1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 unsigned PrefixSize = Args.size() - 1; 58 59 // And the rest of the call args. 60 if (RtlArgs) { 61 // Special case: if the caller emitted the arguments right-to-left already 62 // (prior to emitting the *this argument), we're done. This happens for 63 // assignment operators. 64 Args.addFrom(*RtlArgs); 65 } else if (CE) { 66 // Special case: skip first argument of CXXOperatorCall (it is "this"). 67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 69 CE->getDirectCallee()); 70 } else { 71 assert( 72 FPT->getNumParams() == 0 && 73 "No CallExpr specified for function with non-zero number of arguments"); 74 } 75 return {required, PrefixSize}; 76 } 77 78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 79 const CXXMethodDecl *MD, const CGCallee &Callee, 80 ReturnValueSlot ReturnValue, 81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 82 const CallExpr *CE, CallArgList *RtlArgs) { 83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 84 CallArgList Args; 85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 90 CE && CE == MustTailCall, 91 CE ? CE->getExprLoc() : SourceLocation()); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 97 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 98 99 assert(!ThisTy.isNull()); 100 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 101 "Pointer/Object mixup"); 102 103 LangAS SrcAS = ThisTy.getAddressSpace(); 104 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 105 if (SrcAS != DstAS) { 106 QualType DstTy = DtorDecl->getThisType(); 107 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 108 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 109 NewType); 110 } 111 112 CallArgList Args; 113 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam, 114 ImplicitParamTy, CE, Args, nullptr); 115 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 116 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, 117 CE ? CE->getExprLoc() : SourceLocation{}); 118 } 119 120 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 121 const CXXPseudoDestructorExpr *E) { 122 QualType DestroyedType = E->getDestroyedType(); 123 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 124 // Automatic Reference Counting: 125 // If the pseudo-expression names a retainable object with weak or 126 // strong lifetime, the object shall be released. 127 Expr *BaseExpr = E->getBase(); 128 Address BaseValue = Address::invalid(); 129 Qualifiers BaseQuals; 130 131 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 132 if (E->isArrow()) { 133 BaseValue = EmitPointerWithAlignment(BaseExpr); 134 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 135 BaseQuals = PTy->getPointeeType().getQualifiers(); 136 } else { 137 LValue BaseLV = EmitLValue(BaseExpr); 138 BaseValue = BaseLV.getAddress(*this); 139 QualType BaseTy = BaseExpr->getType(); 140 BaseQuals = BaseTy.getQualifiers(); 141 } 142 143 switch (DestroyedType.getObjCLifetime()) { 144 case Qualifiers::OCL_None: 145 case Qualifiers::OCL_ExplicitNone: 146 case Qualifiers::OCL_Autoreleasing: 147 break; 148 149 case Qualifiers::OCL_Strong: 150 EmitARCRelease(Builder.CreateLoad(BaseValue, 151 DestroyedType.isVolatileQualified()), 152 ARCPreciseLifetime); 153 break; 154 155 case Qualifiers::OCL_Weak: 156 EmitARCDestroyWeak(BaseValue); 157 break; 158 } 159 } else { 160 // C++ [expr.pseudo]p1: 161 // The result shall only be used as the operand for the function call 162 // operator (), and the result of such a call has type void. The only 163 // effect is the evaluation of the postfix-expression before the dot or 164 // arrow. 165 EmitIgnoredExpr(E->getBase()); 166 } 167 168 return RValue::get(nullptr); 169 } 170 171 static CXXRecordDecl *getCXXRecord(const Expr *E) { 172 QualType T = E->getType(); 173 if (const PointerType *PTy = T->getAs<PointerType>()) 174 T = PTy->getPointeeType(); 175 const RecordType *Ty = T->castAs<RecordType>(); 176 return cast<CXXRecordDecl>(Ty->getDecl()); 177 } 178 179 // Note: This function also emit constructor calls to support a MSVC 180 // extensions allowing explicit constructor function call. 181 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 182 ReturnValueSlot ReturnValue) { 183 const Expr *callee = CE->getCallee()->IgnoreParens(); 184 185 if (isa<BinaryOperator>(callee)) 186 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 187 188 const MemberExpr *ME = cast<MemberExpr>(callee); 189 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 190 191 if (MD->isStatic()) { 192 // The method is static, emit it as we would a regular call. 193 CGCallee callee = 194 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 195 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 196 ReturnValue); 197 } 198 199 bool HasQualifier = ME->hasQualifier(); 200 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 201 bool IsArrow = ME->isArrow(); 202 const Expr *Base = ME->getBase(); 203 204 return EmitCXXMemberOrOperatorMemberCallExpr( 205 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 206 } 207 208 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 209 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 210 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 211 const Expr *Base) { 212 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 213 214 // Compute the object pointer. 215 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 216 217 const CXXMethodDecl *DevirtualizedMethod = nullptr; 218 if (CanUseVirtualCall && 219 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 220 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 221 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 222 assert(DevirtualizedMethod); 223 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 224 const Expr *Inner = Base->IgnoreParenBaseCasts(); 225 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 226 MD->getReturnType().getCanonicalType()) 227 // If the return types are not the same, this might be a case where more 228 // code needs to run to compensate for it. For example, the derived 229 // method might return a type that inherits form from the return 230 // type of MD and has a prefix. 231 // For now we just avoid devirtualizing these covariant cases. 232 DevirtualizedMethod = nullptr; 233 else if (getCXXRecord(Inner) == DevirtualizedClass) 234 // If the class of the Inner expression is where the dynamic method 235 // is defined, build the this pointer from it. 236 Base = Inner; 237 else if (getCXXRecord(Base) != DevirtualizedClass) { 238 // If the method is defined in a class that is not the best dynamic 239 // one or the one of the full expression, we would have to build 240 // a derived-to-base cast to compute the correct this pointer, but 241 // we don't have support for that yet, so do a virtual call. 242 DevirtualizedMethod = nullptr; 243 } 244 } 245 246 bool TrivialForCodegen = 247 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 248 bool TrivialAssignment = 249 TrivialForCodegen && 250 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 251 !MD->getParent()->mayInsertExtraPadding(); 252 253 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 254 // operator before the LHS. 255 CallArgList RtlArgStorage; 256 CallArgList *RtlArgs = nullptr; 257 LValue TrivialAssignmentRHS; 258 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 259 if (OCE->isAssignmentOp()) { 260 if (TrivialAssignment) { 261 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 262 } else { 263 RtlArgs = &RtlArgStorage; 264 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 265 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 266 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 267 } 268 } 269 } 270 271 LValue This; 272 if (IsArrow) { 273 LValueBaseInfo BaseInfo; 274 TBAAAccessInfo TBAAInfo; 275 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 276 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 277 } else { 278 This = EmitLValue(Base); 279 } 280 281 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 283 // constructing a new complete object of type Ctor. 284 assert(!RtlArgs); 285 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 286 CallArgList Args; 287 commonEmitCXXMemberOrOperatorCall( 288 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr, 289 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 290 291 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 292 /*Delegating=*/false, This.getAddress(*this), Args, 293 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 294 /*NewPointerIsChecked=*/false); 295 return RValue::get(nullptr); 296 } 297 298 if (TrivialForCodegen) { 299 if (isa<CXXDestructorDecl>(MD)) 300 return RValue::get(nullptr); 301 302 if (TrivialAssignment) { 303 // We don't like to generate the trivial copy/move assignment operator 304 // when it isn't necessary; just produce the proper effect here. 305 // It's important that we use the result of EmitLValue here rather than 306 // emitting call arguments, in order to preserve TBAA information from 307 // the RHS. 308 LValue RHS = isa<CXXOperatorCallExpr>(CE) 309 ? TrivialAssignmentRHS 310 : EmitLValue(*CE->arg_begin()); 311 EmitAggregateAssign(This, RHS, CE->getType()); 312 return RValue::get(This.getPointer(*this)); 313 } 314 315 assert(MD->getParent()->mayInsertExtraPadding() && 316 "unknown trivial member function"); 317 } 318 319 // Compute the function type we're calling. 320 const CXXMethodDecl *CalleeDecl = 321 DevirtualizedMethod ? DevirtualizedMethod : MD; 322 const CGFunctionInfo *FInfo = nullptr; 323 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 324 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 325 GlobalDecl(Dtor, Dtor_Complete)); 326 else 327 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 328 329 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 330 331 // C++11 [class.mfct.non-static]p2: 332 // If a non-static member function of a class X is called for an object that 333 // is not of type X, or of a type derived from X, the behavior is undefined. 