1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGObjCRuntime.h" 19 #include "CGDebugInfo.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 llvm::Value *Callee, 28 ReturnValueSlot ReturnValue, 29 llvm::Value *This, 30 llvm::Value *VTT, 31 CallExpr::const_arg_iterator ArgBeg, 32 CallExpr::const_arg_iterator ArgEnd) { 33 assert(MD->isInstance() && 34 "Trying to emit a member call expr on a static method!"); 35 36 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 37 38 CallArgList Args; 39 40 // Push the this ptr. 41 Args.add(RValue::get(This), MD->getThisType(getContext())); 42 43 // If there is a VTT parameter, emit it. 44 if (VTT) { 45 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 46 Args.add(RValue::get(VTT), T); 47 } 48 49 // And the rest of the call args 50 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 51 52 QualType ResultType = FPT->getResultType(); 53 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, 54 FPT->getExtInfo()), 55 Callee, ReturnValue, Args, MD); 56 } 57 58 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 59 const Expr *E = Base; 60 61 while (true) { 62 E = E->IgnoreParens(); 63 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 64 if (CE->getCastKind() == CK_DerivedToBase || 65 CE->getCastKind() == CK_UncheckedDerivedToBase || 66 CE->getCastKind() == CK_NoOp) { 67 E = CE->getSubExpr(); 68 continue; 69 } 70 } 71 72 break; 73 } 74 75 QualType DerivedType = E->getType(); 76 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 77 DerivedType = PTy->getPointeeType(); 78 79 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 80 } 81 82 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 83 // quite what we want. 84 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 85 while (true) { 86 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 87 E = PE->getSubExpr(); 88 continue; 89 } 90 91 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 92 if (CE->getCastKind() == CK_NoOp) { 93 E = CE->getSubExpr(); 94 continue; 95 } 96 } 97 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 98 if (UO->getOpcode() == UO_Extension) { 99 E = UO->getSubExpr(); 100 continue; 101 } 102 } 103 return E; 104 } 105 } 106 107 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 108 /// expr can be devirtualized. 109 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 110 const Expr *Base, 111 const CXXMethodDecl *MD) { 112 113 // When building with -fapple-kext, all calls must go through the vtable since 114 // the kernel linker can do runtime patching of vtables. 115 if (Context.getLangOptions().AppleKext) 116 return false; 117 118 // If the most derived class is marked final, we know that no subclass can 119 // override this member function and so we can devirtualize it. For example: 120 // 121 // struct A { virtual void f(); } 122 // struct B final : A { }; 123 // 124 // void f(B *b) { 125 // b->f(); 126 // } 127 // 128 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 129 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 130 return true; 131 132 // If the member function is marked 'final', we know that it can't be 133 // overridden and can therefore devirtualize it. 134 if (MD->hasAttr<FinalAttr>()) 135 return true; 136 137 // Similarly, if the class itself is marked 'final' it can't be overridden 138 // and we can therefore devirtualize the member function call. 139 if (MD->getParent()->hasAttr<FinalAttr>()) 140 return true; 141 142 Base = skipNoOpCastsAndParens(Base); 143 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 144 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 145 // This is a record decl. We know the type and can devirtualize it. 146 return VD->getType()->isRecordType(); 147 } 148 149 return false; 150 } 151 152 // We can always devirtualize calls on temporary object expressions. 153 if (isa<CXXConstructExpr>(Base)) 154 return true; 155 156 // And calls on bound temporaries. 157 if (isa<CXXBindTemporaryExpr>(Base)) 158 return true; 159 160 // Check if this is a call expr that returns a record type. 161 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 162 return CE->getCallReturnType()->isRecordType(); 163 164 // We can't devirtualize the call. 165 return false; 166 } 167 168 // Note: This function also emit constructor calls to support a MSVC 169 // extensions allowing explicit constructor function call. 170 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 171 ReturnValueSlot ReturnValue) { 172 const Expr *callee = CE->getCallee()->IgnoreParens(); 173 174 if (isa<BinaryOperator>(callee)) 175 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 176 177 const MemberExpr *ME = cast<MemberExpr>(callee); 178 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 179 180 CGDebugInfo *DI = getDebugInfo(); 181 if (DI && CGM.getCodeGenOpts().LimitDebugInfo 182 && !isa<CallExpr>(ME->getBase())) { 183 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 184 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 185 DI->getOrCreateRecordType(PTy->getPointeeType(), 186 MD->getParent()->getLocation()); 187 } 188 } 189 190 if (MD->isStatic()) { 191 // The method is static, emit it as we would a regular call. 192 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 193 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 194 ReturnValue, CE->arg_begin(), CE->arg_end()); 195 } 196 197 // Compute the object pointer. 198 llvm::Value *This; 199 if (ME->isArrow()) 200 This = EmitScalarExpr(ME->getBase()); 201 else 202 This = EmitLValue(ME->getBase()).getAddress(); 203 204 if (MD->isTrivial()) { 205 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 206 if (isa<CXXConstructorDecl>(MD) && 207 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 208 return RValue::get(0); 209 210 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 211 // We don't like to generate the trivial copy/move assignment operator 212 // when it isn't necessary; just produce the proper effect here. 213 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 214 EmitAggregateCopy(This, RHS, CE->getType()); 215 return RValue::get(This); 216 } 217 218 if (isa<CXXConstructorDecl>(MD) && 219 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 220 // Trivial move and copy ctor are the same. 221 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 222 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 223 CE->arg_begin(), CE->arg_end()); 224 return RValue::get(This); 225 } 226 llvm_unreachable("unknown trivial member function"); 227 } 228 229 // Compute the function type we're calling. 230 const CGFunctionInfo *FInfo = 0; 231 if (isa<CXXDestructorDecl>(MD)) 232 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD), 233 Dtor_Complete); 234 else if (isa<CXXConstructorDecl>(MD)) 235 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD), 236 Ctor_Complete); 237 else 238 FInfo = &CGM.getTypes().getFunctionInfo(MD); 239 240 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 241 llvm::Type *Ty 242 = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic()); 243 244 // C++ [class.virtual]p12: 245 // Explicit qualification with the scope operator (5.1) suppresses the 246 // virtual call mechanism. 