1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/IR/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 SourceLocation CallLoc, 28 llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, 30 llvm::Value *This, 31 llvm::Value *ImplicitParam, 32 QualType ImplicitParamTy, 33 CallExpr::const_arg_iterator ArgBeg, 34 CallExpr::const_arg_iterator ArgEnd) { 35 assert(MD->isInstance() && 36 "Trying to emit a member call expr on a static method!"); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 42 : TCK_MemberCall, 43 CallLoc, This, getContext().getRecordType(MD->getParent())); 44 45 CallArgList Args; 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 60 61 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62 Callee, ReturnValue, Args, MD); 63 } 64 65 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 66 // quite what we want. 67 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 68 while (true) { 69 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 70 E = PE->getSubExpr(); 71 continue; 72 } 73 74 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 75 if (CE->getCastKind() == CK_NoOp) { 76 E = CE->getSubExpr(); 77 continue; 78 } 79 } 80 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 81 if (UO->getOpcode() == UO_Extension) { 82 E = UO->getSubExpr(); 83 continue; 84 } 85 } 86 return E; 87 } 88 } 89 90 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 91 /// expr can be devirtualized. 92 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 93 const Expr *Base, 94 const CXXMethodDecl *MD) { 95 96 // When building with -fapple-kext, all calls must go through the vtable since 97 // the kernel linker can do runtime patching of vtables. 98 if (Context.getLangOpts().AppleKext) 99 return false; 100 101 // If the most derived class is marked final, we know that no subclass can 102 // override this member function and so we can devirtualize it. For example: 103 // 104 // struct A { virtual void f(); } 105 // struct B final : A { }; 106 // 107 // void f(B *b) { 108 // b->f(); 109 // } 110 // 111 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 112 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 113 return true; 114 115 // If the member function is marked 'final', we know that it can't be 116 // overridden and can therefore devirtualize it. 117 if (MD->hasAttr<FinalAttr>()) 118 return true; 119 120 // Similarly, if the class itself is marked 'final' it can't be overridden 121 // and we can therefore devirtualize the member function call. 122 if (MD->getParent()->hasAttr<FinalAttr>()) 123 return true; 124 125 Base = skipNoOpCastsAndParens(Base); 126 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 127 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 128 // This is a record decl. We know the type and can devirtualize it. 129 return VD->getType()->isRecordType(); 130 } 131 132 return false; 133 } 134 135 // We can devirtualize calls on an object accessed by a class member access 136 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 137 // a derived class object constructed in the same location. 138 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 139 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 140 return VD->getType()->isRecordType(); 141 142 // We can always devirtualize calls on temporary object expressions. 143 if (isa<CXXConstructExpr>(Base)) 144 return true; 145 146 // And calls on bound temporaries. 147 if (isa<CXXBindTemporaryExpr>(Base)) 148 return true; 149 150 // Check if this is a call expr that returns a record type. 151 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 152 return CE->getCallReturnType()->isRecordType(); 153 154 // We can't devirtualize the call. 155 return false; 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 181 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 182 ReturnValue, CE->arg_begin(), CE->arg_end()); 183 } 184 185 // Compute the object pointer. 186 const Expr *Base = ME->getBase(); 187 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 188 189 const CXXMethodDecl *DevirtualizedMethod = NULL; 190 if (CanUseVirtualCall && 191 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 192 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 193 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 194 assert(DevirtualizedMethod); 195 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 196 const Expr *Inner = Base->ignoreParenBaseCasts(); 197 if (getCXXRecord(Inner) == DevirtualizedClass) 198 // If the class of the Inner expression is where the dynamic method 199 // is defined, build the this pointer from it. 200 Base = Inner; 201 else if (getCXXRecord(Base) != DevirtualizedClass) { 202 // If the method is defined in a class that is not the best dynamic 203 // one or the one of the full expression, we would have to build 204 // a derived-to-base cast to compute the correct this pointer, but 205 // we don't have support for that yet, so do a virtual call. 206 DevirtualizedMethod = NULL; 207 } 208 // If the return types are not the same, this might be a case where more 209 // code needs to run to compensate for it. For example, the derived 210 // method might return a type that inherits form from the return 211 // type of MD and has a prefix. 212 // For now we just avoid devirtualizing these covariant cases. 213 if (DevirtualizedMethod && 214 DevirtualizedMethod->getResultType().getCanonicalType() != 215 MD->getResultType().getCanonicalType()) 216 DevirtualizedMethod = NULL; 217 } 218 219 llvm::Value *This; 220 if (ME->isArrow()) 221 This = EmitScalarExpr(Base); 222 else 223 This = EmitLValue(Base).getAddress(); 224 225 226 if (MD->isTrivial()) { 227 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 228 if (isa<CXXConstructorDecl>(MD) && 229 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 230 return RValue::get(0); 231 232 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 233 // We don't like to generate the trivial copy/move assignment operator 234 // when it isn't necessary; just produce the proper effect here. 235 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 236 EmitAggregateAssign(This, RHS, CE->getType()); 237 return RValue::get(This); 238 } 239 240 if (isa<CXXConstructorDecl>(MD) && 241 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 242 // Trivial move and copy ctor are the same. 243 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 244 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 245 CE->arg_begin(), CE->arg_end()); 246 return RValue::get(This); 247 } 248 llvm_unreachable("unknown trivial member function"); 249 } 250 251 // Compute the function type we're calling. 252 const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 253 const CGFunctionInfo *FInfo = 0; 254 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 255 FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 256 Dtor_Complete); 257 else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 258 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 259 Ctor_Complete); 260 else 261 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 262 263 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 264 265 // C++ [class.virtual]p12: 266 // Explicit qualification with the scope operator (5.1) suppresses the 267 // virtual call mechanism. 