334 SourceLocation CallLoc; 335 ASTContext &C = getContext(); 336 if (CE) 337 CallLoc = CE->getExprLoc(); 338 339 SanitizerSet SkippedChecks; 340 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 341 auto *IOA = CMCE->getImplicitObjectArgument(); 342 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 343 if (IsImplicitObjectCXXThis) 344 SkippedChecks.set(SanitizerKind::Alignment, true); 345 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 346 SkippedChecks.set(SanitizerKind::Null, true); 347 } 348 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 349 This.getPointer(*this), 350 C.getRecordType(CalleeDecl->getParent()), 351 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 352 353 // C++ [class.virtual]p12: 354 // Explicit qualification with the scope operator (5.1) suppresses the 355 // virtual call mechanism. 356 // 357 // We also don't emit a virtual call if the base expression has a record type 358 // because then we know what the type is. 359 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 360 361 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 362 assert(CE->arg_begin() == CE->arg_end() && 363 "Destructor shouldn't have explicit parameters"); 364 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 365 if (UseVirtualCall) { 366 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 367 This.getAddress(*this), 368 cast<CXXMemberCallExpr>(CE)); 369 } else { 370 GlobalDecl GD(Dtor, Dtor_Complete); 371 CGCallee Callee; 372 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 373 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 374 else if (!DevirtualizedMethod) 375 Callee = 376 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 377 else { 378 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 379 } 380 381 QualType ThisTy = 382 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 383 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 384 /*ImplicitParam=*/nullptr, 385 /*ImplicitParamTy=*/QualType(), CE); 386 } 387 return RValue::get(nullptr); 388 } 389 390 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 391 // 'CalleeDecl' instead. 392 393 CGCallee Callee; 394 if (UseVirtualCall) { 395 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 396 } else { 397 if (SanOpts.has(SanitizerKind::CFINVCall) && 398 MD->getParent()->isDynamicClass()) { 399 llvm::Value *VTable; 400 const CXXRecordDecl *RD; 401 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 402 *this, This.getAddress(*this), CalleeDecl->getParent()); 403 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 404 } 405 406 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 407 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 408 else if (!DevirtualizedMethod) 409 Callee = 410 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 411 else { 412 Callee = 413 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 414 GlobalDecl(DevirtualizedMethod)); 415 } 416 } 417 418 if (MD->isVirtual()) { 419 Address NewThisAddr = 420 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 421 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 422 This.setAddress(NewThisAddr); 423 } 424 425 return EmitCXXMemberOrOperatorCall( 426 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 427 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 428 } 429 430 RValue 431 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 432 ReturnValueSlot ReturnValue) { 433 const BinaryOperator *BO = 434 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 435 const Expr *BaseExpr = BO->getLHS(); 436 const Expr *MemFnExpr = BO->getRHS(); 437 438 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 439 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 440 const auto *RD = 441 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 442 443 // Emit the 'this' pointer. 444 Address This = Address::invalid(); 445 if (BO->getOpcode() == BO_PtrMemI) 446 This = EmitPointerWithAlignment(BaseExpr); 447 else 448 This = EmitLValue(BaseExpr).getAddress(*this); 449 450 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 451 QualType(MPT->getClass(), 0)); 452 453 // Get the member function pointer. 454 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 455 456 // Ask the ABI to load the callee. Note that This is modified. 457 llvm::Value *ThisPtrForCall = nullptr; 458 CGCallee Callee = 459 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 460 ThisPtrForCall, MemFnPtr, MPT); 461 462 CallArgList Args; 463 464 QualType ThisType = 465 getContext().getPointerType(getContext().getTagDeclType(RD)); 466 467 // Push the this ptr. 468 Args.add(RValue::get(ThisPtrForCall), ThisType); 469 470 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 471 472 // And the rest of the call args 473 EmitCallArgs(Args, FPT, E->arguments()); 474 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 475 /*PrefixSize=*/0), 476 Callee, ReturnValue, Args, nullptr, E == MustTailCall, 477 E->getExprLoc()); 478 } 479 480 RValue 481 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 482 const CXXMethodDecl *MD, 483 ReturnValueSlot ReturnValue) { 484 assert(MD->isInstance() && 485 "Trying to emit a member call expr on a static method!"); 486 return EmitCXXMemberOrOperatorMemberCallExpr( 487 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 488 /*IsArrow=*/false, E->getArg(0)); 489 } 490 491 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 492 ReturnValueSlot ReturnValue) { 493 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 494 } 495 496 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 497 Address DestPtr, 498 const CXXRecordDecl *Base) { 499 if (Base->isEmpty()) 500 return; 501 502 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 503 504 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 505 CharUnits NVSize = Layout.getNonVirtualSize(); 506 507 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 508 // present, they are initialized by the most derived class before calling the 509 // constructor. 510 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 511 Stores.emplace_back(CharUnits::Zero(), NVSize); 512 513 // Each store is split by the existence of a vbptr. 514 CharUnits VBPtrWidth = CGF.getPointerSize(); 515 std::vector<CharUnits> VBPtrOffsets = 516 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 517 for (CharUnits VBPtrOffset : VBPtrOffsets) { 518 // Stop before we hit any virtual base pointers located in virtual bases. 519 if (VBPtrOffset >= NVSize) 520 break; 521 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 522 CharUnits LastStoreOffset = LastStore.first; 523 CharUnits LastStoreSize = LastStore.second; 524 525 CharUnits SplitBeforeOffset = LastStoreOffset; 526 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 527 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 528 if (!SplitBeforeSize.isZero()) 529 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 530 531 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 532 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 533 assert(!SplitAfterSize.isNegative() && "negative store size!"); 534 if (!SplitAfterSize.isZero()) 535 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 536 } 537 538 // If the type contains a pointer to data member we can't memset it to zero. 539 // Instead, create a null constant and copy it to the destination. 540 // TODO: there are other patterns besides zero that we can usefully memset, 541 // like -1, which happens to be the pattern used by member-pointers. 542 // TODO: isZeroInitializable can be over-conservative in the case where a 543 // virtual base contains a member pointer. 544 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 545 if (!NullConstantForBase->isNullValue()) { 546 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 547 CGF.CGM.getModule(), NullConstantForBase->getType(), 548 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 549 NullConstantForBase, Twine()); 550 551 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 552 DestPtr.getAlignment()); 553 NullVariable->setAlignment(Align.getAsAlign()); 554 555 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 556 557 // Get and call the appropriate llvm.memcpy overload. 558 for (std::pair<CharUnits, CharUnits> Store : Stores) { 559 CharUnits StoreOffset = Store.first; 560 CharUnits StoreSize = Store.second; 561 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 562 CGF.Builder.CreateMemCpy( 563 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 564 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 565 StoreSizeVal); 566 } 567 568 // Otherwise, just memset the whole thing to zero. This is legal 569 // because in LLVM, all default initializers (other than the ones we just 570 // handled above) are guaranteed to have a bit pattern of all zeros. 571 } else { 572 for (std::pair<CharUnits, CharUnits> Store : Stores) { 573 CharUnits StoreOffset = Store.first; 574 CharUnits StoreSize = Store.second; 575 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 576 CGF.Builder.CreateMemSet( 577 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 578 CGF.Builder.getInt8(0), StoreSizeVal); 579 } 580 } 581 } 582 583 void 584 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 585 AggValueSlot Dest) { 586 assert(!Dest.isIgnored() && "Must have a destination!"); 587 const CXXConstructorDecl *CD = E->getConstructor(); 588 589 // If we require zero initialization before (or instead of) calling the 590 // constructor, as can be the case with a non-user-provided default 591 // constructor, emit the zero initialization now, unless destination is 592 // already zeroed. 593 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 594 switch (E->getConstructionKind()) { 595 case CXXConstructExpr::CK_Delegating: 596 case CXXConstructExpr::CK_Complete: 597 EmitNullInitialization(Dest.getAddress(), E->getType()); 598 break; 599 case CXXConstructExpr::CK_VirtualBase: 600 case CXXConstructExpr::CK_NonVirtualBase: 601 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 602 CD->getParent()); 603 break; 604 } 605 } 606 607 // If this is a call to a trivial default constructor, do nothing. 608 if (CD->isTrivial() && CD->isDefaultConstructor()) 609 return; 610 611 // Elide the constructor if we're constructing from a temporary. 612 // The temporary check is required because Sema sets this on NRVO 613 // returns. 