1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 28 SourceLocation CallLoc, 29 llvm::Value *Callee, 30 ReturnValueSlot ReturnValue, 31 llvm::Value *This, 32 llvm::Value *ImplicitParam, 33 QualType ImplicitParamTy, 34 CallExpr::const_arg_iterator ArgBeg, 35 CallExpr::const_arg_iterator ArgEnd) { 36 assert(MD->isInstance() && 37 "Trying to emit a member call expr on a static method!"); 38 39 // C++11 [class.mfct.non-static]p2: 40 // If a non-static member function of a class X is called for an object that 41 // is not of type X, or of a type derived from X, the behavior is undefined. 42 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 43 : TCK_MemberCall, 44 CallLoc, This, getContext().getRecordType(MD->getParent())); 45 46 CallArgList Args; 47 48 // Push the this ptr. 49 Args.add(RValue::get(This), MD->getThisType(getContext())); 50 51 // If there is an implicit parameter (e.g. VTT), emit it. 52 if (ImplicitParam) { 53 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 54 } 55 56 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 57 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 58 59 // And the rest of the call args. 60 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 61 62 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 63 Callee, ReturnValue, Args, MD); 64 } 65 66 static CXXRecordDecl *getCXXRecord(const Expr *E) { 67 QualType T = E->getType(); 68 if (const PointerType *PTy = T->getAs<PointerType>()) 69 T = PTy->getPointeeType(); 70 const RecordType *Ty = T->castAs<RecordType>(); 71 return cast<CXXRecordDecl>(Ty->getDecl()); 72 } 73 74 // Note: This function also emit constructor calls to support a MSVC 75 // extensions allowing explicit constructor function call. 76 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 77 ReturnValueSlot ReturnValue) { 78 const Expr *callee = CE->getCallee()->IgnoreParens(); 79 80 if (isa<BinaryOperator>(callee)) 81 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 82 83 const MemberExpr *ME = cast<MemberExpr>(callee); 84 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 85 86 if (MD->isStatic()) { 87 // The method is static, emit it as we would a regular call. 88 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 89 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 90 ReturnValue); 91 } 92 93 // Compute the object pointer. 94 const Expr *Base = ME->getBase(); 95 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 96 97 const CXXMethodDecl *DevirtualizedMethod = nullptr; 98 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 99 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 100 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 101 assert(DevirtualizedMethod); 102 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 103 const Expr *Inner = Base->ignoreParenBaseCasts(); 104 if (getCXXRecord(Inner) == DevirtualizedClass) 105 // If the class of the Inner expression is where the dynamic method 106 // is defined, build the this pointer from it. 107 Base = Inner; 108 else if (getCXXRecord(Base) != DevirtualizedClass) { 109 // If the method is defined in a class that is not the best dynamic 110 // one or the one of the full expression, we would have to build 111 // a derived-to-base cast to compute the correct this pointer, but 112 // we don't have support for that yet, so do a virtual call. 113 DevirtualizedMethod = nullptr; 114 } 115 // If the return types are not the same, this might be a case where more 116 // code needs to run to compensate for it. For example, the derived 117 // method might return a type that inherits form from the return 118 // type of MD and has a prefix. 119 // For now we just avoid devirtualizing these covariant cases. 120 if (DevirtualizedMethod && 121 DevirtualizedMethod->getReturnType().getCanonicalType() != 122 MD->getReturnType().getCanonicalType()) 123 DevirtualizedMethod = nullptr; 124 } 125 126 llvm::Value *This; 127 if (ME->isArrow()) 128 This = EmitScalarExpr(Base); 129 else 130 This = EmitLValue(Base).getAddress(); 131 132 133 if (MD->isTrivial()) { 134 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 135 if (isa<CXXConstructorDecl>(MD) && 136 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 137 return RValue::get(nullptr); 138 139 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 140 // We don't like to generate the trivial copy/move assignment operator 141 // when it isn't necessary; just produce the proper effect here. 142 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 143 EmitAggregateAssign(This, RHS, CE->getType()); 144 return RValue::get(This); 145 } 146 147 if (isa<CXXConstructorDecl>(MD) && 148 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 149 // Trivial move and copy ctor are the same. 150 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 151 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 152 CE->arg_begin(), CE->arg_end()); 153 return RValue::get(This); 154 } 155 llvm_unreachable("unknown trivial member function"); 156 } 157 158 // Compute the function type we're calling. 159 const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 160 const CGFunctionInfo *FInfo = nullptr; 161 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 162 FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 163 Dtor_Complete); 164 else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 165 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 166 Ctor_Complete); 167 else 168 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 169 170 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 171 172 // C++ [class.virtual]p12: 173 // Explicit qualification with the scope operator (5.1) suppresses the 174 // virtual call mechanism. 175 // 176 // We also don't emit a virtual call if the base expression has a record type 177 // because then we know what the type is. 178 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 179 llvm::Value *Callee; 180 181 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 182 assert(CE->arg_begin() == CE->arg_end() && 183 "Destructor shouldn't have explicit parameters"); 184 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 185 if (UseVirtualCall) { 186 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 187 CE->getExprLoc(), This); 188 } else { 189 if (getLangOpts().AppleKext && 190 MD->isVirtual() && 191 ME->hasQualifier()) 192 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 193 else if (!DevirtualizedMethod) 194 Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 195 else { 196 const CXXDestructorDecl *DDtor = 197 cast<CXXDestructorDecl>(DevirtualizedMethod); 198 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 199 } 200 EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 201 /*ImplicitParam=*/nullptr, QualType(), nullptr,nullptr); 202 } 203 return RValue::get(nullptr); 204 } 205 206 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 207 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 208 } else if (UseVirtualCall) { 209 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 210 } else { 211 if (getLangOpts().AppleKext && 212 MD->isVirtual() && 213 ME->hasQualifier()) 214 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 215 else if (!DevirtualizedMethod) 216 Callee = CGM.GetAddrOfFunction(MD, Ty); 217 else { 218 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 219 } 220 } 221 222 if (MD->isVirtual()) { 223 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 224 *this, MD, This, UseVirtualCall); 225 } 226 227 return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 228 /*ImplicitParam=*/nullptr, QualType(), 229 CE->arg_begin(), CE->arg_end()); 230 } 231 232 RValue 233 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 234 ReturnValueSlot ReturnValue) { 235 const BinaryOperator *BO = 236 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 237 const Expr *BaseExpr = BO->getLHS(); 238 const Expr *MemFnExpr = BO->getRHS(); 239 240 const MemberPointerType *MPT = 241 MemFnExpr->getType()->castAs<MemberPointerType>(); 242 243 const FunctionProtoType *FPT = 244 MPT->getPointeeType()->castAs<FunctionProtoType>(); 245 const CXXRecordDecl *RD = 246 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 247 248 // Get the member function pointer. 