268 // 269 // We also don't emit a virtual call if the base expression has a record type 270 // because then we know what the type is. 271 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 272 llvm::Value *Callee; 273 274 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 275 assert(CE->arg_begin() == CE->arg_end() && 276 "Destructor shouldn't have explicit parameters"); 277 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 278 if (UseVirtualCall) { 279 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 280 CE->getExprLoc(), This); 281 } else { 282 if (getLangOpts().AppleKext && 283 MD->isVirtual() && 284 ME->hasQualifier()) 285 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 286 else if (!DevirtualizedMethod) 287 Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 288 else { 289 const CXXDestructorDecl *DDtor = 290 cast<CXXDestructorDecl>(DevirtualizedMethod); 291 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 292 } 293 EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 294 /*ImplicitParam=*/0, QualType(), 0, 0); 295 } 296 return RValue::get(0); 297 } 298 299 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 300 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 301 } else if (UseVirtualCall) { 302 Callee = BuildVirtualCall(MD, This, Ty); 303 } else { 304 if (getLangOpts().AppleKext && 305 MD->isVirtual() && 306 ME->hasQualifier()) 307 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 308 else if (!DevirtualizedMethod) 309 Callee = CGM.GetAddrOfFunction(MD, Ty); 310 else { 311 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 312 } 313 } 314 315 return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 316 /*ImplicitParam=*/0, QualType(), 317 CE->arg_begin(), CE->arg_end()); 318 } 319 320 RValue 321 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 322 ReturnValueSlot ReturnValue) { 323 const BinaryOperator *BO = 324 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 325 const Expr *BaseExpr = BO->getLHS(); 326 const Expr *MemFnExpr = BO->getRHS(); 327 328 const MemberPointerType *MPT = 329 MemFnExpr->getType()->castAs<MemberPointerType>(); 330 331 const FunctionProtoType *FPT = 332 MPT->getPointeeType()->castAs<FunctionProtoType>(); 333 const CXXRecordDecl *RD = 334 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 335 336 // Get the member function pointer. 337 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 338 339 // Emit the 'this' pointer. 340 llvm::Value *This; 341 342 if (BO->getOpcode() == BO_PtrMemI) 343 This = EmitScalarExpr(BaseExpr); 344 else 345 This = EmitLValue(BaseExpr).getAddress(); 346 347 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 348 QualType(MPT->getClass(), 0)); 349 350 // Ask the ABI to load the callee. Note that This is modified. 351 llvm::Value *Callee = 352 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 353 354 CallArgList Args; 355 356 QualType ThisType = 357 getContext().getPointerType(getContext().getTagDeclType(RD)); 358 359 // Push the this ptr. 360 Args.add(RValue::get(This), ThisType); 361 362 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 363 364 // And the rest of the call args 365 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 366 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 367 ReturnValue, Args); 368 } 369 370 RValue 371 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 372 const CXXMethodDecl *MD, 373 ReturnValueSlot ReturnValue) { 374 assert(MD->isInstance() && 375 "Trying to emit a member call expr on a static method!"); 376 LValue LV = EmitLValue(E->getArg(0)); 377 llvm::Value *This = LV.getAddress(); 378 379 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 380 MD->isTrivial()) { 381 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 382 QualType Ty = E->getType(); 383 EmitAggregateAssign(This, Src, Ty); 384 return RValue::get(This); 385 } 386 387 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 388 return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 389 /*ImplicitParam=*/0, QualType(), 390 E->arg_begin() + 1, E->arg_end()); 391 } 392 393 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 394 ReturnValueSlot ReturnValue) { 395 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 396 } 397 398 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 399 llvm::Value *DestPtr, 400 const CXXRecordDecl *Base) { 401 if (Base->isEmpty()) 402 return; 403 404 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 405 406 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 407 CharUnits Size = Layout.getNonVirtualSize(); 408 CharUnits Align = Layout.getNonVirtualAlign(); 409 410 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 411 412 // If the type contains a pointer to data member we can't memset it to zero. 413 // Instead, create a null constant and copy it to the destination. 414 // TODO: there are other patterns besides zero that we can usefully memset, 415 // like -1, which happens to be the pattern used by member-pointers. 416 // TODO: isZeroInitializable can be over-conservative in the case where a 417 // virtual base contains a member pointer. 418 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 419 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 420 421 llvm::GlobalVariable *NullVariable = 422 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 423 /*isConstant=*/true, 424 llvm::GlobalVariable::PrivateLinkage, 425 NullConstant, Twine()); 426 NullVariable->setAlignment(Align.getQuantity()); 427 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 428 429 // Get and call the appropriate llvm.memcpy overload. 430 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 431 return; 432 } 433 434 // Otherwise, just memset the whole thing to zero. This is legal 435 // because in LLVM, all default initializers (other than the ones we just 436 // handled above) are guaranteed to have a bit pattern of all zeros. 437 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 438 Align.getQuantity()); 439 } 440 441 void 442 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 443 AggValueSlot Dest) { 444 assert(!Dest.isIgnored() && "Must have a destination!"); 445 const CXXConstructorDecl *CD = E->getConstructor(); 446 447 // If we require zero initialization before (or instead of) calling the 448 // constructor, as can be the case with a non-user-provided default 449 // constructor, emit the zero initialization now, unless destination is 450 // already zeroed. 451 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 452 switch (E->getConstructionKind()) { 453 case CXXConstructExpr::CK_Delegating: 454 case CXXConstructExpr::CK_Complete: 455 EmitNullInitialization(Dest.getAddr(), E->getType()); 456 break; 457 case CXXConstructExpr::CK_VirtualBase: 458 case CXXConstructExpr::CK_NonVirtualBase: 459 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 460 break; 461 } 462 } 463 464 // If this is a call to a trivial default constructor, do nothing. 465 if (CD->isTrivial() && CD->isDefaultConstructor()) 466 return; 467 468 // Elide the constructor if we're constructing from a temporary. 469 // The temporary check is required because Sema sets this on NRVO 470 // returns. 471 if (getLangOpts().ElideConstructors && E->isElidable()) { 472 assert(getContext().hasSameUnqualifiedType(E->getType(), 473 E->getArg(0)->getType())); 474 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 475 EmitAggExpr(E->getArg(0), Dest); 476 return; 477 } 478 } 479 480 if (const ConstantArrayType *arrayType 481 = getContext().getAsConstantArrayType(E->getType())) { 482 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 483 E->arg_begin(), E->arg_end()); 484 } else { 485 CXXCtorType Type = Ctor_Complete; 486 bool ForVirtualBase = false; 487 bool Delegating = false; 488 489 switch (E->getConstructionKind()) { 490 case CXXConstructExpr::CK_Delegating: 491 // We should be emitting a constructor; GlobalDecl will assert this 492 Type = CurGD.getCtorType(); 493 Delegating = true; 494 break; 495 496 case CXXConstructExpr::CK_Complete: 497 Type = Ctor_Complete; 498 break; 499 500 case CXXConstructExpr::CK_VirtualBase: 501 ForVirtualBase = true; 502 // fall-through 503 504 case CXXConstructExpr::CK_NonVirtualBase: 505 Type = Ctor_Base; 506 } 507 508 // Call the constructor. 509 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 510 E->arg_begin(), E->arg_end()); 511 } 512 } 513 514 void 515 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 516 llvm::Value *Src, 517 const Expr *Exp) { 518 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 519 Exp = E->getSubExpr(); 520 assert(isa<CXXConstructExpr>(Exp) && 521 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 522 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 523 const CXXConstructorDecl *CD = E->getConstructor(); 524 RunCleanupsScope Scope(*this); 525 526 // If we require zero initialization before (or instead of) calling the 527 // constructor, as can be the case with a non-user-provided default 528 // constructor, emit the zero initialization now. 529 // FIXME. Do I still need this for a copy ctor synthesis? 