614 if (getLangOpts().ElideConstructors && E->isElidable()) { 615 assert(getContext().hasSameUnqualifiedType(E->getType(), 616 E->getArg(0)->getType())); 617 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 618 EmitAggExpr(E->getArg(0), Dest); 619 return; 620 } 621 } 622 623 if (const ArrayType *arrayType 624 = getContext().getAsArrayType(E->getType())) { 625 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 626 Dest.isSanitizerChecked()); 627 } else { 628 CXXCtorType Type = Ctor_Complete; 629 bool ForVirtualBase = false; 630 bool Delegating = false; 631 632 switch (E->getConstructionKind()) { 633 case CXXConstructExpr::CK_Delegating: 634 // We should be emitting a constructor; GlobalDecl will assert this 635 Type = CurGD.getCtorType(); 636 Delegating = true; 637 break; 638 639 case CXXConstructExpr::CK_Complete: 640 Type = Ctor_Complete; 641 break; 642 643 case CXXConstructExpr::CK_VirtualBase: 644 ForVirtualBase = true; 645 LLVM_FALLTHROUGH; 646 647 case CXXConstructExpr::CK_NonVirtualBase: 648 Type = Ctor_Base; 649 } 650 651 // Call the constructor. 652 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 653 } 654 } 655 656 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 657 const Expr *Exp) { 658 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 659 Exp = E->getSubExpr(); 660 assert(isa<CXXConstructExpr>(Exp) && 661 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 662 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 663 const CXXConstructorDecl *CD = E->getConstructor(); 664 RunCleanupsScope Scope(*this); 665 666 // If we require zero initialization before (or instead of) calling the 667 // constructor, as can be the case with a non-user-provided default 668 // constructor, emit the zero initialization now. 669 // FIXME. Do I still need this for a copy ctor synthesis? 670 if (E->requiresZeroInitialization()) 671 EmitNullInitialization(Dest, E->getType()); 672 673 assert(!getContext().getAsConstantArrayType(E->getType()) 674 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 675 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 676 } 677 678 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 679 const CXXNewExpr *E) { 680 if (!E->isArray()) 681 return CharUnits::Zero(); 682 683 // No cookie is required if the operator new[] being used is the 684 // reserved placement operator new[]. 685 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 686 return CharUnits::Zero(); 687 688 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 689 } 690 691 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 692 const CXXNewExpr *e, 693 unsigned minElements, 694 llvm::Value *&numElements, 695 llvm::Value *&sizeWithoutCookie) { 696 QualType type = e->getAllocatedType(); 697 698 if (!e->isArray()) { 699 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 700 sizeWithoutCookie 701 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 702 return sizeWithoutCookie; 703 } 704 705 // The width of size_t. 706 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 707 708 // Figure out the cookie size. 709 llvm::APInt cookieSize(sizeWidth, 710 CalculateCookiePadding(CGF, e).getQuantity()); 711 712 // Emit the array size expression. 713 // We multiply the size of all dimensions for NumElements. 714 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 715 numElements = 716 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 717 if (!numElements) 718 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 719 assert(isa<llvm::IntegerType>(numElements->getType())); 720 721 // The number of elements can be have an arbitrary integer type; 722 // essentially, we need to multiply it by a constant factor, add a 723 // cookie size, and verify that the result is representable as a 724 // size_t. That's just a gloss, though, and it's wrong in one 725 // important way: if the count is negative, it's an error even if 726 // the cookie size would bring the total size >= 0. 727 bool isSigned 728 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 729 llvm::IntegerType *numElementsType 730 = cast<llvm::IntegerType>(numElements->getType()); 731 unsigned numElementsWidth = numElementsType->getBitWidth(); 732 733 // Compute the constant factor. 734 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 735 while (const ConstantArrayType *CAT 736 = CGF.getContext().getAsConstantArrayType(type)) { 737 type = CAT->getElementType(); 738 arraySizeMultiplier *= CAT->getSize(); 739 } 740 741 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 742 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 743 typeSizeMultiplier *= arraySizeMultiplier; 744 745 // This will be a size_t. 746 llvm::Value *size; 747 748 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 749 // Don't bloat the -O0 code. 750 if (llvm::ConstantInt *numElementsC = 751 dyn_cast<llvm::ConstantInt>(numElements)) { 752 const llvm::APInt &count = numElementsC->getValue(); 753 754 bool hasAnyOverflow = false; 755 756 // If 'count' was a negative number, it's an overflow. 757 if (isSigned && count.isNegative()) 758 hasAnyOverflow = true; 759 760 // We want to do all this arithmetic in size_t. If numElements is 761 // wider than that, check whether it's already too big, and if so, 762 // overflow. 763 else if (numElementsWidth > sizeWidth && 764 numElementsWidth - sizeWidth > count.countLeadingZeros()) 765 hasAnyOverflow = true; 766 767 // Okay, compute a count at the right width. 768 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 769 770 // If there is a brace-initializer, we cannot allocate fewer elements than 771 // there are initializers. If we do, that's treated like an overflow. 772 if (adjustedCount.ult(minElements)) 773 hasAnyOverflow = true; 774 775 // Scale numElements by that. This might overflow, but we don't 776 // care because it only overflows if allocationSize does, too, and 777 // if that overflows then we shouldn't use this. 778 numElements = llvm::ConstantInt::get(CGF.SizeTy, 779 adjustedCount * arraySizeMultiplier); 780 781 // Compute the size before cookie, and track whether it overflowed. 782 bool overflow; 783 llvm::APInt allocationSize 784 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 785 hasAnyOverflow |= overflow; 786 787 // Add in the cookie, and check whether it's overflowed. 788 if (cookieSize != 0) { 789 // Save the current size without a cookie. This shouldn't be 790 // used if there was overflow. 791 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 792 793 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 794 hasAnyOverflow |= overflow; 795 } 796 797 // On overflow, produce a -1 so operator new will fail. 798 if (hasAnyOverflow) { 799 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 800 } else { 801 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 802 } 803 804 // Otherwise, we might need to use the overflow intrinsics. 805 } else { 806 // There are up to five conditions we need to test for: 807 // 1) if isSigned, we need to check whether numElements is negative; 808 // 2) if numElementsWidth > sizeWidth, we need to check whether 809 // numElements is larger than something representable in size_t; 810 // 3) if minElements > 0, we need to check whether numElements is smaller 811 // than that. 812 // 4) we need to compute 813 // sizeWithoutCookie := numElements * typeSizeMultiplier 814 // and check whether it overflows; and 815 // 5) if we need a cookie, we need to compute 816 // size := sizeWithoutCookie + cookieSize 817 // and check whether it overflows. 818 819 llvm::Value *hasOverflow = nullptr; 820 821 // If numElementsWidth > sizeWidth, then one way or another, we're 822 // going to have to do a comparison for (2), and this happens to 823 // take care of (1), too. 824 if (numElementsWidth > sizeWidth) { 825 llvm::APInt threshold(numElementsWidth, 1); 826 threshold <<= sizeWidth; 827 828 llvm::Value *thresholdV 829 = llvm::ConstantInt::get(numElementsType, threshold); 830 831 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 832 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 833 834 // Otherwise, if we're signed, we want to sext up to size_t. 835 } else if (isSigned) { 836 if (numElementsWidth < sizeWidth) 837 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 838 839 // If there's a non-1 type size multiplier, then we can do the 840 // signedness check at the same time as we do the multiply 841 // because a negative number times anything will cause an 842 // unsigned overflow. Otherwise, we have to do it here. But at least 843 // in this case, we can subsume the >= minElements check. 844 if (typeSizeMultiplier == 1) 845 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 846 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 847 848 // Otherwise, zext up to size_t if necessary. 849 } else if (numElementsWidth < sizeWidth) { 850 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 851 } 852 853 assert(numElements->getType() == CGF.SizeTy); 854 855 if (minElements) { 856 // Don't allow allocation of fewer elements than we have initializers. 857 if (!hasOverflow) { 858 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 859 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 860 } else if (numElementsWidth > sizeWidth) { 861 // The other existing overflow subsumes this check. 862 // We do an unsigned comparison, since any signed value < -1 is 863 // taken care of either above or below. 864 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 865 CGF.Builder.CreateICmpULT(numElements, 866 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 867 } 868 } 869 870 size = numElements; 871 872 // Multiply by the type size if necessary. This multiplier 873 // includes all the factors for nested arrays. 874 // 875 // This step also causes numElements to be scaled up by the 876 // nested-array factor if necessary. Overflow on this computation 877 // can be ignored because the result shouldn't be used if 878 // allocation fails. 879 if (typeSizeMultiplier != 1) { 880 llvm::Function *umul_with_overflow 881 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 882 883 llvm::Value *tsmV = 884 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 885 llvm::Value *result = 886 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 887 888 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 889 if (hasOverflow) 890 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 891 else 892 hasOverflow = overflowed; 893 894 size = CGF.Builder.CreateExtractValue(result, 0); 895 896 // Also scale up numElements by the array size multiplier. 897 if (arraySizeMultiplier != 1) { 898 // If the base element type size is 1, then we can re-use the 899 // multiply we just did. 900 if (typeSize.isOne()) { 901 assert(arraySizeMultiplier == typeSizeMultiplier); 902 numElements = size; 903 904 // Otherwise we need a separate multiply. 