247 // 248 // We also don't emit a virtual call if the base expression has a record type 249 // because then we know what the type is. 250 bool UseVirtualCall; 251 UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 252 && !canDevirtualizeMemberFunctionCalls(getContext(), 253 ME->getBase(), MD); 254 llvm::Value *Callee; 255 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 256 if (UseVirtualCall) { 257 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 258 } else { 259 if (getContext().getLangOptions().AppleKext && 260 MD->isVirtual() && 261 ME->hasQualifier()) 262 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 263 else 264 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 265 } 266 } else if (const CXXConstructorDecl *Ctor = 267 dyn_cast<CXXConstructorDecl>(MD)) { 268 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 269 } else if (UseVirtualCall) { 270 Callee = BuildVirtualCall(MD, This, Ty); 271 } else { 272 if (getContext().getLangOptions().AppleKext && 273 MD->isVirtual() && 274 ME->hasQualifier()) 275 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 276 else 277 Callee = CGM.GetAddrOfFunction(MD, Ty); 278 } 279 280 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 281 CE->arg_begin(), CE->arg_end()); 282 } 283 284 RValue 285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 286 ReturnValueSlot ReturnValue) { 287 const BinaryOperator *BO = 288 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 289 const Expr *BaseExpr = BO->getLHS(); 290 const Expr *MemFnExpr = BO->getRHS(); 291 292 const MemberPointerType *MPT = 293 MemFnExpr->getType()->castAs<MemberPointerType>(); 294 295 const FunctionProtoType *FPT = 296 MPT->getPointeeType()->castAs<FunctionProtoType>(); 297 const CXXRecordDecl *RD = 298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 299 300 // Get the member function pointer. 301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 302 303 // Emit the 'this' pointer. 304 llvm::Value *This; 305 306 if (BO->getOpcode() == BO_PtrMemI) 307 This = EmitScalarExpr(BaseExpr); 308 else 309 This = EmitLValue(BaseExpr).getAddress(); 310 311 // Ask the ABI to load the callee. Note that This is modified. 312 llvm::Value *Callee = 313 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 314 315 CallArgList Args; 316 317 QualType ThisType = 318 getContext().getPointerType(getContext().getTagDeclType(RD)); 319 320 // Push the this ptr. 321 Args.add(RValue::get(This), ThisType); 322 323 // And the rest of the call args 324 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 325 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee, 326 ReturnValue, Args); 327 } 328 329 RValue 330 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 331 const CXXMethodDecl *MD, 332 ReturnValueSlot ReturnValue) { 333 assert(MD->isInstance() && 334 "Trying to emit a member call expr on a static method!"); 335 LValue LV = EmitLValue(E->getArg(0)); 336 llvm::Value *This = LV.getAddress(); 337 338 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 339 MD->isTrivial()) { 340 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 341 QualType Ty = E->getType(); 342 EmitAggregateCopy(This, Src, Ty); 343 return RValue::get(This); 344 } 345 346 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 347 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 348 E->arg_begin() + 1, E->arg_end()); 349 } 350 351 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 352 ReturnValueSlot ReturnValue) { 353 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 354 } 355 356 void 357 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 358 AggValueSlot Dest) { 359 assert(!Dest.isIgnored() && "Must have a destination!"); 360 const CXXConstructorDecl *CD = E->getConstructor(); 361 362 // If we require zero initialization before (or instead of) calling the 363 // constructor, as can be the case with a non-user-provided default 364 // constructor, emit the zero initialization now, unless destination is 365 // already zeroed. 366 if (E->requiresZeroInitialization() && !Dest.isZeroed()) 367 EmitNullInitialization(Dest.getAddr(), E->getType()); 368 369 // If this is a call to a trivial default constructor, do nothing. 370 if (CD->isTrivial() && CD->isDefaultConstructor()) 371 return; 372 373 // Elide the constructor if we're constructing from a temporary. 374 // The temporary check is required because Sema sets this on NRVO 375 // returns. 376 if (getContext().getLangOptions().ElideConstructors && E->isElidable()) { 377 assert(getContext().hasSameUnqualifiedType(E->getType(), 378 E->getArg(0)->getType())); 379 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 380 EmitAggExpr(E->getArg(0), Dest); 381 return; 382 } 383 } 384 385 if (const ConstantArrayType *arrayType 386 = getContext().getAsConstantArrayType(E->getType())) { 387 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 388 E->arg_begin(), E->arg_end()); 389 } else { 390 CXXCtorType Type = Ctor_Complete; 391 bool ForVirtualBase = false; 392 393 switch (E->getConstructionKind()) { 394 case CXXConstructExpr::CK_Delegating: 395 // We should be emitting a constructor; GlobalDecl will assert this 396 Type = CurGD.getCtorType(); 397 break; 398 399 case CXXConstructExpr::CK_Complete: 400 Type = Ctor_Complete; 401 break; 402 403 case CXXConstructExpr::CK_VirtualBase: 404 ForVirtualBase = true; 405 // fall-through 406 407 case CXXConstructExpr::CK_NonVirtualBase: 408 Type = Ctor_Base; 409 } 410 411 // Call the constructor. 412 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 413 E->arg_begin(), E->arg_end()); 414 } 415 } 416 417 void 418 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 419 llvm::Value *Src, 420 const Expr *Exp) { 421 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 422 Exp = E->getSubExpr(); 423 assert(isa<CXXConstructExpr>(Exp) && 424 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 425 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 426 const CXXConstructorDecl *CD = E->getConstructor(); 427 RunCleanupsScope Scope(*this); 428 429 // If we require zero initialization before (or instead of) calling the 430 // constructor, as can be the case with a non-user-provided default 431 // constructor, emit the zero initialization now. 432 // FIXME. Do I still need this for a copy ctor synthesis? 433 if (E->requiresZeroInitialization()) 434 EmitNullInitialization(Dest, E->getType()); 435 436 assert(!getContext().getAsConstantArrayType(E->getType()) 437 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 438 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 439 E->arg_begin(), E->arg_end()); 440 } 441 442 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 443 const CXXNewExpr *E) { 444 if (!E->isArray()) 445 return CharUnits::Zero(); 446 447 // No cookie is required if the operator new[] being used is the 448 // reserved placement operator new[]. 