1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 93 CE ? CE->getExprLoc() : SourceLocation()); 94 } 95 96 RValue CodeGenFunction::EmitCXXDestructorCall( 97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 99 StructorType Type) { 100 CallArgList Args; 101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 102 ImplicitParamTy, CE, Args, nullptr); 103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 104 Callee, ReturnValueSlot(), Args); 105 } 106 107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 108 const CXXPseudoDestructorExpr *E) { 109 QualType DestroyedType = E->getDestroyedType(); 110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 111 // Automatic Reference Counting: 112 // If the pseudo-expression names a retainable object with weak or 113 // strong lifetime, the object shall be released. 114 Expr *BaseExpr = E->getBase(); 115 Address BaseValue = Address::invalid(); 116 Qualifiers BaseQuals; 117 118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 119 if (E->isArrow()) { 120 BaseValue = EmitPointerWithAlignment(BaseExpr); 121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 122 BaseQuals = PTy->getPointeeType().getQualifiers(); 123 } else { 124 LValue BaseLV = EmitLValue(BaseExpr); 125 BaseValue = BaseLV.getAddress(); 126 QualType BaseTy = BaseExpr->getType(); 127 BaseQuals = BaseTy.getQualifiers(); 128 } 129 130 switch (DestroyedType.getObjCLifetime()) { 131 case Qualifiers::OCL_None: 132 case Qualifiers::OCL_ExplicitNone: 133 case Qualifiers::OCL_Autoreleasing: 134 break; 135 136 case Qualifiers::OCL_Strong: 137 EmitARCRelease(Builder.CreateLoad(BaseValue, 138 DestroyedType.isVolatileQualified()), 139 ARCPreciseLifetime); 140 break; 141 142 case Qualifiers::OCL_Weak: 143 EmitARCDestroyWeak(BaseValue); 144 break; 145 } 146 } else { 147 // C++ [expr.pseudo]p1: 148 // The result shall only be used as the operand for the function call 149 // operator (), and the result of such a call has type void. The only 150 // effect is the evaluation of the postfix-expression before the dot or 151 // arrow. 152 EmitIgnoredExpr(E->getBase()); 153 } 154 155 return RValue::get(nullptr); 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 181 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 182 ReturnValue); 183 } 184 185 bool HasQualifier = ME->hasQualifier(); 186 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 187 bool IsArrow = ME->isArrow(); 188 const Expr *Base = ME->getBase(); 189 190 return EmitCXXMemberOrOperatorMemberCallExpr( 191 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 192 } 193 194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 195 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 196 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 197 const Expr *Base) { 198 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 199 200 // Compute the object pointer. 201 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 202 203 const CXXMethodDecl *DevirtualizedMethod = nullptr; 204 if (CanUseVirtualCall && 205 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 206 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 207 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 208 assert(DevirtualizedMethod); 209 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 210 const Expr *Inner = Base->ignoreParenBaseCasts(); 211 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 212 MD->getReturnType().getCanonicalType()) 213 // If the return types are not the same, this might be a case where more 214 // code needs to run to compensate for it. For example, the derived 215 // method might return a type that inherits form from the return 216 // type of MD and has a prefix. 217 // For now we just avoid devirtualizing these covariant cases. 218 DevirtualizedMethod = nullptr; 219 else if (getCXXRecord(Inner) == DevirtualizedClass) 220 // If the class of the Inner expression is where the dynamic method 221 // is defined, build the this pointer from it. 222 Base = Inner; 223 else if (getCXXRecord(Base) != DevirtualizedClass) { 224 // If the method is defined in a class that is not the best dynamic 225 // one or the one of the full expression, we would have to build 226 // a derived-to-base cast to compute the correct this pointer, but 227 // we don't have support for that yet, so do a virtual call. 228 DevirtualizedMethod = nullptr; 229 } 230 } 231 232 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 233 // operator before the LHS. 234 CallArgList RtlArgStorage; 235 CallArgList *RtlArgs = nullptr; 236 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 237 if (OCE->isAssignmentOp()) { 238 RtlArgs = &RtlArgStorage; 239 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 240 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 241 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 242 } 243 } 244 245 LValue This; 246 if (IsArrow) { 247 LValueBaseInfo BaseInfo; 248 TBAAAccessInfo TBAAInfo; 249 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 250 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 251 } else { 252 This = EmitLValue(Base); 253 } 254 255 256 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 257 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 258 if (isa<CXXConstructorDecl>(MD) && 259 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 260 return RValue::get(nullptr); 261 262 if (!MD->getParent()->mayInsertExtraPadding()) { 263 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 264 // We don't like to generate the trivial copy/move assignment operator 265 // when it isn't necessary; just produce the proper effect here. 266 LValue RHS = isa<CXXOperatorCallExpr>(CE) 267 ? MakeNaturalAlignAddrLValue( 268 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 269 (*(CE->arg_begin() + 1))->getType()) 270 : EmitLValue(*CE->arg_begin()); 271 EmitAggregateAssign(This, RHS, CE->getType()); 272 return RValue::get(This.getPointer()); 273 } 274 275 if (isa<CXXConstructorDecl>(MD) && 276 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 277 // Trivial move and copy ctor are the same. 278 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 279 const Expr *Arg = *CE->arg_begin(); 280 LValue RHS = EmitLValue(Arg); 281 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); 282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 283 // constructing a new complete object of type Ctor. 284 EmitAggregateCopy(Dest, RHS, Arg->getType(), 285 AggValueSlot::DoesNotOverlap); 286 return RValue::get(This.getPointer()); 287 } 288 llvm_unreachable("unknown trivial member function"); 289 } 290 } 291 292 // Compute the function type we're calling. 293 const CXXMethodDecl *CalleeDecl = 294 DevirtualizedMethod ? DevirtualizedMethod : MD; 295 const CGFunctionInfo *FInfo = nullptr; 296 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 297 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 298 Dtor, StructorType::Complete); 299 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 300 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 301 Ctor, StructorType::Complete); 302 else 303 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 304 305 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 306 307 // C++11 [class.mfct.non-static]p2: 308 // If a non-static member function of a class X is called for an object that 309 // is not of type X, or of a type derived from X, the behavior is undefined. 310 SourceLocation CallLoc; 311 ASTContext &C = getContext(); 312 if (CE) 313 CallLoc = CE->getExprLoc(); 314 315 SanitizerSet SkippedChecks; 316 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 317 auto *IOA = CMCE->getImplicitObjectArgument(); 318 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 319 if (IsImplicitObjectCXXThis) 320 SkippedChecks.set(SanitizerKind::Alignment, true); 321 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 322 SkippedChecks.set(SanitizerKind::Null, true); 323 } 324 EmitTypeCheck( 325 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 326 : CodeGenFunction::TCK_MemberCall, 327 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 328 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 329 330 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 331 // 'CalleeDecl' instead. 332 333 // C++ [class.virtual]p12: 334 // Explicit qualification with the scope operator (5.1) suppresses the 335 // virtual call mechanism. 