1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/Support/CallSite.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
28                                           SourceLocation CallLoc,
29                                           llvm::Value *Callee,
30                                           ReturnValueSlot ReturnValue,
31                                           llvm::Value *This,
32                                           llvm::Value *ImplicitParam,
33                                           QualType ImplicitParamTy,
34                                           CallExpr::const_arg_iterator ArgBeg,
35                                           CallExpr::const_arg_iterator ArgEnd) {
36   assert(MD->isInstance() &&
37          "Trying to emit a member call expr on a static method!");
38 
39   // C++11 [class.mfct.non-static]p2:
40   //   If a non-static member function of a class X is called for an object that
41   //   is not of type X, or of a type derived from X, the behavior is undefined.
42   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
43                                             : TCK_MemberCall,
44                 CallLoc, This, getContext().getRecordType(MD->getParent()));
45 
46   CallArgList Args;
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
61 
62   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
63                   Callee, ReturnValue, Args, MD);
64 }
65 
66 static CXXRecordDecl *getCXXRecord(const Expr *E) {
67   QualType T = E->getType();
68   if (const PointerType *PTy = T->getAs<PointerType>())
69     T = PTy->getPointeeType();
70   const RecordType *Ty = T->castAs<RecordType>();
71   return cast<CXXRecordDecl>(Ty->getDecl());
72 }
73 
74 // Note: This function also emit constructor calls to support a MSVC
75 // extensions allowing explicit constructor function call.
76 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
77                                               ReturnValueSlot ReturnValue) {
78   const Expr *callee = CE->getCallee()->IgnoreParens();
79 
80   if (isa<BinaryOperator>(callee))
81     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
82 
83   const MemberExpr *ME = cast<MemberExpr>(callee);
84   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
85 
86   if (MD->isStatic()) {
87     // The method is static, emit it as we would a regular call.
88     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
89     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
90                     CE->getLocStart(), ReturnValue, CE->arg_begin(),
91                     CE->arg_end());
92   }
93 
94   // Compute the object pointer.
95   const Expr *Base = ME->getBase();
96   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
97 
98   const CXXMethodDecl *DevirtualizedMethod = NULL;
99   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
100     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
101     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
102     assert(DevirtualizedMethod);
103     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
104     const Expr *Inner = Base->ignoreParenBaseCasts();
105     if (getCXXRecord(Inner) == DevirtualizedClass)
106       // If the class of the Inner expression is where the dynamic method
107       // is defined, build the this pointer from it.
108       Base = Inner;
109     else if (getCXXRecord(Base) != DevirtualizedClass) {
110       // If the method is defined in a class that is not the best dynamic
111       // one or the one of the full expression, we would have to build
112       // a derived-to-base cast to compute the correct this pointer, but
113       // we don't have support for that yet, so do a virtual call.
114       DevirtualizedMethod = NULL;
115     }
116     // If the return types are not the same, this might be a case where more
117     // code needs to run to compensate for it. For example, the derived
118     // method might return a type that inherits form from the return
119     // type of MD and has a prefix.
120     // For now we just avoid devirtualizing these covariant cases.
121     if (DevirtualizedMethod &&
122         DevirtualizedMethod->getResultType().getCanonicalType() !=
123         MD->getResultType().getCanonicalType())
124       DevirtualizedMethod = NULL;
125   }
126 
127   llvm::Value *This;
128   if (ME->isArrow())
129     This = EmitScalarExpr(Base);
130   else
131     This = EmitLValue(Base).getAddress();
132 
133 
134   if (MD->isTrivial()) {
135     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
136     if (isa<CXXConstructorDecl>(MD) &&
137         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
138       return RValue::get(0);
139 
140     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
141       // We don't like to generate the trivial copy/move assignment operator
142       // when it isn't necessary; just produce the proper effect here.
143       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
144       EmitAggregateAssign(This, RHS, CE->getType());
145       return RValue::get(This);
146     }
147 
148     if (isa<CXXConstructorDecl>(MD) &&
149         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
150       // Trivial move and copy ctor are the same.
151       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
152       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
153                                      CE->arg_begin(), CE->arg_end());
154       return RValue::get(This);
155     }
156     llvm_unreachable("unknown trivial member function");
157   }
158 
159   // Compute the function type we're calling.
160   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
161   const CGFunctionInfo *FInfo = 0;
162   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
163     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
164                                                  Dtor_Complete);
165   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
166     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
167                                                              Ctor_Complete);
168   else
169     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
170 
171   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
172 
173   // C++ [class.virtual]p12:
174   //   Explicit qualification with the scope operator (5.1) suppresses the
175   //   virtual call mechanism.
176   //
177   // We also don't emit a virtual call if the base expression has a record type
178   // because then we know what the type is.
179   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
180   llvm::Value *Callee;
181 
182   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
183     assert(CE->arg_begin() == CE->arg_end() &&
184            "Destructor shouldn't have explicit parameters");
185     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
186     if (UseVirtualCall) {
187       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
188                                                 CE->getExprLoc(), This);
189     } else {
190       if (getLangOpts().AppleKext &&
191           MD->isVirtual() &&
192           ME->hasQualifier())
193         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
194       else if (!DevirtualizedMethod)
195         Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
196       else {
197         const CXXDestructorDecl *DDtor =
198           cast<CXXDestructorDecl>(DevirtualizedMethod);
199         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
200       }
201       EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
202                         /*ImplicitParam=*/0, QualType(), 0, 0);
203     }
204     return RValue::get(0);
205   }
206 
207   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
208     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
209   } else if (UseVirtualCall) {
210     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
211   } else {
212     if (getLangOpts().AppleKext &&
213         MD->isVirtual() &&
214         ME->hasQualifier())
215       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
216     else if (!DevirtualizedMethod)
217       Callee = CGM.GetAddrOfFunction(MD, Ty);
218     else {
219       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
220     }
221   }
222 
223   if (MD->isVirtual())
224     This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, MD, This);
225 
226   return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
227                            /*ImplicitParam=*/0, QualType(),
228                            CE->arg_begin(), CE->arg_end());
229 }
230 
231 RValue
232 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
233                                               ReturnValueSlot ReturnValue) {
234   const BinaryOperator *BO =
235       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
236   const Expr *BaseExpr = BO->getLHS();
237   const Expr *MemFnExpr = BO->getRHS();
238 
239   const MemberPointerType *MPT =
240     MemFnExpr->getType()->castAs<MemberPointerType>();
241 
242   const FunctionProtoType *FPT =
243     MPT->getPointeeType()->castAs<FunctionProtoType>();
244   const CXXRecordDecl *RD =
245     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
246 
247   // Get the member function pointer.
248   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
249 
250   // Emit the 'this' pointer.
251   llvm::Value *This;
252 
253   if (BO->getOpcode() == BO_PtrMemI)
254     This = EmitScalarExpr(BaseExpr);
255   else
256     This = EmitLValue(BaseExpr).getAddress();
257 
258   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
259                 QualType(MPT->getClass(), 0));
260 
261   // Ask the ABI to load the callee.  Note that This is modified.
