1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
28                                           SourceLocation CallLoc,
29                                           llvm::Value *Callee,
30                                           ReturnValueSlot ReturnValue,
31                                           llvm::Value *This,
32                                           llvm::Value *ImplicitParam,
33                                           QualType ImplicitParamTy,
34                                           CallExpr::const_arg_iterator ArgBeg,
35                                           CallExpr::const_arg_iterator ArgEnd) {
36   assert(MD->isInstance() &&
37          "Trying to emit a member call expr on a static method!");
38 
39   // C++11 [class.mfct.non-static]p2:
40   //   If a non-static member function of a class X is called for an object that
41   //   is not of type X, or of a type derived from X, the behavior is undefined.
42   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
43                                             : TCK_MemberCall,
44                 CallLoc, This, getContext().getRecordType(MD->getParent()));
45 
46   CallArgList Args;
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
61 
62   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
63                   Callee, ReturnValue, Args, MD);
64 }
65 
66 static CXXRecordDecl *getCXXRecord(const Expr *E) {
67   QualType T = E->getType();
68   if (const PointerType *PTy = T->getAs<PointerType>())
69     T = PTy->getPointeeType();
70   const RecordType *Ty = T->castAs<RecordType>();
71   return cast<CXXRecordDecl>(Ty->getDecl());
72 }
73 
74 // Note: This function also emit constructor calls to support a MSVC
75 // extensions allowing explicit constructor function call.
76 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
77                                               ReturnValueSlot ReturnValue) {
78   const Expr *callee = CE->getCallee()->IgnoreParens();
79 
80   if (isa<BinaryOperator>(callee))
81     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
82 
83   const MemberExpr *ME = cast<MemberExpr>(callee);
84   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
85 
86   if (MD->isStatic()) {
87     // The method is static, emit it as we would a regular call.
88     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
89     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
90                     ReturnValue);
91   }
92 
93   // Compute the object pointer.
94   const Expr *Base = ME->getBase();
95   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
96 
97   const CXXMethodDecl *DevirtualizedMethod = nullptr;
98   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
99     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
100     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
101     assert(DevirtualizedMethod);
102     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
103     const Expr *Inner = Base->ignoreParenBaseCasts();
104     if (getCXXRecord(Inner) == DevirtualizedClass)
105       // If the class of the Inner expression is where the dynamic method
106       // is defined, build the this pointer from it.
107       Base = Inner;
108     else if (getCXXRecord(Base) != DevirtualizedClass) {
109       // If the method is defined in a class that is not the best dynamic
110       // one or the one of the full expression, we would have to build
111       // a derived-to-base cast to compute the correct this pointer, but
112       // we don't have support for that yet, so do a virtual call.
113       DevirtualizedMethod = nullptr;
114     }
115     // If the return types are not the same, this might be a case where more
116     // code needs to run to compensate for it. For example, the derived
117     // method might return a type that inherits form from the return
118     // type of MD and has a prefix.
119     // For now we just avoid devirtualizing these covariant cases.
120     if (DevirtualizedMethod &&
121         DevirtualizedMethod->getReturnType().getCanonicalType() !=
122             MD->getReturnType().getCanonicalType())
123       DevirtualizedMethod = nullptr;
124   }
125 
126   llvm::Value *This;
127   if (ME->isArrow())
128     This = EmitScalarExpr(Base);
129   else
130     This = EmitLValue(Base).getAddress();
131 
132 
133   if (MD->isTrivial()) {
134     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
135     if (isa<CXXConstructorDecl>(MD) &&
136         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
137       return RValue::get(nullptr);
138 
139     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
140       // We don't like to generate the trivial copy/move assignment operator
141       // when it isn't necessary; just produce the proper effect here.
142       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
143       EmitAggregateAssign(This, RHS, CE->getType());
144       return RValue::get(This);
145     }
146 
147     if (isa<CXXConstructorDecl>(MD) &&
148         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
149       // Trivial move and copy ctor are the same.
150       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
151       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
152                                      CE->arg_begin(), CE->arg_end());
153       return RValue::get(This);
154     }
155     llvm_unreachable("unknown trivial member function");
156   }
157 
158   // Compute the function type we're calling.
159   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
160   const CGFunctionInfo *FInfo = nullptr;
161   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
162     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
163                                                  Dtor_Complete);
164   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
165     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
166                                                              Ctor_Complete);
167   else
168     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
169 
170   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
171 
172   // C++ [class.virtual]p12:
173   //   Explicit qualification with the scope operator (5.1) suppresses the
174   //   virtual call mechanism.
175   //
176   // We also don't emit a virtual call if the base expression has a record type
177   // because then we know what the type is.
178   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
179   llvm::Value *Callee;
180 
181   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
182     assert(CE->arg_begin() == CE->arg_end() &&
183            "Destructor shouldn't have explicit parameters");
184     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
185     if (UseVirtualCall) {
186       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
187                                                 CE->getExprLoc(), This);
188     } else {
189       if (getLangOpts().AppleKext &&
190           MD->isVirtual() &&
191           ME->hasQualifier())
192         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
193       else if (!DevirtualizedMethod)
194         Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
195       else {
196         const CXXDestructorDecl *DDtor =
197           cast<CXXDestructorDecl>(DevirtualizedMethod);
198         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
199       }
200       EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
201                         /*ImplicitParam=*/nullptr, QualType(), nullptr,nullptr);
202     }
203     return RValue::get(nullptr);
204   }
205 
206   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
207     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
208   } else if (UseVirtualCall) {
209     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
210   } else {
211     if (getLangOpts().AppleKext &&
212         MD->isVirtual() &&
213         ME->hasQualifier())
214       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
215     else if (!DevirtualizedMethod)
216       Callee = CGM.GetAddrOfFunction(MD, Ty);
217     else {
218       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
219     }
220   }
221 
222   if (MD->isVirtual()) {
223     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
224         *this, MD, This, UseVirtualCall);
225   }
226 
227   return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
228                            /*ImplicitParam=*/nullptr, QualType(),
229                            CE->arg_begin(), CE->arg_end());
230 }
231 
232 RValue
233 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
234                                               ReturnValueSlot ReturnValue) {
235   const BinaryOperator *BO =
236       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
237   const Expr *BaseExpr = BO->getLHS();
238   const Expr *MemFnExpr = BO->getRHS();
239 
240   const MemberPointerType *MPT =
241     MemFnExpr->getType()->castAs<MemberPointerType>();
242 
243   const FunctionProtoType *FPT =
244     MPT->getPointeeType()->castAs<FunctionProtoType>();
245   const CXXRecordDecl *RD =
246     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
247 
248   // Get the member function pointer.
249   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
250 
251   // Emit the 'this' pointer.
252   llvm::Value *This;
253 
254   if (BO->getOpcode() == BO_PtrMemI)
255     This = EmitScalarExpr(BaseExpr);
256   else
257     This = EmitLValue(BaseExpr).getAddress();
258 
259   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
260                 QualType(MPT->getClass(), 0));
261 
262   // Ask the ABI to load the callee.  Note that This is modified.