249 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 250 251 // Emit the 'this' pointer. 252 llvm::Value *This; 253 254 if (BO->getOpcode() == BO_PtrMemI) 255 This = EmitScalarExpr(BaseExpr); 256 else 257 This = EmitLValue(BaseExpr).getAddress(); 258 259 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 260 QualType(MPT->getClass(), 0)); 261 262 // Ask the ABI to load the callee. Note that This is modified. 263 llvm::Value *Callee = 264 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT); 265 266 CallArgList Args; 267 268 QualType ThisType = 269 getContext().getPointerType(getContext().getTagDeclType(RD)); 270 271 // Push the this ptr. 272 Args.add(RValue::get(This), ThisType); 273 274 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 275 276 // And the rest of the call args 277 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 278 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 279 Callee, ReturnValue, Args); 280 } 281 282 RValue 283 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 284 const CXXMethodDecl *MD, 285 ReturnValueSlot ReturnValue) { 286 assert(MD->isInstance() && 287 "Trying to emit a member call expr on a static method!"); 288 LValue LV = EmitLValue(E->getArg(0)); 289 llvm::Value *This = LV.getAddress(); 290 291 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 292 MD->isTrivial()) { 293 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 294 QualType Ty = E->getType(); 295 EmitAggregateAssign(This, Src, Ty); 296 return RValue::get(This); 297 } 298 299 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 300 return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 301 /*ImplicitParam=*/nullptr, QualType(), 302 E->arg_begin() + 1, E->arg_end()); 303 } 304 305 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 306 ReturnValueSlot ReturnValue) { 307 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 308 } 309 310 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 311 llvm::Value *DestPtr, 312 const CXXRecordDecl *Base) { 313 if (Base->isEmpty()) 314 return; 315 316 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 317 318 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 319 CharUnits Size = Layout.getNonVirtualSize(); 320 CharUnits Align = Layout.getNonVirtualAlignment(); 321 322 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 323 324 // If the type contains a pointer to data member we can't memset it to zero. 325 // Instead, create a null constant and copy it to the destination. 326 // TODO: there are other patterns besides zero that we can usefully memset, 327 // like -1, which happens to be the pattern used by member-pointers. 328 // TODO: isZeroInitializable can be over-conservative in the case where a 329 // virtual base contains a member pointer. 330 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 331 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 332 333 llvm::GlobalVariable *NullVariable = 334 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 335 /*isConstant=*/true, 336 llvm::GlobalVariable::PrivateLinkage, 337 NullConstant, Twine()); 338 NullVariable->setAlignment(Align.getQuantity()); 339 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 340 341 // Get and call the appropriate llvm.memcpy overload. 342 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 343 return; 344 } 345 346 // Otherwise, just memset the whole thing to zero. This is legal 347 // because in LLVM, all default initializers (other than the ones we just 348 // handled above) are guaranteed to have a bit pattern of all zeros. 349 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 350 Align.getQuantity()); 351 } 352 353 void 354 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 355 AggValueSlot Dest) { 356 assert(!Dest.isIgnored() && "Must have a destination!"); 357 const CXXConstructorDecl *CD = E->getConstructor(); 358 359 // If we require zero initialization before (or instead of) calling the 360 // constructor, as can be the case with a non-user-provided default 361 // constructor, emit the zero initialization now, unless destination is 362 // already zeroed. 363 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 364 switch (E->getConstructionKind()) { 365 case CXXConstructExpr::CK_Delegating: 366 case CXXConstructExpr::CK_Complete: 367 EmitNullInitialization(Dest.getAddr(), E->getType()); 368 break; 369 case CXXConstructExpr::CK_VirtualBase: 370 case CXXConstructExpr::CK_NonVirtualBase: 371 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 372 break; 373 } 374 } 375 376 // If this is a call to a trivial default constructor, do nothing. 377 if (CD->isTrivial() && CD->isDefaultConstructor()) 378 return; 379 380 // Elide the constructor if we're constructing from a temporary. 381 // The temporary check is required because Sema sets this on NRVO 382 // returns. 383 if (getLangOpts().ElideConstructors && E->isElidable()) { 384 assert(getContext().hasSameUnqualifiedType(E->getType(), 385 E->getArg(0)->getType())); 386 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 387 EmitAggExpr(E->getArg(0), Dest); 388 return; 389 } 390 } 391 392 if (const ConstantArrayType *arrayType 393 = getContext().getAsConstantArrayType(E->getType())) { 394 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E); 395 } else { 396 CXXCtorType Type = Ctor_Complete; 397 bool ForVirtualBase = false; 398 bool Delegating = false; 399 400 switch (E->getConstructionKind()) { 401 case CXXConstructExpr::CK_Delegating: 402 // We should be emitting a constructor; GlobalDecl will assert this 403 Type = CurGD.getCtorType(); 404 Delegating = true; 405 break; 406 407 case CXXConstructExpr::CK_Complete: 408 Type = Ctor_Complete; 409 break; 410 411 case CXXConstructExpr::CK_VirtualBase: 412 ForVirtualBase = true; 413 // fall-through 414 415 case CXXConstructExpr::CK_NonVirtualBase: 416 Type = Ctor_Base; 417 } 418 419 // Call the constructor. 420 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 421 E); 422 } 423 } 424 425 void 426 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 427 llvm::Value *Src, 428 const Expr *Exp) { 429 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 430 Exp = E->getSubExpr(); 431 assert(isa<CXXConstructExpr>(Exp) && 432 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 433 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 434 const CXXConstructorDecl *CD = E->getConstructor(); 435 RunCleanupsScope Scope(*this); 436 437 // If we require zero initialization before (or instead of) calling the 438 // constructor, as can be the case with a non-user-provided default 439 // constructor, emit the zero initialization now. 440 // FIXME. Do I still need this for a copy ctor synthesis? 441 if (E->requiresZeroInitialization()) 442 EmitNullInitialization(Dest, E->getType()); 443 444 assert(!getContext().getAsConstantArrayType(E->getType()) 445 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 446 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end()); 447 } 448 449 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 450 const CXXNewExpr *E) { 451 if (!E->isArray()) 452 return CharUnits::Zero(); 453 454 // No cookie is required if the operator new[] being used is the 455 // reserved placement operator new[]. 456 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 457 return CharUnits::Zero(); 458 459 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 460 } 461 462 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 463 const CXXNewExpr *e, 464 unsigned minElements, 465 llvm::Value *&numElements, 466 llvm::Value *&sizeWithoutCookie) { 467 QualType type = e->getAllocatedType(); 468 469 if (!e->isArray()) { 470 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 471 sizeWithoutCookie 472 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 473 return sizeWithoutCookie; 474 } 475 476 // The width of size_t. 477 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 478 479 // Figure out the cookie size. 480 llvm::APInt cookieSize(sizeWidth, 481 CalculateCookiePadding(CGF, e).getQuantity()); 482 483 // Emit the array size expression. 