262   llvm::Value *Callee =
263     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
264 
265   CallArgList Args;
266 
267   QualType ThisType =
268     getContext().getPointerType(getContext().getTagDeclType(RD));
269 
270   // Push the this ptr.
271   Args.add(RValue::get(This), ThisType);
272 
273   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
274 
275   // And the rest of the call args
276   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
277   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
278                   Callee, ReturnValue, Args);
279 }
280 
281 RValue
282 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
283                                                const CXXMethodDecl *MD,
284                                                ReturnValueSlot ReturnValue) {
285   assert(MD->isInstance() &&
286          "Trying to emit a member call expr on a static method!");
287   LValue LV = EmitLValue(E->getArg(0));
288   llvm::Value *This = LV.getAddress();
289 
290   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
291       MD->isTrivial()) {
292     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
293     QualType Ty = E->getType();
294     EmitAggregateAssign(This, Src, Ty);
295     return RValue::get(This);
296   }
297 
298   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
299   return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
300                            /*ImplicitParam=*/0, QualType(),
301                            E->arg_begin() + 1, E->arg_end());
302 }
303 
304 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
305                                                ReturnValueSlot ReturnValue) {
306   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
307 }
308 
309 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
310                                             llvm::Value *DestPtr,
311                                             const CXXRecordDecl *Base) {
312   if (Base->isEmpty())
313     return;
314 
315   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
316 
317   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
318   CharUnits Size = Layout.getNonVirtualSize();
319   CharUnits Align = Layout.getNonVirtualAlign();
320 
321   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
322 
323   // If the type contains a pointer to data member we can't memset it to zero.
324   // Instead, create a null constant and copy it to the destination.
325   // TODO: there are other patterns besides zero that we can usefully memset,
326   // like -1, which happens to be the pattern used by member-pointers.
327   // TODO: isZeroInitializable can be over-conservative in the case where a
328   // virtual base contains a member pointer.
329   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
330     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
331 
332     llvm::GlobalVariable *NullVariable =
333       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
334                                /*isConstant=*/true,
335                                llvm::GlobalVariable::PrivateLinkage,
336                                NullConstant, Twine());
337     NullVariable->setAlignment(Align.getQuantity());
338     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
339 
340     // Get and call the appropriate llvm.memcpy overload.
341     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
342     return;
343   }
344 
345   // Otherwise, just memset the whole thing to zero.  This is legal
346   // because in LLVM, all default initializers (other than the ones we just
347   // handled above) are guaranteed to have a bit pattern of all zeros.
348   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
349                            Align.getQuantity());
350 }
351 
352 void
353 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
354                                       AggValueSlot Dest) {
355   assert(!Dest.isIgnored() && "Must have a destination!");
356   const CXXConstructorDecl *CD = E->getConstructor();
357 
358   // If we require zero initialization before (or instead of) calling the
359   // constructor, as can be the case with a non-user-provided default
360   // constructor, emit the zero initialization now, unless destination is
361   // already zeroed.
362   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
363     switch (E->getConstructionKind()) {
364     case CXXConstructExpr::CK_Delegating:
365     case CXXConstructExpr::CK_Complete:
366       EmitNullInitialization(Dest.getAddr(), E->getType());
367       break;
368     case CXXConstructExpr::CK_VirtualBase:
369     case CXXConstructExpr::CK_NonVirtualBase:
370       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
371       break;
372     }
373   }
374 
375   // If this is a call to a trivial default constructor, do nothing.
376   if (CD->isTrivial() && CD->isDefaultConstructor())
377     return;
378 
379   // Elide the constructor if we're constructing from a temporary.
380   // The temporary check is required because Sema sets this on NRVO
381   // returns.
382   if (getLangOpts().ElideConstructors && E->isElidable()) {
383     assert(getContext().hasSameUnqualifiedType(E->getType(),
384                                                E->getArg(0)->getType()));
385     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
386       EmitAggExpr(E->getArg(0), Dest);
387       return;
388     }
389   }
390 
391   if (const ConstantArrayType *arrayType
392         = getContext().getAsConstantArrayType(E->getType())) {
393     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
394                                E->arg_begin(), E->arg_end());
395   } else {
396     CXXCtorType Type = Ctor_Complete;
397     bool ForVirtualBase = false;
398     bool Delegating = false;
399 
400     switch (E->getConstructionKind()) {
401      case CXXConstructExpr::CK_Delegating:
402       // We should be emitting a constructor; GlobalDecl will assert this
403       Type = CurGD.getCtorType();
404       Delegating = true;
405       break;
406 
407      case CXXConstructExpr::CK_Complete:
408       Type = Ctor_Complete;
409       break;
410 
411      case CXXConstructExpr::CK_VirtualBase:
412       ForVirtualBase = true;
413       // fall-through
414 
415      case CXXConstructExpr::CK_NonVirtualBase:
416       Type = Ctor_Base;
417     }
418 
419     // Call the constructor.
420     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
421                            E->arg_begin(), E->arg_end());
422   }
423 }
424 
425 void
426 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
427                                             llvm::Value *Src,
428                                             const Expr *Exp) {
429   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
430     Exp = E->getSubExpr();
431   assert(isa<CXXConstructExpr>(Exp) &&
432          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
433   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
434   const CXXConstructorDecl *CD = E->getConstructor();
435   RunCleanupsScope Scope(*this);
436 
437   // If we require zero initialization before (or instead of) calling the
438   // constructor, as can be the case with a non-user-provided default
439   // constructor, emit the zero initialization now.
440   // FIXME. Do I still need this for a copy ctor synthesis?
441   if (E->requiresZeroInitialization())
442     EmitNullInitialization(Dest, E->getType());
443 
444   assert(!getContext().getAsConstantArrayType(E->getType())
445          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
446   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end());
447 }
448 
449 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
450                                         const CXXNewExpr *E) {
451   if (!E->isArray())
452     return CharUnits::Zero();
453 
454   // No cookie is required if the operator new[] being used is the
455   // reserved placement operator new[].
456   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
457     return CharUnits::Zero();
458 
459   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
460 }
461 
462 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
463                                         const CXXNewExpr *e,
464                                         unsigned minElements,
465                                         llvm::Value *&numElements,
466                                         llvm::Value *&sizeWithoutCookie) {
467   QualType type = e->getAllocatedType();
468 
469   if (!e->isArray()) {
470     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
471     sizeWithoutCookie
472       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
473     return sizeWithoutCookie;
474   }
475 
476   // The width of size_t.
477   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
478 
479   // Figure out the cookie size.
480   llvm::APInt cookieSize(sizeWidth,
481                          CalculateCookiePadding(CGF, e).getQuantity());
482 
483   // Emit the array size expression.
484   // We multiply the size of all dimensions for NumElements.
485   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
486   numElements = CGF.EmitScalarExpr(e->getArraySize());
487   assert(isa<llvm::IntegerType>(numElements->getType()));
488 
489   // The number of elements can be have an arbitrary integer type;
490   // essentially, we need to multiply it by a constant factor, add a
491   // cookie size, and verify that the result is representable as a
492   // size_t.  That's just a gloss, though, and it's wrong in one
493   // important way: if the count is negative, it's an error even if
494   // the cookie size would bring the total size >= 0.