263   llvm::Value *Callee =
264     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
265 
266   CallArgList Args;
267 
268   QualType ThisType =
269     getContext().getPointerType(getContext().getTagDeclType(RD));
270 
271   // Push the this ptr.
272   Args.add(RValue::get(This), ThisType);
273 
274   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
275 
276   // And the rest of the call args
277   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
278   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
279                   Callee, ReturnValue, Args);
280 }
281 
282 RValue
283 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
284                                                const CXXMethodDecl *MD,
285                                                ReturnValueSlot ReturnValue) {
286   assert(MD->isInstance() &&
287          "Trying to emit a member call expr on a static method!");
288   LValue LV = EmitLValue(E->getArg(0));
289   llvm::Value *This = LV.getAddress();
290 
291   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
292       MD->isTrivial()) {
293     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
294     QualType Ty = E->getType();
295     EmitAggregateAssign(This, Src, Ty);
296     return RValue::get(This);
297   }
298 
299   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
300   return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
301                            /*ImplicitParam=*/nullptr, QualType(),
302                            E->arg_begin() + 1, E->arg_end());
303 }
304 
305 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
306                                                ReturnValueSlot ReturnValue) {
307   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
308 }
309 
310 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
311                                             llvm::Value *DestPtr,
312                                             const CXXRecordDecl *Base) {
313   if (Base->isEmpty())
314     return;
315 
316   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
317 
318   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
319   CharUnits Size = Layout.getNonVirtualSize();
320   CharUnits Align = Layout.getNonVirtualAlignment();
321 
322   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
323 
324   // If the type contains a pointer to data member we can't memset it to zero.
325   // Instead, create a null constant and copy it to the destination.
326   // TODO: there are other patterns besides zero that we can usefully memset,
327   // like -1, which happens to be the pattern used by member-pointers.
328   // TODO: isZeroInitializable can be over-conservative in the case where a
329   // virtual base contains a member pointer.
330   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
331     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
332 
333     llvm::GlobalVariable *NullVariable =
334       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
335                                /*isConstant=*/true,
336                                llvm::GlobalVariable::PrivateLinkage,
337                                NullConstant, Twine());
338     NullVariable->setAlignment(Align.getQuantity());
339     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
340 
341     // Get and call the appropriate llvm.memcpy overload.
342     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
343     return;
344   }
345 
346   // Otherwise, just memset the whole thing to zero.  This is legal
347   // because in LLVM, all default initializers (other than the ones we just
348   // handled above) are guaranteed to have a bit pattern of all zeros.
349   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
350                            Align.getQuantity());
351 }
352 
353 void
354 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
355                                       AggValueSlot Dest) {
356   assert(!Dest.isIgnored() && "Must have a destination!");
357   const CXXConstructorDecl *CD = E->getConstructor();
358 
359   // If we require zero initialization before (or instead of) calling the
360   // constructor, as can be the case with a non-user-provided default
361   // constructor, emit the zero initialization now, unless destination is
362   // already zeroed.
363   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
364     switch (E->getConstructionKind()) {
365     case CXXConstructExpr::CK_Delegating:
366     case CXXConstructExpr::CK_Complete:
367       EmitNullInitialization(Dest.getAddr(), E->getType());
368       break;
369     case CXXConstructExpr::CK_VirtualBase:
370     case CXXConstructExpr::CK_NonVirtualBase:
371       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
372       break;
373     }
374   }
375 
376   // If this is a call to a trivial default constructor, do nothing.
377   if (CD->isTrivial() && CD->isDefaultConstructor())
378     return;
379 
380   // Elide the constructor if we're constructing from a temporary.
381   // The temporary check is required because Sema sets this on NRVO
382   // returns.
383   if (getLangOpts().ElideConstructors && E->isElidable()) {
384     assert(getContext().hasSameUnqualifiedType(E->getType(),
385                                                E->getArg(0)->getType()));
386     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
387       EmitAggExpr(E->getArg(0), Dest);
388       return;
389     }
390   }
391 
392   if (const ConstantArrayType *arrayType
393         = getContext().getAsConstantArrayType(E->getType())) {
394     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
395   } else {
396     CXXCtorType Type = Ctor_Complete;
397     bool ForVirtualBase = false;
398     bool Delegating = false;
399 
400     switch (E->getConstructionKind()) {
401      case CXXConstructExpr::CK_Delegating:
402       // We should be emitting a constructor; GlobalDecl will assert this
403       Type = CurGD.getCtorType();
404       Delegating = true;
405       break;
406 
407      case CXXConstructExpr::CK_Complete:
408       Type = Ctor_Complete;
409       break;
410 
411      case CXXConstructExpr::CK_VirtualBase:
412       ForVirtualBase = true;
413       // fall-through
414 
415      case CXXConstructExpr::CK_NonVirtualBase:
416       Type = Ctor_Base;
417     }
418 
419     // Call the constructor.
420     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
421                            E);
422   }
423 }
424 
425 void
426 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
427                                             llvm::Value *Src,
428                                             const Expr *Exp) {
429   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
430     Exp = E->getSubExpr();
431   assert(isa<CXXConstructExpr>(Exp) &&
432          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
433   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
434   const CXXConstructorDecl *CD = E->getConstructor();
435   RunCleanupsScope Scope(*this);
436 
437   // If we require zero initialization before (or instead of) calling the
438   // constructor, as can be the case with a non-user-provided default
439   // constructor, emit the zero initialization now.
440   // FIXME. Do I still need this for a copy ctor synthesis?
441   if (E->requiresZeroInitialization())
442     EmitNullInitialization(Dest, E->getType());
443 
444   assert(!getContext().getAsConstantArrayType(E->getType())
445          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
446   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end());
447 }
448 
449 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
450                                         const CXXNewExpr *E) {
451   if (!E->isArray())
452     return CharUnits::Zero();
453 
454   // No cookie is required if the operator new[] being used is the
455   // reserved placement operator new[].
456   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
457     return CharUnits::Zero();
458 
459   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
460 }
461 
462 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
463                                         const CXXNewExpr *e,
464                                         unsigned minElements,
465                                         llvm::Value *&numElements,
466                                         llvm::Value *&sizeWithoutCookie) {
467   QualType type = e->getAllocatedType();
468 
469   if (!e->isArray()) {
470     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
471     sizeWithoutCookie
472       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
473     return sizeWithoutCookie;
474   }
475 
476   // The width of size_t.
477   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
478 
479   // Figure out the cookie size.
480   llvm::APInt cookieSize(sizeWidth,
481                          CalculateCookiePadding(CGF, e).getQuantity());
482 
483   // Emit the array size expression.
484   // We multiply the size of all dimensions for NumElements.