484 // We multiply the size of all dimensions for NumElements. 485 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 486 numElements = CGF.EmitScalarExpr(e->getArraySize()); 487 assert(isa<llvm::IntegerType>(numElements->getType())); 488 489 // The number of elements can be have an arbitrary integer type; 490 // essentially, we need to multiply it by a constant factor, add a 491 // cookie size, and verify that the result is representable as a 492 // size_t. That's just a gloss, though, and it's wrong in one 493 // important way: if the count is negative, it's an error even if 494 // the cookie size would bring the total size >= 0. 495 bool isSigned 496 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 497 llvm::IntegerType *numElementsType 498 = cast<llvm::IntegerType>(numElements->getType()); 499 unsigned numElementsWidth = numElementsType->getBitWidth(); 500 501 // Compute the constant factor. 502 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 503 while (const ConstantArrayType *CAT 504 = CGF.getContext().getAsConstantArrayType(type)) { 505 type = CAT->getElementType(); 506 arraySizeMultiplier *= CAT->getSize(); 507 } 508 509 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 510 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 511 typeSizeMultiplier *= arraySizeMultiplier; 512 513 // This will be a size_t. 514 llvm::Value *size; 515 516 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 517 // Don't bloat the -O0 code. 518 if (llvm::ConstantInt *numElementsC = 519 dyn_cast<llvm::ConstantInt>(numElements)) { 520 const llvm::APInt &count = numElementsC->getValue(); 521 522 bool hasAnyOverflow = false; 523 524 // If 'count' was a negative number, it's an overflow. 525 if (isSigned && count.isNegative()) 526 hasAnyOverflow = true; 527 528 // We want to do all this arithmetic in size_t. If numElements is 529 // wider than that, check whether it's already too big, and if so, 530 // overflow. 531 else if (numElementsWidth > sizeWidth && 532 numElementsWidth - sizeWidth > count.countLeadingZeros()) 533 hasAnyOverflow = true; 534 535 // Okay, compute a count at the right width. 536 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 537 538 // If there is a brace-initializer, we cannot allocate fewer elements than 539 // there are initializers. If we do, that's treated like an overflow. 540 if (adjustedCount.ult(minElements)) 541 hasAnyOverflow = true; 542 543 // Scale numElements by that. This might overflow, but we don't 544 // care because it only overflows if allocationSize does, too, and 545 // if that overflows then we shouldn't use this. 546 numElements = llvm::ConstantInt::get(CGF.SizeTy, 547 adjustedCount * arraySizeMultiplier); 548 549 // Compute the size before cookie, and track whether it overflowed. 550 bool overflow; 551 llvm::APInt allocationSize 552 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 553 hasAnyOverflow |= overflow; 554 555 // Add in the cookie, and check whether it's overflowed. 556 if (cookieSize != 0) { 557 // Save the current size without a cookie. This shouldn't be 558 // used if there was overflow. 559 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 560 561 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 562 hasAnyOverflow |= overflow; 563 } 564 565 // On overflow, produce a -1 so operator new will fail. 566 if (hasAnyOverflow) { 567 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 568 } else { 569 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 570 } 571 572 // Otherwise, we might need to use the overflow intrinsics. 573 } else { 574 // There are up to five conditions we need to test for: 575 // 1) if isSigned, we need to check whether numElements is negative; 576 // 2) if numElementsWidth > sizeWidth, we need to check whether 577 // numElements is larger than something representable in size_t; 578 // 3) if minElements > 0, we need to check whether numElements is smaller 579 // than that. 580 // 4) we need to compute 581 // sizeWithoutCookie := numElements * typeSizeMultiplier 582 // and check whether it overflows; and 583 // 5) if we need a cookie, we need to compute 584 // size := sizeWithoutCookie + cookieSize 585 // and check whether it overflows. 586 587 llvm::Value *hasOverflow = nullptr; 588 589 // If numElementsWidth > sizeWidth, then one way or another, we're 590 // going to have to do a comparison for (2), and this happens to 591 // take care of (1), too. 592 if (numElementsWidth > sizeWidth) { 593 llvm::APInt threshold(numElementsWidth, 1); 594 threshold <<= sizeWidth; 595 596 llvm::Value *thresholdV 597 = llvm::ConstantInt::get(numElementsType, threshold); 598 599 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 600 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 601 602 // Otherwise, if we're signed, we want to sext up to size_t. 603 } else if (isSigned) { 604 if (numElementsWidth < sizeWidth) 605 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 606 607 // If there's a non-1 type size multiplier, then we can do the 608 // signedness check at the same time as we do the multiply 609 // because a negative number times anything will cause an 610 // unsigned overflow. Otherwise, we have to do it here. But at least 611 // in this case, we can subsume the >= minElements check. 612 if (typeSizeMultiplier == 1) 613 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 614 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 615 616 // Otherwise, zext up to size_t if necessary. 617 } else if (numElementsWidth < sizeWidth) { 618 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 619 } 620 621 assert(numElements->getType() == CGF.SizeTy); 622 623 if (minElements) { 624 // Don't allow allocation of fewer elements than we have initializers. 625 if (!hasOverflow) { 626 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 627 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 628 } else if (numElementsWidth > sizeWidth) { 629 // The other existing overflow subsumes this check. 630 // We do an unsigned comparison, since any signed value < -1 is 631 // taken care of either above or below. 632 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 633 CGF.Builder.CreateICmpULT(numElements, 634 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 635 } 636 } 637 638 size = numElements; 639 640 // Multiply by the type size if necessary. This multiplier 641 // includes all the factors for nested arrays. 642 // 643 // This step also causes numElements to be scaled up by the 644 // nested-array factor if necessary. Overflow on this computation 645 // can be ignored because the result shouldn't be used if 646 // allocation fails. 647 if (typeSizeMultiplier != 1) { 648 llvm::Value *umul_with_overflow 649 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 650 651 llvm::Value *tsmV = 652 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 653 llvm::Value *result = 654 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 655 656 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 657 if (hasOverflow) 658 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 659 else 660 hasOverflow = overflowed; 661 662 size = CGF.Builder.CreateExtractValue(result, 0); 663 664 // Also scale up numElements by the array size multiplier. 665 if (arraySizeMultiplier != 1) { 666 // If the base element type size is 1, then we can re-use the 667 // multiply we just did. 668 if (typeSize.isOne()) { 669 assert(arraySizeMultiplier == typeSizeMultiplier); 670 numElements = size; 671 672 // Otherwise we need a separate multiply. 673 } else { 674 llvm::Value *asmV = 675 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 676 numElements = CGF.Builder.CreateMul(numElements, asmV); 677 } 678 } 679 } else { 680 // numElements doesn't need to be scaled. 