905 } else { 906 llvm::Value *asmV = 907 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 908 numElements = CGF.Builder.CreateMul(numElements, asmV); 909 } 910 } 911 } else { 912 // numElements doesn't need to be scaled. 913 assert(arraySizeMultiplier == 1); 914 } 915 916 // Add in the cookie size if necessary. 917 if (cookieSize != 0) { 918 sizeWithoutCookie = size; 919 920 llvm::Function *uadd_with_overflow 921 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 922 923 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 924 llvm::Value *result = 925 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 926 927 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 928 if (hasOverflow) 929 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 930 else 931 hasOverflow = overflowed; 932 933 size = CGF.Builder.CreateExtractValue(result, 0); 934 } 935 936 // If we had any possibility of dynamic overflow, make a select to 937 // overwrite 'size' with an all-ones value, which should cause 938 // operator new to throw. 939 if (hasOverflow) 940 size = CGF.Builder.CreateSelect(hasOverflow, 941 llvm::Constant::getAllOnesValue(CGF.SizeTy), 942 size); 943 } 944 945 if (cookieSize == 0) 946 sizeWithoutCookie = size; 947 else 948 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 949 950 return size; 951 } 952 953 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 954 QualType AllocType, Address NewPtr, 955 AggValueSlot::Overlap_t MayOverlap) { 956 // FIXME: Refactor with EmitExprAsInit. 957 switch (CGF.getEvaluationKind(AllocType)) { 958 case TEK_Scalar: 959 CGF.EmitScalarInit(Init, nullptr, 960 CGF.MakeAddrLValue(NewPtr, AllocType), false); 961 return; 962 case TEK_Complex: 963 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 964 /*isInit*/ true); 965 return; 966 case TEK_Aggregate: { 967 AggValueSlot Slot 968 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 969 AggValueSlot::IsDestructed, 970 AggValueSlot::DoesNotNeedGCBarriers, 971 AggValueSlot::IsNotAliased, 972 MayOverlap, AggValueSlot::IsNotZeroed, 973 AggValueSlot::IsSanitizerChecked); 974 CGF.EmitAggExpr(Init, Slot); 975 return; 976 } 977 } 978 llvm_unreachable("bad evaluation kind"); 979 } 980 981 void CodeGenFunction::EmitNewArrayInitializer( 982 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 983 Address BeginPtr, llvm::Value *NumElements, 984 llvm::Value *AllocSizeWithoutCookie) { 985 // If we have a type with trivial initialization and no initializer, 986 // there's nothing to do. 987 if (!E->hasInitializer()) 988 return; 989 990 Address CurPtr = BeginPtr; 991 992 unsigned InitListElements = 0; 993 994 const Expr *Init = E->getInitializer(); 995 Address EndOfInit = Address::invalid(); 996 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 997 EHScopeStack::stable_iterator Cleanup; 998 llvm::Instruction *CleanupDominator = nullptr; 999 1000 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 1001 CharUnits ElementAlign = 1002 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1003 1004 // Attempt to perform zero-initialization using memset. 1005 auto TryMemsetInitialization = [&]() -> bool { 1006 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1007 // we can initialize with a memset to -1. 1008 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1009 return false; 1010 1011 // Optimization: since zero initialization will just set the memory 1012 // to all zeroes, generate a single memset to do it in one shot. 1013 1014 // Subtract out the size of any elements we've already initialized. 1015 auto *RemainingSize = AllocSizeWithoutCookie; 1016 if (InitListElements) { 1017 // We know this can't overflow; we check this when doing the allocation. 1018 auto *InitializedSize = llvm::ConstantInt::get( 1019 RemainingSize->getType(), 1020 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1021 InitListElements); 1022 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1023 } 1024 1025 // Create the memset. 1026 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1027 return true; 1028 }; 1029 1030 // If the initializer is an initializer list, first do the explicit elements. 1031 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1032 // Initializing from a (braced) string literal is a special case; the init 1033 // list element does not initialize a (single) array element. 1034 if (ILE->isStringLiteralInit()) { 1035 // Initialize the initial portion of length equal to that of the string 1036 // literal. The allocation must be for at least this much; we emitted a 1037 // check for that earlier. 1038 AggValueSlot Slot = 1039 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1040 AggValueSlot::IsDestructed, 1041 AggValueSlot::DoesNotNeedGCBarriers, 1042 AggValueSlot::IsNotAliased, 1043 AggValueSlot::DoesNotOverlap, 1044 AggValueSlot::IsNotZeroed, 1045 AggValueSlot::IsSanitizerChecked); 1046 EmitAggExpr(ILE->getInit(0), Slot); 1047 1048 // Move past these elements. 1049 InitListElements = 1050 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1051 ->getSize().getZExtValue(); 1052 CurPtr = 1053 Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(), 1054 CurPtr.getPointer(), 1055 Builder.getSize(InitListElements), 1056 "string.init.end"), 1057 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1058 ElementSize)); 1059 1060 // Zero out the rest, if any remain. 1061 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1062 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1063 bool OK = TryMemsetInitialization(); 1064 (void)OK; 1065 assert(OK && "couldn't memset character type?"); 1066 } 1067 return; 1068 } 1069 1070 InitListElements = ILE->getNumInits(); 1071 1072 // If this is a multi-dimensional array new, we will initialize multiple 1073 // elements with each init list element. 1074 QualType AllocType = E->getAllocatedType(); 1075 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1076 AllocType->getAsArrayTypeUnsafe())) { 1077 ElementTy = ConvertTypeForMem(AllocType); 1078 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1079 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1080 } 1081 1082 // Enter a partial-destruction Cleanup if necessary. 1083 if (needsEHCleanup(DtorKind)) { 1084 // In principle we could tell the Cleanup where we are more 1085 // directly, but the control flow can get so varied here that it 1086 // would actually be quite complex. Therefore we go through an 1087 // alloca. 1088 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1089 "array.init.end"); 1090 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1091 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1092 ElementType, ElementAlign, 1093 getDestroyer(DtorKind)); 1094 Cleanup = EHStack.stable_begin(); 1095 } 1096 1097 CharUnits StartAlign = CurPtr.getAlignment(); 1098 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1099 // Tell the cleanup that it needs to destroy up to this 1100 // element. TODO: some of these stores can be trivially 1101 // observed to be unnecessary. 1102 if (EndOfInit.isValid()) { 1103 auto FinishedPtr = 1104 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1105 Builder.CreateStore(FinishedPtr, EndOfInit); 1106 } 1107 // FIXME: If the last initializer is an incomplete initializer list for 1108 // an array, and we have an array filler, we can fold together the two 1109 // initialization loops. 1110 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1111 ILE->getInit(i)->getType(), CurPtr, 1112 AggValueSlot::DoesNotOverlap); 1113 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(), 1114 CurPtr.getPointer(), 1115 Builder.getSize(1), 1116 "array.exp.next"), 1117 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1118 } 1119 1120 // The remaining elements are filled with the array filler expression. 1121 Init = ILE->getArrayFiller(); 1122 1123 // Extract the initializer for the individual array elements by pulling 1124 // out the array filler from all the nested initializer lists. This avoids 1125 // generating a nested loop for the initialization. 1126 while (Init && Init->getType()->isConstantArrayType()) { 1127 auto *SubILE = dyn_cast<InitListExpr>(Init); 1128 if (!SubILE) 1129 break; 1130 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1131 Init = SubILE->getArrayFiller(); 1132 } 1133 1134 // Switch back to initializing one base element at a time. 1135 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1136 } 1137 1138 // If all elements have already been initialized, skip any further 1139 // initialization. 1140 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1141 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1142 // If there was a Cleanup, deactivate it. 1143 if (CleanupDominator) 1144 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1145 return; 1146 } 1147 1148 assert(Init && "have trailing elements to initialize but no initializer"); 1149 1150 // If this is a constructor call, try to optimize it out, and failing that 1151 // emit a single loop to initialize all remaining elements. 1152 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1153 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1154 if (Ctor->isTrivial()) { 1155 // If new expression did not specify value-initialization, then there 1156 // is no initialization. 1157 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1158 return; 1159 1160 if (TryMemsetInitialization()) 1161 return; 1162 } 1163 1164 // Store the new Cleanup position for irregular Cleanups. 1165 // 1166 // FIXME: Share this cleanup with the constructor call emission rather than 1167 // having it create a cleanup of its own. 1168 if (EndOfInit.isValid()) 1169 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1170 1171 // Emit a constructor call loop to initialize the remaining elements. 1172 if (InitListElements) 1173 NumElements = Builder.CreateSub( 1174 NumElements, 1175 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1176 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1177 /*NewPointerIsChecked*/true, 1178 CCE->requiresZeroInitialization()); 1179 return; 1180 } 1181 1182 // If this is value-initialization, we can usually use memset. 1183 ImplicitValueInitExpr IVIE(ElementType); 1184 if (isa<ImplicitValueInitExpr>(Init)) { 1185 if (TryMemsetInitialization()) 1186 return; 1187 1188 // Switch to an ImplicitValueInitExpr for the element type. This handles 1189 // only one case: multidimensional array new of pointers to members. In 1190 // all other cases, we already have an initializer for the array element. 