336 // 337 // We also don't emit a virtual call if the base expression has a record type 338 // because then we know what the type is. 339 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 340 341 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 342 assert(CE->arg_begin() == CE->arg_end() && 343 "Destructor shouldn't have explicit parameters"); 344 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 345 if (UseVirtualCall) { 346 CGM.getCXXABI().EmitVirtualDestructorCall( 347 *this, Dtor, Dtor_Complete, This.getAddress(), 348 cast<CXXMemberCallExpr>(CE)); 349 } else { 350 CGCallee Callee; 351 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 352 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 353 else if (!DevirtualizedMethod) 354 Callee = CGCallee::forDirect( 355 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 356 Dtor); 357 else { 358 const CXXDestructorDecl *DDtor = 359 cast<CXXDestructorDecl>(DevirtualizedMethod); 360 Callee = CGCallee::forDirect( 361 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 362 DDtor); 363 } 364 EmitCXXMemberOrOperatorCall( 365 CalleeDecl, Callee, ReturnValue, This.getPointer(), 366 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 367 } 368 return RValue::get(nullptr); 369 } 370 371 CGCallee Callee; 372 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 373 Callee = CGCallee::forDirect( 374 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 375 Ctor); 376 } else if (UseVirtualCall) { 377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 378 } else { 379 if (SanOpts.has(SanitizerKind::CFINVCall) && 380 MD->getParent()->isDynamicClass()) { 381 llvm::Value *VTable; 382 const CXXRecordDecl *RD; 383 std::tie(VTable, RD) = 384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 385 MD->getParent()); 386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart()); 387 } 388 389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 391 else if (!DevirtualizedMethod) 392 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 393 else { 394 Callee = CGCallee::forDirect( 395 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 396 DevirtualizedMethod); 397 } 398 } 399 400 if (MD->isVirtual()) { 401 Address NewThisAddr = 402 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 403 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 404 This.setAddress(NewThisAddr); 405 } 406 407 return EmitCXXMemberOrOperatorCall( 408 CalleeDecl, Callee, ReturnValue, This.getPointer(), 409 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 410 } 411 412 RValue 413 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 414 ReturnValueSlot ReturnValue) { 415 const BinaryOperator *BO = 416 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 417 const Expr *BaseExpr = BO->getLHS(); 418 const Expr *MemFnExpr = BO->getRHS(); 419 420 const MemberPointerType *MPT = 421 MemFnExpr->getType()->castAs<MemberPointerType>(); 422 423 const FunctionProtoType *FPT = 424 MPT->getPointeeType()->castAs<FunctionProtoType>(); 425 const CXXRecordDecl *RD = 426 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 427 428 // Emit the 'this' pointer. 429 Address This = Address::invalid(); 430 if (BO->getOpcode() == BO_PtrMemI) 431 This = EmitPointerWithAlignment(BaseExpr); 432 else 433 This = EmitLValue(BaseExpr).getAddress(); 434 435 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 436 QualType(MPT->getClass(), 0)); 437 438 // Get the member function pointer. 439 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 440 441 // Ask the ABI to load the callee. Note that This is modified. 442 llvm::Value *ThisPtrForCall = nullptr; 443 CGCallee Callee = 444 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 445 ThisPtrForCall, MemFnPtr, MPT); 446 447 CallArgList Args; 448 449 QualType ThisType = 450 getContext().getPointerType(getContext().getTagDeclType(RD)); 451 452 // Push the this ptr. 453 Args.add(RValue::get(ThisPtrForCall), ThisType); 454 455 RequiredArgs required = 456 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 457 458 // And the rest of the call args 459 EmitCallArgs(Args, FPT, E->arguments()); 460 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 461 /*PrefixSize=*/0), 462 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 463 } 464 465 RValue 466 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 467 const CXXMethodDecl *MD, 468 ReturnValueSlot ReturnValue) { 469 assert(MD->isInstance() && 470 "Trying to emit a member call expr on a static method!"); 471 return EmitCXXMemberOrOperatorMemberCallExpr( 472 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 473 /*IsArrow=*/false, E->getArg(0)); 474 } 475 476 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 477 ReturnValueSlot ReturnValue) { 478 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 479 } 480 481 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 482 Address DestPtr, 483 const CXXRecordDecl *Base) { 484 if (Base->isEmpty()) 485 return; 486 487 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 488 489 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 490 CharUnits NVSize = Layout.getNonVirtualSize(); 491 492 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 493 // present, they are initialized by the most derived class before calling the 494 // constructor. 495 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 496 Stores.emplace_back(CharUnits::Zero(), NVSize); 497 498 // Each store is split by the existence of a vbptr. 499 CharUnits VBPtrWidth = CGF.getPointerSize(); 500 std::vector<CharUnits> VBPtrOffsets = 501 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 502 for (CharUnits VBPtrOffset : VBPtrOffsets) { 503 // Stop before we hit any virtual base pointers located in virtual bases. 504 if (VBPtrOffset >= NVSize) 505 break; 506 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 507 CharUnits LastStoreOffset = LastStore.first; 508 CharUnits LastStoreSize = LastStore.second; 509 510 CharUnits SplitBeforeOffset = LastStoreOffset; 511 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 512 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 513 if (!SplitBeforeSize.isZero()) 514 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 515 516 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 517 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 518 assert(!SplitAfterSize.isNegative() && "negative store size!"); 519 if (!SplitAfterSize.isZero()) 520 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 521 } 522 523 // If the type contains a pointer to data member we can't memset it to zero. 524 // Instead, create a null constant and copy it to the destination. 525 // TODO: there are other patterns besides zero that we can usefully memset, 526 // like -1, which happens to be the pattern used by member-pointers. 527 // TODO: isZeroInitializable can be over-conservative in the case where a 528 // virtual base contains a member pointer. 529 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 530 if (!NullConstantForBase->isNullValue()) { 531 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 532 CGF.CGM.getModule(), NullConstantForBase->getType(), 533 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 534 NullConstantForBase, Twine()); 535 536 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 537 DestPtr.getAlignment()); 538 NullVariable->setAlignment(Align.getQuantity()); 539 540 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 541 542 // Get and call the appropriate llvm.memcpy overload. 543 for (std::pair<CharUnits, CharUnits> Store : Stores) { 544 CharUnits StoreOffset = Store.first; 545 CharUnits StoreSize = Store.second; 546 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 547 CGF.Builder.CreateMemCpy( 548 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 549 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 550 StoreSizeVal); 551 } 552 553 // Otherwise, just memset the whole thing to zero. This is legal 554 // because in LLVM, all default initializers (other than the ones we just 555 // handled above) are guaranteed to have a bit pattern of all zeros. 556 } else { 557 for (std::pair<CharUnits, CharUnits> Store : Stores) { 558 CharUnits StoreOffset = Store.first; 559 CharUnits StoreSize = Store.second; 560 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 561 CGF.Builder.CreateMemSet( 562 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 563 CGF.Builder.getInt8(0), StoreSizeVal); 564 } 565 } 566 } 567 568 void 569 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 570 AggValueSlot Dest) { 571 assert(!Dest.isIgnored() && "Must have a destination!"); 572 const CXXConstructorDecl *CD = E->getConstructor(); 573 574 // If we require zero initialization before (or instead of) calling the 575 // constructor, as can be the case with a non-user-provided default 576 // constructor, emit the zero initialization now, unless destination is 577 // already zeroed. 578 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 579 switch (E->getConstructionKind()) { 580 case CXXConstructExpr::CK_Delegating: 581 case CXXConstructExpr::CK_Complete: 582 EmitNullInitialization(Dest.getAddress(), E->getType()); 583 break; 584 case CXXConstructExpr::CK_VirtualBase: 585 case CXXConstructExpr::CK_NonVirtualBase: 586 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 587 CD->getParent()); 588 break; 589 } 590 } 591 592 // If this is a call to a trivial default constructor, do nothing. 593 if (CD->isTrivial() && CD->isDefaultConstructor()) 594 return; 595 596 // Elide the constructor if we're constructing from a temporary. 597 // The temporary check is required because Sema sets this on NRVO 598 // returns. 599 if (getLangOpts().ElideConstructors && E->isElidable()) { 600 assert(getContext().hasSameUnqualifiedType(E->getType(), 601 E->getArg(0)->getType())); 602 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 603 EmitAggExpr(E->getArg(0), Dest); 604 return; 605 } 606 } 607 608 if (const ArrayType *arrayType 609 = getContext().getAsArrayType(E->getType())) { 610 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 611 } else { 612 CXXCtorType Type = Ctor_Complete; 613 bool ForVirtualBase = false; 614 bool Delegating = false; 615 616 switch (E->getConstructionKind()) { 617 case CXXConstructExpr::CK_Delegating: 618 // We should be emitting a constructor; GlobalDecl will assert this 619 Type = CurGD.getCtorType(); 620 Delegating = true; 621 break; 622 623 case CXXConstructExpr::CK_Complete: 624 Type = Ctor_Complete; 625 break; 626 627 case CXXConstructExpr::CK_VirtualBase: 628 ForVirtualBase = true; 629 LLVM_FALLTHROUGH; 630 631 case CXXConstructExpr::CK_NonVirtualBase: 632 Type = Ctor_Base; 633 } 634 635 // Call the constructor. 