681 assert(arraySizeMultiplier == 1); 682 } 683 684 // Add in the cookie size if necessary. 685 if (cookieSize != 0) { 686 sizeWithoutCookie = size; 687 688 llvm::Value *uadd_with_overflow 689 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 690 691 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 692 llvm::Value *result = 693 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 694 695 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 696 if (hasOverflow) 697 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 698 else 699 hasOverflow = overflowed; 700 701 size = CGF.Builder.CreateExtractValue(result, 0); 702 } 703 704 // If we had any possibility of dynamic overflow, make a select to 705 // overwrite 'size' with an all-ones value, which should cause 706 // operator new to throw. 707 if (hasOverflow) 708 size = CGF.Builder.CreateSelect(hasOverflow, 709 llvm::Constant::getAllOnesValue(CGF.SizeTy), 710 size); 711 } 712 713 if (cookieSize == 0) 714 sizeWithoutCookie = size; 715 else 716 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 717 718 return size; 719 } 720 721 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 722 QualType AllocType, llvm::Value *NewPtr) { 723 // FIXME: Refactor with EmitExprAsInit. 724 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 725 switch (CGF.getEvaluationKind(AllocType)) { 726 case TEK_Scalar: 727 CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType, 728 Alignment), 729 false); 730 return; 731 case TEK_Complex: 732 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 733 Alignment), 734 /*isInit*/ true); 735 return; 736 case TEK_Aggregate: { 737 AggValueSlot Slot 738 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 739 AggValueSlot::IsDestructed, 740 AggValueSlot::DoesNotNeedGCBarriers, 741 AggValueSlot::IsNotAliased); 742 CGF.EmitAggExpr(Init, Slot); 743 return; 744 } 745 } 746 llvm_unreachable("bad evaluation kind"); 747 } 748 749 void 750 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 751 QualType ElementType, 752 llvm::Value *BeginPtr, 753 llvm::Value *NumElements, 754 llvm::Value *AllocSizeWithoutCookie) { 755 // If we have a type with trivial initialization and no initializer, 756 // there's nothing to do. 757 if (!E->hasInitializer()) 758 return; 759 760 llvm::Value *CurPtr = BeginPtr; 761 762 unsigned InitListElements = 0; 763 764 const Expr *Init = E->getInitializer(); 765 llvm::AllocaInst *EndOfInit = nullptr; 766 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 767 EHScopeStack::stable_iterator Cleanup; 768 llvm::Instruction *CleanupDominator = nullptr; 769 770 // If the initializer is an initializer list, first do the explicit elements. 771 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 772 InitListElements = ILE->getNumInits(); 773 774 // If this is a multi-dimensional array new, we will initialize multiple 775 // elements with each init list element. 776 QualType AllocType = E->getAllocatedType(); 777 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 778 AllocType->getAsArrayTypeUnsafe())) { 779 unsigned AS = CurPtr->getType()->getPointerAddressSpace(); 780 llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS); 781 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy); 782 InitListElements *= getContext().getConstantArrayElementCount(CAT); 783 } 784 785 // Enter a partial-destruction Cleanup if necessary. 786 if (needsEHCleanup(DtorKind)) { 787 // In principle we could tell the Cleanup where we are more 788 // directly, but the control flow can get so varied here that it 789 // would actually be quite complex. Therefore we go through an 790 // alloca. 791 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end"); 792 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit); 793 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType, 794 getDestroyer(DtorKind)); 795 Cleanup = EHStack.stable_begin(); 796 } 797 798 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 799 // Tell the cleanup that it needs to destroy up to this 800 // element. TODO: some of these stores can be trivially 801 // observed to be unnecessary. 802 if (EndOfInit) 803 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()), 804 EndOfInit); 805 // FIXME: If the last initializer is an incomplete initializer list for 806 // an array, and we have an array filler, we can fold together the two 807 // initialization loops. 808 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 809 ILE->getInit(i)->getType(), CurPtr); 810 CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next"); 811 } 812 813 // The remaining elements are filled with the array filler expression. 814 Init = ILE->getArrayFiller(); 815 816 // Extract the initializer for the individual array elements by pulling 817 // out the array filler from all the nested initializer lists. This avoids 818 // generating a nested loop for the initialization. 819 while (Init && Init->getType()->isConstantArrayType()) { 820 auto *SubILE = dyn_cast<InitListExpr>(Init); 821 if (!SubILE) 822 break; 823 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 824 Init = SubILE->getArrayFiller(); 825 } 826 827 // Switch back to initializing one base element at a time. 828 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType()); 829 } 830 831 // Attempt to perform zero-initialization using memset. 832 auto TryMemsetInitialization = [&]() -> bool { 833 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 834 // we can initialize with a memset to -1. 835 if (!CGM.getTypes().isZeroInitializable(ElementType)) 836 return false; 837 838 // Optimization: since zero initialization will just set the memory 839 // to all zeroes, generate a single memset to do it in one shot. 840 841 // Subtract out the size of any elements we've already initialized. 842 auto *RemainingSize = AllocSizeWithoutCookie; 843 if (InitListElements) { 844 // We know this can't overflow; we check this when doing the allocation. 845 auto *InitializedSize = llvm::ConstantInt::get( 846 RemainingSize->getType(), 847 getContext().getTypeSizeInChars(ElementType).getQuantity() * 848 InitListElements); 849 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 850 } 851 852 // Create the memset. 853 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType); 854 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, 855 Alignment.getQuantity(), false); 856 return true; 857 }; 858 859 // If all elements have already been initialized, skip any further 860 // initialization. 861 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 862 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 863 // If there was a Cleanup, deactivate it. 864 if (CleanupDominator) 865 DeactivateCleanupBlock(Cleanup, CleanupDominator); 866 return; 867 } 868 869 assert(Init && "have trailing elements to initialize but no initializer"); 870 871 // If this is a constructor call, try to optimize it out, and failing that 872 // emit a single loop to initialize all remaining elements. 873 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 874 CXXConstructorDecl *Ctor = CCE->getConstructor(); 875 if (Ctor->isTrivial()) { 876 // If new expression did not specify value-initialization, then there 877 // is no initialization. 878 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 879 return; 880 881 if (TryMemsetInitialization()) 882 return; 883 } 884 885 // Store the new Cleanup position for irregular Cleanups. 886 // 887 // FIXME: Share this cleanup with the constructor call emission rather than 888 // having it create a cleanup of its own. 889 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 890 891 // Emit a constructor call loop to initialize the remaining elements. 892 if (InitListElements) 893 NumElements = Builder.CreateSub( 894 NumElements, 895 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 896 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 897 CCE->requiresZeroInitialization()); 898 return; 899 } 900 901 // If this is value-initialization, we can usually use memset. 