449 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 450 return CharUnits::Zero(); 451 452 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 453 } 454 455 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 456 const CXXNewExpr *e, 457 llvm::Value *&numElements, 458 llvm::Value *&sizeWithoutCookie) { 459 QualType type = e->getAllocatedType(); 460 461 if (!e->isArray()) { 462 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 463 sizeWithoutCookie 464 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 465 return sizeWithoutCookie; 466 } 467 468 // The width of size_t. 469 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 470 471 // Figure out the cookie size. 472 llvm::APInt cookieSize(sizeWidth, 473 CalculateCookiePadding(CGF, e).getQuantity()); 474 475 // Emit the array size expression. 476 // We multiply the size of all dimensions for NumElements. 477 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 478 numElements = CGF.EmitScalarExpr(e->getArraySize()); 479 assert(isa<llvm::IntegerType>(numElements->getType())); 480 481 // The number of elements can be have an arbitrary integer type; 482 // essentially, we need to multiply it by a constant factor, add a 483 // cookie size, and verify that the result is representable as a 484 // size_t. That's just a gloss, though, and it's wrong in one 485 // important way: if the count is negative, it's an error even if 486 // the cookie size would bring the total size >= 0. 487 bool isSigned 488 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 489 llvm::IntegerType *numElementsType 490 = cast<llvm::IntegerType>(numElements->getType()); 491 unsigned numElementsWidth = numElementsType->getBitWidth(); 492 493 // Compute the constant factor. 494 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 495 while (const ConstantArrayType *CAT 496 = CGF.getContext().getAsConstantArrayType(type)) { 497 type = CAT->getElementType(); 498 arraySizeMultiplier *= CAT->getSize(); 499 } 500 501 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 502 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 503 typeSizeMultiplier *= arraySizeMultiplier; 504 505 // This will be a size_t. 506 llvm::Value *size; 507 508 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 509 // Don't bloat the -O0 code. 510 if (llvm::ConstantInt *numElementsC = 511 dyn_cast<llvm::ConstantInt>(numElements)) { 512 const llvm::APInt &count = numElementsC->getValue(); 513 514 bool hasAnyOverflow = false; 515 516 // If 'count' was a negative number, it's an overflow. 517 if (isSigned && count.isNegative()) 518 hasAnyOverflow = true; 519 520 // We want to do all this arithmetic in size_t. If numElements is 521 // wider than that, check whether it's already too big, and if so, 522 // overflow. 523 else if (numElementsWidth > sizeWidth && 524 numElementsWidth - sizeWidth > count.countLeadingZeros()) 525 hasAnyOverflow = true; 526 527 // Okay, compute a count at the right width. 528 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 529 530 // Scale numElements by that. This might overflow, but we don't 531 // care because it only overflows if allocationSize does, too, and 532 // if that overflows then we shouldn't use this. 533 numElements = llvm::ConstantInt::get(CGF.SizeTy, 534 adjustedCount * arraySizeMultiplier); 535 536 // Compute the size before cookie, and track whether it overflowed. 537 bool overflow; 538 llvm::APInt allocationSize 539 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 540 hasAnyOverflow |= overflow; 541 542 // Add in the cookie, and check whether it's overflowed. 543 if (cookieSize != 0) { 544 // Save the current size without a cookie. This shouldn't be 545 // used if there was overflow. 546 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 547 548 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 549 hasAnyOverflow |= overflow; 550 } 551 552 // On overflow, produce a -1 so operator new will fail. 553 if (hasAnyOverflow) { 554 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 555 } else { 556 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 557 } 558 559 // Otherwise, we might need to use the overflow intrinsics. 560 } else { 561 // There are up to four conditions we need to test for: 562 // 1) if isSigned, we need to check whether numElements is negative; 563 // 2) if numElementsWidth > sizeWidth, we need to check whether 564 // numElements is larger than something representable in size_t; 565 // 3) we need to compute 566 // sizeWithoutCookie := numElements * typeSizeMultiplier 567 // and check whether it overflows; and 568 // 4) if we need a cookie, we need to compute 569 // size := sizeWithoutCookie + cookieSize 570 // and check whether it overflows. 571 572 llvm::Value *hasOverflow = 0; 573 574 // If numElementsWidth > sizeWidth, then one way or another, we're 575 // going to have to do a comparison for (2), and this happens to 576 // take care of (1), too. 577 if (numElementsWidth > sizeWidth) { 578 llvm::APInt threshold(numElementsWidth, 1); 579 threshold <<= sizeWidth; 580 581 llvm::Value *thresholdV 582 = llvm::ConstantInt::get(numElementsType, threshold); 583 584 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 585 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 586 587 // Otherwise, if we're signed, we want to sext up to size_t. 588 } else if (isSigned) { 589 if (numElementsWidth < sizeWidth) 590 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 591 592 // If there's a non-1 type size multiplier, then we can do the 593 // signedness check at the same time as we do the multiply 594 // because a negative number times anything will cause an 595 // unsigned overflow. Otherwise, we have to do it here. 596 if (typeSizeMultiplier == 1) 597 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 598 llvm::ConstantInt::get(CGF.SizeTy, 0)); 599 600 // Otherwise, zext up to size_t if necessary. 601 } else if (numElementsWidth < sizeWidth) { 602 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 603 } 604 605 assert(numElements->getType() == CGF.SizeTy); 606 607 size = numElements; 608 609 // Multiply by the type size if necessary. This multiplier 610 // includes all the factors for nested arrays. 611 // 612 // This step also causes numElements to be scaled up by the 613 // nested-array factor if necessary. Overflow on this computation 614 // can be ignored because the result shouldn't be used if 615 // allocation fails. 616 if (typeSizeMultiplier != 1) { 617 llvm::Value *umul_with_overflow 618 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 619 620 llvm::Value *tsmV = 621 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 622 llvm::Value *result = 623 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 624 625 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 626 if (hasOverflow) 627 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 628 else 629 hasOverflow = overflowed; 630 631 size = CGF.Builder.CreateExtractValue(result, 0); 632 633 // Also scale up numElements by the array size multiplier. 634 if (arraySizeMultiplier != 1) { 635 // If the base element type size is 1, then we can re-use the 636 // multiply we just did. 637 if (typeSize.isOne()) { 638 assert(arraySizeMultiplier == typeSizeMultiplier); 639 numElements = size; 640 641 // Otherwise we need a separate multiply. 642 } else { 643 llvm::Value *asmV = 644 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 645 numElements = CGF.Builder.CreateMul(numElements, asmV); 646 } 647 } 648 } else { 649 // numElements doesn't need to be scaled. 