636 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 637 Dest.getAddress(), E, Dest.mayOverlap()); 638 } 639 } 640 641 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 642 const Expr *Exp) { 643 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 644 Exp = E->getSubExpr(); 645 assert(isa<CXXConstructExpr>(Exp) && 646 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 647 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 648 const CXXConstructorDecl *CD = E->getConstructor(); 649 RunCleanupsScope Scope(*this); 650 651 // If we require zero initialization before (or instead of) calling the 652 // constructor, as can be the case with a non-user-provided default 653 // constructor, emit the zero initialization now. 654 // FIXME. Do I still need this for a copy ctor synthesis? 655 if (E->requiresZeroInitialization()) 656 EmitNullInitialization(Dest, E->getType()); 657 658 assert(!getContext().getAsConstantArrayType(E->getType()) 659 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 660 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 661 } 662 663 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 664 const CXXNewExpr *E) { 665 if (!E->isArray()) 666 return CharUnits::Zero(); 667 668 // No cookie is required if the operator new[] being used is the 669 // reserved placement operator new[]. 670 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 671 return CharUnits::Zero(); 672 673 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 674 } 675 676 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 677 const CXXNewExpr *e, 678 unsigned minElements, 679 llvm::Value *&numElements, 680 llvm::Value *&sizeWithoutCookie) { 681 QualType type = e->getAllocatedType(); 682 683 if (!e->isArray()) { 684 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 685 sizeWithoutCookie 686 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 687 return sizeWithoutCookie; 688 } 689 690 // The width of size_t. 691 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 692 693 // Figure out the cookie size. 694 llvm::APInt cookieSize(sizeWidth, 695 CalculateCookiePadding(CGF, e).getQuantity()); 696 697 // Emit the array size expression. 698 // We multiply the size of all dimensions for NumElements. 699 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 700 numElements = 701 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 702 if (!numElements) 703 numElements = CGF.EmitScalarExpr(e->getArraySize()); 704 assert(isa<llvm::IntegerType>(numElements->getType())); 705 706 // The number of elements can be have an arbitrary integer type; 707 // essentially, we need to multiply it by a constant factor, add a 708 // cookie size, and verify that the result is representable as a 709 // size_t. That's just a gloss, though, and it's wrong in one 710 // important way: if the count is negative, it's an error even if 711 // the cookie size would bring the total size >= 0. 712 bool isSigned 713 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 714 llvm::IntegerType *numElementsType 715 = cast<llvm::IntegerType>(numElements->getType()); 716 unsigned numElementsWidth = numElementsType->getBitWidth(); 717 718 // Compute the constant factor. 719 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 720 while (const ConstantArrayType *CAT 721 = CGF.getContext().getAsConstantArrayType(type)) { 722 type = CAT->getElementType(); 723 arraySizeMultiplier *= CAT->getSize(); 724 } 725 726 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 727 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 728 typeSizeMultiplier *= arraySizeMultiplier; 729 730 // This will be a size_t. 731 llvm::Value *size; 732 733 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 734 // Don't bloat the -O0 code. 735 if (llvm::ConstantInt *numElementsC = 736 dyn_cast<llvm::ConstantInt>(numElements)) { 737 const llvm::APInt &count = numElementsC->getValue(); 738 739 bool hasAnyOverflow = false; 740 741 // If 'count' was a negative number, it's an overflow. 742 if (isSigned && count.isNegative()) 743 hasAnyOverflow = true; 744 745 // We want to do all this arithmetic in size_t. If numElements is 746 // wider than that, check whether it's already too big, and if so, 747 // overflow. 748 else if (numElementsWidth > sizeWidth && 749 numElementsWidth - sizeWidth > count.countLeadingZeros()) 750 hasAnyOverflow = true; 751 752 // Okay, compute a count at the right width. 753 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 754 755 // If there is a brace-initializer, we cannot allocate fewer elements than 756 // there are initializers. If we do, that's treated like an overflow. 757 if (adjustedCount.ult(minElements)) 758 hasAnyOverflow = true; 759 760 // Scale numElements by that. This might overflow, but we don't 761 // care because it only overflows if allocationSize does, too, and 762 // if that overflows then we shouldn't use this. 763 numElements = llvm::ConstantInt::get(CGF.SizeTy, 764 adjustedCount * arraySizeMultiplier); 765 766 // Compute the size before cookie, and track whether it overflowed. 767 bool overflow; 768 llvm::APInt allocationSize 769 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 770 hasAnyOverflow |= overflow; 771 772 // Add in the cookie, and check whether it's overflowed. 773 if (cookieSize != 0) { 774 // Save the current size without a cookie. This shouldn't be 775 // used if there was overflow. 776 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 777 778 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 779 hasAnyOverflow |= overflow; 780 } 781 782 // On overflow, produce a -1 so operator new will fail. 783 if (hasAnyOverflow) { 784 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 785 } else { 786 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 787 } 788 789 // Otherwise, we might need to use the overflow intrinsics. 790 } else { 791 // There are up to five conditions we need to test for: 792 // 1) if isSigned, we need to check whether numElements is negative; 793 // 2) if numElementsWidth > sizeWidth, we need to check whether 794 // numElements is larger than something representable in size_t; 795 // 3) if minElements > 0, we need to check whether numElements is smaller 796 // than that. 797 // 4) we need to compute 798 // sizeWithoutCookie := numElements * typeSizeMultiplier 799 // and check whether it overflows; and 800 // 5) if we need a cookie, we need to compute 801 // size := sizeWithoutCookie + cookieSize 802 // and check whether it overflows. 803 804 llvm::Value *hasOverflow = nullptr; 805 806 // If numElementsWidth > sizeWidth, then one way or another, we're 807 // going to have to do a comparison for (2), and this happens to 808 // take care of (1), too. 809 if (numElementsWidth > sizeWidth) { 810 llvm::APInt threshold(numElementsWidth, 1); 811 threshold <<= sizeWidth; 812 813 llvm::Value *thresholdV 814 = llvm::ConstantInt::get(numElementsType, threshold); 815 816 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 817 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 818 819 // Otherwise, if we're signed, we want to sext up to size_t. 820 } else if (isSigned) { 821 if (numElementsWidth < sizeWidth) 822 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 823 824 // If there's a non-1 type size multiplier, then we can do the 825 // signedness check at the same time as we do the multiply 826 // because a negative number times anything will cause an 827 // unsigned overflow. Otherwise, we have to do it here. But at least 828 // in this case, we can subsume the >= minElements check. 829 if (typeSizeMultiplier == 1) 830 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 831 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 832 833 // Otherwise, zext up to size_t if necessary. 834 } else if (numElementsWidth < sizeWidth) { 835 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 836 } 837 838 assert(numElements->getType() == CGF.SizeTy); 839 840 if (minElements) { 841 // Don't allow allocation of fewer elements than we have initializers. 842 if (!hasOverflow) { 843 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 844 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 845 } else if (numElementsWidth > sizeWidth) { 846 // The other existing overflow subsumes this check. 847 // We do an unsigned comparison, since any signed value < -1 is 848 // taken care of either above or below. 849 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 850 CGF.Builder.CreateICmpULT(numElements, 851 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 852 } 853 } 854 855 size = numElements; 856 857 // Multiply by the type size if necessary. This multiplier 858 // includes all the factors for nested arrays. 859 // 860 // This step also causes numElements to be scaled up by the 861 // nested-array factor if necessary. Overflow on this computation 862 // can be ignored because the result shouldn't be used if 863 // allocation fails. 864 if (typeSizeMultiplier != 1) { 865 llvm::Value *umul_with_overflow 866 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 867 868 llvm::Value *tsmV = 869 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 870 llvm::Value *result = 871 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 872 873 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 874 if (hasOverflow) 875 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 876 else 877 hasOverflow = overflowed; 878 879 size = CGF.Builder.CreateExtractValue(result, 0); 880 881 // Also scale up numElements by the array size multiplier. 882 if (arraySizeMultiplier != 1) { 883 // If the base element type size is 1, then we can re-use the 884 // multiply we just did. 885 if (typeSize.isOne()) { 886 assert(arraySizeMultiplier == typeSizeMultiplier); 887 numElements = size; 888 889 // Otherwise we need a separate multiply. 890 } else { 891 llvm::Value *asmV = 892 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 893 numElements = CGF.Builder.CreateMul(numElements, asmV); 894 } 895 } 896 } else { 897 // numElements doesn't need to be scaled. 898 assert(arraySizeMultiplier == 1); 899 } 900 901 // Add in the cookie size if necessary. 