902 ImplicitValueInitExpr IVIE(ElementType); 903 if (isa<ImplicitValueInitExpr>(Init)) { 904 if (TryMemsetInitialization()) 905 return; 906 907 // Switch to an ImplicitValueInitExpr for the element type. This handles 908 // only one case: multidimensional array new of pointers to members. In 909 // all other cases, we already have an initializer for the array element. 910 Init = &IVIE; 911 } 912 913 // At this point we should have found an initializer for the individual 914 // elements of the array. 915 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 916 "got wrong type of element to initialize"); 917 918 // If we have an empty initializer list, we can usually use memset. 919 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 920 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 921 return; 922 923 // Create the loop blocks. 924 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 925 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 926 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 927 928 // Find the end of the array, hoisted out of the loop. 929 llvm::Value *EndPtr = 930 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end"); 931 932 // If the number of elements isn't constant, we have to now check if there is 933 // anything left to initialize. 934 if (!ConstNum) { 935 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr, 936 "array.isempty"); 937 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 938 } 939 940 // Enter the loop. 941 EmitBlock(LoopBB); 942 943 // Set up the current-element phi. 944 llvm::PHINode *CurPtrPhi = 945 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur"); 946 CurPtrPhi->addIncoming(CurPtr, EntryBB); 947 CurPtr = CurPtrPhi; 948 949 // Store the new Cleanup position for irregular Cleanups. 950 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 951 952 // Enter a partial-destruction Cleanup if necessary. 953 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 954 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType, 955 getDestroyer(DtorKind)); 956 Cleanup = EHStack.stable_begin(); 957 CleanupDominator = Builder.CreateUnreachable(); 958 } 959 960 // Emit the initializer into this element. 961 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 962 963 // Leave the Cleanup if we entered one. 964 if (CleanupDominator) { 965 DeactivateCleanupBlock(Cleanup, CleanupDominator); 966 CleanupDominator->eraseFromParent(); 967 } 968 969 // Advance to the next element by adjusting the pointer type as necessary. 970 llvm::Value *NextPtr = 971 Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next"); 972 973 // Check whether we've gotten to the end of the array and, if so, 974 // exit the loop. 975 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 976 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 977 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 978 979 EmitBlock(ContBB); 980 } 981 982 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 983 QualType ElementType, 984 llvm::Value *NewPtr, 985 llvm::Value *NumElements, 986 llvm::Value *AllocSizeWithoutCookie) { 987 if (E->isArray()) 988 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements, 989 AllocSizeWithoutCookie); 990 else if (const Expr *Init = E->getInitializer()) 991 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 992 } 993 994 /// Emit a call to an operator new or operator delete function, as implicitly 995 /// created by new-expressions and delete-expressions. 996 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 997 const FunctionDecl *Callee, 998 const FunctionProtoType *CalleeType, 999 const CallArgList &Args) { 1000 llvm::Instruction *CallOrInvoke; 1001 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1002 RValue RV = 1003 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 1004 CalleeAddr, ReturnValueSlot(), Args, 1005 Callee, &CallOrInvoke); 1006 1007 /// C++1y [expr.new]p10: 1008 /// [In a new-expression,] an implementation is allowed to omit a call 1009 /// to a replaceable global allocation function. 1010 /// 1011 /// We model such elidable calls with the 'builtin' attribute. 1012 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1013 if (Callee->isReplaceableGlobalAllocationFunction() && 1014 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1015 // FIXME: Add addAttribute to CallSite. 1016 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1017 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1018 llvm::Attribute::Builtin); 1019 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1020 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1021 llvm::Attribute::Builtin); 1022 else 1023 llvm_unreachable("unexpected kind of call instruction"); 1024 } 1025 1026 return RV; 1027 } 1028 1029 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1030 const Expr *Arg, 1031 bool IsDelete) { 1032 CallArgList Args; 1033 const Stmt *ArgS = Arg; 1034 EmitCallArgs(Args, *Type->param_type_begin(), 1035 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1)); 1036 // Find the allocation or deallocation function that we're calling. 1037 ASTContext &Ctx = getContext(); 1038 DeclarationName Name = Ctx.DeclarationNames 1039 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1040 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1041 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1042 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1043 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1044 llvm_unreachable("predeclared global operator new/delete is missing"); 1045 } 1046 1047 namespace { 1048 /// A cleanup to call the given 'operator delete' function upon 1049 /// abnormal exit from a new expression. 1050 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1051 size_t NumPlacementArgs; 1052 const FunctionDecl *OperatorDelete; 1053 llvm::Value *Ptr; 1054 llvm::Value *AllocSize; 1055 1056 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1057 1058 public: 1059 static size_t getExtraSize(size_t NumPlacementArgs) { 1060 return NumPlacementArgs * sizeof(RValue); 1061 } 1062 1063 CallDeleteDuringNew(size_t NumPlacementArgs, 1064 const FunctionDecl *OperatorDelete, 1065 llvm::Value *Ptr, 1066 llvm::Value *AllocSize) 1067 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1068 Ptr(Ptr), AllocSize(AllocSize) {} 1069 1070 void setPlacementArg(unsigned I, RValue Arg) { 1071 assert(I < NumPlacementArgs && "index out of range"); 1072 getPlacementArgs()[I] = Arg; 1073 } 1074 1075 void Emit(CodeGenFunction &CGF, Flags flags) override { 1076 const FunctionProtoType *FPT 1077 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1078 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1079 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1080 1081 CallArgList DeleteArgs; 1082 1083 // The first argument is always a void*. 1084 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1085 DeleteArgs.add(RValue::get(Ptr), *AI++); 1086 1087 // A member 'operator delete' can take an extra 'size_t' argument. 1088 if (FPT->getNumParams() == NumPlacementArgs + 2) 1089 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1090 1091 // Pass the rest of the arguments, which must match exactly. 1092 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1093 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1094 1095 // Call 'operator delete'. 1096 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1097 } 1098 }; 1099 1100 /// A cleanup to call the given 'operator delete' function upon 1101 /// abnormal exit from a new expression when the new expression is 1102 /// conditional. 