650 assert(arraySizeMultiplier == 1); 651 } 652 653 // Add in the cookie size if necessary. 654 if (cookieSize != 0) { 655 sizeWithoutCookie = size; 656 657 llvm::Value *uadd_with_overflow 658 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 659 660 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 661 llvm::Value *result = 662 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 663 664 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 665 if (hasOverflow) 666 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 667 else 668 hasOverflow = overflowed; 669 670 size = CGF.Builder.CreateExtractValue(result, 0); 671 } 672 673 // If we had any possibility of dynamic overflow, make a select to 674 // overwrite 'size' with an all-ones value, which should cause 675 // operator new to throw. 676 if (hasOverflow) 677 size = CGF.Builder.CreateSelect(hasOverflow, 678 llvm::Constant::getAllOnesValue(CGF.SizeTy), 679 size); 680 } 681 682 if (cookieSize == 0) 683 sizeWithoutCookie = size; 684 else 685 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 686 687 return size; 688 } 689 690 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E, 691 llvm::Value *NewPtr) { 692 693 assert(E->getNumConstructorArgs() == 1 && 694 "Can only have one argument to initializer of POD type."); 695 696 const Expr *Init = E->getConstructorArg(0); 697 QualType AllocType = E->getAllocatedType(); 698 699 unsigned Alignment = 700 CGF.getContext().getTypeAlignInChars(AllocType).getQuantity(); 701 if (!CGF.hasAggregateLLVMType(AllocType)) 702 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), 703 false); 704 else if (AllocType->isAnyComplexType()) 705 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 706 AllocType.isVolatileQualified()); 707 else { 708 AggValueSlot Slot 709 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 710 AggValueSlot::IsDestructed, 711 AggValueSlot::DoesNotNeedGCBarriers, 712 AggValueSlot::IsNotAliased); 713 CGF.EmitAggExpr(Init, Slot); 714 } 715 } 716 717 void 718 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 719 QualType elementType, 720 llvm::Value *beginPtr, 721 llvm::Value *numElements) { 722 // We have a POD type. 723 if (E->getNumConstructorArgs() == 0) 724 return; 725 726 // Check if the number of elements is constant. 727 bool checkZero = true; 728 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 729 // If it's constant zero, skip the whole loop. 730 if (constNum->isZero()) return; 731 732 checkZero = false; 733 } 734 735 // Find the end of the array, hoisted out of the loop. 736 llvm::Value *endPtr = 737 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 738 739 // Create the continuation block. 740 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 741 742 // If we need to check for zero, do so now. 743 if (checkZero) { 744 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 745 llvm::Value *isEmpty = Builder.CreateICmpEQ(beginPtr, endPtr, 746 "array.isempty"); 747 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 748 EmitBlock(nonEmptyBB); 749 } 750 751 // Enter the loop. 752 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 753 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 754 755 EmitBlock(loopBB); 756 757 // Set up the current-element phi. 758 llvm::PHINode *curPtr = 759 Builder.CreatePHI(beginPtr->getType(), 2, "array.cur"); 760 curPtr->addIncoming(beginPtr, entryBB); 761 762 // Enter a partial-destruction cleanup if necessary. 763 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 764 EHScopeStack::stable_iterator cleanup; 765 if (needsEHCleanup(dtorKind)) { 766 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 767 getDestroyer(dtorKind)); 768 cleanup = EHStack.stable_begin(); 769 } 770 771 // Emit the initializer into this element. 772 StoreAnyExprIntoOneUnit(*this, E, curPtr); 773 774 // Leave the cleanup if we entered one. 775 if (cleanup != EHStack.stable_end()) 776 DeactivateCleanupBlock(cleanup); 777 778 // Advance to the next element. 779 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 780 781 // Check whether we've gotten to the end of the array and, if so, 782 // exit the loop. 783 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 784 Builder.CreateCondBr(isEnd, contBB, loopBB); 785 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 786 787 EmitBlock(contBB); 788 } 789 790 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 791 llvm::Value *NewPtr, llvm::Value *Size) { 792 CGF.EmitCastToVoidPtr(NewPtr); 793 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 794 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 795 Alignment.getQuantity(), false); 796 } 797 798 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 799 QualType ElementType, 800 llvm::Value *NewPtr, 801 llvm::Value *NumElements, 802 llvm::Value *AllocSizeWithoutCookie) { 803 if (E->isArray()) { 804 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 805 bool RequiresZeroInitialization = false; 806 if (Ctor->getParent()->hasTrivialDefaultConstructor()) { 807 // If new expression did not specify value-initialization, then there 808 // is no initialization. 809 if (!E->hasInitializer() || Ctor->getParent()->isEmpty()) 810 return; 811 812 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 813 // Optimization: since zero initialization will just set the memory 814 // to all zeroes, generate a single memset to do it in one shot. 815 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 816 return; 817 } 818 819 RequiresZeroInitialization = true; 820 } 821 822 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 823 E->constructor_arg_begin(), 824 E->constructor_arg_end(), 825 RequiresZeroInitialization); 826 return; 827 } else if (E->getNumConstructorArgs() == 1 && 828 isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) { 829 // Optimization: since zero initialization will just set the memory 830 // to all zeroes, generate a single memset to do it in one shot. 831 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 832 return; 833 } else { 834 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 835 return; 836 } 837 } 838 839 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 840 // Per C++ [expr.new]p15, if we have an initializer, then we're performing 841 // direct initialization. C++ [dcl.init]p5 requires that we 842 // zero-initialize storage if there are no user-declared constructors. 843 if (E->hasInitializer() && 844 !Ctor->getParent()->hasUserDeclaredConstructor() && 845 !Ctor->getParent()->isEmpty()) 846 CGF.EmitNullInitialization(NewPtr, ElementType); 847 848 CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 849 NewPtr, E->constructor_arg_begin(), 850 E->constructor_arg_end()); 851 852 return; 853 } 854 // We have a POD type. 855 if (E->getNumConstructorArgs() == 0) 856 return; 857 858 StoreAnyExprIntoOneUnit(CGF, E, NewPtr); 859 } 860 861 namespace { 862 /// A cleanup to call the given 'operator delete' function upon 863 /// abnormal exit from a new expression. 