = 0; 1340 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1341 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1342 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1343 Dtor = RD->getDestructor(); 1344 1345 if (Dtor->isVirtual()) { 1346 if (UseGlobalDelete) { 1347 // If we're supposed to call the global delete, make sure we do so 1348 // even if the destructor throws. 1349 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1350 Ptr, OperatorDelete, 1351 ElementType); 1352 } 1353 1354 llvm::Type *Ty = 1355 CGF.getTypes().GetFunctionType( 1356 CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 1357 1358 llvm::Value *Callee 1359 = CGF.BuildVirtualCall(Dtor, 1360 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1361 Ptr, Ty); 1362 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1363 0, 0); 1364 1365 if (UseGlobalDelete) { 1366 CGF.PopCleanupBlock(); 1367 } 1368 1369 return; 1370 } 1371 } 1372 } 1373 1374 // Make sure that we call delete even if the dtor throws. 1375 // This doesn't have to a conditional cleanup because we're going 1376 // to pop it off in a second. 1377 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1378 Ptr, OperatorDelete, ElementType); 1379 1380 if (Dtor) 1381 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1382 /*ForVirtualBase=*/false, Ptr); 1383 else if (CGF.getLangOpts().ObjCAutoRefCount && 1384 ElementType->isObjCLifetimeType()) { 1385 switch (ElementType.getObjCLifetime()) { 1386 case Qualifiers::OCL_None: 1387 case Qualifiers::OCL_ExplicitNone: 1388 case Qualifiers::OCL_Autoreleasing: 1389 break; 1390 1391 case Qualifiers::OCL_Strong: { 1392 // Load the pointer value. 1393 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1394 ElementType.isVolatileQualified()); 1395 1396 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1397 break; 1398 } 1399 1400 case Qualifiers::OCL_Weak: 1401 CGF.EmitARCDestroyWeak(Ptr); 1402 break; 1403 } 1404 } 1405 1406 CGF.PopCleanupBlock(); 1407 } 1408 1409 namespace { 1410 /// Calls the given 'operator delete' on an array of objects. 1411 struct CallArrayDelete : EHScopeStack::Cleanup { 1412 llvm::Value *Ptr; 1413 const FunctionDecl *OperatorDelete; 1414 llvm::Value *NumElements; 1415 QualType ElementType; 1416 CharUnits CookieSize; 1417 1418 CallArrayDelete(llvm::Value *Ptr, 1419 const FunctionDecl *OperatorDelete, 1420 llvm::Value *NumElements, 1421 QualType ElementType, 1422 CharUnits CookieSize) 1423 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1424 ElementType(ElementType), CookieSize(CookieSize) {} 1425 1426 void Emit(CodeGenFunction &CGF, Flags flags) { 1427 const FunctionProtoType *DeleteFTy = 1428 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1429 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1430 1431 CallArgList Args; 1432 1433 // Pass the pointer as the first argument. 1434 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1435 llvm::Value *DeletePtr 1436 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1437 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1438 1439 // Pass the original requested size as the second argument. 1440 if (DeleteFTy->getNumArgs() == 2) { 1441 QualType size_t = DeleteFTy->getArgType(1); 1442 llvm::IntegerType *SizeTy 1443 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1444 1445 CharUnits ElementTypeSize = 1446 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1447 1448 // The size of an element, multiplied by the number of elements. 1449 llvm::Value *Size 1450 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1451 Size = CGF.Builder.CreateMul(Size, NumElements); 1452 1453 // Plus the size of the cookie if applicable. 1454 if (!CookieSize.isZero()) { 1455 llvm::Value *CookieSizeV 1456 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1457 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1458 } 1459 1460 Args.add(RValue::get(Size), size_t); 1461 } 1462 1463 // Emit the call to delete. 1464 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy), 1465 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1466 ReturnValueSlot(), Args, OperatorDelete); 1467 } 1468 }; 1469 } 1470 1471 /// Emit the code for deleting an array of objects. 1472 static void EmitArrayDelete(CodeGenFunction &CGF, 1473 const CXXDeleteExpr *E, 1474 llvm::Value *deletedPtr, 1475 QualType elementType) { 1476 llvm::Value *numElements = 0; 1477 llvm::Value *allocatedPtr = 0; 1478 CharUnits cookieSize; 1479 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1480 numElements, allocatedPtr, cookieSize); 1481 1482 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1483 1484 // Make sure that we call delete even if one of the dtors throws. 1485 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1486 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1487 allocatedPtr, operatorDelete, 1488 numElements, elementType, 1489 cookieSize); 1490 1491 // Destroy the elements. 1492 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1493 assert(numElements && "no element count for a type with a destructor!"); 1494 1495 llvm::Value *arrayEnd = 1496 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1497 1498 // Note that it is legal to allocate a zero-length array, and we 1499 // can never fold the check away because the length should always 1500 // come from a cookie. 1501 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1502 CGF.getDestroyer(dtorKind), 1503 /*checkZeroLength*/ true, 1504 CGF.needsEHCleanup(dtorKind)); 1505 } 1506 1507 // Pop the cleanup block. 