1103 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1104 size_t NumPlacementArgs; 1105 const FunctionDecl *OperatorDelete; 1106 DominatingValue<RValue>::saved_type Ptr; 1107 DominatingValue<RValue>::saved_type AllocSize; 1108 1109 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1110 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1111 } 1112 1113 public: 1114 static size_t getExtraSize(size_t NumPlacementArgs) { 1115 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1116 } 1117 1118 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1119 const FunctionDecl *OperatorDelete, 1120 DominatingValue<RValue>::saved_type Ptr, 1121 DominatingValue<RValue>::saved_type AllocSize) 1122 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1123 Ptr(Ptr), AllocSize(AllocSize) {} 1124 1125 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1126 assert(I < NumPlacementArgs && "index out of range"); 1127 getPlacementArgs()[I] = Arg; 1128 } 1129 1130 void Emit(CodeGenFunction &CGF, Flags flags) override { 1131 const FunctionProtoType *FPT 1132 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1133 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1134 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1135 1136 CallArgList DeleteArgs; 1137 1138 // The first argument is always a void*. 1139 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1140 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1141 1142 // A member 'operator delete' can take an extra 'size_t' argument. 1143 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1144 RValue RV = AllocSize.restore(CGF); 1145 DeleteArgs.add(RV, *AI++); 1146 } 1147 1148 // Pass the rest of the arguments, which must match exactly. 1149 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1150 RValue RV = getPlacementArgs()[I].restore(CGF); 1151 DeleteArgs.add(RV, *AI++); 1152 } 1153 1154 // Call 'operator delete'. 1155 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1156 } 1157 }; 1158 } 1159 1160 /// Enter a cleanup to call 'operator delete' if the initializer in a 1161 /// new-expression throws. 1162 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1163 const CXXNewExpr *E, 1164 llvm::Value *NewPtr, 1165 llvm::Value *AllocSize, 1166 const CallArgList &NewArgs) { 1167 // If we're not inside a conditional branch, then the cleanup will 1168 // dominate and we can do the easier (and more efficient) thing. 1169 if (!CGF.isInConditionalBranch()) { 1170 CallDeleteDuringNew *Cleanup = CGF.EHStack 1171 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1172 E->getNumPlacementArgs(), 1173 E->getOperatorDelete(), 1174 NewPtr, AllocSize); 1175 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1176 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1177 1178 return; 1179 } 1180 1181 // Otherwise, we need to save all this stuff. 1182 DominatingValue<RValue>::saved_type SavedNewPtr = 1183 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1184 DominatingValue<RValue>::saved_type SavedAllocSize = 1185 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1186 1187 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1188 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1189 E->getNumPlacementArgs(), 1190 E->getOperatorDelete(), 1191 SavedNewPtr, 1192 SavedAllocSize); 1193 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1194 Cleanup->setPlacementArg(I, 1195 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1196 1197 CGF.initFullExprCleanup(); 1198 } 1199 1200 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1201 // The element type being allocated. 1202 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1203 1204 // 1. Build a call to the allocation function. 1205 FunctionDecl *allocator = E->getOperatorNew(); 1206 const FunctionProtoType *allocatorType = 1207 allocator->getType()->castAs<FunctionProtoType>(); 1208 1209 CallArgList allocatorArgs; 1210 1211 // The allocation size is the first argument. 1212 QualType sizeType = getContext().getSizeType(); 1213 1214 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1215 unsigned minElements = 0; 1216 if (E->isArray() && E->hasInitializer()) { 1217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1218 minElements = ILE->getNumInits(); 1219 } 1220 1221 llvm::Value *numElements = nullptr; 1222 llvm::Value *allocSizeWithoutCookie = nullptr; 1223 llvm::Value *allocSize = 1224 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1225 allocSizeWithoutCookie); 1226 1227 allocatorArgs.add(RValue::get(allocSize), sizeType); 1228 1229 // We start at 1 here because the first argument (the allocation size) 1230 // has already been emitted. 1231 EmitCallArgs(allocatorArgs, allocatorType->isVariadic(), 1232 allocatorType->param_type_begin() + 1, 1233 allocatorType->param_type_end(), E->placement_arg_begin(), 1234 E->placement_arg_end()); 1235 1236 // Emit the allocation call. If the allocator is a global placement 1237 // operator, just "inline" it directly. 1238 RValue RV; 1239 if (allocator->isReservedGlobalPlacementOperator()) { 1240 assert(allocatorArgs.size() == 2); 1241 RV = allocatorArgs[1].RV; 1242 // TODO: kill any unnecessary computations done for the size 1243 // argument. 1244 } else { 1245 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1246 } 1247 1248 // Emit a null check on the allocation result if the allocation 1249 // function is allowed to return null (because it has a non-throwing 1250 // exception spec; for this part, we inline 1251 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1252 // interesting initializer. 1253 bool nullCheck = allocatorType->isNothrow(getContext()) && 1254 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1255 1256 llvm::BasicBlock *nullCheckBB = nullptr; 1257 llvm::BasicBlock *contBB = nullptr; 1258 1259 llvm::Value *allocation = RV.getScalarVal(); 1260 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1261 1262 // The null-check means that the initializer is conditionally 1263 // evaluated. 1264 ConditionalEvaluation conditional(*this); 1265 1266 if (nullCheck) { 1267 conditional.begin(*this); 1268 1269 nullCheckBB = Builder.GetInsertBlock(); 1270 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1271 contBB = createBasicBlock("new.cont"); 1272 1273 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1274 Builder.CreateCondBr(isNull, contBB, notNullBB); 1275 EmitBlock(notNullBB); 1276 } 1277 1278 // If there's an operator delete, enter a cleanup to call it if an 1279 // exception is thrown. 1280 EHScopeStack::stable_iterator operatorDeleteCleanup; 1281 llvm::Instruction *cleanupDominator = nullptr; 1282 if (E->getOperatorDelete() && 1283 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1284 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1285 operatorDeleteCleanup = EHStack.stable_begin(); 1286 cleanupDominator = Builder.CreateUnreachable(); 1287 } 1288 1289 assert((allocSize == allocSizeWithoutCookie) == 1290 CalculateCookiePadding(*this, E).isZero()); 1291 if (allocSize != allocSizeWithoutCookie) { 1292 assert(E->isArray()); 1293 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1294 numElements, 1295 E, allocType); 1296 } 1297 1298 llvm::Type *elementPtrTy 1299 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1300 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1301 1302 EmitNewInitializer(*this, E, allocType, result, numElements, 1303 allocSizeWithoutCookie); 1304 if (E->isArray()) { 1305 // NewPtr is a pointer to the base element type. If we're 1306 // allocating an array of arrays, we'll need to cast back to the 1307 // array pointer type. 1308 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1309 if (result->getType() != resultType) 1310 result = Builder.CreateBitCast(result, resultType); 1311 } 1312 1313 // Deactivate the 'operator delete' cleanup if we finished 1314 // initialization. 1315 if (operatorDeleteCleanup.isValid()) { 1316 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1317 cleanupDominator->eraseFromParent(); 1318 } 1319 1320 if (nullCheck) { 1321 conditional.end(*this); 1322 1323 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1324 EmitBlock(contBB); 1325 1326 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1327 PHI->addIncoming(result, notNullBB); 1328 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1329 nullCheckBB); 1330 1331 result = PHI; 1332 } 1333 1334 return result; 1335 } 1336 1337 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1338 llvm::Value *Ptr, 1339 QualType DeleteTy) { 1340 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1341 1342 const FunctionProtoType *DeleteFTy = 1343 DeleteFD->getType()->getAs<FunctionProtoType>(); 1344 1345 CallArgList DeleteArgs; 1346 1347 // Check if we need to pass the size to the delete operator. 