864 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 865 size_t NumPlacementArgs; 866 const FunctionDecl *OperatorDelete; 867 llvm::Value *Ptr; 868 llvm::Value *AllocSize; 869 870 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 871 872 public: 873 static size_t getExtraSize(size_t NumPlacementArgs) { 874 return NumPlacementArgs * sizeof(RValue); 875 } 876 877 CallDeleteDuringNew(size_t NumPlacementArgs, 878 const FunctionDecl *OperatorDelete, 879 llvm::Value *Ptr, 880 llvm::Value *AllocSize) 881 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 882 Ptr(Ptr), AllocSize(AllocSize) {} 883 884 void setPlacementArg(unsigned I, RValue Arg) { 885 assert(I < NumPlacementArgs && "index out of range"); 886 getPlacementArgs()[I] = Arg; 887 } 888 889 void Emit(CodeGenFunction &CGF, Flags flags) { 890 const FunctionProtoType *FPT 891 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 892 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 893 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 894 895 CallArgList DeleteArgs; 896 897 // The first argument is always a void*. 898 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 899 DeleteArgs.add(RValue::get(Ptr), *AI++); 900 901 // A member 'operator delete' can take an extra 'size_t' argument. 902 if (FPT->getNumArgs() == NumPlacementArgs + 2) 903 DeleteArgs.add(RValue::get(AllocSize), *AI++); 904 905 // Pass the rest of the arguments, which must match exactly. 906 for (unsigned I = 0; I != NumPlacementArgs; ++I) 907 DeleteArgs.add(getPlacementArgs()[I], *AI++); 908 909 // Call 'operator delete'. 910 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT), 911 CGF.CGM.GetAddrOfFunction(OperatorDelete), 912 ReturnValueSlot(), DeleteArgs, OperatorDelete); 913 } 914 }; 915 916 /// A cleanup to call the given 'operator delete' function upon 917 /// abnormal exit from a new expression when the new expression is 918 /// conditional. 919 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 920 size_t NumPlacementArgs; 921 const FunctionDecl *OperatorDelete; 922 DominatingValue<RValue>::saved_type Ptr; 923 DominatingValue<RValue>::saved_type AllocSize; 924 925 DominatingValue<RValue>::saved_type *getPlacementArgs() { 926 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 927 } 928 929 public: 930 static size_t getExtraSize(size_t NumPlacementArgs) { 931 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 932 } 933 934 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 935 const FunctionDecl *OperatorDelete, 936 DominatingValue<RValue>::saved_type Ptr, 937 DominatingValue<RValue>::saved_type AllocSize) 938 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 939 Ptr(Ptr), AllocSize(AllocSize) {} 940 941 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 942 assert(I < NumPlacementArgs && "index out of range"); 943 getPlacementArgs()[I] = Arg; 944 } 945 946 void Emit(CodeGenFunction &CGF, Flags flags) { 947 const FunctionProtoType *FPT 948 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 949 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 950 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 951 952 CallArgList DeleteArgs; 953 954 // The first argument is always a void*. 955 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 956 DeleteArgs.add(Ptr.restore(CGF), *AI++); 957 958 // A member 'operator delete' can take an extra 'size_t' argument. 959 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 960 RValue RV = AllocSize.restore(CGF); 961 DeleteArgs.add(RV, *AI++); 962 } 963 964 // Pass the rest of the arguments, which must match exactly. 965 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 966 RValue RV = getPlacementArgs()[I].restore(CGF); 967 DeleteArgs.add(RV, *AI++); 968 } 969 970 // Call 'operator delete'. 971 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT), 972 CGF.CGM.GetAddrOfFunction(OperatorDelete), 973 ReturnValueSlot(), DeleteArgs, OperatorDelete); 974 } 975 }; 976 } 977 978 /// Enter a cleanup to call 'operator delete' if the initializer in a 979 /// new-expression throws. 980 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 981 const CXXNewExpr *E, 982 llvm::Value *NewPtr, 983 llvm::Value *AllocSize, 984 const CallArgList &NewArgs) { 985 // If we're not inside a conditional branch, then the cleanup will 986 // dominate and we can do the easier (and more efficient) thing. 987 if (!CGF.isInConditionalBranch()) { 988 CallDeleteDuringNew *Cleanup = CGF.EHStack 989 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 990 E->getNumPlacementArgs(), 991 E->getOperatorDelete(), 992 NewPtr, AllocSize); 993 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 994 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 995 996 return; 997 } 998 999 // Otherwise, we need to save all this stuff. 1000 DominatingValue<RValue>::saved_type SavedNewPtr = 1001 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1002 DominatingValue<RValue>::saved_type SavedAllocSize = 1003 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1004 1005 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1006 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup, 1007 E->getNumPlacementArgs(), 1008 E->getOperatorDelete(), 1009 SavedNewPtr, 1010 SavedAllocSize); 1011 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1012 Cleanup->setPlacementArg(I, 1013 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1014 1015 CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin()); 1016 } 1017 1018 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1019 // The element type being allocated. 1020 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1021 1022 // 1. Build a call to the allocation function. 1023 FunctionDecl *allocator = E->getOperatorNew(); 1024 const FunctionProtoType *allocatorType = 1025 allocator->getType()->castAs<FunctionProtoType>(); 1026 1027 CallArgList allocatorArgs; 1028 1029 // The allocation size is the first argument. 1030 QualType sizeType = getContext().getSizeType(); 1031 1032 llvm::Value *numElements = 0; 1033 llvm::Value *allocSizeWithoutCookie = 0; 1034 llvm::Value *allocSize = 1035 EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie); 1036 1037 allocatorArgs.add(RValue::get(allocSize), sizeType); 1038 1039 // Emit the rest of the arguments. 1040 // FIXME: Ideally, this should just use EmitCallArgs. 1041 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1042 1043 // First, use the types from the function type. 1044 // We start at 1 here because the first argument (the allocation size) 1045 // has already been emitted. 1046 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1047 ++i, ++placementArg) { 1048 QualType argType = allocatorType->getArgType(i); 1049 1050 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1051 placementArg->getType()) && 1052 "type mismatch in call argument!"); 1053 1054 EmitCallArg(allocatorArgs, *placementArg, argType); 1055 } 1056 1057 // Either we've emitted all the call args, or we have a call to a 1058 // variadic function. 1059 assert((placementArg == E->placement_arg_end() || 1060 allocatorType->isVariadic()) && 1061 "Extra arguments to non-variadic function!"); 1062 1063 // If we still have any arguments, emit them using the type of the argument. 