530 if (E->requiresZeroInitialization()) 531 EmitNullInitialization(Dest, E->getType()); 532 533 assert(!getContext().getAsConstantArrayType(E->getType()) 534 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 535 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 536 E->arg_begin(), E->arg_end()); 537 } 538 539 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 540 const CXXNewExpr *E) { 541 if (!E->isArray()) 542 return CharUnits::Zero(); 543 544 // No cookie is required if the operator new[] being used is the 545 // reserved placement operator new[]. 546 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 547 return CharUnits::Zero(); 548 549 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 550 } 551 552 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 553 const CXXNewExpr *e, 554 unsigned minElements, 555 llvm::Value *&numElements, 556 llvm::Value *&sizeWithoutCookie) { 557 QualType type = e->getAllocatedType(); 558 559 if (!e->isArray()) { 560 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 561 sizeWithoutCookie 562 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 563 return sizeWithoutCookie; 564 } 565 566 // The width of size_t. 567 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 568 569 // Figure out the cookie size. 570 llvm::APInt cookieSize(sizeWidth, 571 CalculateCookiePadding(CGF, e).getQuantity()); 572 573 // Emit the array size expression. 574 // We multiply the size of all dimensions for NumElements. 575 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 576 numElements = CGF.EmitScalarExpr(e->getArraySize()); 577 assert(isa<llvm::IntegerType>(numElements->getType())); 578 579 // The number of elements can be have an arbitrary integer type; 580 // essentially, we need to multiply it by a constant factor, add a 581 // cookie size, and verify that the result is representable as a 582 // size_t. That's just a gloss, though, and it's wrong in one 583 // important way: if the count is negative, it's an error even if 584 // the cookie size would bring the total size >= 0. 585 bool isSigned 586 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 587 llvm::IntegerType *numElementsType 588 = cast<llvm::IntegerType>(numElements->getType()); 589 unsigned numElementsWidth = numElementsType->getBitWidth(); 590 591 // Compute the constant factor. 592 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 593 while (const ConstantArrayType *CAT 594 = CGF.getContext().getAsConstantArrayType(type)) { 595 type = CAT->getElementType(); 596 arraySizeMultiplier *= CAT->getSize(); 597 } 598 599 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 600 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 601 typeSizeMultiplier *= arraySizeMultiplier; 602 603 // This will be a size_t. 604 llvm::Value *size; 605 606 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 607 // Don't bloat the -O0 code. 608 if (llvm::ConstantInt *numElementsC = 609 dyn_cast<llvm::ConstantInt>(numElements)) { 610 const llvm::APInt &count = numElementsC->getValue(); 611 612 bool hasAnyOverflow = false; 613 614 // If 'count' was a negative number, it's an overflow. 615 if (isSigned && count.isNegative()) 616 hasAnyOverflow = true; 617 618 // We want to do all this arithmetic in size_t. If numElements is 619 // wider than that, check whether it's already too big, and if so, 620 // overflow. 621 else if (numElementsWidth > sizeWidth && 622 numElementsWidth - sizeWidth > count.countLeadingZeros()) 623 hasAnyOverflow = true; 624 625 // Okay, compute a count at the right width. 626 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 627 628 // If there is a brace-initializer, we cannot allocate fewer elements than 629 // there are initializers. If we do, that's treated like an overflow. 630 if (adjustedCount.ult(minElements)) 631 hasAnyOverflow = true; 632 633 // Scale numElements by that. This might overflow, but we don't 634 // care because it only overflows if allocationSize does, too, and 635 // if that overflows then we shouldn't use this. 636 numElements = llvm::ConstantInt::get(CGF.SizeTy, 637 adjustedCount * arraySizeMultiplier); 638 639 // Compute the size before cookie, and track whether it overflowed. 640 bool overflow; 641 llvm::APInt allocationSize 642 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 643 hasAnyOverflow |= overflow; 644 645 // Add in the cookie, and check whether it's overflowed. 646 if (cookieSize != 0) { 647 // Save the current size without a cookie. This shouldn't be 648 // used if there was overflow. 649 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 650 651 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 652 hasAnyOverflow |= overflow; 653 } 654 655 // On overflow, produce a -1 so operator new will fail. 656 if (hasAnyOverflow) { 657 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 658 } else { 659 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 660 } 661 662 // Otherwise, we might need to use the overflow intrinsics. 663 } else { 664 // There are up to five conditions we need to test for: 665 // 1) if isSigned, we need to check whether numElements is negative; 666 // 2) if numElementsWidth > sizeWidth, we need to check whether 667 // numElements is larger than something representable in size_t; 668 // 3) if minElements > 0, we need to check whether numElements is smaller 669 // than that. 670 // 4) we need to compute 671 // sizeWithoutCookie := numElements * typeSizeMultiplier 672 // and check whether it overflows; and 673 // 5) if we need a cookie, we need to compute 674 // size := sizeWithoutCookie + cookieSize 675 // and check whether it overflows. 676 677 llvm::Value *hasOverflow = 0; 678 679 // If numElementsWidth > sizeWidth, then one way or another, we're 680 // going to have to do a comparison for (2), and this happens to 681 // take care of (1), too. 682 if (numElementsWidth > sizeWidth) { 683 llvm::APInt threshold(numElementsWidth, 1); 684 threshold <<= sizeWidth; 685 686 llvm::Value *thresholdV 687 = llvm::ConstantInt::get(numElementsType, threshold); 688 689 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 690 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 691 692 // Otherwise, if we're signed, we want to sext up to size_t. 693 } else if (isSigned) { 694 if (numElementsWidth < sizeWidth) 695 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 696 697 // If there's a non-1 type size multiplier, then we can do the 698 // signedness check at the same time as we do the multiply 699 // because a negative number times anything will cause an 700 // unsigned overflow. Otherwise, we have to do it here. But at least 701 // in this case, we can subsume the >= minElements check. 702 if (typeSizeMultiplier == 1) 703 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 704 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 705 706 // Otherwise, zext up to size_t if necessary. 707 } else if (numElementsWidth < sizeWidth) { 708 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 709 } 710 711 assert(numElements->getType() == CGF.SizeTy); 712 713 if (minElements) { 714 // Don't allow allocation of fewer elements than we have initializers. 715 if (!hasOverflow) { 716 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 717 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 718 } else if (numElementsWidth > sizeWidth) { 719 // The other existing overflow subsumes this check. 720 // We do an unsigned comparison, since any signed value < -1 is 721 // taken care of either above or below. 722 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 723 CGF.Builder.CreateICmpULT(numElements, 724 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 725 } 726 } 727 728 size = numElements; 729 730 // Multiply by the type size if necessary. This multiplier 731 // includes all the factors for nested arrays. 732 // 733 // This step also causes numElements to be scaled up by the 734 // nested-array factor if necessary. Overflow on this computation 735 // can be ignored because the result shouldn't be used if 736 // allocation fails. 737 if (typeSizeMultiplier != 1) { 738 llvm::Value *umul_with_overflow 739 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 740 741 llvm::Value *tsmV = 742 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 743 llvm::Value *result = 744 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 745 746 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 747 if (hasOverflow) 748 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 749 else 750 hasOverflow = overflowed; 751 752 size = CGF.Builder.CreateExtractValue(result, 0); 753 754 // Also scale up numElements by the array size multiplier. 