485   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
486   numElements = CGF.EmitScalarExpr(e->getArraySize());
487   assert(isa<llvm::IntegerType>(numElements->getType()));
488 
489   // The number of elements can be have an arbitrary integer type;
490   // essentially, we need to multiply it by a constant factor, add a
491   // cookie size, and verify that the result is representable as a
492   // size_t.  That's just a gloss, though, and it's wrong in one
493   // important way: if the count is negative, it's an error even if
494   // the cookie size would bring the total size >= 0.
495   bool isSigned
496     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
497   llvm::IntegerType *numElementsType
498     = cast<llvm::IntegerType>(numElements->getType());
499   unsigned numElementsWidth = numElementsType->getBitWidth();
500 
501   // Compute the constant factor.
502   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
503   while (const ConstantArrayType *CAT
504              = CGF.getContext().getAsConstantArrayType(type)) {
505     type = CAT->getElementType();
506     arraySizeMultiplier *= CAT->getSize();
507   }
508 
509   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
510   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
511   typeSizeMultiplier *= arraySizeMultiplier;
512 
513   // This will be a size_t.
514   llvm::Value *size;
515 
516   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
517   // Don't bloat the -O0 code.
518   if (llvm::ConstantInt *numElementsC =
519         dyn_cast<llvm::ConstantInt>(numElements)) {
520     const llvm::APInt &count = numElementsC->getValue();
521 
522     bool hasAnyOverflow = false;
523 
524     // If 'count' was a negative number, it's an overflow.
525     if (isSigned && count.isNegative())
526       hasAnyOverflow = true;
527 
528     // We want to do all this arithmetic in size_t.  If numElements is
529     // wider than that, check whether it's already too big, and if so,
530     // overflow.
531     else if (numElementsWidth > sizeWidth &&
532              numElementsWidth - sizeWidth > count.countLeadingZeros())
533       hasAnyOverflow = true;
534 
535     // Okay, compute a count at the right width.
536     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
537 
538     // If there is a brace-initializer, we cannot allocate fewer elements than
539     // there are initializers. If we do, that's treated like an overflow.
540     if (adjustedCount.ult(minElements))
541       hasAnyOverflow = true;
542 
543     // Scale numElements by that.  This might overflow, but we don't
544     // care because it only overflows if allocationSize does, too, and
545     // if that overflows then we shouldn't use this.
546     numElements = llvm::ConstantInt::get(CGF.SizeTy,
547                                          adjustedCount * arraySizeMultiplier);
548 
549     // Compute the size before cookie, and track whether it overflowed.
550     bool overflow;
551     llvm::APInt allocationSize
552       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
553     hasAnyOverflow |= overflow;
554 
555     // Add in the cookie, and check whether it's overflowed.
556     if (cookieSize != 0) {
557       // Save the current size without a cookie.  This shouldn't be
558       // used if there was overflow.
559       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
560 
561       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
562       hasAnyOverflow |= overflow;
563     }
564 
565     // On overflow, produce a -1 so operator new will fail.
566     if (hasAnyOverflow) {
567       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
568     } else {
569       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
570     }
571 
572   // Otherwise, we might need to use the overflow intrinsics.
573   } else {
574     // There are up to five conditions we need to test for:
575     // 1) if isSigned, we need to check whether numElements is negative;
576     // 2) if numElementsWidth > sizeWidth, we need to check whether
577     //   numElements is larger than something representable in size_t;
578     // 3) if minElements > 0, we need to check whether numElements is smaller
579     //    than that.
580     // 4) we need to compute
581     //      sizeWithoutCookie := numElements * typeSizeMultiplier
582     //    and check whether it overflows; and
583     // 5) if we need a cookie, we need to compute
584     //      size := sizeWithoutCookie + cookieSize
585     //    and check whether it overflows.
586 
587     llvm::Value *hasOverflow = nullptr;
588 
589     // If numElementsWidth > sizeWidth, then one way or another, we're
590     // going to have to do a comparison for (2), and this happens to
591     // take care of (1), too.
592     if (numElementsWidth > sizeWidth) {
593       llvm::APInt threshold(numElementsWidth, 1);
594       threshold <<= sizeWidth;
595 
596       llvm::Value *thresholdV
597         = llvm::ConstantInt::get(numElementsType, threshold);
598 
599       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
600       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
601 
602     // Otherwise, if we're signed, we want to sext up to size_t.
603     } else if (isSigned) {
604       if (numElementsWidth < sizeWidth)
605         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
606 
607       // If there's a non-1 type size multiplier, then we can do the
608       // signedness check at the same time as we do the multiply
609       // because a negative number times anything will cause an
610       // unsigned overflow.  Otherwise, we have to do it here. But at least
611       // in this case, we can subsume the >= minElements check.
612       if (typeSizeMultiplier == 1)
613         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
614                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
615 
616     // Otherwise, zext up to size_t if necessary.
617     } else if (numElementsWidth < sizeWidth) {
618       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
619     }
620 
621     assert(numElements->getType() == CGF.SizeTy);
622 
623     if (minElements) {
624       // Don't allow allocation of fewer elements than we have initializers.
625       if (!hasOverflow) {
626         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
627                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
628       } else if (numElementsWidth > sizeWidth) {
629         // The other existing overflow subsumes this check.
630         // We do an unsigned comparison, since any signed value < -1 is
631         // taken care of either above or below.
632         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
633                           CGF.Builder.CreateICmpULT(numElements,
634                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
635       }
636     }
637 
638     size = numElements;
639 
640     // Multiply by the type size if necessary.  This multiplier
641     // includes all the factors for nested arrays.
642     //
643     // This step also causes numElements to be scaled up by the
644     // nested-array factor if necessary.  Overflow on this computation
645     // can be ignored because the result shouldn't be used if
646     // allocation fails.
647     if (typeSizeMultiplier != 1) {
648       llvm::Value *umul_with_overflow
649         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
650 
651       llvm::Value *tsmV =
652         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
653       llvm::Value *result =
654         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
655 
656       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
657       if (hasOverflow)
658         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
659       else
660         hasOverflow = overflowed;
661 
662       size = CGF.Builder.CreateExtractValue(result, 0);
663 
664       // Also scale up numElements by the array size multiplier.
665       if (arraySizeMultiplier != 1) {
666         // If the base element type size is 1, then we can re-use the
667         // multiply we just did.
668         if (typeSize.isOne()) {
669           assert(arraySizeMultiplier == typeSizeMultiplier);
670           numElements = size;
671 
672         // Otherwise we need a separate multiply.
673         } else {
674           llvm::Value *asmV =
675             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
676           numElements = CGF.Builder.CreateMul(numElements, asmV);
677         }
678       }
679     } else {
680       // numElements doesn't need to be scaled.
681       assert(arraySizeMultiplier == 1);
682     }
683 
684     // Add in the cookie size if necessary.
685     if (cookieSize != 0) {
686       sizeWithoutCookie = size;
687 
688       llvm::Value *uadd_with_overflow
689         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
690 
691       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
692       llvm::Value *result =
693         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
694 
695       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
696       if (hasOverflow)
697         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
698       else
699         hasOverflow = overflowed;
700 
701       size = CGF.Builder.CreateExtractValue(result, 0);
702     }
703 
704     // If we had any possibility of dynamic overflow, make a select to
705     // overwrite 'size' with an all-ones value, which should cause
706     // operator new to throw.