1348 llvm::Value *Size = nullptr; 1349 QualType SizeTy; 1350 if (DeleteFTy->getNumParams() == 2) { 1351 SizeTy = DeleteFTy->getParamType(1); 1352 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1353 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1354 DeleteTypeSize.getQuantity()); 1355 } 1356 1357 QualType ArgTy = DeleteFTy->getParamType(0); 1358 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1359 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1360 1361 if (Size) 1362 DeleteArgs.add(RValue::get(Size), SizeTy); 1363 1364 // Emit the call to delete. 1365 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1366 } 1367 1368 namespace { 1369 /// Calls the given 'operator delete' on a single object. 1370 struct CallObjectDelete : EHScopeStack::Cleanup { 1371 llvm::Value *Ptr; 1372 const FunctionDecl *OperatorDelete; 1373 QualType ElementType; 1374 1375 CallObjectDelete(llvm::Value *Ptr, 1376 const FunctionDecl *OperatorDelete, 1377 QualType ElementType) 1378 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1379 1380 void Emit(CodeGenFunction &CGF, Flags flags) override { 1381 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1382 } 1383 }; 1384 } 1385 1386 /// Emit the code for deleting a single object. 1387 static void EmitObjectDelete(CodeGenFunction &CGF, 1388 const FunctionDecl *OperatorDelete, 1389 llvm::Value *Ptr, 1390 QualType ElementType, 1391 bool UseGlobalDelete) { 1392 // Find the destructor for the type, if applicable. If the 1393 // destructor is virtual, we'll just emit the vcall and return. 1394 const CXXDestructorDecl *Dtor = nullptr; 1395 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1396 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1397 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1398 Dtor = RD->getDestructor(); 1399 1400 if (Dtor->isVirtual()) { 1401 if (UseGlobalDelete) { 1402 // If we're supposed to call the global delete, make sure we do so 1403 // even if the destructor throws. 1404 1405 // Derive the complete-object pointer, which is what we need 1406 // to pass to the deallocation function. 1407 llvm::Value *completePtr = 1408 CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 1409 1410 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1411 completePtr, OperatorDelete, 1412 ElementType); 1413 } 1414 1415 // FIXME: Provide a source location here. 1416 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1417 CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1418 SourceLocation(), Ptr); 1419 1420 if (UseGlobalDelete) { 1421 CGF.PopCleanupBlock(); 1422 } 1423 1424 return; 1425 } 1426 } 1427 } 1428 1429 // Make sure that we call delete even if the dtor throws. 1430 // This doesn't have to a conditional cleanup because we're going 1431 // to pop it off in a second. 1432 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1433 Ptr, OperatorDelete, ElementType); 1434 1435 if (Dtor) 1436 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1437 /*ForVirtualBase=*/false, 1438 /*Delegating=*/false, 1439 Ptr); 1440 else if (CGF.getLangOpts().ObjCAutoRefCount && 1441 ElementType->isObjCLifetimeType()) { 1442 switch (ElementType.getObjCLifetime()) { 1443 case Qualifiers::OCL_None: 1444 case Qualifiers::OCL_ExplicitNone: 1445 case Qualifiers::OCL_Autoreleasing: 1446 break; 1447 1448 case Qualifiers::OCL_Strong: { 1449 // Load the pointer value. 1450 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1451 ElementType.isVolatileQualified()); 1452 1453 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1454 break; 1455 } 1456 1457 case Qualifiers::OCL_Weak: 1458 CGF.EmitARCDestroyWeak(Ptr); 1459 break; 1460 } 1461 } 1462 1463 CGF.PopCleanupBlock(); 1464 } 1465 1466 namespace { 1467 /// Calls the given 'operator delete' on an array of objects. 1468 struct CallArrayDelete : EHScopeStack::Cleanup { 1469 llvm::Value *Ptr; 1470 const FunctionDecl *OperatorDelete; 1471 llvm::Value *NumElements; 1472 QualType ElementType; 1473 CharUnits CookieSize; 1474 1475 CallArrayDelete(llvm::Value *Ptr, 1476 const FunctionDecl *OperatorDelete, 1477 llvm::Value *NumElements, 1478 QualType ElementType, 1479 CharUnits CookieSize) 1480 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1481 ElementType(ElementType), CookieSize(CookieSize) {} 1482 1483 void Emit(CodeGenFunction &CGF, Flags flags) override { 1484 const FunctionProtoType *DeleteFTy = 1485 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1486 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1487 1488 CallArgList Args; 1489 1490 // Pass the pointer as the first argument. 1491 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1492 llvm::Value *DeletePtr 1493 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1494 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1495 1496 // Pass the original requested size as the second argument. 1497 if (DeleteFTy->getNumParams() == 2) { 1498 QualType size_t = DeleteFTy->getParamType(1); 1499 llvm::IntegerType *SizeTy 1500 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1501 1502 CharUnits ElementTypeSize = 1503 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1504 1505 // The size of an element, multiplied by the number of elements. 1506 llvm::Value *Size 1507 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1508 Size = CGF.Builder.CreateMul(Size, NumElements); 1509 1510 // Plus the size of the cookie if applicable. 1511 if (!CookieSize.isZero()) { 1512 llvm::Value *CookieSizeV 1513 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1514 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1515 } 1516 1517 Args.add(RValue::get(Size), size_t); 1518 } 1519 1520 // Emit the call to delete. 1521 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1522 } 1523 }; 1524 } 1525 1526 /// Emit the code for deleting an array of objects. 1527 static void EmitArrayDelete(CodeGenFunction &CGF, 1528 const CXXDeleteExpr *E, 1529 llvm::Value *deletedPtr, 1530 QualType elementType) { 1531 llvm::Value *numElements = nullptr; 1532 llvm::Value *allocatedPtr = nullptr; 1533 CharUnits cookieSize; 1534 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1535 numElements, allocatedPtr, cookieSize); 1536 1537 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1538 1539 // Make sure that we call delete even if one of the dtors throws. 1540 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1541 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1542 allocatedPtr, operatorDelete, 1543 numElements, elementType, 1544 cookieSize); 1545 1546 // Destroy the elements. 1547 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1548 assert(numElements && "no element count for a type with a destructor!"); 1549 1550 llvm::Value *arrayEnd = 1551 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1552 1553 // Note that it is legal to allocate a zero-length array, and we 1554 // can never fold the check away because the length should always 1555 // come from a cookie. 1556 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1557 CGF.getDestroyer(dtorKind), 1558 /*checkZeroLength*/ true, 1559 CGF.needsEHCleanup(dtorKind)); 1560 } 1561 1562 // Pop the cleanup block. 1563 CGF.PopCleanupBlock(); 1564 } 1565 1566 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1567 const Expr *Arg = E->getArgument(); 1568 llvm::Value *Ptr = EmitScalarExpr(Arg); 1569 1570 // Null check the pointer. 1571 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1572 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1573 1574 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1575 1576 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1577 EmitBlock(DeleteNotNull); 1578 1579 // We might be deleting a pointer to array. If so, GEP down to the 1580 // first non-array element. 