1191 Init = &IVIE; 1192 } 1193 1194 // At this point we should have found an initializer for the individual 1195 // elements of the array. 1196 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1197 "got wrong type of element to initialize"); 1198 1199 // If we have an empty initializer list, we can usually use memset. 1200 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1201 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1202 return; 1203 1204 // If we have a struct whose every field is value-initialized, we can 1205 // usually use memset. 1206 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1207 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1208 if (RType->getDecl()->isStruct()) { 1209 unsigned NumElements = 0; 1210 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1211 NumElements = CXXRD->getNumBases(); 1212 for (auto *Field : RType->getDecl()->fields()) 1213 if (!Field->isUnnamedBitfield()) 1214 ++NumElements; 1215 // FIXME: Recurse into nested InitListExprs. 1216 if (ILE->getNumInits() == NumElements) 1217 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1218 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1219 --NumElements; 1220 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1221 return; 1222 } 1223 } 1224 } 1225 1226 // Create the loop blocks. 1227 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1228 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1229 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1230 1231 // Find the end of the array, hoisted out of the loop. 1232 llvm::Value *EndPtr = 1233 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(), 1234 NumElements, "array.end"); 1235 1236 // If the number of elements isn't constant, we have to now check if there is 1237 // anything left to initialize. 1238 if (!ConstNum) { 1239 llvm::Value *IsEmpty = 1240 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1241 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1242 } 1243 1244 // Enter the loop. 1245 EmitBlock(LoopBB); 1246 1247 // Set up the current-element phi. 1248 llvm::PHINode *CurPtrPhi = 1249 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1250 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1251 1252 CurPtr = Address(CurPtrPhi, ElementAlign); 1253 1254 // Store the new Cleanup position for irregular Cleanups. 1255 if (EndOfInit.isValid()) 1256 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1257 1258 // Enter a partial-destruction Cleanup if necessary. 1259 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1260 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1261 ElementType, ElementAlign, 1262 getDestroyer(DtorKind)); 1263 Cleanup = EHStack.stable_begin(); 1264 CleanupDominator = Builder.CreateUnreachable(); 1265 } 1266 1267 // Emit the initializer into this element. 1268 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1269 AggValueSlot::DoesNotOverlap); 1270 1271 // Leave the Cleanup if we entered one. 1272 if (CleanupDominator) { 1273 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1274 CleanupDominator->eraseFromParent(); 1275 } 1276 1277 // Advance to the next element by adjusting the pointer type as necessary. 1278 llvm::Value *NextPtr = 1279 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1280 "array.next"); 1281 1282 // Check whether we've gotten to the end of the array and, if so, 1283 // exit the loop. 1284 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1285 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1286 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1287 1288 EmitBlock(ContBB); 1289 } 1290 1291 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1292 QualType ElementType, llvm::Type *ElementTy, 1293 Address NewPtr, llvm::Value *NumElements, 1294 llvm::Value *AllocSizeWithoutCookie) { 1295 ApplyDebugLocation DL(CGF, E); 1296 if (E->isArray()) 1297 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1298 AllocSizeWithoutCookie); 1299 else if (const Expr *Init = E->getInitializer()) 1300 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1301 AggValueSlot::DoesNotOverlap); 1302 } 1303 1304 /// Emit a call to an operator new or operator delete function, as implicitly 1305 /// created by new-expressions and delete-expressions. 1306 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1307 const FunctionDecl *CalleeDecl, 1308 const FunctionProtoType *CalleeType, 1309 const CallArgList &Args) { 1310 llvm::CallBase *CallOrInvoke; 1311 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1312 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1313 RValue RV = 1314 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1315 Args, CalleeType, /*ChainCall=*/false), 1316 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1317 1318 /// C++1y [expr.new]p10: 1319 /// [In a new-expression,] an implementation is allowed to omit a call 1320 /// to a replaceable global allocation function. 1321 /// 1322 /// We model such elidable calls with the 'builtin' attribute. 1323 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1324 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1325 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1326 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 1327 } 1328 1329 return RV; 1330 } 1331 1332 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1333 const CallExpr *TheCall, 1334 bool IsDelete) { 1335 CallArgList Args; 1336 EmitCallArgs(Args, Type, TheCall->arguments()); 1337 // Find the allocation or deallocation function that we're calling. 1338 ASTContext &Ctx = getContext(); 1339 DeclarationName Name = Ctx.DeclarationNames 1340 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1341 1342 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1343 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1344 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1345 return EmitNewDeleteCall(*this, FD, Type, Args); 1346 llvm_unreachable("predeclared global operator new/delete is missing"); 1347 } 1348 1349 namespace { 1350 /// The parameters to pass to a usual operator delete. 1351 struct UsualDeleteParams { 1352 bool DestroyingDelete = false; 1353 bool Size = false; 1354 bool Alignment = false; 1355 }; 1356 } 1357 1358 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1359 UsualDeleteParams Params; 1360 1361 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1362 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1363 1364 // The first argument is always a void*. 1365 ++AI; 1366 1367 // The next parameter may be a std::destroying_delete_t. 1368 if (FD->isDestroyingOperatorDelete()) { 1369 Params.DestroyingDelete = true; 1370 assert(AI != AE); 1371 ++AI; 1372 } 1373 1374 // Figure out what other parameters we should be implicitly passing. 1375 if (AI != AE && (*AI)->isIntegerType()) { 1376 Params.Size = true; 1377 ++AI; 1378 } 1379 1380 if (AI != AE && (*AI)->isAlignValT()) { 1381 Params.Alignment = true; 1382 ++AI; 1383 } 1384 1385 assert(AI == AE && "unexpected usual deallocation function parameter"); 1386 return Params; 1387 } 1388 1389 namespace { 1390 /// A cleanup to call the given 'operator delete' function upon abnormal 1391 /// exit from a new expression. Templated on a traits type that deals with 1392 /// ensuring that the arguments dominate the cleanup if necessary. 1393 template<typename Traits> 1394 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1395 /// Type used to hold llvm::Value*s. 1396 typedef typename Traits::ValueTy ValueTy; 1397 /// Type used to hold RValues. 1398 typedef typename Traits::RValueTy RValueTy; 1399 struct PlacementArg { 1400 RValueTy ArgValue; 1401 QualType ArgType; 1402 }; 1403 1404 unsigned NumPlacementArgs : 31; 1405 unsigned PassAlignmentToPlacementDelete : 1; 1406 const FunctionDecl *OperatorDelete; 1407 ValueTy Ptr; 1408 ValueTy AllocSize; 1409 CharUnits AllocAlign; 1410 1411 PlacementArg *getPlacementArgs() { 1412 return reinterpret_cast<PlacementArg *>(this + 1); 1413 } 1414 1415 public: 1416 static size_t getExtraSize(size_t NumPlacementArgs) { 1417 return NumPlacementArgs * sizeof(PlacementArg); 1418 } 1419 1420 CallDeleteDuringNew(size_t NumPlacementArgs, 1421 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1422 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1423 CharUnits AllocAlign) 1424 : NumPlacementArgs(NumPlacementArgs), 1425 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1426 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1427 AllocAlign(AllocAlign) {} 1428 1429 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1430 assert(I < NumPlacementArgs && "index out of range"); 1431 getPlacementArgs()[I] = {Arg, Type}; 1432 } 1433 1434 void Emit(CodeGenFunction &CGF, Flags flags) override { 1435 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1436 CallArgList DeleteArgs; 1437 1438 // The first argument is always a void* (or C* for a destroying operator 1439 // delete for class type C). 1440 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1441 1442 // Figure out what other parameters we should be implicitly passing. 1443 UsualDeleteParams Params; 1444 if (NumPlacementArgs) { 1445 // A placement deallocation function is implicitly passed an alignment 1446 // if the placement allocation function was, but is never passed a size. 1447 Params.Alignment = PassAlignmentToPlacementDelete; 1448 } else { 1449 // For a non-placement new-expression, 'operator delete' can take a 1450 // size and/or an alignment if it has the right parameters. 1451 Params = getUsualDeleteParams(OperatorDelete); 1452 } 1453 1454 assert(!Params.DestroyingDelete && 1455 "should not call destroying delete in a new-expression"); 1456 1457 // The second argument can be a std::size_t (for non-placement delete). 1458 if (Params.Size) 1459 DeleteArgs.add(Traits::get(CGF, AllocSize), 1460 CGF.getContext().getSizeType()); 1461 1462 // The next (second or third) argument can be a std::align_val_t, which 1463 // is an enum whose underlying type is std::size_t. 1464 // FIXME: Use the right type as the parameter type. Note that in a call 1465 // to operator delete(size_t, ...), we may not have it available. 