495   bool isSigned
496     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
497   llvm::IntegerType *numElementsType
498     = cast<llvm::IntegerType>(numElements->getType());
499   unsigned numElementsWidth = numElementsType->getBitWidth();
500 
501   // Compute the constant factor.
502   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
503   while (const ConstantArrayType *CAT
504              = CGF.getContext().getAsConstantArrayType(type)) {
505     type = CAT->getElementType();
506     arraySizeMultiplier *= CAT->getSize();
507   }
508 
509   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
510   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
511   typeSizeMultiplier *= arraySizeMultiplier;
512 
513   // This will be a size_t.
514   llvm::Value *size;
515 
516   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
517   // Don't bloat the -O0 code.
518   if (llvm::ConstantInt *numElementsC =
519         dyn_cast<llvm::ConstantInt>(numElements)) {
520     const llvm::APInt &count = numElementsC->getValue();
521 
522     bool hasAnyOverflow = false;
523 
524     // If 'count' was a negative number, it's an overflow.
525     if (isSigned && count.isNegative())
526       hasAnyOverflow = true;
527 
528     // We want to do all this arithmetic in size_t.  If numElements is
529     // wider than that, check whether it's already too big, and if so,
530     // overflow.
531     else if (numElementsWidth > sizeWidth &&
532              numElementsWidth - sizeWidth > count.countLeadingZeros())
533       hasAnyOverflow = true;
534 
535     // Okay, compute a count at the right width.
536     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
537 
538     // If there is a brace-initializer, we cannot allocate fewer elements than
539     // there are initializers. If we do, that's treated like an overflow.
540     if (adjustedCount.ult(minElements))
541       hasAnyOverflow = true;
542 
543     // Scale numElements by that.  This might overflow, but we don't
544     // care because it only overflows if allocationSize does, too, and
545     // if that overflows then we shouldn't use this.
546     numElements = llvm::ConstantInt::get(CGF.SizeTy,
547                                          adjustedCount * arraySizeMultiplier);
548 
549     // Compute the size before cookie, and track whether it overflowed.
550     bool overflow;
551     llvm::APInt allocationSize
552       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
553     hasAnyOverflow |= overflow;
554 
555     // Add in the cookie, and check whether it's overflowed.
556     if (cookieSize != 0) {
557       // Save the current size without a cookie.  This shouldn't be
558       // used if there was overflow.
559       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
560 
561       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
562       hasAnyOverflow |= overflow;
563     }
564 
565     // On overflow, produce a -1 so operator new will fail.
566     if (hasAnyOverflow) {
567       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
568     } else {
569       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
570     }
571 
572   // Otherwise, we might need to use the overflow intrinsics.
573   } else {
574     // There are up to five conditions we need to test for:
575     // 1) if isSigned, we need to check whether numElements is negative;
576     // 2) if numElementsWidth > sizeWidth, we need to check whether
577     //   numElements is larger than something representable in size_t;
578     // 3) if minElements > 0, we need to check whether numElements is smaller
579     //    than that.
580     // 4) we need to compute
581     //      sizeWithoutCookie := numElements * typeSizeMultiplier
582     //    and check whether it overflows; and
583     // 5) if we need a cookie, we need to compute
584     //      size := sizeWithoutCookie + cookieSize
585     //    and check whether it overflows.
586 
587     llvm::Value *hasOverflow = 0;
588 
589     // If numElementsWidth > sizeWidth, then one way or another, we're
590     // going to have to do a comparison for (2), and this happens to
591     // take care of (1), too.
592     if (numElementsWidth > sizeWidth) {
593       llvm::APInt threshold(numElementsWidth, 1);
594       threshold <<= sizeWidth;
595 
596       llvm::Value *thresholdV
597         = llvm::ConstantInt::get(numElementsType, threshold);
598 
599       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
600       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
601 
602     // Otherwise, if we're signed, we want to sext up to size_t.
603     } else if (isSigned) {
604       if (numElementsWidth < sizeWidth)
605         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
606 
607       // If there's a non-1 type size multiplier, then we can do the
608       // signedness check at the same time as we do the multiply
609       // because a negative number times anything will cause an
610       // unsigned overflow.  Otherwise, we have to do it here. But at least
611       // in this case, we can subsume the >= minElements check.
612       if (typeSizeMultiplier == 1)
613         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
614                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
615 
616     // Otherwise, zext up to size_t if necessary.
617     } else if (numElementsWidth < sizeWidth) {
618       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
619     }
620 
621     assert(numElements->getType() == CGF.SizeTy);
622 
623     if (minElements) {
624       // Don't allow allocation of fewer elements than we have initializers.
625       if (!hasOverflow) {
626         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
627                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
628       } else if (numElementsWidth > sizeWidth) {
629         // The other existing overflow subsumes this check.
630         // We do an unsigned comparison, since any signed value < -1 is
631         // taken care of either above or below.
632         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
633                           CGF.Builder.CreateICmpULT(numElements,
634                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
635       }
636     }
637 
638     size = numElements;
639 
640     // Multiply by the type size if necessary.  This multiplier
641     // includes all the factors for nested arrays.
642     //
643     // This step also causes numElements to be scaled up by the
644     // nested-array factor if necessary.  Overflow on this computation
645     // can be ignored because the result shouldn't be used if
646     // allocation fails.
647     if (typeSizeMultiplier != 1) {
648       llvm::Value *umul_with_overflow
649         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
650 
651       llvm::Value *tsmV =
652         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
653       llvm::Value *result =
654         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
655 
656       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
657       if (hasOverflow)
658         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
659       else
660         hasOverflow = overflowed;
661 
662       size = CGF.Builder.CreateExtractValue(result, 0);
663 
664       // Also scale up numElements by the array size multiplier.
665       if (arraySizeMultiplier != 1) {
666         // If the base element type size is 1, then we can re-use the
667         // multiply we just did.
668         if (typeSize.isOne()) {
669           assert(arraySizeMultiplier == typeSizeMultiplier);
670           numElements = size;
671 
672         // Otherwise we need a separate multiply.
673         } else {
674           llvm::Value *asmV =
675             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
676           numElements = CGF.Builder.CreateMul(numElements, asmV);
677         }
678       }
679     } else {
680       // numElements doesn't need to be scaled.
681       assert(arraySizeMultiplier == 1);
682     }
683 
684     // Add in the cookie size if necessary.
685     if (cookieSize != 0) {
686       sizeWithoutCookie = size;
687 
688       llvm::Value *uadd_with_overflow
689         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
690 
691       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
692       llvm::Value *result =
693         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
694 
695       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
696       if (hasOverflow)
697         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
698       else
699         hasOverflow = overflowed;
700 
701       size = CGF.Builder.CreateExtractValue(result, 0);
702     }
703 
704     // If we had any possibility of dynamic overflow, make a select to
705     // overwrite 'size' with an all-ones value, which should cause
706     // operator new to throw.