707     if (hasOverflow)
708       size = CGF.Builder.CreateSelect(hasOverflow,
709                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
710                                       size);
711   }
712 
713   if (cookieSize == 0)
714     sizeWithoutCookie = size;
715   else
716     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
717 
718   return size;
719 }
720 
721 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
722                                     QualType AllocType, llvm::Value *NewPtr) {
723   // FIXME: Refactor with EmitExprAsInit.
724   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
725   switch (CGF.getEvaluationKind(AllocType)) {
726   case TEK_Scalar:
727     CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType,
728                                                          Alignment),
729                        false);
730     return;
731   case TEK_Complex:
732     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
733                                                            Alignment),
734                                   /*isInit*/ true);
735     return;
736   case TEK_Aggregate: {
737     AggValueSlot Slot
738       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
739                               AggValueSlot::IsDestructed,
740                               AggValueSlot::DoesNotNeedGCBarriers,
741                               AggValueSlot::IsNotAliased);
742     CGF.EmitAggExpr(Init, Slot);
743     return;
744   }
745   }
746   llvm_unreachable("bad evaluation kind");
747 }
748 
749 void
750 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
751                                          QualType ElementType,
752                                          llvm::Value *BeginPtr,
753                                          llvm::Value *NumElements,
754                                          llvm::Value *AllocSizeWithoutCookie) {
755   // If we have a type with trivial initialization and no initializer,
756   // there's nothing to do.
757   if (!E->hasInitializer())
758     return;
759 
760   llvm::Value *CurPtr = BeginPtr;
761 
762   unsigned InitListElements = 0;
763 
764   const Expr *Init = E->getInitializer();
765   llvm::AllocaInst *EndOfInit = nullptr;
766   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
767   EHScopeStack::stable_iterator Cleanup;
768   llvm::Instruction *CleanupDominator = nullptr;
769 
770   // If the initializer is an initializer list, first do the explicit elements.
771   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
772     InitListElements = ILE->getNumInits();
773 
774     // If this is a multi-dimensional array new, we will initialize multiple
775     // elements with each init list element.
776     QualType AllocType = E->getAllocatedType();
777     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
778             AllocType->getAsArrayTypeUnsafe())) {
779       unsigned AS = CurPtr->getType()->getPointerAddressSpace();
780       llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
781       CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
782       InitListElements *= getContext().getConstantArrayElementCount(CAT);
783     }
784 
785     // Enter a partial-destruction Cleanup if necessary.
786     if (needsEHCleanup(DtorKind)) {
787       // In principle we could tell the Cleanup where we are more
788       // directly, but the control flow can get so varied here that it
789       // would actually be quite complex.  Therefore we go through an
790       // alloca.
791       EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
792       CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
793       pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
794                                        getDestroyer(DtorKind));
795       Cleanup = EHStack.stable_begin();
796     }
797 
798     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
799       // Tell the cleanup that it needs to destroy up to this
800       // element.  TODO: some of these stores can be trivially
801       // observed to be unnecessary.
802       if (EndOfInit)
803         Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
804                             EndOfInit);
805       // FIXME: If the last initializer is an incomplete initializer list for
806       // an array, and we have an array filler, we can fold together the two
807       // initialization loops.
808       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
809                               ILE->getInit(i)->getType(), CurPtr);
810       CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next");
811     }
812 
813     // The remaining elements are filled with the array filler expression.
814     Init = ILE->getArrayFiller();
815 
816     // Extract the initializer for the individual array elements by pulling
817     // out the array filler from all the nested initializer lists. This avoids
818     // generating a nested loop for the initialization.
819     while (Init && Init->getType()->isConstantArrayType()) {
820       auto *SubILE = dyn_cast<InitListExpr>(Init);
821       if (!SubILE)
822         break;
823       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
824       Init = SubILE->getArrayFiller();
825     }
826 
827     // Switch back to initializing one base element at a time.
828     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
829   }
830 
831   // Attempt to perform zero-initialization using memset.
832   auto TryMemsetInitialization = [&]() -> bool {
833     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
834     // we can initialize with a memset to -1.
835     if (!CGM.getTypes().isZeroInitializable(ElementType))
836       return false;
837 
838     // Optimization: since zero initialization will just set the memory
839     // to all zeroes, generate a single memset to do it in one shot.
840 
841     // Subtract out the size of any elements we've already initialized.
842     auto *RemainingSize = AllocSizeWithoutCookie;
843     if (InitListElements) {
844       // We know this can't overflow; we check this when doing the allocation.
845       auto *InitializedSize = llvm::ConstantInt::get(
846           RemainingSize->getType(),
847           getContext().getTypeSizeInChars(ElementType).getQuantity() *
848               InitListElements);
849       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
850     }
851 
852     // Create the memset.
853     CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
854     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
855                          Alignment.getQuantity(), false);
856     return true;
857   };
858 
859   // If all elements have already been initialized, skip any further
860   // initialization.
861   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
862   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
863     // If there was a Cleanup, deactivate it.
864     if (CleanupDominator)
865       DeactivateCleanupBlock(Cleanup, CleanupDominator);
866     return;
867   }
868 
869   assert(Init && "have trailing elements to initialize but no initializer");
870 
871   // If this is a constructor call, try to optimize it out, and failing that
872   // emit a single loop to initialize all remaining elements.
873   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
874     CXXConstructorDecl *Ctor = CCE->getConstructor();
875     if (Ctor->isTrivial()) {
876       // If new expression did not specify value-initialization, then there
877       // is no initialization.
878       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
879         return;
880 
881       if (TryMemsetInitialization())
882         return;
883     }
884 
885     // Store the new Cleanup position for irregular Cleanups.
886     //
887     // FIXME: Share this cleanup with the constructor call emission rather than
888     // having it create a cleanup of its own.
889     if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
890 
891     // Emit a constructor call loop to initialize the remaining elements.
892     if (InitListElements)
893       NumElements = Builder.CreateSub(
894           NumElements,
895           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
896     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
897                                CCE->requiresZeroInitialization());
898     return;
899   }
900 
901   // If this is value-initialization, we can usually use memset.
902   ImplicitValueInitExpr IVIE(ElementType);
903   if (isa<ImplicitValueInitExpr>(Init)) {
904     if (TryMemsetInitialization())
905       return;
906 
907     // Switch to an ImplicitValueInitExpr for the element type. This handles
908     // only one case: multidimensional array new of pointers to members. In
909     // all other cases, we already have an initializer for the array element.
910     Init = &IVIE;
911   }
912 
913   // At this point we should have found an initializer for the individual
914   // elements of the array.
915   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
916          "got wrong type of element to initialize");
917 
918   // If we have an empty initializer list, we can usually use memset.