1466 if (Params.Alignment) 1467 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1468 CGF.SizeTy, AllocAlign.getQuantity())), 1469 CGF.getContext().getSizeType()); 1470 1471 // Pass the rest of the arguments, which must match exactly. 1472 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1473 auto Arg = getPlacementArgs()[I]; 1474 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1475 } 1476 1477 // Call 'operator delete'. 1478 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1479 } 1480 }; 1481 } 1482 1483 /// Enter a cleanup to call 'operator delete' if the initializer in a 1484 /// new-expression throws. 1485 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1486 const CXXNewExpr *E, 1487 Address NewPtr, 1488 llvm::Value *AllocSize, 1489 CharUnits AllocAlign, 1490 const CallArgList &NewArgs) { 1491 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1492 1493 // If we're not inside a conditional branch, then the cleanup will 1494 // dominate and we can do the easier (and more efficient) thing. 1495 if (!CGF.isInConditionalBranch()) { 1496 struct DirectCleanupTraits { 1497 typedef llvm::Value *ValueTy; 1498 typedef RValue RValueTy; 1499 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1500 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1501 }; 1502 1503 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1504 1505 DirectCleanup *Cleanup = CGF.EHStack 1506 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1507 E->getNumPlacementArgs(), 1508 E->getOperatorDelete(), 1509 NewPtr.getPointer(), 1510 AllocSize, 1511 E->passAlignment(), 1512 AllocAlign); 1513 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1514 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1515 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1516 } 1517 1518 return; 1519 } 1520 1521 // Otherwise, we need to save all this stuff. 1522 DominatingValue<RValue>::saved_type SavedNewPtr = 1523 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1524 DominatingValue<RValue>::saved_type SavedAllocSize = 1525 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1526 1527 struct ConditionalCleanupTraits { 1528 typedef DominatingValue<RValue>::saved_type ValueTy; 1529 typedef DominatingValue<RValue>::saved_type RValueTy; 1530 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1531 return V.restore(CGF); 1532 } 1533 }; 1534 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1535 1536 ConditionalCleanup *Cleanup = CGF.EHStack 1537 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1538 E->getNumPlacementArgs(), 1539 E->getOperatorDelete(), 1540 SavedNewPtr, 1541 SavedAllocSize, 1542 E->passAlignment(), 1543 AllocAlign); 1544 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1545 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1546 Cleanup->setPlacementArg( 1547 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1548 } 1549 1550 CGF.initFullExprCleanup(); 1551 } 1552 1553 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1554 // The element type being allocated. 1555 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1556 1557 // 1. Build a call to the allocation function. 1558 FunctionDecl *allocator = E->getOperatorNew(); 1559 1560 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1561 unsigned minElements = 0; 1562 if (E->isArray() && E->hasInitializer()) { 1563 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1564 if (ILE && ILE->isStringLiteralInit()) 1565 minElements = 1566 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1567 ->getSize().getZExtValue(); 1568 else if (ILE) 1569 minElements = ILE->getNumInits(); 1570 } 1571 1572 llvm::Value *numElements = nullptr; 1573 llvm::Value *allocSizeWithoutCookie = nullptr; 1574 llvm::Value *allocSize = 1575 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1576 allocSizeWithoutCookie); 1577 CharUnits allocAlign = getContext().getPreferredTypeAlignInChars(allocType); 1578 1579 // Emit the allocation call. If the allocator is a global placement 1580 // operator, just "inline" it directly. 1581 Address allocation = Address::invalid(); 1582 CallArgList allocatorArgs; 1583 if (allocator->isReservedGlobalPlacementOperator()) { 1584 assert(E->getNumPlacementArgs() == 1); 1585 const Expr *arg = *E->placement_arguments().begin(); 1586 1587 LValueBaseInfo BaseInfo; 1588 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1589 1590 // The pointer expression will, in many cases, be an opaque void*. 1591 // In these cases, discard the computed alignment and use the 1592 // formal alignment of the allocated type. 1593 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1594 allocation = Address(allocation.getPointer(), allocAlign); 1595 1596 // Set up allocatorArgs for the call to operator delete if it's not 1597 // the reserved global operator. 1598 if (E->getOperatorDelete() && 1599 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1600 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1601 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1602 } 1603 1604 } else { 1605 const FunctionProtoType *allocatorType = 1606 allocator->getType()->castAs<FunctionProtoType>(); 1607 unsigned ParamsToSkip = 0; 1608 1609 // The allocation size is the first argument. 1610 QualType sizeType = getContext().getSizeType(); 1611 allocatorArgs.add(RValue::get(allocSize), sizeType); 1612 ++ParamsToSkip; 1613 1614 if (allocSize != allocSizeWithoutCookie) { 1615 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1616 allocAlign = std::max(allocAlign, cookieAlign); 1617 } 1618 1619 // The allocation alignment may be passed as the second argument. 1620 if (E->passAlignment()) { 1621 QualType AlignValT = sizeType; 1622 if (allocatorType->getNumParams() > 1) { 1623 AlignValT = allocatorType->getParamType(1); 1624 assert(getContext().hasSameUnqualifiedType( 1625 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1626 sizeType) && 1627 "wrong type for alignment parameter"); 1628 ++ParamsToSkip; 1629 } else { 1630 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1631 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1632 } 1633 allocatorArgs.add( 1634 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1635 AlignValT); 1636 } 1637 1638 // FIXME: Why do we not pass a CalleeDecl here? 1639 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1640 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1641 1642 RValue RV = 1643 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1644 1645 // Set !heapallocsite metadata on the call to operator new. 1646 if (getDebugInfo()) 1647 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 1648 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 1649 E->getExprLoc()); 1650 1651 // If this was a call to a global replaceable allocation function that does 1652 // not take an alignment argument, the allocator is known to produce 1653 // storage that's suitably aligned for any object that fits, up to a known 1654 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1655 CharUnits allocationAlign = allocAlign; 1656 if (!E->passAlignment() && 1657 allocator->isReplaceableGlobalAllocationFunction()) { 1658 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1659 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1660 allocationAlign = std::max( 1661 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1662 } 1663 1664 allocation = Address(RV.getScalarVal(), allocationAlign); 1665 } 1666 1667 // Emit a null check on the allocation result if the allocation 1668 // function is allowed to return null (because it has a non-throwing 1669 // exception spec or is the reserved placement new) and we have an 1670 // interesting initializer will be running sanitizers on the initialization. 1671 bool nullCheck = E->shouldNullCheckAllocation() && 1672 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1673 sanitizePerformTypeCheck()); 1674 1675 llvm::BasicBlock *nullCheckBB = nullptr; 1676 llvm::BasicBlock *contBB = nullptr; 1677 1678 // The null-check means that the initializer is conditionally 1679 // evaluated. 1680 ConditionalEvaluation conditional(*this); 1681 1682 if (nullCheck) { 1683 conditional.begin(*this); 1684 1685 nullCheckBB = Builder.GetInsertBlock(); 1686 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1687 contBB = createBasicBlock("new.cont"); 1688 1689 llvm::Value *isNull = 1690 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1691 Builder.CreateCondBr(isNull, contBB, notNullBB); 1692 EmitBlock(notNullBB); 1693 } 1694 1695 // If there's an operator delete, enter a cleanup to call it if an 1696 // exception is thrown. 1697 EHScopeStack::stable_iterator operatorDeleteCleanup; 1698 llvm::Instruction *cleanupDominator = nullptr; 1699 if (E->getOperatorDelete() && 1700 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1701 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1702 allocatorArgs); 1703 operatorDeleteCleanup = EHStack.stable_begin(); 1704 cleanupDominator = Builder.CreateUnreachable(); 1705 } 1706 1707 assert((allocSize == allocSizeWithoutCookie) == 1708 CalculateCookiePadding(*this, E).isZero()); 1709 if (allocSize != allocSizeWithoutCookie) { 1710 assert(E->isArray()); 1711 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1712 numElements, 1713 E, allocType); 1714 } 1715 1716 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1717 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1718 1719 // Passing pointer through launder.invariant.group to avoid propagation of 1720 // vptrs information which may be included in previous type. 1721 // To not break LTO with different optimizations levels, we do it regardless 1722 // of optimization level. 1723 if (CGM.getCodeGenOpts().StrictVTablePointers && 1724 allocator->isReservedGlobalPlacementOperator()) 1725 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1726 result.getAlignment()); 1727 1728 // Emit sanitizer checks for pointer value now, so that in the case of an 1729 // array it was checked only once and not at each constructor call. We may 1730 // have already checked that the pointer is non-null. 1731 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1732 // we'll null check the wrong pointer here. 1733 SanitizerSet SkippedChecks; 1734 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1735 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1736 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1737 result.getPointer(), allocType, result.getAlignment(), 1738 SkippedChecks, numElements); 1739 1740 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1741 allocSizeWithoutCookie); 1742 if (E->isArray()) { 1743 // NewPtr is a pointer to the base element type. If we're 1744 // allocating an array of arrays, we'll need to cast back to the 1745 // array pointer type. 1746 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1747 if (result.getType() != resultType) 1748 result = Builder.CreateBitCast(result, resultType); 1749 } 1750 1751 // Deactivate the 'operator delete' cleanup if we finished 1752 // initialization. 