902 if (cookieSize != 0) { 903 sizeWithoutCookie = size; 904 905 llvm::Value *uadd_with_overflow 906 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 907 908 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 909 llvm::Value *result = 910 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 911 912 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 913 if (hasOverflow) 914 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 915 else 916 hasOverflow = overflowed; 917 918 size = CGF.Builder.CreateExtractValue(result, 0); 919 } 920 921 // If we had any possibility of dynamic overflow, make a select to 922 // overwrite 'size' with an all-ones value, which should cause 923 // operator new to throw. 924 if (hasOverflow) 925 size = CGF.Builder.CreateSelect(hasOverflow, 926 llvm::Constant::getAllOnesValue(CGF.SizeTy), 927 size); 928 } 929 930 if (cookieSize == 0) 931 sizeWithoutCookie = size; 932 else 933 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 934 935 return size; 936 } 937 938 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 939 QualType AllocType, Address NewPtr, 940 AggValueSlot::Overlap_t MayOverlap) { 941 // FIXME: Refactor with EmitExprAsInit. 942 switch (CGF.getEvaluationKind(AllocType)) { 943 case TEK_Scalar: 944 CGF.EmitScalarInit(Init, nullptr, 945 CGF.MakeAddrLValue(NewPtr, AllocType), false); 946 return; 947 case TEK_Complex: 948 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 949 /*isInit*/ true); 950 return; 951 case TEK_Aggregate: { 952 AggValueSlot Slot 953 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 954 AggValueSlot::IsDestructed, 955 AggValueSlot::DoesNotNeedGCBarriers, 956 AggValueSlot::IsNotAliased, 957 MayOverlap); 958 CGF.EmitAggExpr(Init, Slot); 959 return; 960 } 961 } 962 llvm_unreachable("bad evaluation kind"); 963 } 964 965 void CodeGenFunction::EmitNewArrayInitializer( 966 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 967 Address BeginPtr, llvm::Value *NumElements, 968 llvm::Value *AllocSizeWithoutCookie) { 969 // If we have a type with trivial initialization and no initializer, 970 // there's nothing to do. 971 if (!E->hasInitializer()) 972 return; 973 974 Address CurPtr = BeginPtr; 975 976 unsigned InitListElements = 0; 977 978 const Expr *Init = E->getInitializer(); 979 Address EndOfInit = Address::invalid(); 980 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 981 EHScopeStack::stable_iterator Cleanup; 982 llvm::Instruction *CleanupDominator = nullptr; 983 984 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 985 CharUnits ElementAlign = 986 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 987 988 // Attempt to perform zero-initialization using memset. 989 auto TryMemsetInitialization = [&]() -> bool { 990 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 991 // we can initialize with a memset to -1. 992 if (!CGM.getTypes().isZeroInitializable(ElementType)) 993 return false; 994 995 // Optimization: since zero initialization will just set the memory 996 // to all zeroes, generate a single memset to do it in one shot. 997 998 // Subtract out the size of any elements we've already initialized. 999 auto *RemainingSize = AllocSizeWithoutCookie; 1000 if (InitListElements) { 1001 // We know this can't overflow; we check this when doing the allocation. 1002 auto *InitializedSize = llvm::ConstantInt::get( 1003 RemainingSize->getType(), 1004 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1005 InitListElements); 1006 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1007 } 1008 1009 // Create the memset. 1010 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1011 return true; 1012 }; 1013 1014 // If the initializer is an initializer list, first do the explicit elements. 1015 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1016 // Initializing from a (braced) string literal is a special case; the init 1017 // list element does not initialize a (single) array element. 1018 if (ILE->isStringLiteralInit()) { 1019 // Initialize the initial portion of length equal to that of the string 1020 // literal. The allocation must be for at least this much; we emitted a 1021 // check for that earlier. 1022 AggValueSlot Slot = 1023 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1024 AggValueSlot::IsDestructed, 1025 AggValueSlot::DoesNotNeedGCBarriers, 1026 AggValueSlot::IsNotAliased, 1027 AggValueSlot::DoesNotOverlap); 1028 EmitAggExpr(ILE->getInit(0), Slot); 1029 1030 // Move past these elements. 1031 InitListElements = 1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1033 ->getSize().getZExtValue(); 1034 CurPtr = 1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1036 Builder.getSize(InitListElements), 1037 "string.init.end"), 1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1039 ElementSize)); 1040 1041 // Zero out the rest, if any remain. 1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1044 bool OK = TryMemsetInitialization(); 1045 (void)OK; 1046 assert(OK && "couldn't memset character type?"); 1047 } 1048 return; 1049 } 1050 1051 InitListElements = ILE->getNumInits(); 1052 1053 // If this is a multi-dimensional array new, we will initialize multiple 1054 // elements with each init list element. 1055 QualType AllocType = E->getAllocatedType(); 1056 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1057 AllocType->getAsArrayTypeUnsafe())) { 1058 ElementTy = ConvertTypeForMem(AllocType); 1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1060 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1061 } 1062 1063 // Enter a partial-destruction Cleanup if necessary. 1064 if (needsEHCleanup(DtorKind)) { 1065 // In principle we could tell the Cleanup where we are more 1066 // directly, but the control flow can get so varied here that it 1067 // would actually be quite complex. Therefore we go through an 1068 // alloca. 1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1070 "array.init.end"); 1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1073 ElementType, ElementAlign, 1074 getDestroyer(DtorKind)); 1075 Cleanup = EHStack.stable_begin(); 1076 } 1077 1078 CharUnits StartAlign = CurPtr.getAlignment(); 1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1080 // Tell the cleanup that it needs to destroy up to this 1081 // element. TODO: some of these stores can be trivially 1082 // observed to be unnecessary. 1083 if (EndOfInit.isValid()) { 1084 auto FinishedPtr = 1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1086 Builder.CreateStore(FinishedPtr, EndOfInit); 1087 } 1088 // FIXME: If the last initializer is an incomplete initializer list for 1089 // an array, and we have an array filler, we can fold together the two 1090 // initialization loops. 1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1092 ILE->getInit(i)->getType(), CurPtr, 1093 AggValueSlot::DoesNotOverlap); 1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1095 Builder.getSize(1), 1096 "array.exp.next"), 1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1098 } 1099 1100 // The remaining elements are filled with the array filler expression. 1101 Init = ILE->getArrayFiller(); 1102 1103 // Extract the initializer for the individual array elements by pulling 1104 // out the array filler from all the nested initializer lists. This avoids 1105 // generating a nested loop for the initialization. 1106 while (Init && Init->getType()->isConstantArrayType()) { 1107 auto *SubILE = dyn_cast<InitListExpr>(Init); 1108 if (!SubILE) 1109 break; 1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1111 Init = SubILE->getArrayFiller(); 1112 } 1113 1114 // Switch back to initializing one base element at a time. 1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1116 } 1117 1118 // If all elements have already been initialized, skip any further 1119 // initialization. 1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1122 // If there was a Cleanup, deactivate it. 1123 if (CleanupDominator) 1124 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1125 return; 1126 } 1127 1128 assert(Init && "have trailing elements to initialize but no initializer"); 1129 1130 // If this is a constructor call, try to optimize it out, and failing that 1131 // emit a single loop to initialize all remaining elements. 1132 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1133 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1134 if (Ctor->isTrivial()) { 1135 // If new expression did not specify value-initialization, then there 1136 // is no initialization. 1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1138 return; 1139 1140 if (TryMemsetInitialization()) 1141 return; 1142 } 1143 1144 // Store the new Cleanup position for irregular Cleanups. 1145 // 1146 // FIXME: Share this cleanup with the constructor call emission rather than 1147 // having it create a cleanup of its own. 1148 if (EndOfInit.isValid()) 1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1150 1151 // Emit a constructor call loop to initialize the remaining elements. 1152 if (InitListElements) 1153 NumElements = Builder.CreateSub( 1154 NumElements, 1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1157 CCE->requiresZeroInitialization()); 1158 return; 1159 } 1160 1161 // If this is value-initialization, we can usually use memset. 1162 ImplicitValueInitExpr IVIE(ElementType); 1163 if (isa<ImplicitValueInitExpr>(Init)) { 1164 if (TryMemsetInitialization()) 1165 return; 1166 1167 // Switch to an ImplicitValueInitExpr for the element type. This handles 1168 // only one case: multidimensional array new of pointers to members. In 1169 // all other cases, we already have an initializer for the array element. 1170 Init = &IVIE; 1171 } 1172 1173 // At this point we should have found an initializer for the individual 1174 // elements of the array. 