919   if (auto *ILE = dyn_cast<InitListExpr>(Init))
920     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
921       return;
922 
923   // Create the loop blocks.
924   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
925   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
926   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
927 
928   // Find the end of the array, hoisted out of the loop.
929   llvm::Value *EndPtr =
930     Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
931 
932   // If the number of elements isn't constant, we have to now check if there is
933   // anything left to initialize.
934   if (!ConstNum) {
935     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
936                                                 "array.isempty");
937     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
938   }
939 
940   // Enter the loop.
941   EmitBlock(LoopBB);
942 
943   // Set up the current-element phi.
944   llvm::PHINode *CurPtrPhi =
945     Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
946   CurPtrPhi->addIncoming(CurPtr, EntryBB);
947   CurPtr = CurPtrPhi;
948 
949   // Store the new Cleanup position for irregular Cleanups.
950   if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
951 
952   // Enter a partial-destruction Cleanup if necessary.
953   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
954     pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
955                                    getDestroyer(DtorKind));
956     Cleanup = EHStack.stable_begin();
957     CleanupDominator = Builder.CreateUnreachable();
958   }
959 
960   // Emit the initializer into this element.
961   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
962 
963   // Leave the Cleanup if we entered one.
964   if (CleanupDominator) {
965     DeactivateCleanupBlock(Cleanup, CleanupDominator);
966     CleanupDominator->eraseFromParent();
967   }
968 
969   // Advance to the next element by adjusting the pointer type as necessary.
970   llvm::Value *NextPtr =
971       Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next");
972 
973   // Check whether we've gotten to the end of the array and, if so,
974   // exit the loop.
975   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
976   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
977   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
978 
979   EmitBlock(ContBB);
980 }
981 
982 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
983                                QualType ElementType,
984                                llvm::Value *NewPtr,
985                                llvm::Value *NumElements,
986                                llvm::Value *AllocSizeWithoutCookie) {
987   if (E->isArray())
988     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements,
989                                 AllocSizeWithoutCookie);
990   else if (const Expr *Init = E->getInitializer())
991     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
992 }
993 
994 /// Emit a call to an operator new or operator delete function, as implicitly
995 /// created by new-expressions and delete-expressions.
996 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
997                                 const FunctionDecl *Callee,
998                                 const FunctionProtoType *CalleeType,
999                                 const CallArgList &Args) {
1000   llvm::Instruction *CallOrInvoke;
1001   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1002   RValue RV =
1003       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
1004                    CalleeAddr, ReturnValueSlot(), Args,
1005                    Callee, &CallOrInvoke);
1006 
1007   /// C++1y [expr.new]p10:
1008   ///   [In a new-expression,] an implementation is allowed to omit a call
1009   ///   to a replaceable global allocation function.
1010   ///
1011   /// We model such elidable calls with the 'builtin' attribute.
1012   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1013   if (Callee->isReplaceableGlobalAllocationFunction() &&
1014       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1015     // FIXME: Add addAttribute to CallSite.
1016     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1017       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1018                        llvm::Attribute::Builtin);
1019     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1020       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1021                        llvm::Attribute::Builtin);
1022     else
1023       llvm_unreachable("unexpected kind of call instruction");
1024   }
1025 
1026   return RV;
1027 }
1028 
1029 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1030                                                  const Expr *Arg,
1031                                                  bool IsDelete) {
1032   CallArgList Args;
1033   const Stmt *ArgS = Arg;
1034   EmitCallArgs(Args, *Type->param_type_begin(),
1035                ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1036   // Find the allocation or deallocation function that we're calling.
1037   ASTContext &Ctx = getContext();
1038   DeclarationName Name = Ctx.DeclarationNames
1039       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1040   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1041     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1042       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1043         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1044   llvm_unreachable("predeclared global operator new/delete is missing");
1045 }
1046 
1047 namespace {
1048   /// A cleanup to call the given 'operator delete' function upon
1049   /// abnormal exit from a new expression.
1050   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1051     size_t NumPlacementArgs;
1052     const FunctionDecl *OperatorDelete;
1053     llvm::Value *Ptr;
1054     llvm::Value *AllocSize;
1055 
1056     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1057 
1058   public:
1059     static size_t getExtraSize(size_t NumPlacementArgs) {
1060       return NumPlacementArgs * sizeof(RValue);
1061     }
1062 
1063     CallDeleteDuringNew(size_t NumPlacementArgs,
1064                         const FunctionDecl *OperatorDelete,
1065                         llvm::Value *Ptr,
1066                         llvm::Value *AllocSize)
1067       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1068         Ptr(Ptr), AllocSize(AllocSize) {}
1069 
1070     void setPlacementArg(unsigned I, RValue Arg) {
1071       assert(I < NumPlacementArgs && "index out of range");
1072       getPlacementArgs()[I] = Arg;
1073     }
1074 
1075     void Emit(CodeGenFunction &CGF, Flags flags) override {
1076       const FunctionProtoType *FPT
1077         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1078       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1079              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1080 
1081       CallArgList DeleteArgs;
1082 
1083       // The first argument is always a void*.
1084       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1085       DeleteArgs.add(RValue::get(Ptr), *AI++);
1086 
1087       // A member 'operator delete' can take an extra 'size_t' argument.
1088       if (FPT->getNumParams() == NumPlacementArgs + 2)
1089         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1090 
1091       // Pass the rest of the arguments, which must match exactly.
1092       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1093         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1094 
1095       // Call 'operator delete'.
1096       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1097     }
1098   };
1099 
1100   /// A cleanup to call the given 'operator delete' function upon
1101   /// abnormal exit from a new expression when the new expression is
1102   /// conditional.
1103   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1104     size_t NumPlacementArgs;
1105     const FunctionDecl *OperatorDelete;
1106     DominatingValue<RValue>::saved_type Ptr;
1107     DominatingValue<RValue>::saved_type AllocSize;
1108 
1109     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1110       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1111     }
1112 
1113   public:
1114     static size_t getExtraSize(size_t NumPlacementArgs) {
1115       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1116     }
1117 
1118     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1119                                    const FunctionDecl *OperatorDelete,
1120                                    DominatingValue<RValue>::saved_type Ptr,
1121                               DominatingValue<RValue>::saved_type AllocSize)
1122       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1123         Ptr(Ptr), AllocSize(AllocSize) {}
1124 
1125     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1126       assert(I < NumPlacementArgs && "index out of range");
1127       getPlacementArgs()[I] = Arg;
1128     }
1129 
1130     void Emit(CodeGenFunction &CGF, Flags flags) override {
1131       const FunctionProtoType *FPT
1132         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1133       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1134              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1135 
1136       CallArgList DeleteArgs;
1137 
1138       // The first argument is always a void*.
1139       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1140       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1141 
1142       // A member 'operator delete' can take an extra 'size_t' argument.
1143       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1144         RValue RV = AllocSize.restore(CGF);
1145         DeleteArgs.add(RV, *AI++);
1146       }
1147 
1148       // Pass the rest of the arguments, which must match exactly.