707     if (hasOverflow)
708       size = CGF.Builder.CreateSelect(hasOverflow,
709                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
710                                       size);
711   }
712 
713   if (cookieSize == 0)
714     sizeWithoutCookie = size;
715   else
716     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
717 
718   return size;
719 }
720 
721 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
722                                     QualType AllocType, llvm::Value *NewPtr) {
723   // FIXME: Refactor with EmitExprAsInit.
724   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
725   switch (CGF.getEvaluationKind(AllocType)) {
726   case TEK_Scalar:
727     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
728                                                    Alignment),
729                        false);
730     return;
731   case TEK_Complex:
732     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
733                                                            Alignment),
734                                   /*isInit*/ true);
735     return;
736   case TEK_Aggregate: {
737     AggValueSlot Slot
738       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
739                               AggValueSlot::IsDestructed,
740                               AggValueSlot::DoesNotNeedGCBarriers,
741                               AggValueSlot::IsNotAliased);
742     CGF.EmitAggExpr(Init, Slot);
743     return;
744   }
745   }
746   llvm_unreachable("bad evaluation kind");
747 }
748 
749 void
750 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
751                                          QualType elementType,
752                                          llvm::Value *beginPtr,
753                                          llvm::Value *numElements) {
754   if (!E->hasInitializer())
755     return; // We have a POD type.
756 
757   llvm::Value *explicitPtr = beginPtr;
758   // Find the end of the array, hoisted out of the loop.
759   llvm::Value *endPtr =
760     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
761 
762   unsigned initializerElements = 0;
763 
764   const Expr *Init = E->getInitializer();
765   llvm::AllocaInst *endOfInit = 0;
766   QualType::DestructionKind dtorKind = elementType.isDestructedType();
767   EHScopeStack::stable_iterator cleanup;
768   llvm::Instruction *cleanupDominator = 0;
769 
770   // If the initializer is an initializer list, first do the explicit elements.
771   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
772     initializerElements = ILE->getNumInits();
773 
774     // If this is a multi-dimensional array new, we will initialize multiple
775     // elements with each init list element.
776     QualType AllocType = E->getAllocatedType();
777     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
778             AllocType->getAsArrayTypeUnsafe())) {
779       unsigned AS = explicitPtr->getType()->getPointerAddressSpace();
780       llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
781       explicitPtr = Builder.CreateBitCast(explicitPtr, AllocPtrTy);
782       initializerElements *= getContext().getConstantArrayElementCount(CAT);
783     }
784 
785     // Enter a partial-destruction cleanup if necessary.
786     if (needsEHCleanup(dtorKind)) {
787       // In principle we could tell the cleanup where we are more
788       // directly, but the control flow can get so varied here that it
789       // would actually be quite complex.  Therefore we go through an
790       // alloca.
791       endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
792       cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
793       pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
794                                        getDestroyer(dtorKind));
795       cleanup = EHStack.stable_begin();
796     }
797 
798     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
799       // Tell the cleanup that it needs to destroy up to this
800       // element.  TODO: some of these stores can be trivially
801       // observed to be unnecessary.
802       if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
803       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
804                               ILE->getInit(i)->getType(), explicitPtr);
805       explicitPtr = Builder.CreateConstGEP1_32(explicitPtr, 1,
806                                                "array.exp.next");
807     }
808 
809     // The remaining elements are filled with the array filler expression.
810     Init = ILE->getArrayFiller();
811 
812     explicitPtr = Builder.CreateBitCast(explicitPtr, beginPtr->getType());
813   }
814 
815   // Create the continuation block.
816   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
817 
818   // If the number of elements isn't constant, we have to now check if there is
819   // anything left to initialize.
820   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
821     // If all elements have already been initialized, skip the whole loop.
822     if (constNum->getZExtValue() <= initializerElements) {
823       // If there was a cleanup, deactivate it.
824       if (cleanupDominator)
825         DeactivateCleanupBlock(cleanup, cleanupDominator);
826       return;
827     }
828   } else {
829     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
830     llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
831                                                 "array.isempty");
832     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
833     EmitBlock(nonEmptyBB);
834   }
835 
836   // Enter the loop.
837   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
838   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
839 
840   EmitBlock(loopBB);
841 
842   // Set up the current-element phi.
843   llvm::PHINode *curPtr =
844     Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
845   curPtr->addIncoming(explicitPtr, entryBB);
846 
847   // Store the new cleanup position for irregular cleanups.
848   if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
849 
850   // Enter a partial-destruction cleanup if necessary.
851   if (!cleanupDominator && needsEHCleanup(dtorKind)) {
852     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
853                                    getDestroyer(dtorKind));
854     cleanup = EHStack.stable_begin();
855     cleanupDominator = Builder.CreateUnreachable();
856   }
857 
858   // Emit the initializer into this element.
859   StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
860 
861   // Leave the cleanup if we entered one.
862   if (cleanupDominator) {
863     DeactivateCleanupBlock(cleanup, cleanupDominator);
864     cleanupDominator->eraseFromParent();
865   }
866 
867   // Advance to the next element.
868   llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
869 
870   // Check whether we've gotten to the end of the array and, if so,
871   // exit the loop.
872   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
873   Builder.CreateCondBr(isEnd, contBB, loopBB);
874   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
875 
876   EmitBlock(contBB);
877 }
878 
879 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
880                            llvm::Value *NewPtr, llvm::Value *Size) {
881   CGF.EmitCastToVoidPtr(NewPtr);
882   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
883   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
884                            Alignment.getQuantity(), false);
885 }
886 
887 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
888                                QualType ElementType,
889                                llvm::Value *NewPtr,
890                                llvm::Value *NumElements,
891                                llvm::Value *AllocSizeWithoutCookie) {
892   const Expr *Init = E->getInitializer();
893   if (E->isArray()) {
894     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
895       CXXConstructorDecl *Ctor = CCE->getConstructor();
896       if (Ctor->isTrivial()) {
897         // If new expression did not specify value-initialization, then there
898         // is no initialization.
899         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
900           return;
901 
902         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
903           // Optimization: since zero initialization will just set the memory
904           // to all zeroes, generate a single memset to do it in one shot.
905           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
906           return;
907         }
908       }
909 
910       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
911                                      CCE->arg_begin(),  CCE->arg_end(),
912                                      CCE->requiresZeroInitialization());
913       return;
914     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
915                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
916       // Optimization: since zero initialization will just set the memory
917       // to all zeroes, generate a single memset to do it in one shot.
918       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
919       return;
920     }
921     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
922     return;
923   }
924 
925   if (!Init)
926     return;
927 
928   StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
929 }
930 
931 /// Emit a call to an operator new or operator delete function, as implicitly
932 /// created by new-expressions and delete-expressions.
933 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
934                                 const FunctionDecl *Callee,
935                                 const FunctionProtoType *CalleeType,
936                                 const CallArgList &Args) {
937   llvm::Instruction *CallOrInvoke;
938   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
939   RValue RV =
940       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
941                    CalleeAddr, ReturnValueSlot(), Args,
942                    Callee, &CallOrInvoke);
943 
944   /// C++1y [expr.new]p10:
945   ///   [In a new-expression,] an implementation is allowed to omit a call
946   ///   to a replaceable global allocation function.