1175 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1176 "got wrong type of element to initialize"); 1177 1178 // If we have an empty initializer list, we can usually use memset. 1179 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1180 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1181 return; 1182 1183 // If we have a struct whose every field is value-initialized, we can 1184 // usually use memset. 1185 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1186 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1187 if (RType->getDecl()->isStruct()) { 1188 unsigned NumElements = 0; 1189 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1190 NumElements = CXXRD->getNumBases(); 1191 for (auto *Field : RType->getDecl()->fields()) 1192 if (!Field->isUnnamedBitfield()) 1193 ++NumElements; 1194 // FIXME: Recurse into nested InitListExprs. 1195 if (ILE->getNumInits() == NumElements) 1196 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1197 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1198 --NumElements; 1199 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1200 return; 1201 } 1202 } 1203 } 1204 1205 // Create the loop blocks. 1206 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1207 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1208 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1209 1210 // Find the end of the array, hoisted out of the loop. 1211 llvm::Value *EndPtr = 1212 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1213 1214 // If the number of elements isn't constant, we have to now check if there is 1215 // anything left to initialize. 1216 if (!ConstNum) { 1217 llvm::Value *IsEmpty = 1218 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1219 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1220 } 1221 1222 // Enter the loop. 1223 EmitBlock(LoopBB); 1224 1225 // Set up the current-element phi. 1226 llvm::PHINode *CurPtrPhi = 1227 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1228 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1229 1230 CurPtr = Address(CurPtrPhi, ElementAlign); 1231 1232 // Store the new Cleanup position for irregular Cleanups. 1233 if (EndOfInit.isValid()) 1234 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1235 1236 // Enter a partial-destruction Cleanup if necessary. 1237 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1238 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1239 ElementType, ElementAlign, 1240 getDestroyer(DtorKind)); 1241 Cleanup = EHStack.stable_begin(); 1242 CleanupDominator = Builder.CreateUnreachable(); 1243 } 1244 1245 // Emit the initializer into this element. 1246 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1247 AggValueSlot::DoesNotOverlap); 1248 1249 // Leave the Cleanup if we entered one. 1250 if (CleanupDominator) { 1251 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1252 CleanupDominator->eraseFromParent(); 1253 } 1254 1255 // Advance to the next element by adjusting the pointer type as necessary. 1256 llvm::Value *NextPtr = 1257 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1258 "array.next"); 1259 1260 // Check whether we've gotten to the end of the array and, if so, 1261 // exit the loop. 1262 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1263 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1264 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1265 1266 EmitBlock(ContBB); 1267 } 1268 1269 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1270 QualType ElementType, llvm::Type *ElementTy, 1271 Address NewPtr, llvm::Value *NumElements, 1272 llvm::Value *AllocSizeWithoutCookie) { 1273 ApplyDebugLocation DL(CGF, E); 1274 if (E->isArray()) 1275 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1276 AllocSizeWithoutCookie); 1277 else if (const Expr *Init = E->getInitializer()) 1278 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1279 AggValueSlot::DoesNotOverlap); 1280 } 1281 1282 /// Emit a call to an operator new or operator delete function, as implicitly 1283 /// created by new-expressions and delete-expressions. 1284 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1285 const FunctionDecl *CalleeDecl, 1286 const FunctionProtoType *CalleeType, 1287 const CallArgList &Args) { 1288 llvm::Instruction *CallOrInvoke; 1289 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1290 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1291 RValue RV = 1292 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1293 Args, CalleeType, /*chainCall=*/false), 1294 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1295 1296 /// C++1y [expr.new]p10: 1297 /// [In a new-expression,] an implementation is allowed to omit a call 1298 /// to a replaceable global allocation function. 1299 /// 1300 /// We model such elidable calls with the 'builtin' attribute. 1301 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1302 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1303 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1304 // FIXME: Add addAttribute to CallSite. 1305 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1306 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1307 llvm::Attribute::Builtin); 1308 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1309 II->addAttribute(llvm::AttributeList::FunctionIndex, 1310 llvm::Attribute::Builtin); 1311 else 1312 llvm_unreachable("unexpected kind of call instruction"); 1313 } 1314 1315 return RV; 1316 } 1317 1318 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1319 const CallExpr *TheCall, 1320 bool IsDelete) { 1321 CallArgList Args; 1322 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1323 // Find the allocation or deallocation function that we're calling. 1324 ASTContext &Ctx = getContext(); 1325 DeclarationName Name = Ctx.DeclarationNames 1326 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1327 1328 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1329 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1330 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1331 return EmitNewDeleteCall(*this, FD, Type, Args); 1332 llvm_unreachable("predeclared global operator new/delete is missing"); 1333 } 1334 1335 namespace { 1336 /// The parameters to pass to a usual operator delete. 1337 struct UsualDeleteParams { 1338 bool DestroyingDelete = false; 1339 bool Size = false; 1340 bool Alignment = false; 1341 }; 1342 } 1343 1344 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1345 UsualDeleteParams Params; 1346 1347 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1348 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1349 1350 // The first argument is always a void*. 1351 ++AI; 1352 1353 // The next parameter may be a std::destroying_delete_t. 1354 if (FD->isDestroyingOperatorDelete()) { 1355 Params.DestroyingDelete = true; 1356 assert(AI != AE); 1357 ++AI; 1358 } 1359 1360 // Figure out what other parameters we should be implicitly passing. 1361 if (AI != AE && (*AI)->isIntegerType()) { 1362 Params.Size = true; 1363 ++AI; 1364 } 1365 1366 if (AI != AE && (*AI)->isAlignValT()) { 1367 Params.Alignment = true; 1368 ++AI; 1369 } 1370 1371 assert(AI == AE && "unexpected usual deallocation function parameter"); 1372 return Params; 1373 } 1374 1375 namespace { 1376 /// A cleanup to call the given 'operator delete' function upon abnormal 1377 /// exit from a new expression. Templated on a traits type that deals with 1378 /// ensuring that the arguments dominate the cleanup if necessary. 1379 template<typename Traits> 1380 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1381 /// Type used to hold llvm::Value*s. 1382 typedef typename Traits::ValueTy ValueTy; 1383 /// Type used to hold RValues. 1384 typedef typename Traits::RValueTy RValueTy; 1385 struct PlacementArg { 1386 RValueTy ArgValue; 1387 QualType ArgType; 1388 }; 1389 1390 unsigned NumPlacementArgs : 31; 1391 unsigned PassAlignmentToPlacementDelete : 1; 1392 const FunctionDecl *OperatorDelete; 1393 ValueTy Ptr; 1394 ValueTy AllocSize; 1395 CharUnits AllocAlign; 1396 1397 PlacementArg *getPlacementArgs() { 1398 return reinterpret_cast<PlacementArg *>(this + 1); 1399 } 1400 1401 public: 1402 static size_t getExtraSize(size_t NumPlacementArgs) { 1403 return NumPlacementArgs * sizeof(PlacementArg); 1404 } 1405 1406 CallDeleteDuringNew(size_t NumPlacementArgs, 1407 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1408 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1409 CharUnits AllocAlign) 1410 : NumPlacementArgs(NumPlacementArgs), 1411 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1412 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1413 AllocAlign(AllocAlign) {} 1414 1415 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1416 assert(I < NumPlacementArgs && "index out of range"); 1417 getPlacementArgs()[I] = {Arg, Type}; 1418 } 1419 1420 void Emit(CodeGenFunction &CGF, Flags flags) override { 1421 const FunctionProtoType *FPT = 1422 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1423 CallArgList DeleteArgs; 1424 1425 // The first argument is always a void* (or C* for a destroying operator 1426 // delete for class type C). 1427 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1428 1429 // Figure out what other parameters we should be implicitly passing. 1430 UsualDeleteParams Params; 1431 if (NumPlacementArgs) { 1432 // A placement deallocation function is implicitly passed an alignment 1433 // if the placement allocation function was, but is never passed a size. 1434 Params.Alignment = PassAlignmentToPlacementDelete; 1435 } else { 1436 // For a non-placement new-expression, 'operator delete' can take a 1437 // size and/or an alignment if it has the right parameters. 