1508 CGF.PopCleanupBlock(); 1509 } 1510 1511 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1512 1513 // Get at the argument before we performed the implicit conversion 1514 // to void*. 1515 const Expr *Arg = E->getArgument(); 1516 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 1517 if (ICE->getCastKind() != CK_UserDefinedConversion && 1518 ICE->getType()->isVoidPointerType()) 1519 Arg = ICE->getSubExpr(); 1520 else 1521 break; 1522 } 1523 1524 llvm::Value *Ptr = EmitScalarExpr(Arg); 1525 1526 // Null check the pointer. 1527 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1528 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1529 1530 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1531 1532 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1533 EmitBlock(DeleteNotNull); 1534 1535 // We might be deleting a pointer to array. If so, GEP down to the 1536 // first non-array element. 1537 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1538 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1539 if (DeleteTy->isConstantArrayType()) { 1540 llvm::Value *Zero = Builder.getInt32(0); 1541 SmallVector<llvm::Value*,8> GEP; 1542 1543 GEP.push_back(Zero); // point at the outermost array 1544 1545 // For each layer of array type we're pointing at: 1546 while (const ConstantArrayType *Arr 1547 = getContext().getAsConstantArrayType(DeleteTy)) { 1548 // 1. Unpeel the array type. 1549 DeleteTy = Arr->getElementType(); 1550 1551 // 2. GEP to the first element of the array. 1552 GEP.push_back(Zero); 1553 } 1554 1555 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1556 } 1557 1558 assert(ConvertTypeForMem(DeleteTy) == 1559 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1560 1561 if (E->isArrayForm()) { 1562 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1563 } else { 1564 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1565 E->isGlobalDelete()); 1566 } 1567 1568 EmitBlock(DeleteEnd); 1569 } 1570 1571 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1572 // void __cxa_bad_typeid(); 1573 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1574 1575 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1576 } 1577 1578 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1579 llvm::Value *Fn = getBadTypeidFn(CGF); 1580 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1581 CGF.Builder.CreateUnreachable(); 1582 } 1583 1584 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1585 const Expr *E, 1586 llvm::Type *StdTypeInfoPtrTy) { 1587 // Get the vtable pointer. 1588 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1589 1590 // C++ [expr.typeid]p2: 1591 // If the glvalue expression is obtained by applying the unary * operator to 1592 // a pointer and the pointer is a null pointer value, the typeid expression 1593 // throws the std::bad_typeid exception. 1594 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1595 if (UO->getOpcode() == UO_Deref) { 1596 llvm::BasicBlock *BadTypeidBlock = 1597 CGF.createBasicBlock("typeid.bad_typeid"); 1598 llvm::BasicBlock *EndBlock = 1599 CGF.createBasicBlock("typeid.end"); 1600 1601 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1602 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1603 1604 CGF.EmitBlock(BadTypeidBlock); 1605 EmitBadTypeidCall(CGF); 1606 CGF.EmitBlock(EndBlock); 1607 } 1608 } 1609 1610 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1611 StdTypeInfoPtrTy->getPointerTo()); 1612 1613 // Load the type info. 1614 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1615 return CGF.Builder.CreateLoad(Value); 1616 } 1617 1618 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1619 llvm::Type *StdTypeInfoPtrTy = 1620 ConvertType(E->getType())->getPointerTo(); 1621 1622 if (E->isTypeOperand()) { 1623 llvm::Constant *TypeInfo = 1624 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1625 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1626 } 1627 1628 // C++ [expr.typeid]p2: 1629 // When typeid is applied to a glvalue expression whose type is a 1630 // polymorphic class type, the result refers to a std::type_info object 1631 // representing the type of the most derived object (that is, the dynamic 1632 // type) to which the glvalue refers. 1633 if (E->getExprOperand()->isGLValue()) { 1634 if (const RecordType *RT = 1635 E->getExprOperand()->getType()->getAs<RecordType>()) { 1636 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1637 if (RD->isPolymorphic()) 1638 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1639 StdTypeInfoPtrTy); 1640 } 1641 } 1642 1643 QualType OperandTy = E->getExprOperand()->getType(); 1644 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1645 StdTypeInfoPtrTy); 1646 } 1647 1648 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1649 // void *__dynamic_cast(const void *sub, 1650 // const abi::__class_type_info *src, 1651 // const abi::__class_type_info *dst, 1652 // std::ptrdiff_t src2dst_offset); 1653 1654 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1655 llvm::Type *PtrDiffTy = 1656 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1657 1658 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1659 1660 llvm::FunctionType *FTy = 1661 llvm::FunctionType::get(Int8PtrTy, Args, false); 1662 1663 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1664 } 1665 1666 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1667 // void __cxa_bad_cast(); 1668 