947   ///
948   /// We model such elidable calls with the 'builtin' attribute.
949   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
950   if (Callee->isReplaceableGlobalAllocationFunction() &&
951       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
952     // FIXME: Add addAttribute to CallSite.
953     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
954       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
955                        llvm::Attribute::Builtin);
956     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
957       II->addAttribute(llvm::AttributeSet::FunctionIndex,
958                        llvm::Attribute::Builtin);
959     else
960       llvm_unreachable("unexpected kind of call instruction");
961   }
962 
963   return RV;
964 }
965 
966 namespace {
967   /// A cleanup to call the given 'operator delete' function upon
968   /// abnormal exit from a new expression.
969   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
970     size_t NumPlacementArgs;
971     const FunctionDecl *OperatorDelete;
972     llvm::Value *Ptr;
973     llvm::Value *AllocSize;
974 
975     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
976 
977   public:
978     static size_t getExtraSize(size_t NumPlacementArgs) {
979       return NumPlacementArgs * sizeof(RValue);
980     }
981 
982     CallDeleteDuringNew(size_t NumPlacementArgs,
983                         const FunctionDecl *OperatorDelete,
984                         llvm::Value *Ptr,
985                         llvm::Value *AllocSize)
986       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
987         Ptr(Ptr), AllocSize(AllocSize) {}
988 
989     void setPlacementArg(unsigned I, RValue Arg) {
990       assert(I < NumPlacementArgs && "index out of range");
991       getPlacementArgs()[I] = Arg;
992     }
993 
994     void Emit(CodeGenFunction &CGF, Flags flags) {
995       const FunctionProtoType *FPT
996         = OperatorDelete->getType()->getAs<FunctionProtoType>();
997       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
998              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
999 
1000       CallArgList DeleteArgs;
1001 
1002       // The first argument is always a void*.
1003       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1004       DeleteArgs.add(RValue::get(Ptr), *AI++);
1005 
1006       // A member 'operator delete' can take an extra 'size_t' argument.
1007       if (FPT->getNumArgs() == NumPlacementArgs + 2)
1008         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1009 
1010       // Pass the rest of the arguments, which must match exactly.
1011       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1012         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1013 
1014       // Call 'operator delete'.
1015       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1016     }
1017   };
1018 
1019   /// A cleanup to call the given 'operator delete' function upon
1020   /// abnormal exit from a new expression when the new expression is
1021   /// conditional.
1022   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1023     size_t NumPlacementArgs;
1024     const FunctionDecl *OperatorDelete;
1025     DominatingValue<RValue>::saved_type Ptr;
1026     DominatingValue<RValue>::saved_type AllocSize;
1027 
1028     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1029       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1030     }
1031 
1032   public:
1033     static size_t getExtraSize(size_t NumPlacementArgs) {
1034       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1035     }
1036 
1037     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1038                                    const FunctionDecl *OperatorDelete,
1039                                    DominatingValue<RValue>::saved_type Ptr,
1040                               DominatingValue<RValue>::saved_type AllocSize)
1041       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1042         Ptr(Ptr), AllocSize(AllocSize) {}
1043 
1044     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1045       assert(I < NumPlacementArgs && "index out of range");
1046       getPlacementArgs()[I] = Arg;
1047     }
1048 
1049     void Emit(CodeGenFunction &CGF, Flags flags) {
1050       const FunctionProtoType *FPT
1051         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1052       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1053              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1054 
1055       CallArgList DeleteArgs;
1056 
1057       // The first argument is always a void*.
1058       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1059       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1060 
1061       // A member 'operator delete' can take an extra 'size_t' argument.
1062       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1063         RValue RV = AllocSize.restore(CGF);
1064         DeleteArgs.add(RV, *AI++);
1065       }
1066 
1067       // Pass the rest of the arguments, which must match exactly.
1068       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1069         RValue RV = getPlacementArgs()[I].restore(CGF);
1070         DeleteArgs.add(RV, *AI++);
1071       }
1072 
1073       // Call 'operator delete'.
1074       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1075     }
1076   };
1077 }
1078 
1079 /// Enter a cleanup to call 'operator delete' if the initializer in a
1080 /// new-expression throws.
1081 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1082                                   const CXXNewExpr *E,
1083                                   llvm::Value *NewPtr,
1084                                   llvm::Value *AllocSize,
1085                                   const CallArgList &NewArgs) {
1086   // If we're not inside a conditional branch, then the cleanup will
1087   // dominate and we can do the easier (and more efficient) thing.
1088   if (!CGF.isInConditionalBranch()) {
1089     CallDeleteDuringNew *Cleanup = CGF.EHStack
1090       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1091                                                  E->getNumPlacementArgs(),
1092                                                  E->getOperatorDelete(),
1093                                                  NewPtr, AllocSize);
1094     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1095       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1096 
1097     return;
1098   }
1099 
1100   // Otherwise, we need to save all this stuff.
1101   DominatingValue<RValue>::saved_type SavedNewPtr =
1102     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1103   DominatingValue<RValue>::saved_type SavedAllocSize =
1104     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1105 
1106   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1107     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1108                                                  E->getNumPlacementArgs(),
1109                                                  E->getOperatorDelete(),
1110                                                  SavedNewPtr,
1111                                                  SavedAllocSize);
1112   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1113     Cleanup->setPlacementArg(I,
1114                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1115 
1116   CGF.initFullExprCleanup();
1117 }
1118 
1119 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1120   // The element type being allocated.
1121   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1122 
1123   // 1. Build a call to the allocation function.
1124   FunctionDecl *allocator = E->getOperatorNew();
1125   const FunctionProtoType *allocatorType =
1126     allocator->getType()->castAs<FunctionProtoType>();
1127 
1128   CallArgList allocatorArgs;
1129 
1130   // The allocation size is the first argument.
1131   QualType sizeType = getContext().getSizeType();
1132 
1133   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1134   unsigned minElements = 0;
1135   if (E->isArray() && E->hasInitializer()) {
1136     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1137       minElements = ILE->getNumInits();
1138   }
1139 
1140   llvm::Value *numElements = 0;
1141   llvm::Value *allocSizeWithoutCookie = 0;
1142   llvm::Value *allocSize =
1143     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1144                         allocSizeWithoutCookie);
1145 
1146   allocatorArgs.add(RValue::get(allocSize), sizeType);
1147 
1148   // We start at 1 here because the first argument (the allocation size)
1149   // has already been emitted.
1150   EmitCallArgs(allocatorArgs, allocatorType->isVariadic(),
1151                allocatorType->arg_type_begin() + 1,
1152                allocatorType->arg_type_end(), E->placement_arg_begin(),
1153                E->placement_arg_end());
1154 
1155   // Emit the allocation call.  If the allocator is a global placement
1156   // operator, just "inline" it directly.
1157   RValue RV;
1158   if (allocator->isReservedGlobalPlacementOperator()) {
1159     assert(allocatorArgs.size() == 2);
1160     RV = allocatorArgs[1].RV;
1161     // TODO: kill any unnecessary computations done for the size
1162     // argument.