1064 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1065 placementArg != placementArgsEnd; ++placementArg) { 1066 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1067 } 1068 1069 // Emit the allocation call. If the allocator is a global placement 1070 // operator, just "inline" it directly. 1071 RValue RV; 1072 if (allocator->isReservedGlobalPlacementOperator()) { 1073 assert(allocatorArgs.size() == 2); 1074 RV = allocatorArgs[1].RV; 1075 // TODO: kill any unnecessary computations done for the size 1076 // argument. 1077 } else { 1078 RV = EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType), 1079 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1080 allocatorArgs, allocator); 1081 } 1082 1083 // Emit a null check on the allocation result if the allocation 1084 // function is allowed to return null (because it has a non-throwing 1085 // exception spec; for this part, we inline 1086 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1087 // interesting initializer. 1088 bool nullCheck = allocatorType->isNothrow(getContext()) && 1089 !(allocType.isPODType(getContext()) && !E->hasInitializer()); 1090 1091 llvm::BasicBlock *nullCheckBB = 0; 1092 llvm::BasicBlock *contBB = 0; 1093 1094 llvm::Value *allocation = RV.getScalarVal(); 1095 unsigned AS = 1096 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1097 1098 // The null-check means that the initializer is conditionally 1099 // evaluated. 1100 ConditionalEvaluation conditional(*this); 1101 1102 if (nullCheck) { 1103 conditional.begin(*this); 1104 1105 nullCheckBB = Builder.GetInsertBlock(); 1106 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1107 contBB = createBasicBlock("new.cont"); 1108 1109 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1110 Builder.CreateCondBr(isNull, contBB, notNullBB); 1111 EmitBlock(notNullBB); 1112 } 1113 1114 // If there's an operator delete, enter a cleanup to call it if an 1115 // exception is thrown. 1116 EHScopeStack::stable_iterator operatorDeleteCleanup; 1117 if (E->getOperatorDelete() && 1118 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1119 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1120 operatorDeleteCleanup = EHStack.stable_begin(); 1121 } 1122 1123 assert((allocSize == allocSizeWithoutCookie) == 1124 CalculateCookiePadding(*this, E).isZero()); 1125 if (allocSize != allocSizeWithoutCookie) { 1126 assert(E->isArray()); 1127 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1128 numElements, 1129 E, allocType); 1130 } 1131 1132 llvm::Type *elementPtrTy 1133 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1134 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1135 1136 EmitNewInitializer(*this, E, allocType, result, numElements, 1137 allocSizeWithoutCookie); 1138 if (E->isArray()) { 1139 // NewPtr is a pointer to the base element type. If we're 1140 // allocating an array of arrays, we'll need to cast back to the 1141 // array pointer type. 1142 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1143 if (result->getType() != resultType) 1144 result = Builder.CreateBitCast(result, resultType); 1145 } 1146 1147 // Deactivate the 'operator delete' cleanup if we finished 1148 // initialization. 1149 if (operatorDeleteCleanup.isValid()) 1150 DeactivateCleanupBlock(operatorDeleteCleanup); 1151 1152 if (nullCheck) { 1153 conditional.end(*this); 1154 1155 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1156 EmitBlock(contBB); 1157 1158 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1159 PHI->addIncoming(result, notNullBB); 1160 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1161 nullCheckBB); 1162 1163 result = PHI; 1164 } 1165 1166 return result; 1167 } 1168 1169 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1170 llvm::Value *Ptr, 1171 QualType DeleteTy) { 1172 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1173 1174 const FunctionProtoType *DeleteFTy = 1175 DeleteFD->getType()->getAs<FunctionProtoType>(); 1176 1177 CallArgList DeleteArgs; 1178 1179 // Check if we need to pass the size to the delete operator. 1180 llvm::Value *Size = 0; 1181 QualType SizeTy; 1182 if (DeleteFTy->getNumArgs() == 2) { 1183 SizeTy = DeleteFTy->getArgType(1); 1184 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1185 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1186 DeleteTypeSize.getQuantity()); 1187 } 1188 1189 QualType ArgTy = DeleteFTy->getArgType(0); 1190 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1191 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1192 1193 if (Size) 1194 DeleteArgs.add(RValue::get(Size), SizeTy); 1195 1196 // Emit the call to delete. 1197 EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy), 1198 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1199 DeleteArgs, DeleteFD); 1200 } 1201 1202 namespace { 1203 /// Calls the given 'operator delete' on a single object. 1204 struct CallObjectDelete : EHScopeStack::Cleanup { 1205 llvm::Value *Ptr; 1206 const FunctionDecl *OperatorDelete; 1207 QualType ElementType; 1208 1209 CallObjectDelete(llvm::Value *Ptr, 1210 const FunctionDecl *OperatorDelete, 1211 QualType ElementType) 1212 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1213 1214 void Emit(CodeGenFunction &CGF, Flags flags) { 1215 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1216 } 1217 }; 1218 } 1219 1220 /// Emit the code for deleting a single object. 1221 static void EmitObjectDelete(CodeGenFunction &CGF, 1222 const FunctionDecl *OperatorDelete, 1223 llvm::Value *Ptr, 1224 QualType ElementType, 1225 bool UseGlobalDelete) { 1226 // Find the destructor for the type, if applicable. If the 1227 // destructor is virtual, we'll just emit the vcall and return. 1228 const CXXDestructorDecl *Dtor = 0; 1229 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1230 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1231 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1232 Dtor = RD->getDestructor(); 1233 1234 if (Dtor->isVirtual()) { 1235 if (UseGlobalDelete) { 1236 // If we're supposed to call the global delete, make sure we do so 1237 // even if the destructor throws. 1238 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1239 Ptr, OperatorDelete, 1240 ElementType); 1241 } 1242 1243 llvm::Type *Ty = 1244 CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor, 1245 Dtor_Complete), 1246 /*isVariadic=*/false); 1247 1248 llvm::Value *Callee 1249 = CGF.BuildVirtualCall(Dtor, 1250 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1251 Ptr, Ty); 1252 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1253 0, 0); 1254 1255 if (UseGlobalDelete) { 1256 CGF.PopCleanupBlock(); 1257 } 1258 1259 return; 1260 } 1261 } 1262 } 1263 1264 // Make sure that we call delete even if the dtor throws. 1265 // This doesn't have to a conditional cleanup because we're going 1266 // to pop it off in a second. 1267 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1268 Ptr, OperatorDelete, ElementType); 1269 1270 if (Dtor) 1271 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1272 /*ForVirtualBase=*/false, Ptr); 1273 else if (CGF.getLangOptions().ObjCAutoRefCount && 1274 ElementType->isObjCLifetimeType()) { 1275 switch (ElementType.getObjCLifetime()) { 1276 case Qualifiers::OCL_None: 1277 case Qualifiers::OCL_ExplicitNone: 1278 case Qualifiers::OCL_Autoreleasing: 1279 break; 1280 1281 case Qualifiers::OCL_Strong: { 1282 // Load the pointer value. 