1438 Params = getUsualDeleteParams(OperatorDelete); 1439 } 1440 1441 assert(!Params.DestroyingDelete && 1442 "should not call destroying delete in a new-expression"); 1443 1444 // The second argument can be a std::size_t (for non-placement delete). 1445 if (Params.Size) 1446 DeleteArgs.add(Traits::get(CGF, AllocSize), 1447 CGF.getContext().getSizeType()); 1448 1449 // The next (second or third) argument can be a std::align_val_t, which 1450 // is an enum whose underlying type is std::size_t. 1451 // FIXME: Use the right type as the parameter type. Note that in a call 1452 // to operator delete(size_t, ...), we may not have it available. 1453 if (Params.Alignment) 1454 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1455 CGF.SizeTy, AllocAlign.getQuantity())), 1456 CGF.getContext().getSizeType()); 1457 1458 // Pass the rest of the arguments, which must match exactly. 1459 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1460 auto Arg = getPlacementArgs()[I]; 1461 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1462 } 1463 1464 // Call 'operator delete'. 1465 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1466 } 1467 }; 1468 } 1469 1470 /// Enter a cleanup to call 'operator delete' if the initializer in a 1471 /// new-expression throws. 1472 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1473 const CXXNewExpr *E, 1474 Address NewPtr, 1475 llvm::Value *AllocSize, 1476 CharUnits AllocAlign, 1477 const CallArgList &NewArgs) { 1478 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1479 1480 // If we're not inside a conditional branch, then the cleanup will 1481 // dominate and we can do the easier (and more efficient) thing. 1482 if (!CGF.isInConditionalBranch()) { 1483 struct DirectCleanupTraits { 1484 typedef llvm::Value *ValueTy; 1485 typedef RValue RValueTy; 1486 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1487 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1488 }; 1489 1490 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1491 1492 DirectCleanup *Cleanup = CGF.EHStack 1493 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1494 E->getNumPlacementArgs(), 1495 E->getOperatorDelete(), 1496 NewPtr.getPointer(), 1497 AllocSize, 1498 E->passAlignment(), 1499 AllocAlign); 1500 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1501 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1502 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1503 } 1504 1505 return; 1506 } 1507 1508 // Otherwise, we need to save all this stuff. 1509 DominatingValue<RValue>::saved_type SavedNewPtr = 1510 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1511 DominatingValue<RValue>::saved_type SavedAllocSize = 1512 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1513 1514 struct ConditionalCleanupTraits { 1515 typedef DominatingValue<RValue>::saved_type ValueTy; 1516 typedef DominatingValue<RValue>::saved_type RValueTy; 1517 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1518 return V.restore(CGF); 1519 } 1520 }; 1521 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1522 1523 ConditionalCleanup *Cleanup = CGF.EHStack 1524 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1525 E->getNumPlacementArgs(), 1526 E->getOperatorDelete(), 1527 SavedNewPtr, 1528 SavedAllocSize, 1529 E->passAlignment(), 1530 AllocAlign); 1531 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1532 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1533 Cleanup->setPlacementArg( 1534 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1535 } 1536 1537 CGF.initFullExprCleanup(); 1538 } 1539 1540 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1541 // The element type being allocated. 1542 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1543 1544 // 1. Build a call to the allocation function. 1545 FunctionDecl *allocator = E->getOperatorNew(); 1546 1547 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1548 unsigned minElements = 0; 1549 if (E->isArray() && E->hasInitializer()) { 1550 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1551 if (ILE && ILE->isStringLiteralInit()) 1552 minElements = 1553 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1554 ->getSize().getZExtValue(); 1555 else if (ILE) 1556 minElements = ILE->getNumInits(); 1557 } 1558 1559 llvm::Value *numElements = nullptr; 1560 llvm::Value *allocSizeWithoutCookie = nullptr; 1561 llvm::Value *allocSize = 1562 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1563 allocSizeWithoutCookie); 1564 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1565 1566 // Emit the allocation call. If the allocator is a global placement 1567 // operator, just "inline" it directly. 1568 Address allocation = Address::invalid(); 1569 CallArgList allocatorArgs; 1570 if (allocator->isReservedGlobalPlacementOperator()) { 1571 assert(E->getNumPlacementArgs() == 1); 1572 const Expr *arg = *E->placement_arguments().begin(); 1573 1574 LValueBaseInfo BaseInfo; 1575 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1576 1577 // The pointer expression will, in many cases, be an opaque void*. 1578 // In these cases, discard the computed alignment and use the 1579 // formal alignment of the allocated type. 1580 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1581 allocation = Address(allocation.getPointer(), allocAlign); 1582 1583 // Set up allocatorArgs for the call to operator delete if it's not 1584 // the reserved global operator. 1585 if (E->getOperatorDelete() && 1586 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1587 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1588 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1589 } 1590 1591 } else { 1592 const FunctionProtoType *allocatorType = 1593 allocator->getType()->castAs<FunctionProtoType>(); 1594 unsigned ParamsToSkip = 0; 1595 1596 // The allocation size is the first argument. 1597 QualType sizeType = getContext().getSizeType(); 1598 allocatorArgs.add(RValue::get(allocSize), sizeType); 1599 ++ParamsToSkip; 1600 1601 if (allocSize != allocSizeWithoutCookie) { 1602 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1603 allocAlign = std::max(allocAlign, cookieAlign); 1604 } 1605 1606 // The allocation alignment may be passed as the second argument. 1607 if (E->passAlignment()) { 1608 QualType AlignValT = sizeType; 1609 if (allocatorType->getNumParams() > 1) { 1610 AlignValT = allocatorType->getParamType(1); 1611 assert(getContext().hasSameUnqualifiedType( 1612 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1613 sizeType) && 1614 "wrong type for alignment parameter"); 1615 ++ParamsToSkip; 1616 } else { 1617 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1618 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1619 } 1620 allocatorArgs.add( 1621 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1622 AlignValT); 1623 } 1624 1625 // FIXME: Why do we not pass a CalleeDecl here? 1626 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1627 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1628 1629 RValue RV = 1630 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1631 1632 // If this was a call to a global replaceable allocation function that does 1633 // not take an alignment argument, the allocator is known to produce 1634 // storage that's suitably aligned for any object that fits, up to a known 1635 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1636 CharUnits allocationAlign = allocAlign; 1637 if (!E->passAlignment() && 1638 allocator->isReplaceableGlobalAllocationFunction()) { 1639 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1640 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1641 allocationAlign = std::max( 1642 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1643 } 1644 1645 allocation = Address(RV.getScalarVal(), allocationAlign); 1646 } 1647 1648 // Emit a null check on the allocation result if the allocation 1649 // function is allowed to return null (because it has a non-throwing 1650 // exception spec or is the reserved placement new) and we have an 1651 // interesting initializer. 1652 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1653 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1654 1655 llvm::BasicBlock *nullCheckBB = nullptr; 1656 llvm::BasicBlock *contBB = nullptr; 1657 1658 // The null-check means that the initializer is conditionally 1659 // evaluated. 1660 ConditionalEvaluation conditional(*this); 1661 1662 if (nullCheck) { 1663 conditional.begin(*this); 1664 1665 nullCheckBB = Builder.GetInsertBlock(); 1666 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1667 contBB = createBasicBlock("new.cont"); 1668 1669 llvm::Value *isNull = 1670 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1671 Builder.CreateCondBr(isNull, contBB, notNullBB); 1672 EmitBlock(notNullBB); 1673 } 1674 1675 // If there's an operator delete, enter a cleanup to call it if an 1676 // exception is thrown. 1677 EHScopeStack::stable_iterator operatorDeleteCleanup; 1678 llvm::Instruction *cleanupDominator = nullptr; 1679 if (E->getOperatorDelete() && 1680 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1681 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1682 allocatorArgs); 1683 operatorDeleteCleanup = EHStack.stable_begin(); 1684 cleanupDominator = Builder.CreateUnreachable(); 1685 } 1686 1687 assert((allocSize == allocSizeWithoutCookie) == 1688 CalculateCookiePadding(*this, E).isZero()); 1689 if (allocSize != allocSizeWithoutCookie) { 1690 assert(E->isArray()); 1691 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1692 numElements, 1693 E, allocType); 1694 } 1695 1696 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1697 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1698 1699 // Passing pointer through launder.invariant.group to avoid propagation of 1700 // vptrs information which may be included in previous type. 1701 // To not break LTO with different optimizations levels, we do it regardless 1702 // of optimization level. 