755 if (arraySizeMultiplier != 1) { 756 // If the base element type size is 1, then we can re-use the 757 // multiply we just did. 758 if (typeSize.isOne()) { 759 assert(arraySizeMultiplier == typeSizeMultiplier); 760 numElements = size; 761 762 // Otherwise we need a separate multiply. 763 } else { 764 llvm::Value *asmV = 765 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 766 numElements = CGF.Builder.CreateMul(numElements, asmV); 767 } 768 } 769 } else { 770 // numElements doesn't need to be scaled. 771 assert(arraySizeMultiplier == 1); 772 } 773 774 // Add in the cookie size if necessary. 775 if (cookieSize != 0) { 776 sizeWithoutCookie = size; 777 778 llvm::Value *uadd_with_overflow 779 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 780 781 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 782 llvm::Value *result = 783 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 784 785 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 786 if (hasOverflow) 787 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 788 else 789 hasOverflow = overflowed; 790 791 size = CGF.Builder.CreateExtractValue(result, 0); 792 } 793 794 // If we had any possibility of dynamic overflow, make a select to 795 // overwrite 'size' with an all-ones value, which should cause 796 // operator new to throw. 797 if (hasOverflow) 798 size = CGF.Builder.CreateSelect(hasOverflow, 799 llvm::Constant::getAllOnesValue(CGF.SizeTy), 800 size); 801 } 802 803 if (cookieSize == 0) 804 sizeWithoutCookie = size; 805 else 806 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 807 808 return size; 809 } 810 811 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 812 QualType AllocType, llvm::Value *NewPtr) { 813 814 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 815 switch (CGF.getEvaluationKind(AllocType)) { 816 case TEK_Scalar: 817 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 818 Alignment), 819 false); 820 return; 821 case TEK_Complex: 822 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 823 Alignment), 824 /*isInit*/ true); 825 return; 826 case TEK_Aggregate: { 827 AggValueSlot Slot 828 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 829 AggValueSlot::IsDestructed, 830 AggValueSlot::DoesNotNeedGCBarriers, 831 AggValueSlot::IsNotAliased); 832 CGF.EmitAggExpr(Init, Slot); 833 return; 834 } 835 } 836 llvm_unreachable("bad evaluation kind"); 837 } 838 839 void 840 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 841 QualType elementType, 842 llvm::Value *beginPtr, 843 llvm::Value *numElements) { 844 if (!E->hasInitializer()) 845 return; // We have a POD type. 846 847 llvm::Value *explicitPtr = beginPtr; 848 // Find the end of the array, hoisted out of the loop. 849 llvm::Value *endPtr = 850 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 851 852 unsigned initializerElements = 0; 853 854 const Expr *Init = E->getInitializer(); 855 llvm::AllocaInst *endOfInit = 0; 856 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 857 EHScopeStack::stable_iterator cleanup; 858 llvm::Instruction *cleanupDominator = 0; 859 // If the initializer is an initializer list, first do the explicit elements. 860 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 861 initializerElements = ILE->getNumInits(); 862 863 // Enter a partial-destruction cleanup if necessary. 864 if (needsEHCleanup(dtorKind)) { 865 // In principle we could tell the cleanup where we are more 866 // directly, but the control flow can get so varied here that it 867 // would actually be quite complex. Therefore we go through an 868 // alloca. 869 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 870 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 871 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 872 getDestroyer(dtorKind)); 873 cleanup = EHStack.stable_begin(); 874 } 875 876 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 877 // Tell the cleanup that it needs to destroy up to this 878 // element. TODO: some of these stores can be trivially 879 // observed to be unnecessary. 880 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 881 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 882 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 883 } 884 885 // The remaining elements are filled with the array filler expression. 886 Init = ILE->getArrayFiller(); 887 } 888 889 // Create the continuation block. 890 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 891 892 // If the number of elements isn't constant, we have to now check if there is 893 // anything left to initialize. 894 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 895 // If all elements have already been initialized, skip the whole loop. 896 if (constNum->getZExtValue() <= initializerElements) { 897 // If there was a cleanup, deactivate it. 898 if (cleanupDominator) 899 DeactivateCleanupBlock(cleanup, cleanupDominator); 900 return; 901 } 902 } else { 903 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 904 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 905 "array.isempty"); 906 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 907 EmitBlock(nonEmptyBB); 908 } 909 910 // Enter the loop. 911 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 912 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 913 914 EmitBlock(loopBB); 915 916 // Set up the current-element phi. 917 llvm::PHINode *curPtr = 918 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 919 curPtr->addIncoming(explicitPtr, entryBB); 920 921 // Store the new cleanup position for irregular cleanups. 922 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 923 924 // Enter a partial-destruction cleanup if necessary. 925 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 926 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 927 getDestroyer(dtorKind)); 928 cleanup = EHStack.stable_begin(); 929 cleanupDominator = Builder.CreateUnreachable(); 930 } 931 932 // Emit the initializer into this element. 933 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 934 935 // Leave the cleanup if we entered one. 936 if (cleanupDominator) { 937 DeactivateCleanupBlock(cleanup, cleanupDominator); 938 cleanupDominator->eraseFromParent(); 939 } 940 941 // Advance to the next element. 942 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 943 944 // Check whether we've gotten to the end of the array and, if so, 945 // exit the loop. 946 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 947 Builder.CreateCondBr(isEnd, contBB, loopBB); 948 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 949 950 EmitBlock(contBB); 951 } 952 953 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 954 llvm::Value *NewPtr, llvm::Value *Size) { 955 CGF.EmitCastToVoidPtr(NewPtr); 956 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 957 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 958 Alignment.getQuantity(), false); 959 } 960 961 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 962 QualType ElementType, 963 llvm::Value *NewPtr, 964 llvm::Value *NumElements, 965 llvm::Value *AllocSizeWithoutCookie) { 966 const Expr *Init = E->getInitializer(); 967 if (E->isArray()) { 968 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 969 CXXConstructorDecl *Ctor = CCE->getConstructor(); 970 if (Ctor->isTrivial()) { 971 // If new expression did not specify value-initialization, then there 972 // is no initialization. 973 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 974 return; 975 976 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 977 // Optimization: since zero initialization will just set the memory 978 // to all zeroes, generate a single memset to do it in one shot. 979 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 980 return; 981 } 982 } 983 984 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 985 CCE->arg_begin(), CCE->arg_end(), 986 CCE->requiresZeroInitialization()); 987 return; 988 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 989 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 990 // Optimization: since zero initialization will just set the memory 991 // to all zeroes, generate a single memset to do it in one shot. 992 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 993 return; 994 } 995 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 996 return; 997 } 998 999 if (!Init) 1000 return; 1001 1002 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1003 } 1004 1005 /// Emit a call to an operator new or operator delete function, as implicitly 1006 /// created by new-expressions and delete-expressions. 