1163   } else {
1164     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1165   }
1166 
1167   // Emit a null check on the allocation result if the allocation
1168   // function is allowed to return null (because it has a non-throwing
1169   // exception spec; for this part, we inline
1170   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1171   // interesting initializer.
1172   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1173     (!allocType.isPODType(getContext()) || E->hasInitializer());
1174 
1175   llvm::BasicBlock *nullCheckBB = 0;
1176   llvm::BasicBlock *contBB = 0;
1177 
1178   llvm::Value *allocation = RV.getScalarVal();
1179   unsigned AS = allocation->getType()->getPointerAddressSpace();
1180 
1181   // The null-check means that the initializer is conditionally
1182   // evaluated.
1183   ConditionalEvaluation conditional(*this);
1184 
1185   if (nullCheck) {
1186     conditional.begin(*this);
1187 
1188     nullCheckBB = Builder.GetInsertBlock();
1189     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1190     contBB = createBasicBlock("new.cont");
1191 
1192     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1193     Builder.CreateCondBr(isNull, contBB, notNullBB);
1194     EmitBlock(notNullBB);
1195   }
1196 
1197   // If there's an operator delete, enter a cleanup to call it if an
1198   // exception is thrown.
1199   EHScopeStack::stable_iterator operatorDeleteCleanup;
1200   llvm::Instruction *cleanupDominator = 0;
1201   if (E->getOperatorDelete() &&
1202       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1203     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1204     operatorDeleteCleanup = EHStack.stable_begin();
1205     cleanupDominator = Builder.CreateUnreachable();
1206   }
1207 
1208   assert((allocSize == allocSizeWithoutCookie) ==
1209          CalculateCookiePadding(*this, E).isZero());
1210   if (allocSize != allocSizeWithoutCookie) {
1211     assert(E->isArray());
1212     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1213                                                        numElements,
1214                                                        E, allocType);
1215   }
1216 
1217   llvm::Type *elementPtrTy
1218     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1219   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1220 
1221   EmitNewInitializer(*this, E, allocType, result, numElements,
1222                      allocSizeWithoutCookie);
1223   if (E->isArray()) {
1224     // NewPtr is a pointer to the base element type.  If we're
1225     // allocating an array of arrays, we'll need to cast back to the
1226     // array pointer type.
1227     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1228     if (result->getType() != resultType)
1229       result = Builder.CreateBitCast(result, resultType);
1230   }
1231 
1232   // Deactivate the 'operator delete' cleanup if we finished
1233   // initialization.
1234   if (operatorDeleteCleanup.isValid()) {
1235     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1236     cleanupDominator->eraseFromParent();
1237   }
1238 
1239   if (nullCheck) {
1240     conditional.end(*this);
1241 
1242     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1243     EmitBlock(contBB);
1244 
1245     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1246     PHI->addIncoming(result, notNullBB);
1247     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1248                      nullCheckBB);
1249 
1250     result = PHI;
1251   }
1252 
1253   return result;
1254 }
1255 
1256 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1257                                      llvm::Value *Ptr,
1258                                      QualType DeleteTy) {
1259   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1260 
1261   const FunctionProtoType *DeleteFTy =
1262     DeleteFD->getType()->getAs<FunctionProtoType>();
1263 
1264   CallArgList DeleteArgs;
1265 
1266   // Check if we need to pass the size to the delete operator.
1267   llvm::Value *Size = 0;
1268   QualType SizeTy;
1269   if (DeleteFTy->getNumArgs() == 2) {
1270     SizeTy = DeleteFTy->getArgType(1);
1271     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1272     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1273                                   DeleteTypeSize.getQuantity());
1274   }
1275 
1276   QualType ArgTy = DeleteFTy->getArgType(0);
1277   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1278   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1279 
1280   if (Size)
1281     DeleteArgs.add(RValue::get(Size), SizeTy);
1282 
1283   // Emit the call to delete.
1284   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1285 }
1286 
1287 namespace {
1288   /// Calls the given 'operator delete' on a single object.
1289   struct CallObjectDelete : EHScopeStack::Cleanup {
1290     llvm::Value *Ptr;
1291     const FunctionDecl *OperatorDelete;
1292     QualType ElementType;
1293 
1294     CallObjectDelete(llvm::Value *Ptr,
1295                      const FunctionDecl *OperatorDelete,
1296                      QualType ElementType)
1297       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1298 
1299     void Emit(CodeGenFunction &CGF, Flags flags) {
1300       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1301     }
1302   };
1303 }
1304 
1305 /// Emit the code for deleting a single object.
1306 static void EmitObjectDelete(CodeGenFunction &CGF,
1307                              const FunctionDecl *OperatorDelete,
1308                              llvm::Value *Ptr,
1309                              QualType ElementType,
1310                              bool UseGlobalDelete) {
1311   // Find the destructor for the type, if applicable.  If the
1312   // destructor is virtual, we'll just emit the vcall and return.
1313   const CXXDestructorDecl *Dtor = 0;
1314   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1315     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1316     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1317       Dtor = RD->getDestructor();
1318 
1319       if (Dtor->isVirtual()) {
1320         if (UseGlobalDelete) {
1321           // If we're supposed to call the global delete, make sure we do so
1322           // even if the destructor throws.
1323 
1324           // Derive the complete-object pointer, which is what we need
1325           // to pass to the deallocation function.
1326           llvm::Value *completePtr =
1327             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1328 
1329           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1330                                                     completePtr, OperatorDelete,
1331                                                     ElementType);
1332         }
1333 
1334         // FIXME: Provide a source location here.
1335         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1336         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
1337                                                       SourceLocation(), Ptr);
1338 
1339         if (UseGlobalDelete) {
1340           CGF.PopCleanupBlock();
1341         }
1342 
1343         return;
1344       }
1345     }
1346   }
1347 
1348   // Make sure that we call delete even if the dtor throws.
1349   // This doesn't have to a conditional cleanup because we're going
1350   // to pop it off in a second.
1351   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1352                                             Ptr, OperatorDelete, ElementType);
1353 
1354   if (Dtor)
1355     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1356                               /*ForVirtualBase=*/false,
1357                               /*Delegating=*/false,
1358                               Ptr);
1359   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1360            ElementType->isObjCLifetimeType()) {
1361     switch (ElementType.getObjCLifetime()) {
1362     case Qualifiers::OCL_None:
1363     case Qualifiers::OCL_ExplicitNone:
1364     case Qualifiers::OCL_Autoreleasing:
1365       break;
1366 
1367     case Qualifiers::OCL_Strong: {
1368       // Load the pointer value.
1369       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1370                                              ElementType.isVolatileQualified());
1371 
1372       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1373       break;
1374     }
1375 
1376     case Qualifiers::OCL_Weak:
1377       CGF.EmitARCDestroyWeak(Ptr);
1378       break;
1379     }
1380   }
1381 
1382   CGF.PopCleanupBlock();
1383 }
1384 
1385 namespace {
1386   /// Calls the given 'operator delete' on an array of objects.