1703 if (CGM.getCodeGenOpts().StrictVTablePointers && 1704 allocator->isReservedGlobalPlacementOperator()) 1705 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1706 result.getAlignment()); 1707 1708 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1709 allocSizeWithoutCookie); 1710 if (E->isArray()) { 1711 // NewPtr is a pointer to the base element type. If we're 1712 // allocating an array of arrays, we'll need to cast back to the 1713 // array pointer type. 1714 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1715 if (result.getType() != resultType) 1716 result = Builder.CreateBitCast(result, resultType); 1717 } 1718 1719 // Deactivate the 'operator delete' cleanup if we finished 1720 // initialization. 1721 if (operatorDeleteCleanup.isValid()) { 1722 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1723 cleanupDominator->eraseFromParent(); 1724 } 1725 1726 llvm::Value *resultPtr = result.getPointer(); 1727 if (nullCheck) { 1728 conditional.end(*this); 1729 1730 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1731 EmitBlock(contBB); 1732 1733 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1734 PHI->addIncoming(resultPtr, notNullBB); 1735 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1736 nullCheckBB); 1737 1738 resultPtr = PHI; 1739 } 1740 1741 return resultPtr; 1742 } 1743 1744 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1745 llvm::Value *Ptr, QualType DeleteTy, 1746 llvm::Value *NumElements, 1747 CharUnits CookieSize) { 1748 assert((!NumElements && CookieSize.isZero()) || 1749 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1750 1751 const FunctionProtoType *DeleteFTy = 1752 DeleteFD->getType()->getAs<FunctionProtoType>(); 1753 1754 CallArgList DeleteArgs; 1755 1756 auto Params = getUsualDeleteParams(DeleteFD); 1757 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1758 1759 // Pass the pointer itself. 1760 QualType ArgTy = *ParamTypeIt++; 1761 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1762 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1763 1764 // Pass the std::destroying_delete tag if present. 1765 if (Params.DestroyingDelete) { 1766 QualType DDTag = *ParamTypeIt++; 1767 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1768 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1769 DeleteArgs.add(RValue::get(V), DDTag); 1770 } 1771 1772 // Pass the size if the delete function has a size_t parameter. 1773 if (Params.Size) { 1774 QualType SizeType = *ParamTypeIt++; 1775 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1776 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1777 DeleteTypeSize.getQuantity()); 1778 1779 // For array new, multiply by the number of elements. 1780 if (NumElements) 1781 Size = Builder.CreateMul(Size, NumElements); 1782 1783 // If there is a cookie, add the cookie size. 1784 if (!CookieSize.isZero()) 1785 Size = Builder.CreateAdd( 1786 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1787 1788 DeleteArgs.add(RValue::get(Size), SizeType); 1789 } 1790 1791 // Pass the alignment if the delete function has an align_val_t parameter. 1792 if (Params.Alignment) { 1793 QualType AlignValType = *ParamTypeIt++; 1794 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1795 getContext().getTypeAlignIfKnown(DeleteTy)); 1796 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1797 DeleteTypeAlign.getQuantity()); 1798 DeleteArgs.add(RValue::get(Align), AlignValType); 1799 } 1800 1801 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1802 "unknown parameter to usual delete function"); 1803 1804 // Emit the call to delete. 1805 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1806 } 1807 1808 namespace { 1809 /// Calls the given 'operator delete' on a single object. 1810 struct CallObjectDelete final : EHScopeStack::Cleanup { 1811 llvm::Value *Ptr; 1812 const FunctionDecl *OperatorDelete; 1813 QualType ElementType; 1814 1815 CallObjectDelete(llvm::Value *Ptr, 1816 const FunctionDecl *OperatorDelete, 1817 QualType ElementType) 1818 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1819 1820 void Emit(CodeGenFunction &CGF, Flags flags) override { 1821 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1822 } 1823 }; 1824 } 1825 1826 void 1827 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1828 llvm::Value *CompletePtr, 1829 QualType ElementType) { 1830 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1831 OperatorDelete, ElementType); 1832 } 1833 1834 /// Emit the code for deleting a single object with a destroying operator 1835 /// delete. If the element type has a non-virtual destructor, Ptr has already 1836 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1837 /// Ptr points to an object of the static type. 1838 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1839 const CXXDeleteExpr *DE, Address Ptr, 1840 QualType ElementType) { 1841 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1842 if (Dtor && Dtor->isVirtual()) 1843 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1844 Dtor); 1845 else 1846 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1847 } 1848 1849 /// Emit the code for deleting a single object. 1850 static void EmitObjectDelete(CodeGenFunction &CGF, 1851 const CXXDeleteExpr *DE, 1852 Address Ptr, 1853 QualType ElementType) { 1854 // C++11 [expr.delete]p3: 1855 // If the static type of the object to be deleted is different from its 1856 // dynamic type, the static type shall be a base class of the dynamic type 1857 // of the object to be deleted and the static type shall have a virtual 1858 // destructor or the behavior is undefined. 1859 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1860 DE->getExprLoc(), Ptr.getPointer(), 1861 ElementType); 1862 1863 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1864 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1865 1866 // Find the destructor for the type, if applicable. If the 1867 // destructor is virtual, we'll just emit the vcall and return. 1868 const CXXDestructorDecl *Dtor = nullptr; 1869 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1870 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1871 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1872 Dtor = RD->getDestructor(); 1873 1874 if (Dtor->isVirtual()) { 1875 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1876 Dtor); 1877 return; 1878 } 1879 } 1880 } 1881 1882 // Make sure that we call delete even if the dtor throws. 1883 // This doesn't have to a conditional cleanup because we're going 1884 // to pop it off in a second. 1885 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1886 Ptr.getPointer(), 1887 OperatorDelete, ElementType); 1888 1889 if (Dtor) 1890 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1891 /*ForVirtualBase=*/false, 1892 /*Delegating=*/false, 1893 Ptr); 1894 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1895 switch (Lifetime) { 1896 case Qualifiers::OCL_None: 1897 case Qualifiers::OCL_ExplicitNone: 1898 case Qualifiers::OCL_Autoreleasing: 1899 break; 1900 1901 case Qualifiers::OCL_Strong: 1902 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1903 break; 1904 1905 case Qualifiers::OCL_Weak: 1906 CGF.EmitARCDestroyWeak(Ptr); 1907 break; 1908 } 1909 } 1910 1911 CGF.PopCleanupBlock(); 1912 } 1913 1914 namespace { 1915 /// Calls the given 'operator delete' on an array of objects. 1916 struct CallArrayDelete final : EHScopeStack::Cleanup { 1917 llvm::Value *Ptr; 1918 const FunctionDecl *OperatorDelete; 1919 llvm::Value *NumElements; 1920 QualType ElementType; 1921 CharUnits CookieSize; 1922 1923 CallArrayDelete(llvm::Value *Ptr, 1924 const FunctionDecl *OperatorDelete, 1925 llvm::Value *NumElements, 1926 QualType ElementType, 1927 CharUnits CookieSize) 1928 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1929 ElementType(ElementType), CookieSize(CookieSize) {} 1930 1931 void Emit(CodeGenFunction &CGF, Flags flags) override { 1932 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1933 CookieSize); 1934 } 1935 }; 1936 } 1937 1938 /// Emit the code for deleting an array of objects. 1939 static void EmitArrayDelete(CodeGenFunction &CGF, 1940 const CXXDeleteExpr *E, 1941 Address deletedPtr, 1942 QualType elementType) { 1943 llvm::Value *numElements = nullptr; 1944 llvm::Value *allocatedPtr = nullptr; 1945 CharUnits cookieSize; 1946 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1947 numElements, allocatedPtr, cookieSize); 1948 1949 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1950 1951 // Make sure that we call delete even if one of the dtors throws. 1952 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1953 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1954 allocatedPtr, operatorDelete, 1955 numElements, elementType, 1956 cookieSize); 1957 1958 // Destroy the elements. 1959 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1960 assert(numElements && "no element count for a type with a destructor!"); 1961 1962 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1963 CharUnits elementAlign = 1964 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1965 1966 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1967 llvm::Value *arrayEnd = 1968 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1969 1970 // Note that it is legal to allocate a zero-length array, and we 1971 // can never fold the check away because the length should always 1972 // come from a cookie. 1973 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1974 CGF.getDestroyer(dtorKind), 1975 /*checkZeroLength*/ true, 1976 CGF.needsEHCleanup(dtorKind)); 1977 } 1978 1979 // Pop the cleanup block. 