1007 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1008 const FunctionDecl *Callee, 1009 const FunctionProtoType *CalleeType, 1010 const CallArgList &Args) { 1011 llvm::Instruction *CallOrInvoke; 1012 RValue RV = 1013 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 1014 CGF.CGM.GetAddrOfFunction(Callee), ReturnValueSlot(), Args, 1015 Callee, &CallOrInvoke); 1016 1017 /// C++1y [expr.new]p10: 1018 /// [In a new-expression,] an implementation is allowed to omit a call 1019 /// to a replaceable global allocation function. 1020 /// 1021 /// We model such elidable calls with the 'builtin' attribute. 1022 if (Callee->isReplaceableGlobalAllocationFunction()) { 1023 // FIXME: Add addAttribute to CallSite. 1024 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1025 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1026 llvm::Attribute::Builtin); 1027 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1028 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1029 llvm::Attribute::Builtin); 1030 else 1031 llvm_unreachable("unexpected kind of call instruction"); 1032 } 1033 1034 return RV; 1035 } 1036 1037 namespace { 1038 /// A cleanup to call the given 'operator delete' function upon 1039 /// abnormal exit from a new expression. 1040 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1041 size_t NumPlacementArgs; 1042 const FunctionDecl *OperatorDelete; 1043 llvm::Value *Ptr; 1044 llvm::Value *AllocSize; 1045 1046 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1047 1048 public: 1049 static size_t getExtraSize(size_t NumPlacementArgs) { 1050 return NumPlacementArgs * sizeof(RValue); 1051 } 1052 1053 CallDeleteDuringNew(size_t NumPlacementArgs, 1054 const FunctionDecl *OperatorDelete, 1055 llvm::Value *Ptr, 1056 llvm::Value *AllocSize) 1057 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1058 Ptr(Ptr), AllocSize(AllocSize) {} 1059 1060 void setPlacementArg(unsigned I, RValue Arg) { 1061 assert(I < NumPlacementArgs && "index out of range"); 1062 getPlacementArgs()[I] = Arg; 1063 } 1064 1065 void Emit(CodeGenFunction &CGF, Flags flags) { 1066 const FunctionProtoType *FPT 1067 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1068 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1069 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1070 1071 CallArgList DeleteArgs; 1072 1073 // The first argument is always a void*. 1074 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1075 DeleteArgs.add(RValue::get(Ptr), *AI++); 1076 1077 // A member 'operator delete' can take an extra 'size_t' argument. 1078 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1079 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1080 1081 // Pass the rest of the arguments, which must match exactly. 1082 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1083 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1084 1085 // Call 'operator delete'. 1086 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1087 } 1088 }; 1089 1090 /// A cleanup to call the given 'operator delete' function upon 1091 /// abnormal exit from a new expression when the new expression is 1092 /// conditional. 1093 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1094 size_t NumPlacementArgs; 1095 const FunctionDecl *OperatorDelete; 1096 DominatingValue<RValue>::saved_type Ptr; 1097 DominatingValue<RValue>::saved_type AllocSize; 1098 1099 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1100 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1101 } 1102 1103 public: 1104 static size_t getExtraSize(size_t NumPlacementArgs) { 1105 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1106 } 1107 1108 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1109 const FunctionDecl *OperatorDelete, 1110 DominatingValue<RValue>::saved_type Ptr, 1111 DominatingValue<RValue>::saved_type AllocSize) 1112 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1113 Ptr(Ptr), AllocSize(AllocSize) {} 1114 1115 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1116 assert(I < NumPlacementArgs && "index out of range"); 1117 getPlacementArgs()[I] = Arg; 1118 } 1119 1120 void Emit(CodeGenFunction &CGF, Flags flags) { 1121 const FunctionProtoType *FPT 1122 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1123 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1124 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1125 1126 CallArgList DeleteArgs; 1127 1128 // The first argument is always a void*. 1129 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1130 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1131 1132 // A member 'operator delete' can take an extra 'size_t' argument. 1133 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1134 RValue RV = AllocSize.restore(CGF); 1135 DeleteArgs.add(RV, *AI++); 1136 } 1137 1138 // Pass the rest of the arguments, which must match exactly. 1139 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1140 RValue RV = getPlacementArgs()[I].restore(CGF); 1141 DeleteArgs.add(RV, *AI++); 1142 } 1143 1144 // Call 'operator delete'. 1145 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1146 } 1147 }; 1148 } 1149 1150 /// Enter a cleanup to call 'operator delete' if the initializer in a 1151 /// new-expression throws. 1152 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1153 const CXXNewExpr *E, 1154 llvm::Value *NewPtr, 1155 llvm::Value *AllocSize, 1156 const CallArgList &NewArgs) { 1157 // If we're not inside a conditional branch, then the cleanup will 1158 // dominate and we can do the easier (and more efficient) thing. 1159 if (!CGF.isInConditionalBranch()) { 1160 CallDeleteDuringNew *Cleanup = CGF.EHStack 1161 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1162 E->getNumPlacementArgs(), 1163 E->getOperatorDelete(), 1164 NewPtr, AllocSize); 1165 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1166 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1167 1168 return; 1169 } 1170 1171 // Otherwise, we need to save all this stuff. 1172 DominatingValue<RValue>::saved_type SavedNewPtr = 1173 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1174 DominatingValue<RValue>::saved_type SavedAllocSize = 1175 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1176 1177 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1178 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1179 E->getNumPlacementArgs(), 1180 E->getOperatorDelete(), 1181 SavedNewPtr, 1182 SavedAllocSize); 1183 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1184 Cleanup->setPlacementArg(I, 1185 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1186 1187 CGF.initFullExprCleanup(); 1188 } 1189 1190 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1191 // The element type being allocated. 1192 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1193 1194 // 1. Build a call to the allocation function. 1195 FunctionDecl *allocator = E->getOperatorNew(); 1196 const FunctionProtoType *allocatorType = 1197 allocator->getType()->castAs<FunctionProtoType>(); 1198 1199 CallArgList allocatorArgs; 1200 1201 // The allocation size is the first argument. 1202 QualType sizeType = getContext().getSizeType(); 1203 1204 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1205 unsigned minElements = 0; 1206 if (E->isArray() && E->hasInitializer()) { 1207 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1208 minElements = ILE->getNumInits(); 1209 } 1210 1211 llvm::Value *numElements = 0; 1212 llvm::Value *allocSizeWithoutCookie = 0; 1213 llvm::Value *allocSize = 1214 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1215 allocSizeWithoutCookie); 1216 1217 allocatorArgs.add(RValue::get(allocSize), sizeType); 1218 1219 // Emit the rest of the arguments. 