1149       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1150         RValue RV = getPlacementArgs()[I].restore(CGF);
1151         DeleteArgs.add(RV, *AI++);
1152       }
1153 
1154       // Call 'operator delete'.
1155       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1156     }
1157   };
1158 }
1159 
1160 /// Enter a cleanup to call 'operator delete' if the initializer in a
1161 /// new-expression throws.
1162 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1163                                   const CXXNewExpr *E,
1164                                   llvm::Value *NewPtr,
1165                                   llvm::Value *AllocSize,
1166                                   const CallArgList &NewArgs) {
1167   // If we're not inside a conditional branch, then the cleanup will
1168   // dominate and we can do the easier (and more efficient) thing.
1169   if (!CGF.isInConditionalBranch()) {
1170     CallDeleteDuringNew *Cleanup = CGF.EHStack
1171       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1172                                                  E->getNumPlacementArgs(),
1173                                                  E->getOperatorDelete(),
1174                                                  NewPtr, AllocSize);
1175     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1176       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1177 
1178     return;
1179   }
1180 
1181   // Otherwise, we need to save all this stuff.
1182   DominatingValue<RValue>::saved_type SavedNewPtr =
1183     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1184   DominatingValue<RValue>::saved_type SavedAllocSize =
1185     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1186 
1187   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1188     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1189                                                  E->getNumPlacementArgs(),
1190                                                  E->getOperatorDelete(),
1191                                                  SavedNewPtr,
1192                                                  SavedAllocSize);
1193   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1194     Cleanup->setPlacementArg(I,
1195                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1196 
1197   CGF.initFullExprCleanup();
1198 }
1199 
1200 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1201   // The element type being allocated.
1202   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1203 
1204   // 1. Build a call to the allocation function.
1205   FunctionDecl *allocator = E->getOperatorNew();
1206   const FunctionProtoType *allocatorType =
1207     allocator->getType()->castAs<FunctionProtoType>();
1208 
1209   CallArgList allocatorArgs;
1210 
1211   // The allocation size is the first argument.
1212   QualType sizeType = getContext().getSizeType();
1213 
1214   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1215   unsigned minElements = 0;
1216   if (E->isArray() && E->hasInitializer()) {
1217     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1218       minElements = ILE->getNumInits();
1219   }
1220 
1221   llvm::Value *numElements = nullptr;
1222   llvm::Value *allocSizeWithoutCookie = nullptr;
1223   llvm::Value *allocSize =
1224     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1225                         allocSizeWithoutCookie);
1226 
1227   allocatorArgs.add(RValue::get(allocSize), sizeType);
1228 
1229   // We start at 1 here because the first argument (the allocation size)
1230   // has already been emitted.
1231   EmitCallArgs(allocatorArgs, allocatorType->isVariadic(),
1232                allocatorType->param_type_begin() + 1,
1233                allocatorType->param_type_end(), E->placement_arg_begin(),
1234                E->placement_arg_end());
1235 
1236   // Emit the allocation call.  If the allocator is a global placement
1237   // operator, just "inline" it directly.
1238   RValue RV;
1239   if (allocator->isReservedGlobalPlacementOperator()) {
1240     assert(allocatorArgs.size() == 2);
1241     RV = allocatorArgs[1].RV;
1242     // TODO: kill any unnecessary computations done for the size
1243     // argument.
1244   } else {
1245     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1246   }
1247 
1248   // Emit a null check on the allocation result if the allocation
1249   // function is allowed to return null (because it has a non-throwing
1250   // exception spec; for this part, we inline
1251   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1252   // interesting initializer.
1253   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1254     (!allocType.isPODType(getContext()) || E->hasInitializer());
1255 
1256   llvm::BasicBlock *nullCheckBB = nullptr;
1257   llvm::BasicBlock *contBB = nullptr;
1258 
1259   llvm::Value *allocation = RV.getScalarVal();
1260   unsigned AS = allocation->getType()->getPointerAddressSpace();
1261 
1262   // The null-check means that the initializer is conditionally
1263   // evaluated.
1264   ConditionalEvaluation conditional(*this);
1265 
1266   if (nullCheck) {
1267     conditional.begin(*this);
1268 
1269     nullCheckBB = Builder.GetInsertBlock();
1270     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1271     contBB = createBasicBlock("new.cont");
1272 
1273     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1274     Builder.CreateCondBr(isNull, contBB, notNullBB);
1275     EmitBlock(notNullBB);
1276   }
1277 
1278   // If there's an operator delete, enter a cleanup to call it if an
1279   // exception is thrown.
1280   EHScopeStack::stable_iterator operatorDeleteCleanup;
1281   llvm::Instruction *cleanupDominator = nullptr;
1282   if (E->getOperatorDelete() &&
1283       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1284     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1285     operatorDeleteCleanup = EHStack.stable_begin();
1286     cleanupDominator = Builder.CreateUnreachable();
1287   }
1288 
1289   assert((allocSize == allocSizeWithoutCookie) ==
1290          CalculateCookiePadding(*this, E).isZero());
1291   if (allocSize != allocSizeWithoutCookie) {
1292     assert(E->isArray());
1293     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1294                                                        numElements,
1295                                                        E, allocType);
1296   }
1297 
1298   llvm::Type *elementPtrTy
1299     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1300   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1301 
1302   EmitNewInitializer(*this, E, allocType, result, numElements,
1303                      allocSizeWithoutCookie);
1304   if (E->isArray()) {
1305     // NewPtr is a pointer to the base element type.  If we're
1306     // allocating an array of arrays, we'll need to cast back to the
1307     // array pointer type.
1308     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1309     if (result->getType() != resultType)
1310       result = Builder.CreateBitCast(result, resultType);
1311   }
1312 
1313   // Deactivate the 'operator delete' cleanup if we finished
1314   // initialization.
1315   if (operatorDeleteCleanup.isValid()) {
1316     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1317     cleanupDominator->eraseFromParent();
1318   }
1319 
1320   if (nullCheck) {
1321     conditional.end(*this);
1322 
1323     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1324     EmitBlock(contBB);
1325 
1326     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1327     PHI->addIncoming(result, notNullBB);
1328     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1329                      nullCheckBB);
1330 
1331     result = PHI;
1332   }
1333 
1334   return result;
1335 }
1336 
1337 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1338                                      llvm::Value *Ptr,
1339                                      QualType DeleteTy) {
1340   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1341 
1342   const FunctionProtoType *DeleteFTy =
1343     DeleteFD->getType()->getAs<FunctionProtoType>();
1344 
1345   CallArgList DeleteArgs;
1346 
1347   // Check if we need to pass the size to the delete operator.
1348   llvm::Value *Size = nullptr;
1349   QualType SizeTy;
1350   if (DeleteFTy->getNumParams() == 2) {
1351     SizeTy = DeleteFTy->getParamType(1);
1352     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1353     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1354                                   DeleteTypeSize.getQuantity());
1355   }
1356 
1357   QualType ArgTy = DeleteFTy->getParamType(0);
1358   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1359   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1360 
1361   if (Size)
1362     DeleteArgs.add(RValue::get(Size), SizeTy);
1363 
1364   // Emit the call to delete.