1283 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1284 ElementType.isVolatileQualified()); 1285 1286 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1287 break; 1288 } 1289 1290 case Qualifiers::OCL_Weak: 1291 CGF.EmitARCDestroyWeak(Ptr); 1292 break; 1293 } 1294 } 1295 1296 CGF.PopCleanupBlock(); 1297 } 1298 1299 namespace { 1300 /// Calls the given 'operator delete' on an array of objects. 1301 struct CallArrayDelete : EHScopeStack::Cleanup { 1302 llvm::Value *Ptr; 1303 const FunctionDecl *OperatorDelete; 1304 llvm::Value *NumElements; 1305 QualType ElementType; 1306 CharUnits CookieSize; 1307 1308 CallArrayDelete(llvm::Value *Ptr, 1309 const FunctionDecl *OperatorDelete, 1310 llvm::Value *NumElements, 1311 QualType ElementType, 1312 CharUnits CookieSize) 1313 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1314 ElementType(ElementType), CookieSize(CookieSize) {} 1315 1316 void Emit(CodeGenFunction &CGF, Flags flags) { 1317 const FunctionProtoType *DeleteFTy = 1318 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1319 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1320 1321 CallArgList Args; 1322 1323 // Pass the pointer as the first argument. 1324 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1325 llvm::Value *DeletePtr 1326 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1327 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1328 1329 // Pass the original requested size as the second argument. 1330 if (DeleteFTy->getNumArgs() == 2) { 1331 QualType size_t = DeleteFTy->getArgType(1); 1332 llvm::IntegerType *SizeTy 1333 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1334 1335 CharUnits ElementTypeSize = 1336 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1337 1338 // The size of an element, multiplied by the number of elements. 1339 llvm::Value *Size 1340 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1341 Size = CGF.Builder.CreateMul(Size, NumElements); 1342 1343 // Plus the size of the cookie if applicable. 1344 if (!CookieSize.isZero()) { 1345 llvm::Value *CookieSizeV 1346 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1347 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1348 } 1349 1350 Args.add(RValue::get(Size), size_t); 1351 } 1352 1353 // Emit the call to delete. 1354 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy), 1355 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1356 ReturnValueSlot(), Args, OperatorDelete); 1357 } 1358 }; 1359 } 1360 1361 /// Emit the code for deleting an array of objects. 1362 static void EmitArrayDelete(CodeGenFunction &CGF, 1363 const CXXDeleteExpr *E, 1364 llvm::Value *deletedPtr, 1365 QualType elementType) { 1366 llvm::Value *numElements = 0; 1367 llvm::Value *allocatedPtr = 0; 1368 CharUnits cookieSize; 1369 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1370 numElements, allocatedPtr, cookieSize); 1371 1372 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1373 1374 // Make sure that we call delete even if one of the dtors throws. 1375 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1376 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1377 allocatedPtr, operatorDelete, 1378 numElements, elementType, 1379 cookieSize); 1380 1381 // Destroy the elements. 1382 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1383 assert(numElements && "no element count for a type with a destructor!"); 1384 1385 llvm::Value *arrayEnd = 1386 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1387 1388 // Note that it is legal to allocate a zero-length array, and we 1389 // can never fold the check away because the length should always 1390 // come from a cookie. 1391 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1392 CGF.getDestroyer(dtorKind), 1393 /*checkZeroLength*/ true, 1394 CGF.needsEHCleanup(dtorKind)); 1395 } 1396 1397 // Pop the cleanup block. 1398 CGF.PopCleanupBlock(); 1399 } 1400 1401 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1402 1403 // Get at the argument before we performed the implicit conversion 1404 // to void*. 1405 const Expr *Arg = E->getArgument(); 1406 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 1407 if (ICE->getCastKind() != CK_UserDefinedConversion && 1408 ICE->getType()->isVoidPointerType()) 1409 Arg = ICE->getSubExpr(); 1410 else 1411 break; 1412 } 1413 1414 llvm::Value *Ptr = EmitScalarExpr(Arg); 1415 1416 // Null check the pointer. 1417 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1418 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1419 1420 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1421 1422 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1423 EmitBlock(DeleteNotNull); 1424 1425 // We might be deleting a pointer to array. If so, GEP down to the 1426 // first non-array element. 1427 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1428 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1429 if (DeleteTy->isConstantArrayType()) { 1430 llvm::Value *Zero = Builder.getInt32(0); 1431 SmallVector<llvm::Value*,8> GEP; 1432 1433 GEP.push_back(Zero); // point at the outermost array 1434 1435 // For each layer of array type we're pointing at: 1436 while (const ConstantArrayType *Arr 1437 = getContext().getAsConstantArrayType(DeleteTy)) { 1438 // 1. Unpeel the array type. 1439 DeleteTy = Arr->getElementType(); 1440 1441 // 2. GEP to the first element of the array. 1442 GEP.push_back(Zero); 1443 } 1444 1445 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1446 } 1447 1448 assert(ConvertTypeForMem(DeleteTy) == 1449 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1450 1451 if (E->isArrayForm()) { 1452 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1453 } else { 1454 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1455 E->isGlobalDelete()); 1456 } 1457 1458 EmitBlock(DeleteEnd); 1459 } 1460 1461 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1462 // void __cxa_bad_typeid(); 1463 1464 llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 1465 llvm::FunctionType *FTy = 1466 llvm::FunctionType::get(VoidTy, false); 1467 1468 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1469 } 1470 1471 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1472 llvm::Value *Fn = getBadTypeidFn(CGF); 1473 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1474 CGF.Builder.CreateUnreachable(); 1475 } 1476 1477 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1478 const Expr *E, 1479 llvm::Type *StdTypeInfoPtrTy) { 1480 // Get the vtable pointer. 1481 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1482 1483 // C++ [expr.typeid]p2: 1484 // If the glvalue expression is obtained by applying the unary * operator to 1485 // a pointer and the pointer is a null pointer value, the typeid expression 1486 // throws the std::bad_typeid exception. 