1581 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1582 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1583 if (DeleteTy->isConstantArrayType()) { 1584 llvm::Value *Zero = Builder.getInt32(0); 1585 SmallVector<llvm::Value*,8> GEP; 1586 1587 GEP.push_back(Zero); // point at the outermost array 1588 1589 // For each layer of array type we're pointing at: 1590 while (const ConstantArrayType *Arr 1591 = getContext().getAsConstantArrayType(DeleteTy)) { 1592 // 1. Unpeel the array type. 1593 DeleteTy = Arr->getElementType(); 1594 1595 // 2. GEP to the first element of the array. 1596 GEP.push_back(Zero); 1597 } 1598 1599 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1600 } 1601 1602 assert(ConvertTypeForMem(DeleteTy) == 1603 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1604 1605 if (E->isArrayForm()) { 1606 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1607 } else { 1608 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1609 E->isGlobalDelete()); 1610 } 1611 1612 EmitBlock(DeleteEnd); 1613 } 1614 1615 static bool isGLValueFromPointerDeref(const Expr *E) { 1616 E = E->IgnoreParens(); 1617 1618 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1619 if (!CE->getSubExpr()->isGLValue()) 1620 return false; 1621 return isGLValueFromPointerDeref(CE->getSubExpr()); 1622 } 1623 1624 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1625 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1626 1627 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1628 if (BO->getOpcode() == BO_Comma) 1629 return isGLValueFromPointerDeref(BO->getRHS()); 1630 1631 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1632 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1633 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1634 1635 // C++11 [expr.sub]p1: 1636 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1637 if (isa<ArraySubscriptExpr>(E)) 1638 return true; 1639 1640 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1641 if (UO->getOpcode() == UO_Deref) 1642 return true; 1643 1644 return false; 1645 } 1646 1647 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1648 llvm::Type *StdTypeInfoPtrTy) { 1649 // Get the vtable pointer. 1650 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1651 1652 // C++ [expr.typeid]p2: 1653 // If the glvalue expression is obtained by applying the unary * operator to 1654 // a pointer and the pointer is a null pointer value, the typeid expression 1655 // throws the std::bad_typeid exception. 1656 // 1657 // However, this paragraph's intent is not clear. We choose a very generous 1658 // interpretation which implores us to consider comma operators, conditional 1659 // operators, parentheses and other such constructs. 1660 QualType SrcRecordTy = E->getType(); 1661 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1662 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1663 llvm::BasicBlock *BadTypeidBlock = 1664 CGF.createBasicBlock("typeid.bad_typeid"); 1665 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1666 1667 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1668 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1669 1670 CGF.EmitBlock(BadTypeidBlock); 1671 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1672 CGF.EmitBlock(EndBlock); 1673 } 1674 1675 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1676 StdTypeInfoPtrTy); 1677 } 1678 1679 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1680 llvm::Type *StdTypeInfoPtrTy = 1681 ConvertType(E->getType())->getPointerTo(); 1682 1683 if (E->isTypeOperand()) { 1684 llvm::Constant *TypeInfo = 1685 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1686 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1687 } 1688 1689 // C++ [expr.typeid]p2: 1690 // When typeid is applied to a glvalue expression whose type is a 1691 // polymorphic class type, the result refers to a std::type_info object 1692 // representing the type of the most derived object (that is, the dynamic 1693 // type) to which the glvalue refers. 1694 if (E->isPotentiallyEvaluated()) 1695 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1696 StdTypeInfoPtrTy); 1697 1698 QualType OperandTy = E->getExprOperand()->getType(); 1699 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1700 StdTypeInfoPtrTy); 1701 } 1702 1703 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1704 QualType DestTy) { 1705 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1706 if (DestTy->isPointerType()) 1707 return llvm::Constant::getNullValue(DestLTy); 1708 1709 /// C++ [expr.dynamic.cast]p9: 1710 /// A failed cast to reference type throws std::bad_cast 1711 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1712 return nullptr; 1713 1714 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1715 return llvm::UndefValue::get(DestLTy); 1716 } 1717 1718 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1719 const CXXDynamicCastExpr *DCE) { 1720 QualType DestTy = DCE->getTypeAsWritten(); 1721 1722 if (DCE->isAlwaysNull()) 1723 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1724 return T; 1725 1726 QualType SrcTy = DCE->getSubExpr()->getType(); 1727 1728 // C++ [expr.dynamic.cast]p7: 1729 // If T is "pointer to cv void," then the result is a pointer to the most 1730 // derived object pointed to by v. 1731 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1732 1733 bool isDynamicCastToVoid; 1734 QualType SrcRecordTy; 1735 QualType DestRecordTy; 1736 if (DestPTy) { 1737 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1738 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1739 DestRecordTy = DestPTy->getPointeeType(); 1740 } else { 1741 isDynamicCastToVoid = false; 1742 SrcRecordTy = SrcTy; 1743 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1744 } 1745 1746 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1747 1748 // C++ [expr.dynamic.cast]p4: 1749 // If the value of v is a null pointer value in the pointer case, the result 1750 // is the null pointer value of type T. 1751 bool ShouldNullCheckSrcValue = 1752 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1753 SrcRecordTy); 1754 1755 llvm::BasicBlock *CastNull = nullptr; 1756 llvm::BasicBlock *CastNotNull = nullptr; 1757 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1758 1759 if (ShouldNullCheckSrcValue) { 1760 CastNull = createBasicBlock("dynamic_cast.null"); 1761 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1762 1763 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1764 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1765 EmitBlock(CastNotNull); 1766 } 1767 1768 if (isDynamicCastToVoid) { 1769 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy, 1770 DestTy); 1771 } else { 1772 assert(DestRecordTy->isRecordType() && 1773 "destination type must be a record type!"); 1774 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy, 1775 DestTy, DestRecordTy, CastEnd); 1776 } 1777 1778 if (ShouldNullCheckSrcValue) { 1779 EmitBranch(CastEnd); 1780 1781 EmitBlock(CastNull); 1782 EmitBranch(CastEnd); 1783 } 1784 1785 EmitBlock(CastEnd); 1786 1787 if (ShouldNullCheckSrcValue) { 1788 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1789 PHI->addIncoming(Value, CastNotNull); 1790 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1791 1792 Value = PHI; 1793 } 1794 1795 return Value; 1796 } 1797 1798 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1799 RunCleanupsScope Scope(*this); 1800 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1801 Slot.getAlignment()); 1802 1803 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1804 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1805 e = E->capture_init_end(); 1806 i != e; ++i, ++CurField) { 1807 // Emit initialization 1808 1809 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1810 ArrayRef<VarDecl *> ArrayIndexes; 1811 if (CurField->getType()->isArrayType()) 1812 ArrayIndexes = E->getCaptureInitIndexVars(i); 1813 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1814 } 1815 } 1816