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1669 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1670 } 1671 1672 static void EmitBadCastCall(CodeGenFunction &CGF) { 1673 llvm::Value *Fn = getBadCastFn(CGF); 1674 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1675 CGF.Builder.CreateUnreachable(); 1676 } 1677 1678 static llvm::Value * 1679 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1680 QualType SrcTy, QualType DestTy, 1681 llvm::BasicBlock *CastEnd) { 1682 llvm::Type *PtrDiffLTy = 1683 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1684 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1685 1686 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1687 if (PTy->getPointeeType()->isVoidType()) { 1688 // C++ [expr.dynamic.cast]p7: 1689 // If T is "pointer to cv void," then the result is a pointer to the 1690 // most derived object pointed to by v. 1691 1692 // Get the vtable pointer. 1693 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1694 1695 // Get the offset-to-top from the vtable. 1696 llvm::Value *OffsetToTop = 1697 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1698 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1699 1700 // Finally, add the offset to the pointer. 1701 Value = CGF.EmitCastToVoidPtr(Value); 1702 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1703 1704 return CGF.Builder.CreateBitCast(Value, DestLTy); 1705 } 1706 } 1707 1708 QualType SrcRecordTy; 1709 QualType DestRecordTy; 1710 1711 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1712 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1713 DestRecordTy = DestPTy->getPointeeType(); 1714 } else { 1715 SrcRecordTy = SrcTy; 1716 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1717 } 1718 1719 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1720 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1721 1722 llvm::Value *SrcRTTI = 1723 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1724 llvm::Value *DestRTTI = 1725 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1726 1727 // FIXME: Actually compute a hint here. 1728 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1729 1730 // Emit the call to __dynamic_cast. 1731 Value = CGF.EmitCastToVoidPtr(Value); 1732 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1733 SrcRTTI, DestRTTI, OffsetHint); 1734 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1735 1736 /// C++ [expr.dynamic.cast]p9: 1737 /// A failed cast to reference type throws std::bad_cast 1738 if (DestTy->isReferenceType()) { 1739 llvm::BasicBlock *BadCastBlock = 1740 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1741 1742 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1743 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1744 1745 CGF.EmitBlock(BadCastBlock); 1746 EmitBadCastCall(CGF); 1747 } 1748 1749 return Value; 1750 } 1751 1752 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1753 QualType DestTy) { 1754 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1755 if (DestTy->isPointerType()) 1756 return llvm::Constant::getNullValue(DestLTy); 1757 1758 /// C++ [expr.dynamic.cast]p9: 1759 /// A failed cast to reference type throws std::bad_cast 1760 EmitBadCastCall(CGF); 1761 1762 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1763 return llvm::UndefValue::get(DestLTy); 1764 } 1765 1766 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1767 const CXXDynamicCastExpr *DCE) { 1768 QualType DestTy = DCE->getTypeAsWritten(); 1769 1770 if (DCE->isAlwaysNull()) 1771 return EmitDynamicCastToNull(*this, DestTy); 1772 1773 QualType SrcTy = DCE->getSubExpr()->getType(); 1774 1775 // C++ [expr.dynamic.cast]p4: 1776 // If the value of v is a null pointer value in the pointer case, the result 1777 // is the null pointer value of type T. 1778 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1779 1780 llvm::BasicBlock *CastNull = 0; 1781 llvm::BasicBlock *CastNotNull = 0; 1782 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1783 1784 if (ShouldNullCheckSrcValue) { 1785 CastNull = createBasicBlock("dynamic_cast.null"); 1786 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1787 1788 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1789 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1790 EmitBlock(CastNotNull); 1791 } 1792 1793 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1794 1795 if (ShouldNullCheckSrcValue) { 1796 EmitBranch(CastEnd); 1797 1798 EmitBlock(CastNull); 1799 EmitBranch(CastEnd); 1800 } 1801 1802 EmitBlock(CastEnd); 1803 1804 if (ShouldNullCheckSrcValue) { 1805 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1806 PHI->addIncoming(Value, CastNotNull); 1807 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1808 1809 Value = PHI; 1810 } 1811 1812 return Value; 1813 } 1814 1815 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1816 RunCleanupsScope Scope(*this); 1817 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1818 Slot.getAlignment()); 1819 1820 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1821 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1822 e = E->capture_init_end(); 1823 i != e; ++i, ++CurField) { 1824 // Emit initialization 1825 1826 LValue LV = EmitLValueForFieldInitialization(SlotLV, &*CurField); 1827 ArrayRef<VarDecl *> ArrayIndexes; 1828 if (CurField->getType()->isArrayType()) 1829 ArrayIndexes = E->getCaptureInitIndexVars(i); 1830 EmitInitializerForField(&*CurField, LV, *i, ArrayIndexes); 1831 } 1832 } 1833