1753 if (operatorDeleteCleanup.isValid()) { 1754 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1755 cleanupDominator->eraseFromParent(); 1756 } 1757 1758 llvm::Value *resultPtr = result.getPointer(); 1759 if (nullCheck) { 1760 conditional.end(*this); 1761 1762 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1763 EmitBlock(contBB); 1764 1765 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1766 PHI->addIncoming(resultPtr, notNullBB); 1767 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1768 nullCheckBB); 1769 1770 resultPtr = PHI; 1771 } 1772 1773 return resultPtr; 1774 } 1775 1776 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1777 llvm::Value *Ptr, QualType DeleteTy, 1778 llvm::Value *NumElements, 1779 CharUnits CookieSize) { 1780 assert((!NumElements && CookieSize.isZero()) || 1781 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1782 1783 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1784 CallArgList DeleteArgs; 1785 1786 auto Params = getUsualDeleteParams(DeleteFD); 1787 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1788 1789 // Pass the pointer itself. 1790 QualType ArgTy = *ParamTypeIt++; 1791 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1792 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1793 1794 // Pass the std::destroying_delete tag if present. 1795 llvm::AllocaInst *DestroyingDeleteTag = nullptr; 1796 if (Params.DestroyingDelete) { 1797 QualType DDTag = *ParamTypeIt++; 1798 llvm::Type *Ty = getTypes().ConvertType(DDTag); 1799 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1800 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1801 DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 1802 DeleteArgs.add(RValue::getAggregate(Address(DestroyingDeleteTag, Align)), DDTag); 1803 } 1804 1805 // Pass the size if the delete function has a size_t parameter. 1806 if (Params.Size) { 1807 QualType SizeType = *ParamTypeIt++; 1808 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1809 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1810 DeleteTypeSize.getQuantity()); 1811 1812 // For array new, multiply by the number of elements. 1813 if (NumElements) 1814 Size = Builder.CreateMul(Size, NumElements); 1815 1816 // If there is a cookie, add the cookie size. 1817 if (!CookieSize.isZero()) 1818 Size = Builder.CreateAdd( 1819 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1820 1821 DeleteArgs.add(RValue::get(Size), SizeType); 1822 } 1823 1824 // Pass the alignment if the delete function has an align_val_t parameter. 1825 if (Params.Alignment) { 1826 QualType AlignValType = *ParamTypeIt++; 1827 CharUnits DeleteTypeAlign = 1828 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1829 DeleteTy, true /* NeedsPreferredAlignment */)); 1830 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1831 DeleteTypeAlign.getQuantity()); 1832 DeleteArgs.add(RValue::get(Align), AlignValType); 1833 } 1834 1835 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1836 "unknown parameter to usual delete function"); 1837 1838 // Emit the call to delete. 1839 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1840 1841 // If call argument lowering didn't use the destroying_delete_t alloca, 1842 // remove it again. 1843 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1844 DestroyingDeleteTag->eraseFromParent(); 1845 } 1846 1847 namespace { 1848 /// Calls the given 'operator delete' on a single object. 1849 struct CallObjectDelete final : EHScopeStack::Cleanup { 1850 llvm::Value *Ptr; 1851 const FunctionDecl *OperatorDelete; 1852 QualType ElementType; 1853 1854 CallObjectDelete(llvm::Value *Ptr, 1855 const FunctionDecl *OperatorDelete, 1856 QualType ElementType) 1857 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1858 1859 void Emit(CodeGenFunction &CGF, Flags flags) override { 1860 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1861 } 1862 }; 1863 } 1864 1865 void 1866 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1867 llvm::Value *CompletePtr, 1868 QualType ElementType) { 1869 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1870 OperatorDelete, ElementType); 1871 } 1872 1873 /// Emit the code for deleting a single object with a destroying operator 1874 /// delete. If the element type has a non-virtual destructor, Ptr has already 1875 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1876 /// Ptr points to an object of the static type. 1877 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1878 const CXXDeleteExpr *DE, Address Ptr, 1879 QualType ElementType) { 1880 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1881 if (Dtor && Dtor->isVirtual()) 1882 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1883 Dtor); 1884 else 1885 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1886 } 1887 1888 /// Emit the code for deleting a single object. 1889 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 1890 /// if not. 1891 static bool EmitObjectDelete(CodeGenFunction &CGF, 1892 const CXXDeleteExpr *DE, 1893 Address Ptr, 1894 QualType ElementType, 1895 llvm::BasicBlock *UnconditionalDeleteBlock) { 1896 // C++11 [expr.delete]p3: 1897 // If the static type of the object to be deleted is different from its 1898 // dynamic type, the static type shall be a base class of the dynamic type 1899 // of the object to be deleted and the static type shall have a virtual 1900 // destructor or the behavior is undefined. 1901 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1902 DE->getExprLoc(), Ptr.getPointer(), 1903 ElementType); 1904 1905 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1906 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1907 1908 // Find the destructor for the type, if applicable. If the 1909 // destructor is virtual, we'll just emit the vcall and return. 1910 const CXXDestructorDecl *Dtor = nullptr; 1911 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1912 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1913 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1914 Dtor = RD->getDestructor(); 1915 1916 if (Dtor->isVirtual()) { 1917 bool UseVirtualCall = true; 1918 const Expr *Base = DE->getArgument(); 1919 if (auto *DevirtualizedDtor = 1920 dyn_cast_or_null<const CXXDestructorDecl>( 1921 Dtor->getDevirtualizedMethod( 1922 Base, CGF.CGM.getLangOpts().AppleKext))) { 1923 UseVirtualCall = false; 1924 const CXXRecordDecl *DevirtualizedClass = 1925 DevirtualizedDtor->getParent(); 1926 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1927 // Devirtualized to the class of the base type (the type of the 1928 // whole expression). 1929 Dtor = DevirtualizedDtor; 1930 } else { 1931 // Devirtualized to some other type. Would need to cast the this 1932 // pointer to that type but we don't have support for that yet, so 1933 // do a virtual call. FIXME: handle the case where it is 1934 // devirtualized to the derived type (the type of the inner 1935 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1936 UseVirtualCall = true; 1937 } 1938 } 1939 if (UseVirtualCall) { 1940 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1941 Dtor); 1942 return false; 1943 } 1944 } 1945 } 1946 } 1947 1948 // Make sure that we call delete even if the dtor throws. 1949 // This doesn't have to a conditional cleanup because we're going 1950 // to pop it off in a second. 1951 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1952 Ptr.getPointer(), 1953 OperatorDelete, ElementType); 1954 1955 if (Dtor) 1956 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1957 /*ForVirtualBase=*/false, 1958 /*Delegating=*/false, 1959 Ptr, ElementType); 1960 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1961 switch (Lifetime) { 1962 case Qualifiers::OCL_None: 1963 case Qualifiers::OCL_ExplicitNone: 1964 case Qualifiers::OCL_Autoreleasing: 1965 break; 1966 1967 case Qualifiers::OCL_Strong: 1968 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1969 break; 1970 1971 case Qualifiers::OCL_Weak: 1972 CGF.EmitARCDestroyWeak(Ptr); 1973 break; 1974 } 1975 } 1976 1977 // When optimizing for size, call 'operator delete' unconditionally. 1978 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 1979 CGF.EmitBlock(UnconditionalDeleteBlock); 1980 CGF.PopCleanupBlock(); 1981 return true; 1982 } 1983 1984 CGF.PopCleanupBlock(); 1985 return false; 1986 } 1987 1988 namespace { 1989 /// Calls the given 'operator delete' on an array of objects. 1990 struct CallArrayDelete final : EHScopeStack::Cleanup { 1991 llvm::Value *Ptr; 1992 const FunctionDecl *OperatorDelete; 1993 llvm::Value *NumElements; 1994 QualType ElementType; 1995 CharUnits CookieSize; 1996 1997 CallArrayDelete(llvm::Value *Ptr, 1998 const FunctionDecl *OperatorDelete, 1999 llvm::Value *NumElements, 2000 QualType ElementType, 2001 CharUnits CookieSize) 2002 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 2003 ElementType(ElementType), CookieSize(CookieSize) {} 2004 2005 void Emit(CodeGenFunction &CGF, Flags flags) override { 2006 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 2007 CookieSize); 2008 } 2009 }; 2010 } 2011 2012 /// Emit the code for deleting an array of objects. 2013 static void EmitArrayDelete(CodeGenFunction &CGF, 2014 const CXXDeleteExpr *E, 2015 Address deletedPtr, 2016 QualType elementType) { 2017 llvm::Value *numElements = nullptr; 2018 llvm::Value *allocatedPtr = nullptr; 2019 CharUnits cookieSize; 2020 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 2021 numElements, allocatedPtr, cookieSize); 2022 2023 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 2024 2025 // Make sure that we call delete even if one of the dtors throws. 2026 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 2027 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 2028 allocatedPtr, operatorDelete, 2029 numElements, elementType, 2030 cookieSize); 2031 2032 // Destroy the elements. 