1220 // FIXME: Ideally, this should just use EmitCallArgs. 1221 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1222 1223 // First, use the types from the function type. 1224 // We start at 1 here because the first argument (the allocation size) 1225 // has already been emitted. 1226 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1227 ++i, ++placementArg) { 1228 QualType argType = allocatorType->getArgType(i); 1229 1230 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1231 placementArg->getType()) && 1232 "type mismatch in call argument!"); 1233 1234 EmitCallArg(allocatorArgs, *placementArg, argType); 1235 } 1236 1237 // Either we've emitted all the call args, or we have a call to a 1238 // variadic function. 1239 assert((placementArg == E->placement_arg_end() || 1240 allocatorType->isVariadic()) && 1241 "Extra arguments to non-variadic function!"); 1242 1243 // If we still have any arguments, emit them using the type of the argument. 1244 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1245 placementArg != placementArgsEnd; ++placementArg) { 1246 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1247 } 1248 1249 // Emit the allocation call. If the allocator is a global placement 1250 // operator, just "inline" it directly. 1251 RValue RV; 1252 if (allocator->isReservedGlobalPlacementOperator()) { 1253 assert(allocatorArgs.size() == 2); 1254 RV = allocatorArgs[1].RV; 1255 // TODO: kill any unnecessary computations done for the size 1256 // argument. 1257 } else { 1258 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1259 } 1260 1261 // Emit a null check on the allocation result if the allocation 1262 // function is allowed to return null (because it has a non-throwing 1263 // exception spec; for this part, we inline 1264 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1265 // interesting initializer. 1266 bool nullCheck = allocatorType->isNothrow(getContext()) && 1267 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1268 1269 llvm::BasicBlock *nullCheckBB = 0; 1270 llvm::BasicBlock *contBB = 0; 1271 1272 llvm::Value *allocation = RV.getScalarVal(); 1273 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1274 1275 // The null-check means that the initializer is conditionally 1276 // evaluated. 1277 ConditionalEvaluation conditional(*this); 1278 1279 if (nullCheck) { 1280 conditional.begin(*this); 1281 1282 nullCheckBB = Builder.GetInsertBlock(); 1283 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1284 contBB = createBasicBlock("new.cont"); 1285 1286 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1287 Builder.CreateCondBr(isNull, contBB, notNullBB); 1288 EmitBlock(notNullBB); 1289 } 1290 1291 // If there's an operator delete, enter a cleanup to call it if an 1292 // exception is thrown. 1293 EHScopeStack::stable_iterator operatorDeleteCleanup; 1294 llvm::Instruction *cleanupDominator = 0; 1295 if (E->getOperatorDelete() && 1296 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1297 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1298 operatorDeleteCleanup = EHStack.stable_begin(); 1299 cleanupDominator = Builder.CreateUnreachable(); 1300 } 1301 1302 assert((allocSize == allocSizeWithoutCookie) == 1303 CalculateCookiePadding(*this, E).isZero()); 1304 if (allocSize != allocSizeWithoutCookie) { 1305 assert(E->isArray()); 1306 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1307 numElements, 1308 E, allocType); 1309 } 1310 1311 llvm::Type *elementPtrTy 1312 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1313 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1314 1315 EmitNewInitializer(*this, E, allocType, result, numElements, 1316 allocSizeWithoutCookie); 1317 if (E->isArray()) { 1318 // NewPtr is a pointer to the base element type. If we're 1319 // allocating an array of arrays, we'll need to cast back to the 1320 // array pointer type. 1321 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1322 if (result->getType() != resultType) 1323 result = Builder.CreateBitCast(result, resultType); 1324 } 1325 1326 // Deactivate the 'operator delete' cleanup if we finished 1327 // initialization. 1328 if (operatorDeleteCleanup.isValid()) { 1329 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1330 cleanupDominator->eraseFromParent(); 1331 } 1332 1333 if (nullCheck) { 1334 conditional.end(*this); 1335 1336 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1337 EmitBlock(contBB); 1338 1339 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1340 PHI->addIncoming(result, notNullBB); 1341 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1342 nullCheckBB); 1343 1344 result = PHI; 1345 } 1346 1347 return result; 1348 } 1349 1350 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1351 llvm::Value *Ptr, 1352 QualType DeleteTy) { 1353 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1354 1355 const FunctionProtoType *DeleteFTy = 1356 DeleteFD->getType()->getAs<FunctionProtoType>(); 1357 1358 CallArgList DeleteArgs; 1359 1360 // Check if we need to pass the size to the delete operator. 1361 llvm::Value *Size = 0; 1362 QualType SizeTy; 1363 if (DeleteFTy->getNumArgs() == 2) { 1364 SizeTy = DeleteFTy->getArgType(1); 1365 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1366 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1367 DeleteTypeSize.getQuantity()); 1368 } 1369 1370 QualType ArgTy = DeleteFTy->getArgType(0); 1371 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1372 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1373 1374 if (Size) 1375 DeleteArgs.add(RValue::get(Size), SizeTy); 1376 1377 // Emit the call to delete. 1378 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1379 } 1380 1381 namespace { 1382 /// Calls the given 'operator delete' on a single object. 1383 struct CallObjectDelete : EHScopeStack::Cleanup { 1384 llvm::Value *Ptr; 1385 const FunctionDecl *OperatorDelete; 1386 QualType ElementType; 1387 1388 CallObjectDelete(llvm::Value *Ptr, 1389 const FunctionDecl *OperatorDelete, 1390 QualType ElementType) 1391 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1392 1393 void Emit(CodeGenFunction &CGF, Flags flags) { 1394 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1395 } 1396 }; 1397 } 1398 1399 /// Emit the code for deleting a single object. 1400 static void EmitObjectDelete(CodeGenFunction &CGF, 1401 const FunctionDecl *OperatorDelete, 1402 llvm::Value *Ptr, 1403 QualType ElementType, 1404 bool UseGlobalDelete) { 1405 // Find the destructor for the type, if applicable. If the 1406 // destructor is virtual, we'll just emit the vcall and return. 1407 const CXXDestructorDecl *Dtor = 0; 1408 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1409 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1410 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1411 Dtor = RD->getDestructor(); 1412 1413 if (Dtor->isVirtual()) { 1414 if (UseGlobalDelete) { 1415 // If we're supposed to call the global delete, make sure we do so 1416 // even if the destructor throws. 1417 1418 // Derive the complete-object pointer, which is what we need 1419 // to pass to the deallocation function. 1420 llvm::Value *completePtr = 1421 CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 1422 1423 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1424 completePtr, OperatorDelete, 1425 ElementType); 1426 } 1427 1428 // FIXME: Provide a source location here. 1429 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1430 CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1431 SourceLocation(), Ptr); 1432 1433 if (UseGlobalDelete) { 1434 CGF.PopCleanupBlock(); 1435 } 1436 1437 return; 1438 } 1439 } 1440 } 1441 1442 // Make sure that we call delete even if the dtor throws. 1443 // This doesn't have to a conditional cleanup because we're going 1444 // to pop it off in a second. 1445 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1446 Ptr, OperatorDelete, ElementType); 1447 1448 if (Dtor) 1449 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1450 /*ForVirtualBase=*/false, 1451 /*Delegating=*/false, 1452 Ptr); 1453 else if (CGF.getLangOpts().ObjCAutoRefCount && 1454 ElementType->isObjCLifetimeType()) { 1455 switch (ElementType.getObjCLifetime()) { 1456 case Qualifiers::OCL_None: 1457 case Qualifiers::OCL_ExplicitNone: 1458 case Qualifiers::OCL_Autoreleasing: 1459 break; 1460 1461 case Qualifiers::OCL_Strong: { 1462 // Load the pointer value. 