1387   struct CallArrayDelete : EHScopeStack::Cleanup {
1388     llvm::Value *Ptr;
1389     const FunctionDecl *OperatorDelete;
1390     llvm::Value *NumElements;
1391     QualType ElementType;
1392     CharUnits CookieSize;
1393 
1394     CallArrayDelete(llvm::Value *Ptr,
1395                     const FunctionDecl *OperatorDelete,
1396                     llvm::Value *NumElements,
1397                     QualType ElementType,
1398                     CharUnits CookieSize)
1399       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1400         ElementType(ElementType), CookieSize(CookieSize) {}
1401 
1402     void Emit(CodeGenFunction &CGF, Flags flags) {
1403       const FunctionProtoType *DeleteFTy =
1404         OperatorDelete->getType()->getAs<FunctionProtoType>();
1405       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1406 
1407       CallArgList Args;
1408 
1409       // Pass the pointer as the first argument.
1410       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1411       llvm::Value *DeletePtr
1412         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1413       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1414 
1415       // Pass the original requested size as the second argument.
1416       if (DeleteFTy->getNumArgs() == 2) {
1417         QualType size_t = DeleteFTy->getArgType(1);
1418         llvm::IntegerType *SizeTy
1419           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1420 
1421         CharUnits ElementTypeSize =
1422           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1423 
1424         // The size of an element, multiplied by the number of elements.
1425         llvm::Value *Size
1426           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1427         Size = CGF.Builder.CreateMul(Size, NumElements);
1428 
1429         // Plus the size of the cookie if applicable.
1430         if (!CookieSize.isZero()) {
1431           llvm::Value *CookieSizeV
1432             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1433           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1434         }
1435 
1436         Args.add(RValue::get(Size), size_t);
1437       }
1438 
1439       // Emit the call to delete.
1440       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1441     }
1442   };
1443 }
1444 
1445 /// Emit the code for deleting an array of objects.
1446 static void EmitArrayDelete(CodeGenFunction &CGF,
1447                             const CXXDeleteExpr *E,
1448                             llvm::Value *deletedPtr,
1449                             QualType elementType) {
1450   llvm::Value *numElements = 0;
1451   llvm::Value *allocatedPtr = 0;
1452   CharUnits cookieSize;
1453   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1454                                       numElements, allocatedPtr, cookieSize);
1455 
1456   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1457 
1458   // Make sure that we call delete even if one of the dtors throws.
1459   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1460   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1461                                            allocatedPtr, operatorDelete,
1462                                            numElements, elementType,
1463                                            cookieSize);
1464 
1465   // Destroy the elements.
1466   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1467     assert(numElements && "no element count for a type with a destructor!");
1468 
1469     llvm::Value *arrayEnd =
1470       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1471 
1472     // Note that it is legal to allocate a zero-length array, and we
1473     // can never fold the check away because the length should always
1474     // come from a cookie.
1475     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1476                          CGF.getDestroyer(dtorKind),
1477                          /*checkZeroLength*/ true,
1478                          CGF.needsEHCleanup(dtorKind));
1479   }
1480 
1481   // Pop the cleanup block.
1482   CGF.PopCleanupBlock();
1483 }
1484 
1485 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1486   const Expr *Arg = E->getArgument();
1487   llvm::Value *Ptr = EmitScalarExpr(Arg);
1488 
1489   // Null check the pointer.
1490   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1491   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1492 
1493   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1494 
1495   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1496   EmitBlock(DeleteNotNull);
1497 
1498   // We might be deleting a pointer to array.  If so, GEP down to the
1499   // first non-array element.
1500   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1501   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1502   if (DeleteTy->isConstantArrayType()) {
1503     llvm::Value *Zero = Builder.getInt32(0);
1504     SmallVector<llvm::Value*,8> GEP;
1505 
1506     GEP.push_back(Zero); // point at the outermost array
1507 
1508     // For each layer of array type we're pointing at:
1509     while (const ConstantArrayType *Arr
1510              = getContext().getAsConstantArrayType(DeleteTy)) {
1511       // 1. Unpeel the array type.
1512       DeleteTy = Arr->getElementType();
1513 
1514       // 2. GEP to the first element of the array.
1515       GEP.push_back(Zero);
1516     }
1517 
1518     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1519   }
1520 
1521   assert(ConvertTypeForMem(DeleteTy) ==
1522          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1523 
1524   if (E->isArrayForm()) {
1525     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1526   } else {
1527     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1528                      E->isGlobalDelete());
1529   }
1530 
1531   EmitBlock(DeleteEnd);
1532 }
1533 
1534 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1535   // void __cxa_bad_typeid();
1536   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1537 
1538   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1539 }
1540 
1541 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1542   llvm::Value *Fn = getBadTypeidFn(CGF);
1543   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1544   CGF.Builder.CreateUnreachable();
1545 }
1546 
1547 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1548                                          const Expr *E,
1549                                          llvm::Type *StdTypeInfoPtrTy) {
1550   // Get the vtable pointer.
1551   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1552 
1553   // C++ [expr.typeid]p2:
1554   //   If the glvalue expression is obtained by applying the unary * operator to
1555   //   a pointer and the pointer is a null pointer value, the typeid expression
1556   //   throws the std::bad_typeid exception.
1557   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1558     if (UO->getOpcode() == UO_Deref) {
1559       llvm::BasicBlock *BadTypeidBlock =
1560         CGF.createBasicBlock("typeid.bad_typeid");
1561       llvm::BasicBlock *EndBlock =
1562         CGF.createBasicBlock("typeid.end");
1563 
1564       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1565       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1566 
1567       CGF.EmitBlock(BadTypeidBlock);
1568       EmitBadTypeidCall(CGF);
1569       CGF.EmitBlock(EndBlock);
1570     }
1571   }
1572 
1573   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1574                                         StdTypeInfoPtrTy->getPointerTo());
1575 
1576   // Load the type info.
1577   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1578   return CGF.Builder.CreateLoad(Value);
1579 }
1580 
1581 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1582   llvm::Type *StdTypeInfoPtrTy =
1583     ConvertType(E->getType())->getPointerTo();
1584 
1585   if (E->isTypeOperand()) {
1586     llvm::Constant *TypeInfo =
1587         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1588     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1589   }
1590 
1591   // C++ [expr.typeid]p2:
1592   //   When typeid is applied to a glvalue expression whose type is a
1593   //   polymorphic class type, the result refers to a std::type_info object
1594   //   representing the type of the most derived object (that is, the dynamic
1595   //   type) to which the glvalue refers.
1596   if (E->isPotentiallyEvaluated())
1597     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1598                                 StdTypeInfoPtrTy);
1599 
1600   QualType OperandTy = E->getExprOperand()->getType();
1601   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1602                                StdTypeInfoPtrTy);
1603 }
1604 
1605 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1606   // void *__dynamic_cast(const void *sub,
1607   //                      const abi::__class_type_info *src,
1608   //                      const abi::__class_type_info *dst,
1609   //                      std::ptrdiff_t src2dst_offset);
1610 
1611   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1612   llvm::Type *PtrDiffTy =
1613     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1614 
1615   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1616 
1617   llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
1618 
1619   // Mark the function as nounwind readonly.