1487 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1488 if (UO->getOpcode() == UO_Deref) { 1489 llvm::BasicBlock *BadTypeidBlock = 1490 CGF.createBasicBlock("typeid.bad_typeid"); 1491 llvm::BasicBlock *EndBlock = 1492 CGF.createBasicBlock("typeid.end"); 1493 1494 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1495 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1496 1497 CGF.EmitBlock(BadTypeidBlock); 1498 EmitBadTypeidCall(CGF); 1499 CGF.EmitBlock(EndBlock); 1500 } 1501 } 1502 1503 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1504 StdTypeInfoPtrTy->getPointerTo()); 1505 1506 // Load the type info. 1507 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1508 return CGF.Builder.CreateLoad(Value); 1509 } 1510 1511 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1512 llvm::Type *StdTypeInfoPtrTy = 1513 ConvertType(E->getType())->getPointerTo(); 1514 1515 if (E->isTypeOperand()) { 1516 llvm::Constant *TypeInfo = 1517 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1518 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1519 } 1520 1521 // C++ [expr.typeid]p2: 1522 // When typeid is applied to a glvalue expression whose type is a 1523 // polymorphic class type, the result refers to a std::type_info object 1524 // representing the type of the most derived object (that is, the dynamic 1525 // type) to which the glvalue refers. 1526 if (E->getExprOperand()->isGLValue()) { 1527 if (const RecordType *RT = 1528 E->getExprOperand()->getType()->getAs<RecordType>()) { 1529 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1530 if (RD->isPolymorphic()) 1531 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1532 StdTypeInfoPtrTy); 1533 } 1534 } 1535 1536 QualType OperandTy = E->getExprOperand()->getType(); 1537 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1538 StdTypeInfoPtrTy); 1539 } 1540 1541 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1542 // void *__dynamic_cast(const void *sub, 1543 // const abi::__class_type_info *src, 1544 // const abi::__class_type_info *dst, 1545 // std::ptrdiff_t src2dst_offset); 1546 1547 llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1548 llvm::Type *PtrDiffTy = 1549 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1550 1551 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1552 1553 llvm::FunctionType *FTy = 1554 llvm::FunctionType::get(Int8PtrTy, Args, false); 1555 1556 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1557 } 1558 1559 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1560 // void __cxa_bad_cast(); 1561 1562 llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 1563 llvm::FunctionType *FTy = 1564 llvm::FunctionType::get(VoidTy, false); 1565 1566 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1567 } 1568 1569 static void EmitBadCastCall(CodeGenFunction &CGF) { 1570 llvm::Value *Fn = getBadCastFn(CGF); 1571 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1572 CGF.Builder.CreateUnreachable(); 1573 } 1574 1575 static llvm::Value * 1576 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1577 QualType SrcTy, QualType DestTy, 1578 llvm::BasicBlock *CastEnd) { 1579 llvm::Type *PtrDiffLTy = 1580 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1581 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1582 1583 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1584 if (PTy->getPointeeType()->isVoidType()) { 1585 // C++ [expr.dynamic.cast]p7: 1586 // If T is "pointer to cv void," then the result is a pointer to the 1587 // most derived object pointed to by v. 1588 1589 // Get the vtable pointer. 1590 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1591 1592 // Get the offset-to-top from the vtable. 1593 llvm::Value *OffsetToTop = 1594 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1595 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1596 1597 // Finally, add the offset to the pointer. 1598 Value = CGF.EmitCastToVoidPtr(Value); 1599 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1600 1601 return CGF.Builder.CreateBitCast(Value, DestLTy); 1602 } 1603 } 1604 1605 QualType SrcRecordTy; 1606 QualType DestRecordTy; 1607 1608 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1609 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1610 DestRecordTy = DestPTy->getPointeeType(); 1611 } else { 1612 SrcRecordTy = SrcTy; 1613 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1614 } 1615 1616 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1617 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1618 1619 llvm::Value *SrcRTTI = 1620 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1621 llvm::Value *DestRTTI = 1622 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1623 1624 // FIXME: Actually compute a hint here. 1625 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1626 1627 // Emit the call to __dynamic_cast. 1628 Value = CGF.EmitCastToVoidPtr(Value); 1629 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1630 SrcRTTI, DestRTTI, OffsetHint); 1631 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1632 1633 /// C++ [expr.dynamic.cast]p9: 1634 /// A failed cast to reference type throws std::bad_cast 1635 if (DestTy->isReferenceType()) { 1636 llvm::BasicBlock *BadCastBlock = 1637 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1638 1639 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1640 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1641 1642 CGF.EmitBlock(BadCastBlock); 1643 EmitBadCastCall(CGF); 1644 } 1645 1646 return Value; 1647 } 1648 1649 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1650 QualType DestTy) { 1651 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1652 if (DestTy->isPointerType()) 1653 return llvm::Constant::getNullValue(DestLTy); 1654 1655 /// C++ [expr.dynamic.cast]p9: 1656 /// A failed cast to reference type throws std::bad_cast 1657 EmitBadCastCall(CGF); 1658 1659 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1660 return llvm::UndefValue::get(DestLTy); 1661 } 1662 1663 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1664 const CXXDynamicCastExpr *DCE) { 1665 QualType DestTy = DCE->getTypeAsWritten(); 1666 1667 if (DCE->isAlwaysNull()) 1668 return EmitDynamicCastToNull(*this, DestTy); 1669 1670 QualType SrcTy = DCE->getSubExpr()->getType(); 1671 1672 // C++ [expr.dynamic.cast]p4: 1673 // If the value of v is a null pointer value in the pointer case, the result 1674 // is the null pointer value of type T. 1675 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1676 1677 llvm::BasicBlock *CastNull = 0; 1678 llvm::BasicBlock *CastNotNull = 0; 1679 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1680 1681 if (ShouldNullCheckSrcValue) { 1682 CastNull = createBasicBlock("dynamic_cast.null"); 1683 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1684 1685 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1686 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1687 EmitBlock(CastNotNull); 1688 } 1689 1690 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1691 1692 if (ShouldNullCheckSrcValue) { 1693 EmitBranch(CastEnd); 1694 1695 EmitBlock(CastNull); 1696 EmitBranch(CastEnd); 1697 } 1698 1699 EmitBlock(CastEnd); 1700 1701 if (ShouldNullCheckSrcValue) { 1702 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1703 PHI->addIncoming(Value, CastNotNull); 1704 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1705 1706 Value = PHI; 1707 } 1708 1709 return Value; 1710 } 1711