1463 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1464 ElementType.isVolatileQualified()); 1465 1466 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1467 break; 1468 } 1469 1470 case Qualifiers::OCL_Weak: 1471 CGF.EmitARCDestroyWeak(Ptr); 1472 break; 1473 } 1474 } 1475 1476 CGF.PopCleanupBlock(); 1477 } 1478 1479 namespace { 1480 /// Calls the given 'operator delete' on an array of objects. 1481 struct CallArrayDelete : EHScopeStack::Cleanup { 1482 llvm::Value *Ptr; 1483 const FunctionDecl *OperatorDelete; 1484 llvm::Value *NumElements; 1485 QualType ElementType; 1486 CharUnits CookieSize; 1487 1488 CallArrayDelete(llvm::Value *Ptr, 1489 const FunctionDecl *OperatorDelete, 1490 llvm::Value *NumElements, 1491 QualType ElementType, 1492 CharUnits CookieSize) 1493 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1494 ElementType(ElementType), CookieSize(CookieSize) {} 1495 1496 void Emit(CodeGenFunction &CGF, Flags flags) { 1497 const FunctionProtoType *DeleteFTy = 1498 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1499 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1500 1501 CallArgList Args; 1502 1503 // Pass the pointer as the first argument. 1504 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1505 llvm::Value *DeletePtr 1506 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1507 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1508 1509 // Pass the original requested size as the second argument. 1510 if (DeleteFTy->getNumArgs() == 2) { 1511 QualType size_t = DeleteFTy->getArgType(1); 1512 llvm::IntegerType *SizeTy 1513 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1514 1515 CharUnits ElementTypeSize = 1516 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1517 1518 // The size of an element, multiplied by the number of elements. 1519 llvm::Value *Size 1520 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1521 Size = CGF.Builder.CreateMul(Size, NumElements); 1522 1523 // Plus the size of the cookie if applicable. 1524 if (!CookieSize.isZero()) { 1525 llvm::Value *CookieSizeV 1526 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1527 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1528 } 1529 1530 Args.add(RValue::get(Size), size_t); 1531 } 1532 1533 // Emit the call to delete. 1534 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1535 } 1536 }; 1537 } 1538 1539 /// Emit the code for deleting an array of objects. 1540 static void EmitArrayDelete(CodeGenFunction &CGF, 1541 const CXXDeleteExpr *E, 1542 llvm::Value *deletedPtr, 1543 QualType elementType) { 1544 llvm::Value *numElements = 0; 1545 llvm::Value *allocatedPtr = 0; 1546 CharUnits cookieSize; 1547 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1548 numElements, allocatedPtr, cookieSize); 1549 1550 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1551 1552 // Make sure that we call delete even if one of the dtors throws. 1553 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1554 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1555 allocatedPtr, operatorDelete, 1556 numElements, elementType, 1557 cookieSize); 1558 1559 // Destroy the elements. 1560 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1561 assert(numElements && "no element count for a type with a destructor!"); 1562 1563 llvm::Value *arrayEnd = 1564 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1565 1566 // Note that it is legal to allocate a zero-length array, and we 1567 // can never fold the check away because the length should always 1568 // come from a cookie. 1569 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1570 CGF.getDestroyer(dtorKind), 1571 /*checkZeroLength*/ true, 1572 CGF.needsEHCleanup(dtorKind)); 1573 } 1574 1575 // Pop the cleanup block. 1576 CGF.PopCleanupBlock(); 1577 } 1578 1579 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1580 const Expr *Arg = E->getArgument(); 1581 llvm::Value *Ptr = EmitScalarExpr(Arg); 1582 1583 // Null check the pointer. 1584 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1585 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1586 1587 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1588 1589 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1590 EmitBlock(DeleteNotNull); 1591 1592 // We might be deleting a pointer to array. If so, GEP down to the 1593 // first non-array element. 1594 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1595 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1596 if (DeleteTy->isConstantArrayType()) { 1597 llvm::Value *Zero = Builder.getInt32(0); 1598 SmallVector<llvm::Value*,8> GEP; 1599 1600 GEP.push_back(Zero); // point at the outermost array 1601 1602 // For each layer of array type we're pointing at: 1603 while (const ConstantArrayType *Arr 1604 = getContext().getAsConstantArrayType(DeleteTy)) { 1605 // 1. Unpeel the array type. 1606 DeleteTy = Arr->getElementType(); 1607 1608 // 2. GEP to the first element of the array. 1609 GEP.push_back(Zero); 1610 } 1611 1612 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1613 } 1614 1615 assert(ConvertTypeForMem(DeleteTy) == 1616 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1617 1618 if (E->isArrayForm()) { 1619 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1620 } else { 1621 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1622 E->isGlobalDelete()); 1623 } 1624 1625 EmitBlock(DeleteEnd); 1626 } 1627 1628 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1629 // void __cxa_bad_typeid(); 1630 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1631 1632 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1633 } 1634 1635 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1636 llvm::Value *Fn = getBadTypeidFn(CGF); 1637 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1638 CGF.Builder.CreateUnreachable(); 1639 } 1640 1641 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1642 const Expr *E, 1643 llvm::Type *StdTypeInfoPtrTy) { 1644 // Get the vtable pointer. 1645 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1646 1647 // C++ [expr.typeid]p2: 1648 // If the glvalue expression is obtained by applying the unary * operator to 1649 // a pointer and the pointer is a null pointer value, the typeid expression 1650 // throws the std::bad_typeid exception. 1651 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1652 if (UO->getOpcode() == UO_Deref) { 1653 llvm::BasicBlock *BadTypeidBlock = 1654 CGF.createBasicBlock("typeid.bad_typeid"); 1655 llvm::BasicBlock *EndBlock = 1656 CGF.createBasicBlock("typeid.end"); 1657 1658 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1659 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1660 1661 CGF.EmitBlock(BadTypeidBlock); 1662 EmitBadTypeidCall(CGF); 1663 CGF.EmitBlock(EndBlock); 1664 } 1665 } 1666 1667 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1668 StdTypeInfoPtrTy->getPointerTo()); 1669 1670 // Load the type info. 1671 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1672 return CGF.Builder.CreateLoad(Value); 1673 } 1674 1675 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1676 llvm::Type *StdTypeInfoPtrTy = 1677 ConvertType(E->getType())->getPointerTo(); 1678 1679 if (E->isTypeOperand()) { 1680 llvm::Constant *TypeInfo = 1681 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1682 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1683 } 1684 1685 // C++ [expr.typeid]p2: 1686 // When typeid is applied to a glvalue expression whose type is a 1687 // polymorphic class type, the result refers to a std::type_info object 1688 // representing the type of the most derived object (that is, the dynamic 1689 // type) to which the glvalue refers. 1690 if (E->isPotentiallyEvaluated()) 1691 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1692 StdTypeInfoPtrTy); 1693 1694 QualType OperandTy = E->getExprOperand()->getType(); 1695 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1696 StdTypeInfoPtrTy); 1697 } 1698 1699 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1700 // void *__dynamic_cast(const void *sub, 1701 // const abi::__class_type_info *src, 1702 // const abi::__class_type_info *dst, 1703 // std::ptrdiff_t src2dst_offset); 1704 1705 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1706 llvm::Type *PtrDiffTy = 1707 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1708 1709 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1710 1711 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1712 1713 // Mark the function as nounwind readonly. 