1365   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1366 }
1367 
1368 namespace {
1369   /// Calls the given 'operator delete' on a single object.
1370   struct CallObjectDelete : EHScopeStack::Cleanup {
1371     llvm::Value *Ptr;
1372     const FunctionDecl *OperatorDelete;
1373     QualType ElementType;
1374 
1375     CallObjectDelete(llvm::Value *Ptr,
1376                      const FunctionDecl *OperatorDelete,
1377                      QualType ElementType)
1378       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1379 
1380     void Emit(CodeGenFunction &CGF, Flags flags) override {
1381       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1382     }
1383   };
1384 }
1385 
1386 /// Emit the code for deleting a single object.
1387 static void EmitObjectDelete(CodeGenFunction &CGF,
1388                              const FunctionDecl *OperatorDelete,
1389                              llvm::Value *Ptr,
1390                              QualType ElementType,
1391                              bool UseGlobalDelete) {
1392   // Find the destructor for the type, if applicable.  If the
1393   // destructor is virtual, we'll just emit the vcall and return.
1394   const CXXDestructorDecl *Dtor = nullptr;
1395   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1396     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1397     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1398       Dtor = RD->getDestructor();
1399 
1400       if (Dtor->isVirtual()) {
1401         if (UseGlobalDelete) {
1402           // If we're supposed to call the global delete, make sure we do so
1403           // even if the destructor throws.
1404 
1405           // Derive the complete-object pointer, which is what we need
1406           // to pass to the deallocation function.
1407           llvm::Value *completePtr =
1408             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1409 
1410           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1411                                                     completePtr, OperatorDelete,
1412                                                     ElementType);
1413         }
1414 
1415         // FIXME: Provide a source location here.
1416         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1417         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
1418                                                       SourceLocation(), Ptr);
1419 
1420         if (UseGlobalDelete) {
1421           CGF.PopCleanupBlock();
1422         }
1423 
1424         return;
1425       }
1426     }
1427   }
1428 
1429   // Make sure that we call delete even if the dtor throws.
1430   // This doesn't have to a conditional cleanup because we're going
1431   // to pop it off in a second.
1432   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1433                                             Ptr, OperatorDelete, ElementType);
1434 
1435   if (Dtor)
1436     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1437                               /*ForVirtualBase=*/false,
1438                               /*Delegating=*/false,
1439                               Ptr);
1440   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1441            ElementType->isObjCLifetimeType()) {
1442     switch (ElementType.getObjCLifetime()) {
1443     case Qualifiers::OCL_None:
1444     case Qualifiers::OCL_ExplicitNone:
1445     case Qualifiers::OCL_Autoreleasing:
1446       break;
1447 
1448     case Qualifiers::OCL_Strong: {
1449       // Load the pointer value.
1450       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1451                                              ElementType.isVolatileQualified());
1452 
1453       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1454       break;
1455     }
1456 
1457     case Qualifiers::OCL_Weak:
1458       CGF.EmitARCDestroyWeak(Ptr);
1459       break;
1460     }
1461   }
1462 
1463   CGF.PopCleanupBlock();
1464 }
1465 
1466 namespace {
1467   /// Calls the given 'operator delete' on an array of objects.
1468   struct CallArrayDelete : EHScopeStack::Cleanup {
1469     llvm::Value *Ptr;
1470     const FunctionDecl *OperatorDelete;
1471     llvm::Value *NumElements;
1472     QualType ElementType;
1473     CharUnits CookieSize;
1474 
1475     CallArrayDelete(llvm::Value *Ptr,
1476                     const FunctionDecl *OperatorDelete,
1477                     llvm::Value *NumElements,
1478                     QualType ElementType,
1479                     CharUnits CookieSize)
1480       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1481         ElementType(ElementType), CookieSize(CookieSize) {}
1482 
1483     void Emit(CodeGenFunction &CGF, Flags flags) override {
1484       const FunctionProtoType *DeleteFTy =
1485         OperatorDelete->getType()->getAs<FunctionProtoType>();
1486       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1487 
1488       CallArgList Args;
1489 
1490       // Pass the pointer as the first argument.
1491       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1492       llvm::Value *DeletePtr
1493         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1494       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1495 
1496       // Pass the original requested size as the second argument.
1497       if (DeleteFTy->getNumParams() == 2) {
1498         QualType size_t = DeleteFTy->getParamType(1);
1499         llvm::IntegerType *SizeTy
1500           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1501 
1502         CharUnits ElementTypeSize =
1503           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1504 
1505         // The size of an element, multiplied by the number of elements.
1506         llvm::Value *Size
1507           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1508         Size = CGF.Builder.CreateMul(Size, NumElements);
1509 
1510         // Plus the size of the cookie if applicable.
1511         if (!CookieSize.isZero()) {
1512           llvm::Value *CookieSizeV
1513             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1514           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1515         }
1516 
1517         Args.add(RValue::get(Size), size_t);
1518       }
1519 
1520       // Emit the call to delete.
1521       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1522     }
1523   };
1524 }
1525 
1526 /// Emit the code for deleting an array of objects.
1527 static void EmitArrayDelete(CodeGenFunction &CGF,
1528                             const CXXDeleteExpr *E,
1529                             llvm::Value *deletedPtr,
1530                             QualType elementType) {
1531   llvm::Value *numElements = nullptr;
1532   llvm::Value *allocatedPtr = nullptr;
1533   CharUnits cookieSize;
1534   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1535                                       numElements, allocatedPtr, cookieSize);
1536 
1537   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1538 
1539   // Make sure that we call delete even if one of the dtors throws.
1540   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1541   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1542                                            allocatedPtr, operatorDelete,
1543                                            numElements, elementType,
1544                                            cookieSize);
1545 
1546   // Destroy the elements.
1547   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1548     assert(numElements && "no element count for a type with a destructor!");
1549 
1550     llvm::Value *arrayEnd =
1551       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1552 
1553     // Note that it is legal to allocate a zero-length array, and we
1554     // can never fold the check away because the length should always
1555     // come from a cookie.
1556     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1557                          CGF.getDestroyer(dtorKind),
1558                          /*checkZeroLength*/ true,
1559                          CGF.needsEHCleanup(dtorKind));
1560   }
1561 
1562   // Pop the cleanup block.
1563   CGF.PopCleanupBlock();
1564 }
1565 
1566 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1567   const Expr *Arg = E->getArgument();
1568   llvm::Value *Ptr = EmitScalarExpr(Arg);
1569 
1570   // Null check the pointer.
1571   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1572   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1573 
1574   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1575 
1576   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1577   EmitBlock(DeleteNotNull);
1578 
1579   // We might be deleting a pointer to array.  If so, GEP down to the
1580   // first non-array element.