1620   llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
1621                                             llvm::Attribute::ReadOnly };
1622   llvm::AttributeSet Attrs = llvm::AttributeSet::get(
1623       CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1624 
1625   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
1626 }
1627 
1628 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1629   // void __cxa_bad_cast();
1630   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1631   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1632 }
1633 
1634 static void EmitBadCastCall(CodeGenFunction &CGF) {
1635   llvm::Value *Fn = getBadCastFn(CGF);
1636   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1637   CGF.Builder.CreateUnreachable();
1638 }
1639 
1640 /// \brief Compute the src2dst_offset hint as described in the
1641 /// Itanium C++ ABI [2.9.7]
1642 static CharUnits computeOffsetHint(ASTContext &Context,
1643                                    const CXXRecordDecl *Src,
1644                                    const CXXRecordDecl *Dst) {
1645   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1646                      /*DetectVirtual=*/false);
1647 
1648   // If Dst is not derived from Src we can skip the whole computation below and
1649   // return that Src is not a public base of Dst.  Record all inheritance paths.
1650   if (!Dst->isDerivedFrom(Src, Paths))
1651     return CharUnits::fromQuantity(-2ULL);
1652 
1653   unsigned NumPublicPaths = 0;
1654   CharUnits Offset;
1655 
1656   // Now walk all possible inheritance paths.
1657   for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
1658        I != E; ++I) {
1659     if (I->Access != AS_public) // Ignore non-public inheritance.
1660       continue;
1661 
1662     ++NumPublicPaths;
1663 
1664     for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
1665       // If the path contains a virtual base class we can't give any hint.
1666       // -1: no hint.
1667       if (J->Base->isVirtual())
1668         return CharUnits::fromQuantity(-1ULL);
1669 
1670       if (NumPublicPaths > 1) // Won't use offsets, skip computation.
1671         continue;
1672 
1673       // Accumulate the base class offsets.
1674       const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
1675       Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
1676     }
1677   }
1678 
1679   // -2: Src is not a public base of Dst.
1680   if (NumPublicPaths == 0)
1681     return CharUnits::fromQuantity(-2ULL);
1682 
1683   // -3: Src is a multiple public base type but never a virtual base type.
1684   if (NumPublicPaths > 1)
1685     return CharUnits::fromQuantity(-3ULL);
1686 
1687   // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1688   // Return the offset of Src from the origin of Dst.
1689   return Offset;
1690 }
1691 
1692 static llvm::Value *
1693 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1694                     QualType SrcTy, QualType DestTy,
1695                     llvm::BasicBlock *CastEnd) {
1696   llvm::Type *PtrDiffLTy =
1697     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1698   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1699 
1700   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1701     if (PTy->getPointeeType()->isVoidType()) {
1702       // C++ [expr.dynamic.cast]p7:
1703       //   If T is "pointer to cv void," then the result is a pointer to the
1704       //   most derived object pointed to by v.
1705 
1706       // Get the vtable pointer.
1707       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1708 
1709       // Get the offset-to-top from the vtable.
1710       llvm::Value *OffsetToTop =
1711         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1712       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1713 
1714       // Finally, add the offset to the pointer.
1715       Value = CGF.EmitCastToVoidPtr(Value);
1716       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1717 
1718       return CGF.Builder.CreateBitCast(Value, DestLTy);
1719     }
1720   }
1721 
1722   QualType SrcRecordTy;
1723   QualType DestRecordTy;
1724 
1725   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1726     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1727     DestRecordTy = DestPTy->getPointeeType();
1728   } else {
1729     SrcRecordTy = SrcTy;
1730     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1731   }
1732 
1733   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1734   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1735 
1736   llvm::Value *SrcRTTI =
1737     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1738   llvm::Value *DestRTTI =
1739     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1740 
1741   // Compute the offset hint.
1742   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1743   const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
1744   llvm::Value *OffsetHint =
1745     llvm::ConstantInt::get(PtrDiffLTy,
1746                            computeOffsetHint(CGF.getContext(), SrcDecl,
1747                                              DestDecl).getQuantity());
1748 
1749   // Emit the call to __dynamic_cast.
1750   Value = CGF.EmitCastToVoidPtr(Value);
1751 
1752   llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint };
1753   Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args);
1754   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1755 
1756   /// C++ [expr.dynamic.cast]p9:
1757   ///   A failed cast to reference type throws std::bad_cast
1758   if (DestTy->isReferenceType()) {
1759     llvm::BasicBlock *BadCastBlock =
1760       CGF.createBasicBlock("dynamic_cast.bad_cast");
1761 
1762     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1763     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1764 
1765     CGF.EmitBlock(BadCastBlock);
1766     EmitBadCastCall(CGF);
1767   }
1768 
1769   return Value;
1770 }
1771 
1772 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1773                                           QualType DestTy) {
1774   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1775   if (DestTy->isPointerType())
1776     return llvm::Constant::getNullValue(DestLTy);
1777 
1778   /// C++ [expr.dynamic.cast]p9:
1779   ///   A failed cast to reference type throws std::bad_cast
1780   EmitBadCastCall(CGF);
1781 
1782   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1783   return llvm::UndefValue::get(DestLTy);
1784 }
1785 
1786 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1787                                               const CXXDynamicCastExpr *DCE) {
1788   QualType DestTy = DCE->getTypeAsWritten();
1789 
1790   if (DCE->isAlwaysNull())
1791     return EmitDynamicCastToNull(*this, DestTy);
1792 
1793   QualType SrcTy = DCE->getSubExpr()->getType();
1794 
1795   // C++ [expr.dynamic.cast]p4:
1796   //   If the value of v is a null pointer value in the pointer case, the result
1797   //   is the null pointer value of type T.
1798   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1799 
1800   llvm::BasicBlock *CastNull = 0;
1801   llvm::BasicBlock *CastNotNull = 0;
1802   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1803 
1804   if (ShouldNullCheckSrcValue) {
1805     CastNull = createBasicBlock("dynamic_cast.null");
1806     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1807 
1808     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1809     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1810     EmitBlock(CastNotNull);
1811   }
1812 
1813   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1814 
1815   if (ShouldNullCheckSrcValue) {
1816     EmitBranch(CastEnd);
1817 
1818     EmitBlock(CastNull);
1819     EmitBranch(CastEnd);
1820   }
1821 
1822   EmitBlock(CastEnd);
1823 
1824   if (ShouldNullCheckSrcValue) {
1825     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1826     PHI->addIncoming(Value, CastNotNull);
1827     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1828 
1829     Value = PHI;
1830   }
1831 
1832   return Value;
1833 }
1834 
1835 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1836   RunCleanupsScope Scope(*this);
1837   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1838                                  Slot.getAlignment());
1839 
1840   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1841   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1842                                          e = E->capture_init_end();
1843        i != e; ++i, ++CurField) {
1844     // Emit initialization
1845 
1846     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1847     ArrayRef<VarDecl *> ArrayIndexes;
1848     if (CurField->getType()->isArrayType())
1849       ArrayIndexes = E->getCaptureInitIndexVars(i);
1850     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1851   }
1852 }
1853