1714 llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1715 llvm::Attribute::ReadOnly }; 1716 llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1717 CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1718 1719 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1720 } 1721 1722 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1723 // void __cxa_bad_cast(); 1724 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1725 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1726 } 1727 1728 static void EmitBadCastCall(CodeGenFunction &CGF) { 1729 llvm::Value *Fn = getBadCastFn(CGF); 1730 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1731 CGF.Builder.CreateUnreachable(); 1732 } 1733 1734 /// \brief Compute the src2dst_offset hint as described in the 1735 /// Itanium C++ ABI [2.9.7] 1736 static CharUnits computeOffsetHint(ASTContext &Context, 1737 const CXXRecordDecl *Src, 1738 const CXXRecordDecl *Dst) { 1739 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1740 /*DetectVirtual=*/false); 1741 1742 // If Dst is not derived from Src we can skip the whole computation below and 1743 // return that Src is not a public base of Dst. Record all inheritance paths. 1744 if (!Dst->isDerivedFrom(Src, Paths)) 1745 return CharUnits::fromQuantity(-2ULL); 1746 1747 unsigned NumPublicPaths = 0; 1748 CharUnits Offset; 1749 1750 // Now walk all possible inheritance paths. 1751 for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1752 I != E; ++I) { 1753 if (I->Access != AS_public) // Ignore non-public inheritance. 1754 continue; 1755 1756 ++NumPublicPaths; 1757 1758 for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1759 // If the path contains a virtual base class we can't give any hint. 1760 // -1: no hint. 1761 if (J->Base->isVirtual()) 1762 return CharUnits::fromQuantity(-1ULL); 1763 1764 if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1765 continue; 1766 1767 // Accumulate the base class offsets. 1768 const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1769 Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1770 } 1771 } 1772 1773 // -2: Src is not a public base of Dst. 1774 if (NumPublicPaths == 0) 1775 return CharUnits::fromQuantity(-2ULL); 1776 1777 // -3: Src is a multiple public base type but never a virtual base type. 1778 if (NumPublicPaths > 1) 1779 return CharUnits::fromQuantity(-3ULL); 1780 1781 // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1782 // Return the offset of Src from the origin of Dst. 1783 return Offset; 1784 } 1785 1786 static llvm::Value * 1787 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1788 QualType SrcTy, QualType DestTy, 1789 llvm::BasicBlock *CastEnd) { 1790 llvm::Type *PtrDiffLTy = 1791 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1792 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1793 1794 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1795 if (PTy->getPointeeType()->isVoidType()) { 1796 // C++ [expr.dynamic.cast]p7: 1797 // If T is "pointer to cv void," then the result is a pointer to the 1798 // most derived object pointed to by v. 1799 1800 // Get the vtable pointer. 1801 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1802 1803 // Get the offset-to-top from the vtable. 1804 llvm::Value *OffsetToTop = 1805 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1806 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1807 1808 // Finally, add the offset to the pointer. 1809 Value = CGF.EmitCastToVoidPtr(Value); 1810 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1811 1812 return CGF.Builder.CreateBitCast(Value, DestLTy); 1813 } 1814 } 1815 1816 QualType SrcRecordTy; 1817 QualType DestRecordTy; 1818 1819 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1820 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1821 DestRecordTy = DestPTy->getPointeeType(); 1822 } else { 1823 SrcRecordTy = SrcTy; 1824 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1825 } 1826 1827 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1828 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1829 1830 llvm::Value *SrcRTTI = 1831 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1832 llvm::Value *DestRTTI = 1833 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1834 1835 // Compute the offset hint. 1836 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1837 const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1838 llvm::Value *OffsetHint = 1839 llvm::ConstantInt::get(PtrDiffLTy, 1840 computeOffsetHint(CGF.getContext(), SrcDecl, 1841 DestDecl).getQuantity()); 1842 1843 // Emit the call to __dynamic_cast. 1844 Value = CGF.EmitCastToVoidPtr(Value); 1845 1846 llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1847 Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1848 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1849 1850 /// C++ [expr.dynamic.cast]p9: 1851 /// A failed cast to reference type throws std::bad_cast 1852 if (DestTy->isReferenceType()) { 1853 llvm::BasicBlock *BadCastBlock = 1854 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1855 1856 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1857 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1858 1859 CGF.EmitBlock(BadCastBlock); 1860 EmitBadCastCall(CGF); 1861 } 1862 1863 return Value; 1864 } 1865 1866 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1867 QualType DestTy) { 1868 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1869 if (DestTy->isPointerType()) 1870 return llvm::Constant::getNullValue(DestLTy); 1871 1872 /// C++ [expr.dynamic.cast]p9: 1873 /// A failed cast to reference type throws std::bad_cast 1874 EmitBadCastCall(CGF); 1875 1876 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1877 return llvm::UndefValue::get(DestLTy); 1878 } 1879 1880 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1881 const CXXDynamicCastExpr *DCE) { 1882 QualType DestTy = DCE->getTypeAsWritten(); 1883 1884 if (DCE->isAlwaysNull()) 1885 return EmitDynamicCastToNull(*this, DestTy); 1886 1887 QualType SrcTy = DCE->getSubExpr()->getType(); 1888 1889 // C++ [expr.dynamic.cast]p4: 1890 // If the value of v is a null pointer value in the pointer case, the result 1891 // is the null pointer value of type T. 1892 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1893 1894 llvm::BasicBlock *CastNull = 0; 1895 llvm::BasicBlock *CastNotNull = 0; 1896 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1897 1898 if (ShouldNullCheckSrcValue) { 1899 CastNull = createBasicBlock("dynamic_cast.null"); 1900 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1901 1902 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1903 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1904 EmitBlock(CastNotNull); 1905 } 1906 1907 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1908 1909 if (ShouldNullCheckSrcValue) { 1910 EmitBranch(CastEnd); 1911 1912 EmitBlock(CastNull); 1913 EmitBranch(CastEnd); 1914 } 1915 1916 EmitBlock(CastEnd); 1917 1918 if (ShouldNullCheckSrcValue) { 1919 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1920 PHI->addIncoming(Value, CastNotNull); 1921 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1922 1923 Value = PHI; 1924 } 1925 1926 return Value; 1927 } 1928 1929 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1930 RunCleanupsScope Scope(*this); 1931 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1932 Slot.getAlignment()); 1933 1934 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1935 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1936 e = E->capture_init_end(); 1937 i != e; ++i, ++CurField) { 1938 // Emit initialization 1939 1940 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1941 ArrayRef<VarDecl *> ArrayIndexes; 1942 if (CurField->getType()->isArrayType()) 1943 ArrayIndexes = E->getCaptureInitIndexVars(i); 1944 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1945 } 1946 } 1947