2033 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2034 assert(numElements && "no element count for a type with a destructor!"); 2035 2036 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2037 CharUnits elementAlign = 2038 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2039 2040 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2041 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2042 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 2043 2044 // Note that it is legal to allocate a zero-length array, and we 2045 // can never fold the check away because the length should always 2046 // come from a cookie. 2047 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2048 CGF.getDestroyer(dtorKind), 2049 /*checkZeroLength*/ true, 2050 CGF.needsEHCleanup(dtorKind)); 2051 } 2052 2053 // Pop the cleanup block. 2054 CGF.PopCleanupBlock(); 2055 } 2056 2057 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2058 const Expr *Arg = E->getArgument(); 2059 Address Ptr = EmitPointerWithAlignment(Arg); 2060 2061 // Null check the pointer. 2062 // 2063 // We could avoid this null check if we can determine that the object 2064 // destruction is trivial and doesn't require an array cookie; we can 2065 // unconditionally perform the operator delete call in that case. For now, we 2066 // assume that deleted pointers are null rarely enough that it's better to 2067 // keep the branch. This might be worth revisiting for a -O0 code size win. 2068 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2069 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2070 2071 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2072 2073 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2074 EmitBlock(DeleteNotNull); 2075 2076 QualType DeleteTy = E->getDestroyedType(); 2077 2078 // A destroying operator delete overrides the entire operation of the 2079 // delete expression. 2080 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2081 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2082 EmitBlock(DeleteEnd); 2083 return; 2084 } 2085 2086 // We might be deleting a pointer to array. If so, GEP down to the 2087 // first non-array element. 2088 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2089 if (DeleteTy->isConstantArrayType()) { 2090 llvm::Value *Zero = Builder.getInt32(0); 2091 SmallVector<llvm::Value*,8> GEP; 2092 2093 GEP.push_back(Zero); // point at the outermost array 2094 2095 // For each layer of array type we're pointing at: 2096 while (const ConstantArrayType *Arr 2097 = getContext().getAsConstantArrayType(DeleteTy)) { 2098 // 1. Unpeel the array type. 2099 DeleteTy = Arr->getElementType(); 2100 2101 // 2. GEP to the first element of the array. 2102 GEP.push_back(Zero); 2103 } 2104 2105 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(), 2106 Ptr.getPointer(), GEP, "del.first"), 2107 Ptr.getAlignment()); 2108 } 2109 2110 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2111 2112 if (E->isArrayForm()) { 2113 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2114 EmitBlock(DeleteEnd); 2115 } else { 2116 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 2117 EmitBlock(DeleteEnd); 2118 } 2119 } 2120 2121 static bool isGLValueFromPointerDeref(const Expr *E) { 2122 E = E->IgnoreParens(); 2123 2124 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2125 if (!CE->getSubExpr()->isGLValue()) 2126 return false; 2127 return isGLValueFromPointerDeref(CE->getSubExpr()); 2128 } 2129 2130 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2131 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2132 2133 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2134 if (BO->getOpcode() == BO_Comma) 2135 return isGLValueFromPointerDeref(BO->getRHS()); 2136 2137 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2138 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2139 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2140 2141 // C++11 [expr.sub]p1: 2142 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2143 if (isa<ArraySubscriptExpr>(E)) 2144 return true; 2145 2146 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2147 if (UO->getOpcode() == UO_Deref) 2148 return true; 2149 2150 return false; 2151 } 2152 2153 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2154 llvm::Type *StdTypeInfoPtrTy) { 2155 // Get the vtable pointer. 2156 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2157 2158 QualType SrcRecordTy = E->getType(); 2159 2160 // C++ [class.cdtor]p4: 2161 // If the operand of typeid refers to the object under construction or 2162 // destruction and the static type of the operand is neither the constructor 2163 // or destructor’s class nor one of its bases, the behavior is undefined. 2164 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2165 ThisPtr.getPointer(), SrcRecordTy); 2166 2167 // C++ [expr.typeid]p2: 2168 // If the glvalue expression is obtained by applying the unary * operator to 2169 // a pointer and the pointer is a null pointer value, the typeid expression 2170 // throws the std::bad_typeid exception. 2171 // 2172 // However, this paragraph's intent is not clear. We choose a very generous 2173 // interpretation which implores us to consider comma operators, conditional 2174 // operators, parentheses and other such constructs. 2175 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2176 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2177 llvm::BasicBlock *BadTypeidBlock = 2178 CGF.createBasicBlock("typeid.bad_typeid"); 2179 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2180 2181 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2182 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2183 2184 CGF.EmitBlock(BadTypeidBlock); 2185 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2186 CGF.EmitBlock(EndBlock); 2187 } 2188 2189 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2190 StdTypeInfoPtrTy); 2191 } 2192 2193 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2194 llvm::Type *StdTypeInfoPtrTy = 2195 ConvertType(E->getType())->getPointerTo(); 2196 2197 if (E->isTypeOperand()) { 2198 llvm::Constant *TypeInfo = 2199 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2200 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2201 } 2202 2203 // C++ [expr.typeid]p2: 2204 // When typeid is applied to a glvalue expression whose type is a 2205 // polymorphic class type, the result refers to a std::type_info object 2206 // representing the type of the most derived object (that is, the dynamic 2207 // type) to which the glvalue refers. 2208 // If the operand is already most derived object, no need to look up vtable. 2209 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2210 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2211 StdTypeInfoPtrTy); 2212 2213 QualType OperandTy = E->getExprOperand()->getType(); 2214 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2215 StdTypeInfoPtrTy); 2216 } 2217 2218 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2219 QualType DestTy) { 2220 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2221 if (DestTy->isPointerType()) 2222 return llvm::Constant::getNullValue(DestLTy); 2223 2224 /// C++ [expr.dynamic.cast]p9: 2225 /// A failed cast to reference type throws std::bad_cast 2226 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2227 return nullptr; 2228 2229 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2230 return llvm::UndefValue::get(DestLTy); 2231 } 2232 2233 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2234 const CXXDynamicCastExpr *DCE) { 2235 CGM.EmitExplicitCastExprType(DCE, this); 2236 QualType DestTy = DCE->getTypeAsWritten(); 2237 2238 QualType SrcTy = DCE->getSubExpr()->getType(); 2239 2240 // C++ [expr.dynamic.cast]p7: 2241 // If T is "pointer to cv void," then the result is a pointer to the most 2242 // derived object pointed to by v. 2243 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2244 2245 bool isDynamicCastToVoid; 2246 QualType SrcRecordTy; 2247 QualType DestRecordTy; 2248 if (DestPTy) { 2249 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2250 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2251 DestRecordTy = DestPTy->getPointeeType(); 2252 } else { 2253 isDynamicCastToVoid = false; 2254 SrcRecordTy = SrcTy; 2255 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2256 } 2257 2258 // C++ [class.cdtor]p5: 2259 // If the operand of the dynamic_cast refers to the object under 2260 // construction or destruction and the static type of the operand is not a 2261 // pointer to or object of the constructor or destructor’s own class or one 2262 // of its bases, the dynamic_cast results in undefined behavior. 2263 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2264 SrcRecordTy); 2265 2266 if (DCE->isAlwaysNull()) 2267 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2268 return T; 2269 2270 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2271 2272 // C++ [expr.dynamic.cast]p4: 2273 // If the value of v is a null pointer value in the pointer case, the result 2274 // is the null pointer value of type T. 2275 bool ShouldNullCheckSrcValue = 2276 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2277 SrcRecordTy); 2278 2279 llvm::BasicBlock *CastNull = nullptr; 2280 llvm::BasicBlock *CastNotNull = nullptr; 2281 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2282 2283 if (ShouldNullCheckSrcValue) { 2284 CastNull = createBasicBlock("dynamic_cast.null"); 2285 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2286 2287 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2288 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2289 EmitBlock(CastNotNull); 2290 } 2291 2292 llvm::Value *Value; 2293 if (isDynamicCastToVoid) { 2294 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2295 DestTy); 2296 } else { 2297 assert(DestRecordTy->isRecordType() && 2298 "destination type must be a record type!"); 2299 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2300 DestTy, DestRecordTy, CastEnd); 2301 CastNotNull = Builder.GetInsertBlock(); 2302 } 2303 2304 if (ShouldNullCheckSrcValue) { 2305 EmitBranch(CastEnd); 2306 2307 EmitBlock(CastNull); 2308 EmitBranch(CastEnd); 2309 } 2310 2311 EmitBlock(CastEnd); 2312 2313 if (ShouldNullCheckSrcValue) { 2314 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2315 PHI->addIncoming(Value, CastNotNull); 2316 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2317 2318 Value = PHI; 2319 } 2320 2321 return Value; 2322 } 2323