1980 CGF.PopCleanupBlock(); 1981 } 1982 1983 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1984 const Expr *Arg = E->getArgument(); 1985 Address Ptr = EmitPointerWithAlignment(Arg); 1986 1987 // Null check the pointer. 1988 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1989 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1990 1991 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1992 1993 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1994 EmitBlock(DeleteNotNull); 1995 1996 QualType DeleteTy = E->getDestroyedType(); 1997 1998 // A destroying operator delete overrides the entire operation of the 1999 // delete expression. 2000 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2001 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2002 EmitBlock(DeleteEnd); 2003 return; 2004 } 2005 2006 // We might be deleting a pointer to array. If so, GEP down to the 2007 // first non-array element. 2008 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2009 if (DeleteTy->isConstantArrayType()) { 2010 llvm::Value *Zero = Builder.getInt32(0); 2011 SmallVector<llvm::Value*,8> GEP; 2012 2013 GEP.push_back(Zero); // point at the outermost array 2014 2015 // For each layer of array type we're pointing at: 2016 while (const ConstantArrayType *Arr 2017 = getContext().getAsConstantArrayType(DeleteTy)) { 2018 // 1. Unpeel the array type. 2019 DeleteTy = Arr->getElementType(); 2020 2021 // 2. GEP to the first element of the array. 2022 GEP.push_back(Zero); 2023 } 2024 2025 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2026 Ptr.getAlignment()); 2027 } 2028 2029 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2030 2031 if (E->isArrayForm()) { 2032 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2033 } else { 2034 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2035 } 2036 2037 EmitBlock(DeleteEnd); 2038 } 2039 2040 static bool isGLValueFromPointerDeref(const Expr *E) { 2041 E = E->IgnoreParens(); 2042 2043 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2044 if (!CE->getSubExpr()->isGLValue()) 2045 return false; 2046 return isGLValueFromPointerDeref(CE->getSubExpr()); 2047 } 2048 2049 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2050 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2051 2052 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2053 if (BO->getOpcode() == BO_Comma) 2054 return isGLValueFromPointerDeref(BO->getRHS()); 2055 2056 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2057 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2058 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2059 2060 // C++11 [expr.sub]p1: 2061 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2062 if (isa<ArraySubscriptExpr>(E)) 2063 return true; 2064 2065 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2066 if (UO->getOpcode() == UO_Deref) 2067 return true; 2068 2069 return false; 2070 } 2071 2072 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2073 llvm::Type *StdTypeInfoPtrTy) { 2074 // Get the vtable pointer. 2075 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2076 2077 QualType SrcRecordTy = E->getType(); 2078 2079 // C++ [class.cdtor]p4: 2080 // If the operand of typeid refers to the object under construction or 2081 // destruction and the static type of the operand is neither the constructor 2082 // or destructor’s class nor one of its bases, the behavior is undefined. 2083 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2084 ThisPtr.getPointer(), SrcRecordTy); 2085 2086 // C++ [expr.typeid]p2: 2087 // If the glvalue expression is obtained by applying the unary * operator to 2088 // a pointer and the pointer is a null pointer value, the typeid expression 2089 // throws the std::bad_typeid exception. 2090 // 2091 // However, this paragraph's intent is not clear. We choose a very generous 2092 // interpretation which implores us to consider comma operators, conditional 2093 // operators, parentheses and other such constructs. 2094 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2095 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2096 llvm::BasicBlock *BadTypeidBlock = 2097 CGF.createBasicBlock("typeid.bad_typeid"); 2098 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2099 2100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2101 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2102 2103 CGF.EmitBlock(BadTypeidBlock); 2104 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2105 CGF.EmitBlock(EndBlock); 2106 } 2107 2108 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2109 StdTypeInfoPtrTy); 2110 } 2111 2112 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2113 llvm::Type *StdTypeInfoPtrTy = 2114 ConvertType(E->getType())->getPointerTo(); 2115 2116 if (E->isTypeOperand()) { 2117 llvm::Constant *TypeInfo = 2118 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2119 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2120 } 2121 2122 // C++ [expr.typeid]p2: 2123 // When typeid is applied to a glvalue expression whose type is a 2124 // polymorphic class type, the result refers to a std::type_info object 2125 // representing the type of the most derived object (that is, the dynamic 2126 // type) to which the glvalue refers. 2127 if (E->isPotentiallyEvaluated()) 2128 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2129 StdTypeInfoPtrTy); 2130 2131 QualType OperandTy = E->getExprOperand()->getType(); 2132 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2133 StdTypeInfoPtrTy); 2134 } 2135 2136 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2137 QualType DestTy) { 2138 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2139 if (DestTy->isPointerType()) 2140 return llvm::Constant::getNullValue(DestLTy); 2141 2142 /// C++ [expr.dynamic.cast]p9: 2143 /// A failed cast to reference type throws std::bad_cast 2144 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2145 return nullptr; 2146 2147 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2148 return llvm::UndefValue::get(DestLTy); 2149 } 2150 2151 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2152 const CXXDynamicCastExpr *DCE) { 2153 CGM.EmitExplicitCastExprType(DCE, this); 2154 QualType DestTy = DCE->getTypeAsWritten(); 2155 2156 QualType SrcTy = DCE->getSubExpr()->getType(); 2157 2158 // C++ [expr.dynamic.cast]p7: 2159 // If T is "pointer to cv void," then the result is a pointer to the most 2160 // derived object pointed to by v. 2161 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2162 2163 bool isDynamicCastToVoid; 2164 QualType SrcRecordTy; 2165 QualType DestRecordTy; 2166 if (DestPTy) { 2167 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2168 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2169 DestRecordTy = DestPTy->getPointeeType(); 2170 } else { 2171 isDynamicCastToVoid = false; 2172 SrcRecordTy = SrcTy; 2173 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2174 } 2175 2176 // C++ [class.cdtor]p5: 2177 // If the operand of the dynamic_cast refers to the object under 2178 // construction or destruction and the static type of the operand is not a 2179 // pointer to or object of the constructor or destructor’s own class or one 2180 // of its bases, the dynamic_cast results in undefined behavior. 2181 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2182 SrcRecordTy); 2183 2184 if (DCE->isAlwaysNull()) 2185 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2186 return T; 2187 2188 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2189 2190 // C++ [expr.dynamic.cast]p4: 2191 // If the value of v is a null pointer value in the pointer case, the result 2192 // is the null pointer value of type T. 2193 bool ShouldNullCheckSrcValue = 2194 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2195 SrcRecordTy); 2196 2197 llvm::BasicBlock *CastNull = nullptr; 2198 llvm::BasicBlock *CastNotNull = nullptr; 2199 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2200 2201 if (ShouldNullCheckSrcValue) { 2202 CastNull = createBasicBlock("dynamic_cast.null"); 2203 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2204 2205 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2206 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2207 EmitBlock(CastNotNull); 2208 } 2209 2210 llvm::Value *Value; 2211 if (isDynamicCastToVoid) { 2212 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2213 DestTy); 2214 } else { 2215 assert(DestRecordTy->isRecordType() && 2216 "destination type must be a record type!"); 2217 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2218 DestTy, DestRecordTy, CastEnd); 2219 CastNotNull = Builder.GetInsertBlock(); 2220 } 2221 2222 if (ShouldNullCheckSrcValue) { 2223 EmitBranch(CastEnd); 2224 2225 EmitBlock(CastNull); 2226 EmitBranch(CastEnd); 2227 } 2228 2229 EmitBlock(CastEnd); 2230 2231 if (ShouldNullCheckSrcValue) { 2232 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2233 PHI->addIncoming(Value, CastNotNull); 2234 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2235 2236 Value = PHI; 2237 } 2238 2239 return Value; 2240 } 2241 2242 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2243 RunCleanupsScope Scope(*this); 2244 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2245 2246 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2247 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2248 e = E->capture_init_end(); 2249 i != e; ++i, ++CurField) { 2250 // Emit initialization 2251 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2252 if (CurField->hasCapturedVLAType()) { 2253 auto VAT = CurField->getCapturedVLAType(); 2254 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2255 } else { 2256 EmitInitializerForField(*CurField, LV, *i); 2257 } 2258 } 2259 } 2260