1581   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1582   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1583   if (DeleteTy->isConstantArrayType()) {
1584     llvm::Value *Zero = Builder.getInt32(0);
1585     SmallVector<llvm::Value*,8> GEP;
1586 
1587     GEP.push_back(Zero); // point at the outermost array
1588 
1589     // For each layer of array type we're pointing at:
1590     while (const ConstantArrayType *Arr
1591              = getContext().getAsConstantArrayType(DeleteTy)) {
1592       // 1. Unpeel the array type.
1593       DeleteTy = Arr->getElementType();
1594 
1595       // 2. GEP to the first element of the array.
1596       GEP.push_back(Zero);
1597     }
1598 
1599     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1600   }
1601 
1602   assert(ConvertTypeForMem(DeleteTy) ==
1603          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1604 
1605   if (E->isArrayForm()) {
1606     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1607   } else {
1608     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1609                      E->isGlobalDelete());
1610   }
1611 
1612   EmitBlock(DeleteEnd);
1613 }
1614 
1615 static bool isGLValueFromPointerDeref(const Expr *E) {
1616   E = E->IgnoreParens();
1617 
1618   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1619     if (!CE->getSubExpr()->isGLValue())
1620       return false;
1621     return isGLValueFromPointerDeref(CE->getSubExpr());
1622   }
1623 
1624   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1625     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1626 
1627   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1628     if (BO->getOpcode() == BO_Comma)
1629       return isGLValueFromPointerDeref(BO->getRHS());
1630 
1631   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1632     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1633            isGLValueFromPointerDeref(ACO->getFalseExpr());
1634 
1635   // C++11 [expr.sub]p1:
1636   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1637   if (isa<ArraySubscriptExpr>(E))
1638     return true;
1639 
1640   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1641     if (UO->getOpcode() == UO_Deref)
1642       return true;
1643 
1644   return false;
1645 }
1646 
1647 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1648                                          llvm::Type *StdTypeInfoPtrTy) {
1649   // Get the vtable pointer.
1650   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1651 
1652   // C++ [expr.typeid]p2:
1653   //   If the glvalue expression is obtained by applying the unary * operator to
1654   //   a pointer and the pointer is a null pointer value, the typeid expression
1655   //   throws the std::bad_typeid exception.
1656   //
1657   // However, this paragraph's intent is not clear.  We choose a very generous
1658   // interpretation which implores us to consider comma operators, conditional
1659   // operators, parentheses and other such constructs.
1660   QualType SrcRecordTy = E->getType();
1661   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1662           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1663     llvm::BasicBlock *BadTypeidBlock =
1664         CGF.createBasicBlock("typeid.bad_typeid");
1665     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1666 
1667     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1668     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1669 
1670     CGF.EmitBlock(BadTypeidBlock);
1671     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1672     CGF.EmitBlock(EndBlock);
1673   }
1674 
1675   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1676                                         StdTypeInfoPtrTy);
1677 }
1678 
1679 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1680   llvm::Type *StdTypeInfoPtrTy =
1681     ConvertType(E->getType())->getPointerTo();
1682 
1683   if (E->isTypeOperand()) {
1684     llvm::Constant *TypeInfo =
1685         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1686     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1687   }
1688 
1689   // C++ [expr.typeid]p2:
1690   //   When typeid is applied to a glvalue expression whose type is a
1691   //   polymorphic class type, the result refers to a std::type_info object
1692   //   representing the type of the most derived object (that is, the dynamic
1693   //   type) to which the glvalue refers.
1694   if (E->isPotentiallyEvaluated())
1695     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1696                                 StdTypeInfoPtrTy);
1697 
1698   QualType OperandTy = E->getExprOperand()->getType();
1699   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1700                                StdTypeInfoPtrTy);
1701 }
1702 
1703 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1704                                           QualType DestTy) {
1705   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1706   if (DestTy->isPointerType())
1707     return llvm::Constant::getNullValue(DestLTy);
1708 
1709   /// C++ [expr.dynamic.cast]p9:
1710   ///   A failed cast to reference type throws std::bad_cast
1711   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1712     return nullptr;
1713 
1714   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1715   return llvm::UndefValue::get(DestLTy);
1716 }
1717 
1718 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1719                                               const CXXDynamicCastExpr *DCE) {
1720   QualType DestTy = DCE->getTypeAsWritten();
1721 
1722   if (DCE->isAlwaysNull())
1723     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1724       return T;
1725 
1726   QualType SrcTy = DCE->getSubExpr()->getType();
1727 
1728   // C++ [expr.dynamic.cast]p7:
1729   //   If T is "pointer to cv void," then the result is a pointer to the most
1730   //   derived object pointed to by v.
1731   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1732 
1733   bool isDynamicCastToVoid;
1734   QualType SrcRecordTy;
1735   QualType DestRecordTy;
1736   if (DestPTy) {
1737     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1738     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1739     DestRecordTy = DestPTy->getPointeeType();
1740   } else {
1741     isDynamicCastToVoid = false;
1742     SrcRecordTy = SrcTy;
1743     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1744   }
1745 
1746   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1747 
1748   // C++ [expr.dynamic.cast]p4:
1749   //   If the value of v is a null pointer value in the pointer case, the result
1750   //   is the null pointer value of type T.
1751   bool ShouldNullCheckSrcValue =
1752       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1753                                                          SrcRecordTy);
1754 
1755   llvm::BasicBlock *CastNull = nullptr;
1756   llvm::BasicBlock *CastNotNull = nullptr;
1757   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1758 
1759   if (ShouldNullCheckSrcValue) {
1760     CastNull = createBasicBlock("dynamic_cast.null");
1761     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1762 
1763     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1764     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1765     EmitBlock(CastNotNull);
1766   }
1767 
1768   if (isDynamicCastToVoid) {
1769     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1770                                                   DestTy);
1771   } else {
1772     assert(DestRecordTy->isRecordType() &&
1773            "destination type must be a record type!");
1774     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1775                                                 DestTy, DestRecordTy, CastEnd);
1776   }
1777 
1778   if (ShouldNullCheckSrcValue) {
1779     EmitBranch(CastEnd);
1780 
1781     EmitBlock(CastNull);
1782     EmitBranch(CastEnd);
1783   }
1784 
1785   EmitBlock(CastEnd);
1786 
1787   if (ShouldNullCheckSrcValue) {
1788     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1789     PHI->addIncoming(Value, CastNotNull);
1790     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1791 
1792     Value = PHI;
1793   }
1794 
1795   return Value;
1796 }
1797 
1798 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1799   RunCleanupsScope Scope(*this);
1800   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1801                                  Slot.getAlignment());
1802 
1803   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1804   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1805                                          e = E->capture_init_end();
1806        i != e; ++i, ++CurField) {
1807     // Emit initialization
1808 
1809     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1810     ArrayRef<VarDecl *> ArrayIndexes;
1811     if (CurField->getType()->isArrayType())
1812       ArrayIndexes = E->getCaptureInitIndexVars(i);
1813     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1814   }
1815 }
1816